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1 Introduction

In this paper we apply a newly developed technique which counts the dimension of operator

bases in effective field theories (EFTs) to the standard model (SM) EFT. We demonstrate

counting up to dimension 15, allowing for an arbitrary number of fermion generations Nf ,

and provide explicit results for the content of the independent operators up to dimension 12.

Previous results have appeared in the literature at dimension 5 [2], 6 [3–5], 7 [6] and

very recently 8 [7]. This particular counting problem has a history of being tricky, due to

the somewhat complicated nature of the particle content of the SM, and the intricacies of

equations of motion (EOM) and integration by parts (IBP), which yield relations between

operators. With our new method, the procedure is for the first time completely automated,

reducing the possibility for error by putting EOM and IBP on the same footing as gauge and

global symmetries, which can then be systematically dealt with by using group theoretic

techniques. Enumeration of operators is encoded in a Hilbert series, which we compute

by making use of the plethystic exponential and Molien’s formula, as reviewed e.g. in the

phenomenological papers [8–10].

There are two key observations in our technique, both of which rely on the conformal

group. (1) The EOM can be regarded as an ideal in a commutative ring, so that it can

be implemented in the Hilbert series. Accounting for EOM leads to generators which fall
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into short multiplets of the conformal group. (2) The IBP removes operators that are total

derivatives, which can be regarded as descendants in a conformal field theory. Therefore,

we only need to identify the primary fields. Note that we regard the SM with only the

kinetic terms as the zeroth order Lagrangian, where all fields are massless and hence the

theory is (classically) conformal. The we classify additional higher-dimension operators as

perturbation to the system. This technique is a natural generalization of what we studied

in 1D QFT in our previous paper [11].

In what we intend to be the final twist in the tale of the SM EFT operator basis

dimension, we find a correction to the Nf > 1 counting at dimension 7 and an additional

62 operators at dimension 8 to those previously found in the literature at Nf = 1. The

method is strikingly simple, as exemplified in the accompanying Mathematica notebook,

which we encourage the interested reader to study. In this paper we aim to present the

method with a minimal amount of technical details, but to the level at which it can be

reproduced and applied to other phenomenological Lagrangians of interest.

While the SM EFT is of obvious phenomenological utility, study of it has also led to

interesting theoretical questions and developments. Our investigations are motivated by

the difficulties in determining the operator content of the SM EFT, as well as interesting

features so far uncovered in the well developed literature [3–7, 10, 12–36].

The method is outlined in section 2; details beyond those needed for the present

purpose can be found in [1]. The ingredients to apply this method to the SM EFT are

explicitly laid out in section 3. We present some selected results in section 4: we give

corrected versions of the counting of operators at dimension 7 and at dimension 8 for general

Nf ; we give the number of independent operators as a function of Nf and split according

to baryon violating number, ∆B, up to dimension 12, and up to dimension 15 retaining

only Nf dependence. Hilbert series up to dimension 12 can be found in an accompanying

Mathematica notebook. Section 5 provides a short discussion on the application to other

phenomenological Lagrangians.

2 Method

An operator basis for an EFT is a set of local operators which give independent S-matrix

contributions. Redundancies associated with IBP and EOM must be accounted for in the

operator basis. It turns out that the conformal group organizes an operator basis, allowing

us to systematically handle IBP and EOM redundancies. A thorough investigation of this

structure and its implications is carried out in [1]; here we provide only an outline of the

method to understand what is necessary for application of the final formula, eq. (2.7), to

the SM EFT.

The emergence of the conformal group in this problem and the main result of [1] are

schematically easy to understand. In its region of validity, an EFT is perturbative around a

free field theory. Free field theories are conformal, hence the operator-state correspondence

tells us that the space of local operators modulo EOM fall into representations of the

conformal group. Representations of the conformal group consist of a primary operator O
together with an infinite tower of descendant operators obtained by repeated differentiation
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of O, i.e. (O, ∂µO, ∂µ1∂µ2O, . . . ). Importantly for our purposes, descendant operators are

total derivatives.

All local operators can be constructed as products of some generating set of opera-

tors; these generating operators fill out representations of the conformal group themselves,

so it is natural to form the space of local operators via tensor products of the generat-

ing representations. By decomposing these tensor products back into representations of

the conformal group, IBP relations can be completely accounted for. In particular, only

primary operators are not total derivatives. For a primary operator to be a part of the

operator basis, it also needs to be a Lorentz scalar. We conclude that the operator basis

consists of the scalar (spin 0) conformal primaries in the corresponding free field theory [1].

As a way to study the operator basis, we wish to compute an object called the Hilbert

series, which abstractly can be viewed as a partition function on the operator basis. More

concretely, it is a generating function defined to count the number of operators of some

given field content,

H(D, {φa}) =
∑

r1,...,rN

∑
k

cr k φ
r1
1 . . . φrNN D

k, (2.1)

where cr k ∈ N is the number of independent, Lorentz invariant, gauge invariant operators

composed of r = (r1, . . . , rN ) powers of φ1, . . . , φN and k derivatives. In the above, {φa}
are “spurions” to label the content of operators; we stress that they are not fields, just

complex numbers. Similarly, D is a spurion to represent the covariant derivative D.

The method to compute the cr k builds upon our earlier work in (0+1) dimensions [11],

where we used an underlying SL(2,C) structure to organize operators into irreducible

representations of the group; the operator basis was spanned by operators of highest weight

of the SL(2,C) representations. This is because in each irreducible representation, operators

obtained from the one of highest weight by the lowering operators are total derivatives (the

lowering operator is the derivative). A weighted sum and integral over the maximal compact

subgroup of SL(2,C), namely SU(2), was used to project out the highest weight operators.

The analogous situation in d dimensions is that SL(2,C) ' SO(1, 2) is replaced by

the conformal group in d dimensions, SO(d + 2,C) ' SO(d, 2). As described above, the

operator basis is spanned by the set of scalar conformal primaries formed from the fields

and their covariant derivatives. Echoing the one dimension case, the primary operators are

projected out and counted via a weighted sum and integral over SO(d + 2), the maximal

compact subgroup of SO(d + 2,C), of a generating function for tensor products of the

generating representations.

Let us briefly describe these so-called generating representations. They consist of the

fundamental fields Φa (in four dimensions, scalars φ, fermions ψ, or self-dual/anti-self-dual

field strengths XL/R = X ± iX̃) together with an infinite tower of symmeterized deriva-

tives1 acting on Φa with the EOM removed. Removing terms proportional to the EOM in

this tower means eliminating terms proportional to D2φ for scalars, /Dψ for fermions, or

DµX
µν
L/R for field strengths. This construction is also described by Lehman and Martin [7].

1When there is no gauge symmetry, Dµ = ∂µ and the derivatives are automatically symmetric. With

gauge symmetries, the anti-symmetric combination is proportional to field strengths, [Dµ, Dν ] ∼ Xµν , and

therefore already accounted for.
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In the present work, we make the observation that the tower of Φa and derivatives acting on

Φa with EOM removed falls into an irreducible representation of the conformal group. In

particular, these are short representations of the conformal group that correspond to states

saturating a unitarity bound (the EOM acts as a shortening condition for the multiplet).

2.1 Computing the Hilbert series

The computation of the Hilbert series proceeds via elementary use of characters and rep-

resentation theory. Here we only provide a schematic picture of the procedure and then

quote the final formula, eq. (2.7), that is our launching point.

We start with the character for each generating representation, which is a product of

its character under the conformal group and its character under the gauge symmetries,

χφa = χφa,SO(d+2,C)χφa,gauge. (2.2)

We recall that the character for a representation R of a Lie group G is given by χR(g) =

TrR(g) for g ∈ G. For connected G, all g ∈ G may be conjugated into a maximal torus

U(1)r ⊂ G with r = rankG. Since the character is a class function, i.e. it is conjugation

invariant since Tr(hgh−1) = Tr(g), it is a function only of the r parameters (x1, . . . , xr) of

the torus which we denote by writing χR(x1, . . . , xr). Characters of the conformal group

in arbitrary dimension are discussed in [37], as well as in four dimensions in [38]; their

construction is also reviewed in [1].

Taking tensor products of the generating representations amounts to character multi-

plication. A generating function known as the plethystic exponential is used to form all

possible tensor products. The plethystic exponential accounts for the statistics of the un-

derlying fields (symmetric for bosons, anti-symmetric for fermions); this is, more or less, the

meaning of “plethysm”.2 For a spurion φR in representation R, the plethystic exponential

is defined as

PE
[
φRχR(x1, . . . , xr)

]
= exp

( ∞∑
n=1

1

n
(±1)n+1φnR χR(xn1 , . . . , x

n
r )

)
(2.3)

where the +(−) sign is taken for spurions associated with bosons (fermions). The formula

may be more illuminating by recognizing that it simply comes from using log det = Tr log

and expanding a logarithm,

bosons:
1

detR(1− φRg)
= exp

( ∞∑
n=1

1

n
φnR TrR(gn)

)
, (2.4)

fermions: detR(1 + φRg) = exp

( ∞∑
n=1

1

n
(−1)n+1φnR TrR(gn)

)
. (2.5)

2The words Hilbert series, Molien’s formula, and plethystic exponential often appear together. They all

have roots in the subject of invariant theory and are closely related [39]. In the context of invariant theory,

the Hilbert series is a partition function for a ring of invariants, Molien’s formula is a way to compute

the Hilbert series via a taking a tensor product of representations and averaging over the group, and the

plethystic exponential is the integrand of Molien’s formula.
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These equations also make it obvious that the plethystic exponential obeys

PE
[
φRχR

]
PE
[
φR′χR′

]
= PE

[
φRχR + φR′χR′

]
, (2.6)

with appropriate care taken for bosonic or fermionic statistics.

The Hilbert series is obtained by counting all the gauge invariant, scalar primaries

that show up in tensor products from the plethystic exponential, weighted as in eq. (2.1).

Scalar conformal primaries are projected out via character orthogonality by multiplying by

all possible χ∗SO(d+2,C),scalar and integrating over the conformal group. Gauge singlets are

projected out by integrating over the gauge group.3

Following this procedure, we arrive at a formula for the Hilbert series given by [1]

H(D, {φa}) =

∫
dµLorentz

∫
dµgauge

1

P
PE

[∑
a

φa
Dda

χa

]
+ ∆H(D, {φa}) . (2.7)

This formula generates the Hilbert series which counts Lorentz and gauge singlets modulo

EOM and IBP. Here da is the canonical mass dimension of the field φa and the integrals

are over Lorentz and gauge group parameters, with group measures dµ. The ∆H is a

small modification term due to subtle issues regarding lack of orthonormality of conformal

characters (arising because the conformal group is non-compact), whose form is given for

a general EFT in [1]. We evaluate ∆H explicitly for the SM below — importantly, it is

comprised only of terms with mass dimension four and less. To arrive at the first term on

the r.h.s. of eq. (2.7), we performed the integral associated with dilatations in the conformal

group, leaving a remaining integral over the Lorentz group (this step is the generalization

of performing the α integral in [11]). The factor

1

P
≡ det�(1−Dg), (2.8)

where the determinant is taken over the vector (�) representation of g ∈ SO(d), is a

remnant of the Haar measure for the conformal group. The function P plays an important

role in the connection with characters of the conformal group, as it is the generating function

for symmetric products of the vector representation (recall that a conformal representation

contains an infinite tower of symmeterized derivatives acting on a primary operator), see

eq. (3.3).

2.2 A viewpoint of IBP redundancy using differential forms

The IBP redundancy states that total derivative operators are zero. In our method, this

redundancy is accounted for by throwing away all the descendants while only keeping

the primaries in each irreducible conformal group representation. However, with a little

help from the Hodge dual of differential forms, one can obtain a quite useful alternative

treatment of the IBP redundancy, which reveals the cohomological nature of this problem.

This picture makes contact with the way that IBP relations were discussed for one space-

time dimension in [11], where it is explained how IBP relations for operators composed of

3This is also character orthogonality, where we multiply by the character of the singlet representation,

which is unity, and integrate over the group.
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r1, . . . , rN powers of φ1, . . . , φN and k derivatives (schematically φr11 . . . φrNN ∂k) arise from

considering a total derivative acting on the independent operators with one less derivative

(schematically 0 = ∂(φr11 . . . φrNN ∂k−1)). We will see that the language of differential forms

allows a straightforward answer to this question.

Since we are counting Lorentz scalar operators, any total derivative scalar operator

must have the form ∂αAα, where Aα is a Lorentz 1-form operator. In d dimensions, the

Hodge dual of each scalar operator is a d-form; the dual of each total derivative operator

∂αAα is an exact d-form:

∗ (∂αAα) = (∂αAβ) δαβdx1 ∧ dx2 · · · ∧ dxd

= (∂αAβ)
1

(d− 1)!
εβν2···νd (εαν2···νddx1 ∧ dx2 · · · ∧ dxd)

=
1

(d− 1)!
εβν2···νd (∂αAβ) dxα ∧ dxν2 · · · ∧ dxνd

= d

[
1

(d− 1)!
εβν2···νdAβ dxν2 · · · ∧ dxνd

]
. (2.9)

Therefore, the Hodge dual picture makes it clear that counting scalar operators which are

not total derivatives amounts to counting the number of non-exact d-forms:

#(Indep scalar ops) = #(non-exact d-form) = #(d-form)−#(exact d-form). (2.10)

Since each exact k-form comes from a non-exact (k − 1)-form, we arrive at the sequence

truncated by the spacetime dimension:

#(non-exact d-form) = #(d-form)−#(non-exact (d− 1)-form)

= #(d-form)− [#((d− 1)-form)−#(non-exact (d− 2)-form)]

= · · ·

=

d∑
k=0

(−1)k#((d− k)-form). (2.11)

The number of each SO(d) rank k-form above can be easily projected out using character

orthonormality
∫
dµLorentzχ

∗
aχb = δab. In particular, to appropriately count the k-forms,

under the Lorentz SO(d) integral we insert

d∑
k=0

(−1)kDkχ(d−k)-form =

d∑
k=0

(−1)kDkTr�(∧kg) = det�(1−Dg) (2.12)

where we have used the fact the k-form representation is obtained by the k-th exterior

(antisymmetric) product of the vector (�) representation. We see that this corresponds

to the 1/P factor, eq. (2.8), that enters into the Hilbert series integral in eq. (2.7). We

understood eq. (2.8) to arise as a result of integrating over the conformal group; here

we get a more operational understanding of how it is counting total derivative relations.
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Explicitly, and for future reference, we record here the result in four dimensions using

SO(4) = SU(2)L × SU(2)R,

1−D(α+α−1)(β+β−1)+D2(α2+α−2+β2+β−2+2)−D3(α+α−1)(β+β−1)+D4 =
1

P (D,α,β)
.

(2.13)

Although the sequence eq. (2.11) nicely gives the 1/P factor in eq. (2.7), we emphasize

that it is not yet fully correct in accounting for the IBP relation. There are exceptions to

the rule “an exact k-form comes from a non-exact (k− 1)-form”: sometimes even though a

(k− 1)-form is non-exact, its exterior derivative could still identically vanish, due to EOM

or simply that it is a constant. In these exceptional cases, the (k−1)-form gives no k-form.

In order to avoid over counting, one needs to carefully track these exceptional cases and

make a corresponding fix, which amounts to including the ∆H term in eq. (2.7) (and given

explicitly below for the SM).

3 Hilbert series for the SM EFT

In this section we discuss each of the elements of eq. (2.7) explicitly for application to

the SM EFT. We then explain how operators are counted in mass dimension, provide an

example calculation for the SM Hilbert series, discuss how one can use the Hilbert series to

aid in obtaining the explicit form of higher dimension operators, and show how to include

multiple fermion flavors.

Elements of eq. (2.7)

We work in Euclidean space with Lorentz group SO(4) ' SU(2)L×SU(2)R. Representations

are labeled by (j1, j2); those needed are for scalars (0, 0), left-handed fermions ( 1
2 , 0) and

their right-handed conjugates (0, 1
2), and field strengths XL/R = 1

2(X ± X̃) in the (1, 0)

and (0, 1) representations.

The field content of the SM is listed in table 1. Spurions in the Hilbert series are labeled

by their field name, although we drop the subscript “c” for the left-handed conjugate fields

uc, dc, and ec. That is, the Hilbert series is a function of the variables (for one fermion

generation),

H(D, {φa}) = H(D, Q,Q†, L, L†, H,H†, u, u†, d, d†, e, e†, BL, BR,WL,WR, GL, GR). (3.1)

In addition to the spacetime symmetry group, we impose invariance under the SM

gauge group. Computations occur on the tori of these groups; we will use α and β to param-

eterize the torus of SU(2)L×SU(2)R, z1 and z2 for SU(3)c, y for SU(2)W , and x for U(1)Y .

For a field φa, the character that enters the argument of the plethystic exponential is

given by eq. (2.2),

χa(D, α, β, x, y, z1, z2) = χ[da,(j1, j2)a] χ
gauge
a , (3.2)

where χ[∆,(j1,j2)] is the character of the conformal group in four dimensions for a represen-

tation of scaling dimension ∆ and spin (j1, j2). The characters necessary for the SM are

– 7 –
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SU(2)L SU(2)R SU(3)c SU(2)W U(1)Y

H 1 1 1 2 1/2

Q 2 1 3 2 1/6

uc 2 1 3 1 −2/3

dc 2 1 3 1 1/3

L 2 1 1 2 −1/2

ec 2 1 1 1 1

GL 3 1 8 1 0

WL 3 1 1 3 0

BL 3 1 1 1 0

Table 1. The SM field content and their charges under Lorentz and gauge groups. For each φa,

the hermitian conjugate field φ†a is also to be included.

χ[1,(0,0)](D, α, β) = D1P (D, α, β)(1−D2) (3.3a)

χ
[ 3
2
,( 1

2
, 0)]

(D, α, β) = D
3
2P (D, α, β)

(
α+

1

α
−D

(
β +

1

β

))
(3.3b)

χ
[ 3
2
,(0, 1

2
)]

(D, α, β) = D
3
2P (D, α, β)

(
β +

1

β
−D

(
α+

1

α

))
(3.3c)

χ[2,(1,0)](D, α, β) = D2P (D, α, β)

(
α2 + 1 +

1

α
−D

(
α+

1

α

)(
β +

1

β

)
+D2

)
(3.3d)

χ[2,(0,1)](D, α, β) = D2P (D, α, β)

(
β2 + 1 +

1

β
−D

(
β +

1

β

)(
α+

1

α

)
+D2

)
, (3.3e)

The function P is

P (D, α, β) =
1

(1−Dαβ)(1−D/αβ)(1−Dα/β)(1−Dβ/α)
. (3.4)

The conformal characters in eq. (3.3) correspond to free fields with the EOM removed from

the descendant operators [37, 38]. Note that the multiplicative D∆ factors in eq. (3.3)

cancels against the factor D−da that enters the argument of the plethystic exponential in

eq. (2.7).

The character for the gauge group in the SM is χgauge
R = χ

U(1)
R χ

SU(2)
R χ

SU(3)
R , where the

characters for the representations needed in the SM are

χ
U(1)
Q (x)=xQ (3.5)

χ
SU(2)
2 (y)=χ

SU(2)

2
(y)=y+

1

y
, χ

SU(2)
ad (y)=y2+1+

1

y2
(3.6)

χ
SU(3)
3 (z1,z2)=z1+

z2

z1
+

1

z2
, χ

SU(3)

3
(z1,z2)=z2+

z1

z2
+

1

z1
(3.7)
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χ
SU(3)
ad (z1,z2)=z1z2+

z2
2

z1
+
z2

1

z2
+2+

z1

z2
2

+
z2

z2
1

+
1

z1z2
(3.8)

For example, the character of the spurion Q in the SM is,

χQ = χ[ 3
2
,( 1

2
, 0)](D, α, β) χ

U(1)
1/6 (x) χ

SU(2)
2 (y) χ

SU(3)
3 (z1, z2) ,

and the plethystic exponential is

PE

[
Q

D
3
2

χQ

]
= exp

( ∞∑
r=1

1

r
(−1)r+1 Qr

D
3
2
r
χ

[ 3
2
,( 1

2
, 0)]

(Dr;αr, βr) (3.9)

×χU(1)
1
6

(xr) χ
SU(2)
2 (yr) χ

SU(3)
3 (zr1, z

r
2)

)
.

The measures of the integrals in eq. (2.7) are the invariant group measures (Haar

measures), normalized such that
∫
dµG = 1. For an integral

∫
dµG f(g) with f(g) a class

function, we can restrict the integration to the maximal torus using the Weyl integration

formula.4 The Haar measures we give in the following are written in this way. For the

Lorentz group∫
dµSU(2)L×SU(2)R=

1

4

1

(2πi)2

∮
|α|=1

∮
|β|=1

dα

α

dβ

β

(
1−α2

)(
1− 1

α2

)(
1−β2

)(
1− 1

β2

)
, (3.10)

where α is the parameter associated with SU(2)L and β with SU(2)R. For the SM gauge

group we have ∫
dµgauge =

∫
dµU(1)

∫
dµSU(2)

∫
dµSU(3) , (3.11)

with ∫
dµU(1) =

1

2πi

∮
|x|=1

dx

x
, (3.12a)∫

dµSU(2) =
1

2

1

2πi

∮
|y|=1

dy

y

(
1−y2

)(
1− 1

y2

)
, (3.12b)∫

dµSU(3) =
1

6

1

(2πi)2

∮
|z1|=1

∮
|z2|=1

dz1

z1

dz2

z2

(
1−z1z2

)(
1− z

2
1

z2

)(
1− z

2
2

z1

)(
1− 1

z1z2

)
×
(

1− z2

z2
1

)(
1− z1

z2
2

)
. (3.12c)

Finally, the ∆H modification term in eq. (2.7) can be obtained from the general formula

presented in [1]. Explicitly, for the SM (with one fermion generation) it is given by

∆H(D, {φa}) = dd†D+ee†D+LL†D+QQ†D+uu†D−BLD2−BRD2+HH†D2−D4 . (3.13)

Note that all of these terms are non-sensical when interpreted as operators; their job is to

cancel such terms coming from the remainder of eq. (2.7).

4We are unaware of a great physics-oriented reference for this. Weyl’s work [40] might actually be the

most straightforward to understand. We will attempt to give a readable derivation in [1]. Most math

textbooks on group theory cover the Weyl integration formula; one that we like is [41]. Formulas for the

present Haar measures can be found in the, e.g., the physics paper [42].
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Counting in mass dimension

To obtain the counting of SM operators at a given mass dimension, we re-scale the spurions

according to their mass dimension:

D → εD ,
φa → εdaφa ,

(3.14)

with da the canonical scaling dimension of the field φa. The Hilbert series eq. (2.1) can

then be viewed as a series in mass dimension,

H(ε,D, {φa}) =
∑

r1,...,rN

∑
k

cr k ε
d·r+kφr11 . . . φrNN D

k ≡
∑
i

εiĤi(D, {φa}). (3.15)

Recalling eq. (2.7), let us define

H0(D, {φa}) =

∫
dµLorentz

∫
dµgauge

1

P (D, α, β)
PE

[∑
a

φa
Dda

χa

]
, (3.16)

such that eq. (2.7) takes the form H = H0 + ∆H. The terms in the Hilbert series of mass

dimension four and less are given by

4∑
i=0

εi Ĥi = H0(εD, {εdaφa})
∣∣∣∣
ε≤4

+ ∆H(εD, {εdaφa})

= 1 + ε2HH† + ε4
(
B2
L +B2

R +W 2
L +W 2

R +G2
L +G2

R +H2H†
2

+ eH†L+ e†HL† + dH†Q+ d†HQ† +HQu+H†Q†u†
)
,

(3.17)

where the notation |ε≤4 means taking a Taylor expansion of the integrand of eq. (3.16) in

powers of ε up to order ε4, and where ∆H was given in eq. (3.13). At mass dimension five

and above, we have

i ≥ 5 : Ĥi = H0(εD, {εdaφa})
∣∣∣∣
O(εi)

, (3.18)

where the notation |O(εi) means taking the coefficient of εi in the Taylor expansion of the

integrand of eq. (3.16) in powers of ε. In the Taylor expansion, all poles are located at the

origin. Because all poles are at 0, the computation is very straightforward and simple to

program. We see explicitly in eqs. (3.17), (3.18) that ∆H does not affect mass dimension

five and above.

Note that: i) the Hilbert series does not include kinetic terms for scalar and fermion

fields, since in our method these are counted as zero on account of the EOM (these terms

can of course be trivially added in to eq. (3.17) such that it accounts for all the terms in

the usual ‘renormalizable’ SM Lagrangian); ii) because we work with field strength tensors

(and not gauge fields), the gauge kinetic terms are already present in the Hilbert series;

and, iii) the fields F̃ , W̃ and G̃ are used as building blocks for the Lagrangian, so that

topological terms such as FF̃ are included in the Hilbert series.
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Example outputs: dimension 5 and 6 Hilbert series

We can expand the integrand in eq. (3.16) in ε and retain only the coefficient of ε5; per-

forming the contour integrals over the Lorentz and gauge group parameters, we pick up

residues at 0 in all the variables α, β, x, y, z1, z2,

HSM

∣∣∣∣
O(ε5)

≡Ĥ5 =

=

∮
dα

2πi

∮
dβ

2πi

(
1−α2

)2(
1−β2

)2
4α3β3

∮
dx

2πi

1

x

∮
dy

2πi

(
1−y2

)2
2y3

∮
dz1
2πi

∮
dz2
2πi

(
z21−z2

)2
(1−z1z2)2

(
z1−z22

)2
6z51z

5
2

×
[
H2L2

(
y4+y2+1

)(
α2+α2y4+

(
α2+1

)2
y2
)

α2y4
+(H†)2(L†)2

(
y4+y2+1

)(
β2+β2y4+

(
β2+1

)2
y2
)

β2y4
+...

]
=H2L2+H†2L†2 , (3.19)

where the + . . . inside the large brackets are terms which evaluate to zero upon performing

the contour integrals. This is the Hilbert series for dimension-five operators in the SM

EFT. One readily identifies that the Hilbert series is picking up the well known operators

which give neutrino masses.

Repeating this at order ε6 we obtain the Hilbert series for dimension-six operators of

the SM EFT:

Ĥ6 = H3H†3+u†Q†HH†2+2Q2Q†2+Q†3L†+Q3L+2QQ†LL†+L2L†2+uQH2H†

+2uu†QQ†+uu†LL†+u2u†2+e†u†Q2+e†L†H2H†+2e†u†Q†L†+eLHH†2+euQ†2

+2euQL+ee†QQ†+ee†LL†+ee†uu†+e2e†2+d†Q†H2H†+2d†u†Q†2+d†u†QL

+d†e†u†2+d†eQ†L+dQHH†2+2duQ2+duQ†L†+de†QL†+deu2+2dd†QQ†+dd†LL†

+2dd†uu†+dd†ee†+d2d†2+u†Q†H†GR+d†Q†HGR+HH†G2
R+G3

R+uQHGL

+dQH†GL+HH†G2
L+G3

L+u†Q†H†WR+e†L†HWR+d†Q†HWR+HH†W 2
R+W 3

R

+uQHWL+eLH†WL+dQH†WL+HH†W 2
L+W 3

L+u†Q†H†BR+e†L†HBR

+d†Q†HBR+HH†BRWR+HH†B2
R+uQHBL+eLH†BL+dQH†BL+HH†BLWL

+HH†B2
L+2QQ†HH†D+2LL†HH†D+uu†HH†D+ee†HH†D+d†uH2D+du†H†2D

+dd†HH†D+2H2H†2D2 . (3.20)

Setting all of the spurions equal to unity gives Ĥ6 = 84, the total number of independent

local operators at dimension 6, but more information is contained in eq.(3.20). For instance,

the counting can easily be further decomposed by baryon number violation, 76 + 8. The

perhaps more familiar ‘59 + 4’ counting is one in which hermitian conjugates of fermionic

operators are not counted separately (such counting can of course also be obtained from

eq. (3.20)).

Explicit form of the operators

At low dimensions (including dimension 7 and 8), explicitly constructing an operator basis

requires minimal effort. For example, the +Q3L term in eq. (3.20) tells us that there

is one independent operator composed of three powers of Q and one power of L; the

+2LL†QQ† term that there are two independent operators composed of one power each
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of L,L†, Q and Q†; the +2HH†QQ†D term that there are two independent operators

composed of H,H†, Q,Q† and one covariant derivative, etc. Exactly how derivatives act

and how Lorentz and gauge indices are contracted is information beyond what the Hilbert

series can provide. However, such information can be easily deduced for low-order terms.

For example, in the 2HH†QQ†D term, because the combination QQ† has to be formed

into a Lorentz singlet, it follows there must be a /D = γµDµ, i.e. Q̄γµQDµ; the gauge

indices can be contracted in two inequivalent ways: i
[
H†(DµH)− (DµH

†)H
]
Q̄γµQ and

i
[
H†τa(DµH)− (DµH

†)τaH
]
Q̄γµτaQ, where τa are the SU(2)W generators.

Multiple flavors

The inclusion of additional fermion families is trivial — simply add the extra fields into

the PE. Alternatively the PE of each fermion family can be raised to the power of Nf —

the results we selected to show below use this counting for ease of display, but in doing this

additional information about the flavor structure is missing compared to the case where

one distinguishes between the fermion families.

4 Selected results

Full Hilbert series for the SM EFT up to mass dimension 12 are supplied as an auxiliary

Mathematica file to this paper. In this section we present selected results. Our convention

is to separately count operators which are related by hermitian conjugation; this counts all

CP-even and CP-odd operators independently.

4.1 Operator bases at dimension 7 and 8

In this section we revisit the SM EFT operator basis at dimension 7 and 8 for arbitrary

number of flavors Nf . We find that the existing analysis [7] — which includes full Nf

dependence at dimension 7, and Nf = 1 at dimension 8 — missed some operators containing

two or more derivatives. In the present section we will explain why that analysis missed

some operators and then summarize the dim-7 and dim-8 operator content. Appendix A

contains a comprehensive listing and analysis of the operators missing from [7].

From a strictly computational point of view, the only difference in our method com-

pared to [7] is the 1/P factor in eqs. (2.7) and (3.16). Operationally, the 1/P factor

accounts for IBP relations; in section 2.2, we presented an understanding of this using the

language of differential forms: in four dimensions, the independent IBP relations come from

non-exact 3-forms. Hence, the correct counting takes the number of 4-forms (scalars) and

subtracts the number of non-exact 3-forms. In [7], the authors take the number of 4-forms

and subtract all (exact and non-exact) 3-forms (i.e., the first two terms in eq. (2.13)); they

point out that this gives spurious results but were unable to find a systematic procedure to

correct it. Here we find that correct fix is to add in the rest of the terms of eq. (2.13); this

makes it clear that the differences we find occur when there are two or more derivatives.

Moving to results, we follow [7] and group the counting of operators into classes

which do not mix under EOM or IBP. In the SM EFT we count classes by i) number

of derivatives D, ii) powers of Higgs field H (or H†), iii) powers of gauge field X (i.e.
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Class Nf 1 3

XH2ψ2 Nf (3Nf − 1) 2 24

H4ψ2 Nf (Nf + 1) 2 12

Hψ4
(B) 2

3N
2
f (14N2

f + 1) 10 762

( /B) 1
3N

2
f (17N2

f − 3Nf − 2) 4 426

H3ψ2D 2N2
f 2 18

ψ4D
(B) N3

f (Nf + 1) 2 108

( /B) 1
3N

2
f (4N2

f + 6Nf + 2) 4 168

H2ψ2D2 2Nf (Nf + 1) 4 24

Total
(B) 31

3 N
4
f +N3

f + 26
3 N

2
f + 2Nf 22 948

( /B) 7N4
f +N3

f 8 594

Table 2. Dimension 7 operators for arbitrary Nf as well as for Nf = 1 and Nf = 3. Lines

separate classes involving no derivatives, one derivative, and two derivatives. Operators involving

four fermions are further distinguished either as preserving baryon number (B) or violating baryon

number ( /B).

X ∈ {BL, BR,WL,WR, GL, GR}), iv) powers of fermion fields ψ (i.e. ψ ∈ {Q, u, d, L, e}
and their conjugates).

Dimension 7. The different classes of dimension-seven operators and the number of

operators in them are summarized in table 2. In total, we find 30 operators for Nf = 1 and

1542 for Nf = 3. All dim-7 operators violate either lepton or baryon number; moreover,

all violate B − L. The dim-7 operators have either zero, one, or two derivatives. As the

additional operators we find compared to [7] all involve two or more derivatives, there is only

one term at conflict between our analyses. For the two derivative class H2ψ2D2 we find:

Ĥ7 ⊃ Nf (Nf + 1)H2L2D2 + h.c. . (4.1)

This is a larger coefficient than that found in [7] (that analysis produced a coefficient of

Nf (Nf + 3)/2, which numerically differs from ours for Nf > 1).

Dimension 8. Our analysis at dimension 8 is the first to include full Nf dependence.

The results are summarized in table 3. In total, we find 993 operators for Nf = 1 and

44807 for Nf = 3. We highlight:

• There are 62 additional operators in the Nf = 1 case which were not uncovered in [7].

These operators involve two or three derivatives, and an explicit listing of them is

given in appendix A.

• All baryon violating operators are ∆B = 1 and all preserve B − L.
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Class Nf 1 3

X4 43 43 43

X3H2 6 6 6

X2H4 10 10 10

H8 1 1 1

X2Hψ2 96N2
f 96 864

XH3ψ2 22N2
f 22 198

H5ψ2 6N2
f 6 54

Xψ4
(B) 4N2

f (40N2
f − 1) 156 12924

( /B) 2N3
f (21Nf + 1) 44 3456

H2ψ4
(B) N2

f (67N2
f +Nf + 7) 75 5517

( /B) 1
3N

2
f (43N2

f − 9Nf + 2) 12 1086

X2ψ2D 57N2
f 57 513

XH2ψ2D 92N2
f 92 828

H4ψ2D 13N2
f 13 117

Hψ4D
(B) N3

f (135Nf − 1) 134 10908

( /B) N3
f (29Nf + 3) 32 2430

X2H2D2 18 18 18

XH4D2 6 6 6

H6D2 2 2 2

XHψ2D2 48N2
f 48 432

H3ψ2D2 36N2
f 36 324

ψ4D2
(B) 11

2 N
2
f (9N2

f + 1) 55 4059

( /B) N3
f (11Nf − 1) 10 864

H2ψ2D3 16N2
f 16 144

H4D4 3 3 3

Total
(B) 823

2 N4
f + 789

2 N2
f + 89 895 36971

( /B) 289
3 N4

f +N3
f + 2

3N
2
f 98 7836

Table 3. Dimension 8 operators with conventions as in table 2.
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• There are 10 types of operators which only appear for Nf > 1, five of which are

baryon number violating. Seven of these operators occur in the class Xψ4, while

three occur in the class H2ψ4. The baryon preserving ones are

Ĥ8 ⊃ N2
f

(
N2
f − 1

)
Q2Q† 2BL,

1

2
N2
f

(
N2
f − 1

)
L2L† 2BL,

1

2
N2
f

(
N2
f − 1

)
u2u† 2BL,

1

4
N2
f

(
N2
f − 1

)
e2e† 2BL,

1

2
N2
f

(
N2
f − 1

)
d2d† 2BL + h.c. , (4.2)

while the baryon violating ones are

Ĥ8 ⊃
1

2
N3
f (Nf − 1)euQ† 2WL,

1

2
N3
f (Nf − 1)euQ† 2BR,

1

2
N3
f (Nf − 1)d†e†Q2H2,

1

2
N3
f (Nf − 1)d† 2QLH2,

1

2
N3
f (Nf − 1)u2Q†L†H2 + h.c. . (4.3)

4.2 Counting at higher dimensions with arbitrary Nf

Here we present the number of independent operators in the SM EFT as a function of Nf ,

up to mass dimension 15. The counting is split up into (∆B = 0) + (∆B = 1) + (∆B = 2)

parts (B is baryon number) up to dimension 12, with the understanding that when there

is only one bracket, it is ∆B = 0, and when there are only two, the first is ∆B = 0 and

the second is ∆B = 1. We find,

# Dim 5 =

(
Nf+N2

f

)
# Dim 6 =

(
15+

135

4
N2
f +

1

2
N3
f +

107

4
N4
f

)
+

(
2

3
N2
f +N3

f +
19

3
N4
f

)
# Dim 7 =

(
2Nf+

26

3
N2
f +N3

f +
31

3
N4
f

)
+

(
N3
f +7N4

f

)
# Dim 8 =

(
89+

789

2
N2
f +

823

2
N4
f

)
+

(
2

3
N2
f +N3

f +
289

3
N4
f

)
# Dim 9 =

(
9Nf+83N2

f +
49

12
N3
f +

2587

12
N4
f−

1

12
N5
f +

437

12
N6
f

)
+

(
− 4

3
N2
f +

29

3
N3
f +

463

3
N4
f +

1

3
N5
f +41N6

f

)
+

(
1

4
N2
f +

61

24
N3
f +

29

24
N4
f +

11

24
N5
f +

85

24
N6
f

)
# Dim 10 =

(
530+

53927

12
N2
f−

17

2
N3
f +

82127

12
N4
f−6N5

f +
3776

3
N6
f

)
+

(
− 10

9
N2
f +

155

3
N3
f +

30169

18
N4
f +

37

3
N5
f +

10891

18
N6
f

)
# Dim 11 =

(
18Nf+

2812

3
N2
f−

152

3
N3
f +

11689

3
N4
f−

58

3
N5
f +

5551

3
N6
f

)
+

(
−2N2

f +
443

3
N3
f +

8830

3
N4
f +

352

3
N5
f +

5855

3
N6
f

)
+

(
3

4
N2
f +

307

24
N3
f +

7

24
N4
f +

197

24
N5
f +

3599

24
N6
f

)
# Dim 12 =

(
4481+

1

2
Nf+

613247

12
N2
f−

5381

24
N3
f +

7846991

72
N4
f−

8927

24
N5
f +

3181709

72
N6
f−

35

6
N7
f +

50947

36
N8
f

)
+

(
28

9
N2
f +

1954

3
N3
f +27779N4

f +
6823

12
N5
f +

131429

6
N6
f +

169

12
N7
f +

17803

18
N8
f

)
+

(
11

24
N3
f +

1483

144
N4
f +

19

12
N5
f +

149

72
N6
f +

47

24
N7
f +

4555

144
N8
f

)
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension

15. Points joined by the lower solid line are for one fermion generation; those joined by the upper

solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and

odd mass dimension operators in both cases.

The number 2499 of baryon conserving operators at dimension 6 with three generations [5]

is recovered. Although we only presented the numbers above, the full content of the Hilbert

series is contained in the accompanying Mathematica file. As the Hilbert series begin to

become extremely lengthy, we continue counting operators without retaining the content

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:

# Dim 13 = −109Nf +
159296

15
N2

f +
32063

90
N3

f +
5140756

45
N4

f +
78253

72
N5

f +
42846881

360
N6

f +
68723

360
N7

f

+
4311047

360
N8

f

# Dim 14 = 40715−2Nf +
105860297

180
N2

f +
89759

18
N3

f +
1513774187

720
N4

f +
63971

72
N5

f +
299553293

180
N6

f

−117979

72
N7

f +
51562231

240
N8

f

# Dim 15 = −2427Nf +
21647887

180
N2

f−
114619

20
N3

f +
387130705

216
N4

f−
10026269

1440
N5

f +
456200951

160
N6

f

−3717991

720
N7

f +
103741331

144
N8

f−
534941

1440
N9

f +
9163865

864
N10

f

(which exhibit some rather large prime numbers!). The number of independent operators

evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in figure 1. We see the

growth is exponential, which is to be expected on general grounds [43].
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5 Discussion

The method we have outlined in this paper can be extended trivially to determining the con-

tent and number of higher dimension operators for any four-dimensional relativistic gauge

theory with scalar and fermionic matter. The master equation is eq. (3.16), which needs to

be modified from the SM to the theory of interest. The pieces of eq. (3.16) which are SM

specific are the gauge groups (and as such the Haar measures that need to be integrated over

to produce gauge singlets), and the field content (which enters the plethystic exponential).

In the present work we studied the expansion of eq. (2.7) in powers of mass dimension,

ε. However, in our previous work in (0+1) dimensions [11] we were able to obtain all-order

formulae for Hilbert series, revealing a fascinating analytic structure which could not be

seen in any finite order expansion. Can we hope to attack eq. (2.7) directly? Could this

reveal some previously hidden all-order structure of the SM EFT? While lofty, questions

along these lines merit detailed investigation of the structure underlying operator bases,

which we take up in [1].
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A Explicit comparison with [7] at dim-8

In this appendix we present the comparison with the results and method of Lehman and

Martin (LM) [7]. As explained in section 4, differences will occur as, operationally, LM

only use the first two terms in eq. (2.13) to account for IBP.

In section A.1 we highlight a simple discrepancy in the operator class H4XD2 by fully

reconstructing the SM EFT operators and finding operators not present in LM. In sec-

tion A.2, we explicitly show how the LM analysis over counts the IBP relations in this class.

Finally in section A.3, we give a full list of dim-8 operators with two and three derivatives,

highlighting the additional 62 operators (for Nf = 1) to be added to the analysis of LM.

A.1 A quick example: operator class H4XD2

The Hilbert series using our method and that of LM gives:

Our analysis: Ĥ8 ⊃ 2H2H†2WLD2 +H2H†2BLD2 + h.c. (A.1)

LM’s analysis: Ĥ8 ⊃ H2H†2WLD2 + h.c. (A.2)
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It is straightforward to explicitly construct the operators in the class H4XD2; one finds

that the following three operators and their hermitian conjugates5 are all independent:[
(DµH)†(DνH)

]
(H†H)BL

µν (A.3)[
(DµH)†τa(DνH)

]
(H†H)WL,a

µν ,
[
(DµH)†(DνH)

]
(H†τaH)WL,a

µν . (A.4)

i.e. there are six operators in this class, which is consistent with our result in eq. (A.1)

and table 3. The LM analysis does not find the operator H2H†2BLD2 and has a different

counting of the operator H2H†2WLD2.

A.2 LM over counts IBP relations

Here we will show how IBPs are over-counted for the operator class H2H†2BLD2 discussed

above. Without imposing IBP, there are two independent operators:[
(DµH)†(DνH)

]
(H†H)BL

µν ,
[
(H†DµH)

] [
(DνH)†H

]
BL
µν . (A.5)

With one less power of D, there are also two:

A1µ =
[
H†(DνH)

]
(H†H)BL

µν , A2µ =
[
(H†H)

] [
(DνH)†H

]
BL
µν . (A.6)

In the LM analysis, both A1µ and A2µ are assumed to give an independent IBP relation

(recall, IBP relations arise from 0 = ∂µAiµ). Therefore after removing IBP redundancy, it

gives the number of operators as 2− 2 = 0. However, one can check that the IBP relations

generated by A1µ and A2µ are linearly related, i.e. ∂µA1µ = −∂µA2µ. This happens because

one linear combination of A1µ and A2µ can be written as a divergence over a 2-from:

Aµ ≡ A1µ +A2µ = ∂ν
[

1

2
(H†H)2BL

µν

]
= ∂νCµν , (A.7)

whose total derivative ∂µAµ then will be identically zero by symmetry, and hence does not

generate an IBP relation. In the Hodge dual language of section 2.2, eq. (A.7) means the

dual of Aµ (which is a 3-form) is the exterior derivative of the dual of Cµν (which is a

2-form):6

∗A ∼ d(∗C), (A.8)

namely that ∗A is an exact 3-form, whose exterior derivative is identically zero and does

not generate an exact 4-form (Hodge dual of IBP operator):

∗ (∂µAµ) ∼ d(∗A) ∼ d [d(∗C)] = 0. (A.9)

This is an explicit example where LM counts both non-exact and exact 3-forms. However,

exact 3-forms — such as the ∗A above — do not generate an IBP relation.

5To be clear, hermitian conjugation includes replacing XL ↔ XR for field strengths, even though in

Euclidean space they are not hermitian conjugates in the usual sense.
6Here “∼” means we are ignoring any proportional coefficients.
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A.3 The list of dim-8 operators with two and three derivatives

In this subsection, we list out all the independent dim-8 operators involving two and three

derivatives, highlighting the 62 operators (for Nf = 1) not found by the LM analysis.

Two derivatives. For classes involving two derivatives, we find an additional 60 opera-

tors compared to the LM analysis. We find both larger coefficients in the Hilbert series for

some of the operators found in LM, and also operators which were missing entirely. We

present the general Nf case and highlight the differences with LM in the case Nf = 1 in

the text.

Class H6D2:

Self conjugate:

2H3H† 3D2 (A.10)

Class H4XD2:

H2H† 2BLD2, 2H2H† 2WLD2 all + h.c. (A.11)

The first of these operators was missing from LM; we also find an additional operator of

the second type. This class was discussed in the previous subsections. This equates to 4

additional operators of this class.

Class H3ψ2D2:

6N2
f dQHH

† 2D2, 6N2
f eLHH

† 2D2, 6N2
fuQH

2H†D2 all + h.c. (A.12)

Compared with LM we find one additional operator of each type (coefficients 6 vs. coeffi-

cients 5). This equates to 6 additional operators of this class.

Class H2X2D2:

Self conjugate:

HH†BLBRD2, 2HH†WLWRD2, HH†GLGRD2 (A.13)

and

HH†B2
LD2, 2HH†BLWLD2, HH†BRWLD2, 2HH†W 2

LD2,

HH†G2
LD2 all + h.c. (A.14)

In LM all these operators were found with coefficient 1; here we find two of them with

coefficient 2. This equates to 4 additional operators of this class.

Class HXψ2D2:

2N2
f dQH

†BLD2, 2N2
f eLH

†BLD2, 2N2
fuQHBLD2, N2

f dQH
†BRD2,

N2
f eLH

†BRD2, N2
fuQHBRD2, 2N2

f dQH
†WLD2, 2N2

f eLH
†WLD2,

2N2
fuQHWLD2, N2

fu
†Q†H†WLD2, N2

f d
†Q†HWLD2, N2

f e
†L†HWLD2,

2N2
f dQH

†GLD2, 2N2
fuQHGLD2, N2

f dQH
†GRD2, N2

fuQHGRD2

all + h.c. (A.15)
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All of the operators in this class that we find with coefficient 2 were found with coefficient

1 in LM; all other operators were missing from LM. This equates to 32 additional operators

of this class.

Class ψ4D2:

Self conjugate:

(N4
f +N2

f )d2d† 2D2, 2N4
f dd

†ee†D2, 4N4
f dd

†uu†D2, 2N4
f dd

†LL†D2,

4N4
f dd

†QQ†D2,
1

2

(
N4
f +N2

f

)
e2e† 2D2, 2N4

f ee
†uu†D2, 2N4

f ee
†LL†D2,

2N4
f ee
†QQ†D2, (N4

f +N2
f )u2u† 2D2, 2N4

fuu
†LL†D2, 4N4

fuu
†QQ†D2,

(N4
f +N2

f )L2L† 2D2, 4N4
fQQ

†LL†D2, 2
(
N4
f +N2

f

)
Q2Q† 2D2 (A.16)

and

3N4
f duQ

2D2, 2N4
f de
†QL†D2, 3N4

f euQLD2 all + h.c. (A.17)

The first of these operators was not found in LM. The last of these operators was found

but with coefficient 2. This equates to 8 additional operators.

Baryon number violating terms

2N4
f duQ

†L†D2,
1

2
N3
f (3Nf − 1)deu2D2, N4

f euQ
† 2D2, N4

fQ
3LD2

all + h.c. (A.18)

The first of these operators agrees with LM; the last three were not found in their analysis.

This equates to 6 additional operators for Nf = 1. In total we find an additional 14

operators in this class.

Three derivatives. We find one additional type of operator with three derivatives that

was not present in the LM analysis, accounting for the remaining ‘+2’ in the discrepancy.

Class H2ψ2D3:

Self conjugate:

2N2
f dd

†HH†D3, 2N2
f ee
†HH†D3, 2N2

fuu
†HH†D3, 4N2

fLL
†HH†D3,

4N2
fQQ

†HH†D3 (A.19)

and

N2
f d
†uH2D3 + h.c. (A.20)

This is the operator (+h.c.) that was not found in LM.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 20 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
8
(
2
0
1
7
)
0
1
6

References

[1] B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their

partition functions, arXiv:1706.08520 [INSPIRE].

[2] S. Weinberg, Varieties of baryon and lepton nonconservation, Phys. Rev. D 22 (1980) 1694

[INSPIRE].

[3] W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor

conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

[4] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the

Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

[5] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of

the Standard Model dimension six operators III: gauge coupling dependence and

phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

[6] L. Lehman, Extending the Standard Model effective field theory with the complete set of

dimension-7 operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].

[7] L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field

theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].

[8] E.E. Jenkins and A.V. Manohar, Algebraic structure of lepton and quark flavor invariants

and CP-violation, JHEP 10 (2009) 094 [arXiv:0907.4763] [INSPIRE].

[9] A. Hanany, E.E. Jenkins, A.V. Manohar and G. Torri, Hilbert series for flavor invariants of

the Standard Model, JHEP 03 (2011) 096 [arXiv:1010.3161] [INSPIRE].

[10] L. Lehman and A. Martin, Hilbert series for constructing Lagrangians: expanding the

phenomenologist’s toolbox, Phys. Rev. D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE].

[11] B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with

derivatives in effective field theories, Commun. Math. Phys. 347 (2016) 363

[arXiv:1507.07240] [INSPIRE].

[12] C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of

Higgs operators and Γ(h→ γγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

[13] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard

Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087

[arXiv:1308.2627] [INSPIRE].

[14] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard

Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035

[arXiv:1310.4838] [INSPIRE].
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