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1 Introduction

In this paper we apply a newly developed technique which counts the dimension of operator
bases in effective field theories (EFTSs) to the standard model (SM) EFT. We demonstrate
counting up to dimension 15, allowing for an arbitrary number of fermion generations Ny,
and provide explicit results for the content of the independent operators up to dimension 12.

Previous results have appeared in the literature at dimension 5 [2], 6 [3-5], 7 [6] and
very recently 8 [7]. This particular counting problem has a history of being tricky, due to
the somewhat complicated nature of the particle content of the SM, and the intricacies of
equations of motion (EOM) and integration by parts (IBP), which yield relations between
operators. With our new method, the procedure is for the first time completely automated,
reducing the possibility for error by putting EOM and IBP on the same footing as gauge and
global symmetries, which can then be systematically dealt with by using group theoretic
techniques. Enumeration of operators is encoded in a Hilbert series, which we compute
by making use of the plethystic exponential and Molien’s formula, as reviewed e.g. in the
phenomenological papers [8-10].

There are two key observations in our technique, both of which rely on the conformal
group. (1) The EOM can be regarded as an ideal in a commutative ring, so that it can
be implemented in the Hilbert series. Accounting for EOM leads to generators which fall



into short multiplets of the conformal group. (2) The IBP removes operators that are total
derivatives, which can be regarded as descendants in a conformal field theory. Therefore,
we only need to identify the primary fields. Note that we regard the SM with only the
kinetic terms as the zeroth order Lagrangian, where all fields are massless and hence the
theory is (classically) conformal. The we classify additional higher-dimension operators as
perturbation to the system. This technique is a natural generalization of what we studied
in 1D QFT in our previous paper [11].

In what we intend to be the final twist in the tale of the SM EFT operator basis
dimension, we find a correction to the Ny > 1 counting at dimension 7 and an additional
62 operators at dimension 8 to those previously found in the literature at Ny = 1. The
method is strikingly simple, as exemplified in the accompanying Mathematica notebook,
which we encourage the interested reader to study. In this paper we aim to present the
method with a minimal amount of technical details, but to the level at which it can be
reproduced and applied to other phenomenological Lagrangians of interest.

While the SM EFT is of obvious phenomenological utility, study of it has also led to
interesting theoretical questions and developments. Our investigations are motivated by
the difficulties in determining the operator content of the SM EFT, as well as interesting
features so far uncovered in the well developed literature [3-7, 10, 12-36].

The method is outlined in section 2; details beyond those needed for the present
purpose can be found in [1]. The ingredients to apply this method to the SM EFT are
explicitly laid out in section 3. We present some selected results in section 4: we give
corrected versions of the counting of operators at dimension 7 and at dimension 8 for general
Ny; we give the number of independent operators as a function of Ny and split according
to baryon violating number, AB, up to dimension 12, and up to dimension 15 retaining
only Ny dependence. Hilbert series up to dimension 12 can be found in an accompanying
Mathematica notebook. Section 5 provides a short discussion on the application to other
phenomenological Lagrangians.

2 Method

An operator basis for an EFT is a set of local operators which give independent S-matrix
contributions. Redundancies associated with IBP and EOM must be accounted for in the
operator basis. It turns out that the conformal group organizes an operator basis, allowing
us to systematically handle IBP and EOM redundancies. A thorough investigation of this
structure and its implications is carried out in [1]; here we provide only an outline of the
method to understand what is necessary for application of the final formula, eq. (2.7), to
the SM EFT.

The emergence of the conformal group in this problem and the main result of [1] are
schematically easy to understand. In its region of validity, an EFT is perturbative around a
free field theory. Free field theories are conformal, hence the operator-state correspondence
tells us that the space of local operators modulo EOM fall into representations of the
conformal group. Representations of the conformal group consist of a primary operator O
together with an infinite tower of descendant operators obtained by repeated differentiation



of O, ie. (0,0,0,0,,04,0,...). Importantly for our purposes, descendant operators are
total derivatives.

All local operators can be constructed as products of some generating set of opera-
tors; these generating operators fill out representations of the conformal group themselves,
so it is natural to form the space of local operators via tensor products of the generat-
ing representations. By decomposing these tensor products back into representations of
the conformal group, IBP relations can be completely accounted for. In particular, only
primary operators are not total derivatives. For a primary operator to be a part of the
operator basis, it also needs to be a Lorentz scalar. We conclude that the operator basis
consists of the scalar (spin 0) conformal primaries in the corresponding free field theory [1].

As a way to study the operator basis, we wish to compute an object called the Hilbert
series, which abstractly can be viewed as a partition function on the operator basis. More
concretely, it is a generating function defined to count the number of operators of some
given field content,

HD{¢a}) = > D cri ... 00D, (2.1)
T1,...,TN k
where ¢; 1 € N is the number of independent, Lorentz invariant, gauge invariant operators
composed of r = (r1,...,ry) powers of ¢1,...,¢n and k derivatives. In the above, {¢,}
are “spurions” to label the content of operators; we stress that they are not fields, just
complex numbers. Similarly, D is a spurion to represent the covariant derivative D.

The method to compute the ¢, builds upon our earlier work in (0+ 1) dimensions [11],
where we used an underlying SL(2,C) structure to organize operators into irreducible
representations of the group; the operator basis was spanned by operators of highest weight
of the SL(2, C) representations. This is because in each irreducible representation, operators
obtained from the one of highest weight by the lowering operators are total derivatives (the
lowering operator is the derivative). A weighted sum and integral over the maximal compact
subgroup of SL(2, C), namely SU(2), was used to project out the highest weight operators.

The analogous situation in d dimensions is that SL(2,C) ~ SO(1,2) is replaced by
the conformal group in d dimensions, SO(d + 2,C) ~ SO(d,2). As described above, the
operator basis is spanned by the set of scalar conformal primaries formed from the fields
and their covariant derivatives. Echoing the one dimension case, the primary operators are
projected out and counted via a weighted sum and integral over SO(d 4 2), the maximal
compact subgroup of SO(d + 2,C), of a generating function for tensor products of the
generating representations.

Let us briefly describe these so-called generating representations. They consist of the
fundamental fields ®, (in four dimensions, scalars ¢, fermions v, or self-dual/anti-self-dual
field strengths X7 ,p = X + iX ) together with an infinite tower of symmeterized deriva-
tives! acting on ®, with the EOM removed. Removing terms proportional to the EOM in
this tower means eliminating terms proportional to D?¢ for scalars, [Py for fermions, or
D, X ZI/IR for field strengths. This construction is also described by Lehman and Martin [7].

"When there is no gauge symmetry, D, = 9, and the derivatives are automatically symmetric. With
gauge symmetries, the anti-symmetric combination is proportional to field strengths, [D,, D] ~ X,..,, and
therefore already accounted for.



In the present work, we make the observation that the tower of ®, and derivatives acting on
®, with EOM removed falls into an irreducible representation of the conformal group. In
particular, these are short representations of the conformal group that correspond to states
saturating a unitarity bound (the EOM acts as a shortening condition for the multiplet).

2.1 Computing the Hilbert series

The computation of the Hilbert series proceeds via elementary use of characters and rep-
resentation theory. Here we only provide a schematic picture of the procedure and then
quote the final formula, eq. (2.7), that is our launching point.

We start with the character for each generating representation, which is a product of
its character under the conformal group and its character under the gauge symmetries,

Xba = Xa,80(d+2,C) X da,gauge* (2'2)

We recall that the character for a representation R of a Lie group G is given by xp(g) =
Trr(g) for g € G. For connected G, all g € G may be conjugated into a maximal torus
U(1)" € G with r = rank G. Since the character is a class function, i.e. it is conjugation
invariant since Tr(hgh™') = Tr(g), it is a function only of the r parameters (z1,...,x,) of
the torus which we denote by writing xz(x1,...,2,). Characters of the conformal group
in arbitrary dimension are discussed in [37], as well as in four dimensions in [38]; their
construction is also reviewed in [1].

Taking tensor products of the generating representations amounts to character multi-
plication. A generating function known as the plethystic exponential is used to form all
possible tensor products. The plethystic exponential accounts for the statistics of the un-
derlying fields (symmetric for bosons, anti-symmetric for fermions); this is, more or less, the
meaning of “plethysm”.? For a spurion ¢p in representation R, the plethystic exponential
is defined as

oo

1

PE[ppxp(21,...,2)] = exp (Z - (1)L xRl ..., x;})> (2.3)
n=1

where the +(—) sign is taken for spurions associated with bosons (fermions). The formula

may be more illuminating by recognizing that it simply comes from using log det = Trlog

and expanding a logarithm,

1 — 1 ., n
bosons: dotn(l—ong) = exp <nZ::1 EgzﬁR Trr(g )> , (2.4)
fermions: detr(1 + ¢rg) = exp (Z % (=1)"+1gn, TrR(g")> _ (2.5)
n=1

2The words Hilbert series, Molien’s formula, and plethystic exponential often appear together. They all
have roots in the subject of invariant theory and are closely related [39]. In the context of invariant theory,
the Hilbert series is a partition function for a ring of invariants, Molien’s formula is a way to compute
the Hilbert series via a taking a tensor product of representations and averaging over the group, and the
plethystic exponential is the integrand of Molien’s formula.



These equations also make it obvious that the plethystic exponential obeys

PE[¢rXr|PE[¢pXr]| = PE[drXR + drXpr]s (2.6)

with appropriate care taken for bosonic or fermionic statistics.

The Hilbert series is obtained by counting all the gauge invariant, scalar primaries
that show up in tensor products from the plethystic exponential, weighted as in eq. (2.1).
Scalar conformal primaries are projected out via character orthogonality by multiplying by
all possible X§O( d+2,C) scalar and integrating over the conformal group. Gauge singlets are
projected out by integrating over the gauge group.?

Following this procedure, we arrive at a formula for the Hilbert series given by [1]

H(D,{¢a}) = / diLorentz / dpigauge % PE[Z ngax@] + AH(D,{¢4}) . (2.7)

This formula generates the Hilbert series which counts Lorentz and gauge singlets modulo
EOM and IBP. Here d, is the canonical mass dimension of the field ¢, and the integrals
are over Lorentz and gauge group parameters, with group measures duy. The AH is a
small modification term due to subtle issues regarding lack of orthonormality of conformal
characters (arising because the conformal group is non-compact), whose form is given for
a general EFT in [1]. We evaluate AH explicitly for the SM below — importantly, it is
comprised only of terms with mass dimension four and less. To arrive at the first term on
the r.h.s. of eq. (2.7), we performed the integral associated with dilatations in the conformal
group, leaving a remaining integral over the Lorentz group (this step is the generalization
of performing the « integral in [11]). The factor

1
5= detg(1 — Dyg), (2.8)

where the determinant is taken over the vector ([J) representation of g € SO(d), is a
remnant of the Haar measure for the conformal group. The function P plays an important
role in the connection with characters of the conformal group, as it is the generating function
for symmetric products of the vector representation (recall that a conformal representation
contains an infinite tower of symmeterized derivatives acting on a primary operator), see
eq. (3.3).

2.2 A viewpoint of IBP redundancy using differential forms

The IBP redundancy states that total derivative operators are zero. In our method, this
redundancy is accounted for by throwing away all the descendants while only keeping
the primaries in each irreducible conformal group representation. However, with a little
help from the Hodge dual of differential forms, one can obtain a quite useful alternative
treatment of the IBP redundancy, which reveals the cohomological nature of this problem.
This picture makes contact with the way that IBP relations were discussed for one space-
time dimension in [11], where it is explained how IBP relations for operators composed of

3This is also character orthogonality, where we multiply by the character of the singlet representation,
which is unity, and integrate over the group.



1,...,7N powers of ¢1,...,¢n and k derivatives (schematically ¢7' ... ¢\ 9¥) arise from
considering a total derivative acting on the independent operators with one less derivative
(schematically 0 = O(¢}' ... ¢ 0% 1)). We will see that the language of differential forms
allows a straightforward answer to this question.

Since we are counting Lorentz scalar operators, any total derivative scalar operator
must have the form 0,A., where A, is a Lorentz 1-form operator. In d dimensions, the
Hodge dual of each scalar operator is a d-form; the dual of each total derivative operator
On A 1s an exact d-form:

% (00 An) = (0uAg) bapday Adag -+ Adag

1
) €Bus--1g (EQVQ...Vdd.%'l Adxg -+ A d{L‘d)

= (0.43) @-1t

1
= W€ﬁy2...yd (aaAﬁ) df]fa A dxu2 <A d.’L'l,d
1
=d meﬁl’T”ydAB df]}'y2 ERRAY dxud . (29)
Therefore, the Hodge dual picture makes it clear that counting scalar operators which are
not total derivatives amounts to counting the number of non-exact d-forms:

#(Indep scalar ops) = #(non-exact d-form) = #(d-form) — #(exact d-form).  (2.10)

Since each exact k-form comes from a non-exact (k — 1)-form, we arrive at the sequence
truncated by the spacetime dimension:

#(non-exact d-form) = #(d-form) — #(non-exact (d — 1)-form)
= #(d-form) — [#((d — 1)-form) — #(non-exact (d — 2)-form)]

d
= Z ((d — k)-form). (2.11)

k=0

The number of each SO(d) rank k-form above can be easily projected out using character
orthonormality [ Apip orentzXaXp = Oab- In particular, to appropriately count the k-forms,
under the Lorentz SO(d) integral we insert

d d
D (DD X (mkytorm = Y _(—=1)"DFTrp(AFg) = det(1 — Dg) (2.12)
k=0 k=0

where we have used the fact the k-form representation is obtained by the k-th exterior
(antisymmetric) product of the vector () representation. We see that this corresponds
to the 1/P factor, eq. (2.8), that enters into the Hilbert series integral in eq. (2.7). We
understood eq. (2.8) to arise as a result of integrating over the conformal group; here
we get a more operational understanding of how it is counting total derivative relations.



Explicitly, and for future reference, we record here the result in four dimensions using

SO(4) = SU2)1, x SU(2)x,

1-D(a+a™)(B+5~)+D (0% +a 2424 B~242)~D¥ata™) B+~ )+D =5 .
P(D,a,p)

(2.13)

Although the sequence eq. (2.11) nicely gives the 1/P factor in eq. (2.7), we emphasize
that it is not yet fully correct in accounting for the IBP relation. There are exceptions to
the rule “an exact k-form comes from a non-exact (k — 1)-form”: sometimes even though a
(k — 1)-form is non-exact, its exterior derivative could still identically vanish, due to EOM
or simply that it is a constant. In these exceptional cases, the (k—1)-form gives no k-form.
In order to avoid over counting, one needs to carefully track these exceptional cases and
make a corresponding fix, which amounts to including the AH term in eq. (2.7) (and given
explicitly below for the SM).

3 Hilbert series for the SM EFT

In this section we discuss each of the elements of eq. (2.7) explicitly for application to
the SM EFT. We then explain how operators are counted in mass dimension, provide an
example calculation for the SM Hilbert series, discuss how one can use the Hilbert series to
aid in obtaining the explicit form of higher dimension operators, and show how to include
multiple fermion flavors.

Elements of eq. (2.7)

We work in Euclidean space with Lorentz group SO(4) ~ SU(2), xSU(2)z. Representations
are labeled by (j1,j2); those needed are for scalars (0,0), left-handed fermions (3,0) and
their right-handed conjugates (0, 5), and field strengths Xpr = F(X + X) in the (1,0)
and (0, 1) representations.

The field content of the SM is listed in table 1. Spurions in the Hilbert series are labeled
by their field name, although we drop the subscript “c” for the left-handed conjugate fields
Uc, de, and e.. That is, the Hilbert series is a function of the variables (for one fermion

generation),
H(Dv {¢a}) = H(D7 Qu QTa L? LT; H? HT? u, uTa d7 dT7 €, eTa BL7 BR? WL7 WR7 GL7 GR) (31)

In addition to the spacetime symmetry group, we impose invariance under the SM
gauge group. Computations occur on the tori of these groups; we will use o and 3 to param-
eterize the torus of SU(2)1, x SU(2)g, 21 and 2z for SU(3),, y for SU(2)w, and z for U(1)y.

For a field ¢,, the character that enters the argument of the plethystic exponential is
given by eq. (2.2),

Xa(D, o, B, 2, y, 21, 22) = Xlda,(j1,52)al Xa e (3:2)

where X(a( is the character of the conformal group in four dimensions for a represen-

J1.32)]
tation of scaling dimension A and spin (ji,j2). The characters necessary for the SM are



SU(2) SU2)r[SUB). SU@2)w U(1)y
H| 1 1 1 2 1/2
Q| 2 1 3 2 1/6
ue | 2 1 3 1 —2/3
de | 2 1 3 1 1/3
L| 2 1 1 2 —1/2
e | 2 1 1 1 1
GL| 3 1 8 1 0
Wyl 3 1 1 3 0
By| 3 1 1 1 0

Table 1. The SM field content and their charges under Lorentz and gauge groups. For each ¢,
the hermitian conjugate field ¢ is also to be included.

The function P is

P(D,a,B) = (3.4)

(1—DaB)(1 - D/aB)(1 - Da/A)(1 - DB/a)
The conformal characters in eq. (3.3) correspond to free fields with the EOM removed from

the descendant operators [37, 38]. Note that the multiplicative D? factors in eq. (3.3)
cancels against the factor D~% that enters the argument of the plethystic exponential in

eq. (2.7).

The character for the gauge group in the SM is X%auge = Xg(l) X%U(Q) X%U(?’) , where the
characters for the representations needed in the SM are
u(1
X' () =29 (3.5)
SU(2 SU(2 1 SU(2 1
Xa ! )(y)zxg ( )(y)=y+§, oy )(y)=y2+1+? (3.6)
SU(3) _ z2 1 SU(3) _ z1 1
X3 (21722)—21+Z+;2, X3 (21,22)—22+;2+Z (3.7)



2 2 1

Xig@)(zng)—zlzg—i— -|- +2_|_ + —l—— (3.8)
z 2 a1z

For example, the character of the spurion @) in the SM is,

u(1 SU(2 SU(3
Xo = X201, 0P 8) X (@) x5 () x5 Pz, 20)
and the plethystic exponential is
Q - 1 7'+1 Q r. T r
PE |:'D3 X@| = €xXp ; ; Dir X[%,(%’O)](D ;af, 8") (3.9)

o Ve "W X Y <z{,z5>) .

The measures of the integrals in eq. (2.7) are the invariant group measures (Haar
measures), normalized such that [ du, = 1. For an integral [ dpu f(g) with f(g) a class
function, we can restrict the integration to the maximal torus using the Weyl integration
formula.? The Haar measures we give in the following are written in this way. For the
Lorentz group

da d 1
/dNSU( 2)LxSU@)R = Qm 7|{a| 1]2 157 (1-a )(1—> (1-5%) (1_B2>’ (3.10)

where « is the parameter associated with SU(2);, and 8 with SU(2)g. For the SM gauge

group we have
/dﬂgauge = /d,UU(l) /d:U'SU(Q) /d:uSU(S)a (3'11)

1 dx
= 12
/dMU(l) o - —, (3.12a)

11 dy 1
= “ (1= (1-= 12
/d#SU(Q) 39m7 I\ Y ( )( y2>’ (3.12b)
dz1 dzo 22 22 1
/d,uSU(3) = —_— 1 2122) -1 -2 1-—
za]=1 %1 22 22 21 Z122

Finally, the A H modification term in eq. (2.7) can be obtained from the general formula

with

z1|=1

presented in [1]. Explicitly, for the SM (with one fermion generation) it is given by
H(D,{¢y}) = dd"D+ee'D+LL"D+QQ " D+uu!D—B, D*~BrD*+HHD?—D* . (3.13)

Note that all of these terms are non-sensical when interpreted as operators; their job is to
cancel such terms coming from the remainder of eq. (2.7).

4We are unaware of a great physics-oriented reference for this. Weyl’s work [40] might actually be the
most straightforward to understand. We will attempt to give a readable derivation in [1]. Most math
textbooks on group theory cover the Weyl integration formula; one that we like is [41]. Formulas for the
present Haar measures can be found in the, e.g., the physics paper [42].



Counting in mass dimension

To obtain the counting of SM operators at a given mass dimension, we re-scale the spurions
according to their mass dimension:

D — €D,

o — 6da¢a7 (3.14)

with d, the canonical scaling dimension of the field ¢,. The Hilbert series eq. (2.1) can
then be viewed as a series in mass dimension,

H(e, D, {¢a}) = Z Z Crk €d~r+k¢1£1 e ¢7]"\]/VDk = Z eiﬁi(D’ {da})- (3.15)

T1,.'N  k

Recalling eq. (2.7), let us define
HO(D{QS}):/d /d _1 g Zﬁ (3.16)
y 1 Pa HLorentz Hgauge P(D,Oz,ﬁ) e Dia Xa | » .

such that eq. (2.7) takes the form H = H® + AH. The terms in the Hilbert series of mass
dimension four and less are given by

+ AH(eD, {ed“¢a})

e<4

4
Z € ffz = Ho(e D, {ed“¢a})

=0

— v ennt (B4 B W W G4 G R (3.17)
+ eH'L+e'HL' + dH'Q + dTHQ" + HQu + HTQTUT) :

where the notation |c<4 means taking a Taylor expansion of the integrand of eq. (3.16) in
powers of € up to order €*, and where AH was given in eq. (3.13). At mass dimension five
and above, we have

i>5: H;=HD, {e%¢,}) , (3.18)

O(€?)

where the notation |o(e) means taking the coefficient of ¢ in the Taylor expansion of the
integrand of eq. (3.16) in powers of €. In the Taylor expansion, all poles are located at the
origin. Because all poles are at 0, the computation is very straightforward and simple to
program. We see explicitly in egs. (3.17), (3.18) that AH does not affect mass dimension
five and above.

Note that: i) the Hilbert series does not include kinetic terms for scalar and fermion
fields, since in our method these are counted as zero on account of the EOM (these terms
can of course be trivially added in to eq. (3.17) such that it accounts for all the terms in
the usual ‘renormalizable’ SM Lagrangian); i) because we work with field strength tensors
(and not gauge fields), the gauge kinetic terms are already present in the Hilbert series;
and, 1) the fields F, W and G are used as building blocks for the Lagrangian, so that
topological terms such as FF are included in the Hilbert series.

~10 -



Example outputs: dimension 5 and 6 Hilbert series

We can expand the integrand in eq. (3.16) in € and retain only the coefficient of €®; per-
forming the contour integrals over the Lorentz and gauge group parameters, we ple up
residues at 0 in all the variables «, 3, x, ¥y, 21, 22,

Hsm =M=

O(ed)

o f o (1—a2>2(1—ﬂ2>2?§dw1 dy (?)° [da [ dz (F-2)"(1-212)° (21-24)°
271

2mi 40333 2rix ) 2w 2y3 2mi | 2mi 6223

X |:H2L2 (y4+?12+1) (a2+02y4+(a2+1)2y2)

Oé2y4

4Jr 2+1 ,32+[32 4+»32+12 2
catypay Y I Bgyf F1)y )+]

=HL>+H"™L"Y, (3.19)
where the + . .. inside the large brackets are terms which evaluate to zero upon performing
the contour integrals. This is the Hilbert series for dimension-five operators in the SM
EFT. One readily identifies that the Hilbert series is picking up the well known operators

which give neutrino masses.

Repeating this at order €® we obtain the Hilbert series for dimension-six operators of
the SM EFT:

He=H*HP +ulQTHH? 420?012+ QPP LT+ Q*L+2QQ  LL + L2 L2 +uQH?H'
+2un’QQT +uu LLT+u?u? +elul Q?+ e LT H? HT +-2e ' QT LT +e LH H' +euQ'?
+2euQL+ee’QQ+ee LLT+eeluu’ +e2e+d QT H?* HT +-2dTu QT2 +dTu' QL
+deful?+dteQ L+dQHH™ +2duQ?+duQT LT +de’ QLT + dev?® +2dd'QQT +dd' LL'
+2dd uut +dd ee’ + d*d? +u QT HTGr+d' Q' HGr+ HH' G4 +GH+uQHG,
+dQH'GL+HH'G? +G3 +u' QTH' Wr+e LTHWR+d'QTHWr+HH WE+W3
+uQHW+eLH W+dQH W+ HH W +W;+u'QTH'Br+e' L'HBg
+d'Q'HBr+HH' BRWr+HH'B%+uQHBL+eLH B, +dQH B, +HH' B, Wy,
+HH'B?2 +2QQ"HH'D+2LLTHH " D+uu' HH D+ee! HH D+ d w H*D+du' H?D
+dd"HH'D4+2H?H™?D?, (3.20)

Setting all of the spurions equal to unity gives ﬁg = 84, the total number of independent
local operators at dimension 6, but more information is contained in eq.(3.20). For instance,
the counting can easily be further decomposed by baryon number violation, 76 + 8. The
perhaps more familiar ‘59 + 4’ counting is one in which hermitian conjugates of fermionic

operators are not counted separately (such counting can of course also be obtained from

eq. (3.20)).

Explicit form of the operators

At low dimensions (including dimension 7 and 8), explicitly constructing an operator basis
requires minimal effort. For example, the +Q3L term in eq. (3.20) tells us that there
is one independent operator composed of three powers of () and one power of L; the
+2LLTQQ" term that there are two independent operators composed of one power each
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of L,LT,Q and Qf; the +2HHTQQ'D term that there are two independent operators
composed of H, H,Q, QT and one covariant derivative, etc. Exactly how derivatives act
and how Lorentz and gauge indices are contracted is information beyond what the Hilbert
series can provide. However, such information can be easily deduced for low-order terms.
For example, in the 2HHTQQD term, because the combination QQ' has to be formed
into a Lorentz singlet, it follows there must be a I) = YD, ie. QVMQDM; the gauge
indices can be contracted in two inequivalent ways: i [H "(D,H) - (D,H)H ] @+"Q and
i [H'7%(D,H) — (D,H")7T"H] Qv"7°Q, where 7% are the SU(2) generators.

Multiple flavors

The inclusion of additional fermion families is trivial — simply add the extra fields into
the PE. Alternatively the PE of each fermion family can be raised to the power of Ny —
the results we selected to show below use this counting for ease of display, but in doing this
additional information about the flavor structure is missing compared to the case where
one distinguishes between the fermion families.

4 Selected results

Full Hilbert series for the SM EFT up to mass dimension 12 are supplied as an auxiliary
Mathematica file to this paper. In this section we present selected results. Our convention
is to separately count operators which are related by hermitian conjugation; this counts all
CP-even and CP-odd operators independently.

4.1 Operator bases at dimension 7 and 8

In this section we revisit the SM EFT operator basis at dimension 7 and 8 for arbitrary
number of flavors Ny. We find that the existing analysis [7] — which includes full N
dependence at dimension 7, and Ny = 1 at dimension 8 — missed some operators containing
two or more derivatives. In the present section we will explain why that analysis missed
some operators and then summarize the dim-7 and dim-8 operator content. Appendix A
contains a comprehensive listing and analysis of the operators missing from [7].

From a strictly computational point of view, the only difference in our method com-
pared to [7] is the 1/P factor in egs. (2.7) and (3.16). Operationally, the 1/P factor
accounts for IBP relations; in section 2.2, we presented an understanding of this using the
language of differential forms: in four dimensions, the independent IBP relations come from
non-exact 3-forms. Hence, the correct counting takes the number of 4-forms (scalars) and
subtracts the number of non-exact 3-forms. In [7], the authors take the number of 4-forms
and subtract all (exact and non-exact) 3-forms (i.e., the first two terms in eq. (2.13)); they
point out that this gives spurious results but were unable to find a systematic procedure to
correct it. Here we find that correct fix is to add in the rest of the terms of eq. (2.13); this
makes it clear that the differences we find occur when there are two or more derivatives.

Moving to results, we follow [7] and group the counting of operators into classes
which do not mix under EOM or IBP. In the SM EFT we count classes by ¢) number
of derivatives D, ii) powers of Higgs field H (or HT), iii) powers of gauge field X (i.e.
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Class Ny 1 3

X H%y? N¢(3Ny —1) 2 24
H4y? N¢(Ny+1) 2 12
! (B) FNF(14N7 +1) 10 762

(B)| §NF(17TN7—3N;—2) 4426

H3¢*D 2N} 2 18

#D (B) N}(Nj+1) 2 108

(B)| 5§N7(4N7 46Ny +2) 4 168

H%*D? 2N¢(Ny+1) 4 24

(B) %Nﬁ—i—Nﬁ + %Nf + 2Ny 22 948
(B) TN} + N} 8 294

Table 2. Dimension 7 operators for arbitrary N; as well as for Ny = 1 and Ny = 3. Lines
separate classes involving no derivatives, one derivative, and two derivatives. Operators involving
four fermions are further distinguished either as preserving baryon number (B) or violating baryon

number ().

X € {Br,Bgr,Wr,Wg,Gr,GRr}), iv) powers of fermion fields ¢ (i.e. ¥ € {Q,u,d, L,e}
and their conjugates).

Dimension 7. The different classes of dimension-seven operators and the number of
operators in them are summarized in table 2. In total, we find 30 operators for Ny = 1 and
1542 for Ny = 3. All dim-7 operators violate either lepton or baryon number; moreover,
all violate B — L. The dim-7 operators have either zero, one, or two derivatives. As the
additional operators we find compared to [7] all involve two or more derivatives, there is only
one term at conflict between our analyses. For the two derivative class H?1?D? we find:

H7 > Ny(N; +1)H?L*D? + hec. . (4.1)

This is a larger coefficient than that found in [7] (that analysis produced a coefficient of
N¢(Ng + 3)/2, which numerically differs from ours for Ny > 1).

Dimension 8. Our analysis at dimension 8 is the first to include full Ny dependence.
The results are summarized in table 3. In total, we find 993 operators for Ny = 1 and
44807 for Ny = 3. We highlight:

e There are 62 additional operators in the Ny = 1 case which were not uncovered in [7].
These operators involve two or three derivatives, and an explicit listing of them is
given in appendix A.

e All baryon violating operators are AB = 1 and all preserve B — L.
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Class Ny 1 3
x4 43 43 43
X3H? 6 6 6
X*H* 10 10 10
H* 1 11
X2H? 96N 96 864
XH?y? 22N? 22 198
H)? 6N7 6 54
X (B)| AN?(40N? —1) 156 12924
(B)| 2N}(21Ns +1) 44 3456

H2p (B)| N}6TN?+N;+7) 75 5517
(B)|N?(43N2 — 9Ny +2) 12 1086

X2*D BTN? 57 513
XH**D 92N7 92 828
H*%?*D 13N? 13 117
HoAD (B)| N}(135N;—1) 134 10908
(B)|  N}(29Ny +3) 32 2430

X?H*D? 18 18 18
XH*D? 6 6 6
HD? 2 2 9
XHy*D? 48N? 48 432
HPy?*D? 36N 36 324
D2 (B)|  YN}ON}+1) 55 4059
(B)|  N}1INy-1) 10 864

H*Y*D° 16N? 16 144
H4D* 3 3 3
o (B)| NG TN 489 895 36971
(B)| ZON}+N?+2N? 98 7836

Table 3. Dimension 8 operators with conventions as in table 2.
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e There are 10 types of operators which only appear for Ny > 1, five of which are
baryon number violating. Seven of these operators occur in the class X*, while
three occur in the class H?1%. The baryon preserving ones are

Hs > N7 (N7 —1) Q*Q" 2By, %Nf (N7 —1) L’L™*By, %Nf (N7 —1) u*u?By,

1 1
TVF(NF—1) B, SNF(NF-1)d%d"?BL + he, (4.2)

while the baryon violating ones are
~ 1 1 1
Hg D iNji’z(Nf — Deu@" 2wy, §N]?:(Nf — 1DeuQ?Bg, isz(Nf —1)d'e’'Q*H?,
1 1
5sz(zvf —1)d"2QLH?, 5N;Z’(Nf - 1D)u*QTLTH? + hec.. (4.3)

4.2 Counting at higher dimensions with arbitrary Ny

Here we present the number of independent operators in the SM EFT as a function of Ny,
up to mass dimension 15. The counting is split up into (AB =0)+ (AB=1)+(AB=2)
parts (B is baryon number) up to dimension 12, with the understanding that when there
is only one bracket, it is AB = 0, and when there are only two, the first is AB = 0 and
the second is AB = 1. We find,

# Dim 5 = (Nf+N,"T)

1 107 1
#Dlmﬁ_(15+ﬁz\ff+ N+ le> (3Nf+Nf+ 39Nf)
1 31 3 4
2 2
4 Dim 8 = (89+@Nf+@Nf)+(3Nf+Nf+§ f>
#Dlmgf(ng—‘rS?)Nf—i- Nf+2587N;*_12Nf 41327Nf)
29 4 463 1.5 61 5 29 5 85
+(—§Nf+3Nf+7Nf+3Nf+41Nf) (fo+ Ni+5; Nf+ Nf+ Nf)
2 1 212
#Dim10:<530+7531927 f—g f+8127 i 6Nf+37761vf>

(102 155 s 30169 4 37 o +10891
g Mg Ty Ty 18 7

2812 152 11689 5551 )
Ny

5 NP N+ 11689 4 58 5 | 5951

# Dim 11 = (18Nf+ 3 3 3 3
443 8830 352 5855

3 307 7 4, 197 3599 6
+ (4Nf+ 24 Nf+24Nf+ 24 NP+ Sr 24 Nf>

, 1 613247 ., 5381 5 7846991 _, 8927 5 3181709 ¢ 35 . 50947
Dim 12 = (44814 5NV NZ_22C0N Ni-— - Ni—22NF N
# Dim ( tN T N Nt T Y T T e N e f)
1954 6823 5 131429 ¢ 169 , 17803
(ng+TNf+27779Nf+ N7+ 5 Nf+12 Nf+=——= 03 Nf)

11 s 1483 19 149 47 4555
+(ﬂNf 144 Tag N Nf 72 o Nt Nf 144 Nf)
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

The number 2499 of baryon conserving operators at dimension 6 with three generations [5]
is recovered. Although we only presented the numbers above, the full content of the Hilbert
series is contained in the accompanying Mathematica file. As the Hilbert series begin to
become extremely lengthy, we continue counting operators without retaining the content
information (i.e. setting all spurions equal to unity), but still retaining Ny dependence:

4 Dim 13 = 100N, + 15519§96 N2 3290063 NI+ 514405756 NI+ 7872253 No+ 428;660881 N+ 62;(2)3 N7
4311047
+WN]§
4 Dim 14 — 40715— 2N, + 105?28297 N2+ 8917859 NI+ 1513772704187 NI 6379271 o+ 299f23293 NS
B 11;279 NI+ 51526420231 NS
4 Dim 15 — 2497\, + 21614870887 NI 11;1319 NI+ 387;;;2705 NI 10(;?12369 o+ 456?28951 NG
B 37;;391 NI+ 103:2331 NS 5:13;1331 NI+ 9122265 N

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Ny = 1 and Ny = 3 up to dimension 15 are plotted in figure 1. We see the
growth is exponential, which is to be expected on general grounds [43].
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5 Discussion

The method we have outlined in this paper can be extended trivially to determining the con-
tent and number of higher dimension operators for any four-dimensional relativistic gauge
theory with scalar and fermionic matter. The master equation is eq. (3.16), which needs to
be modified from the SM to the theory of interest. The pieces of eq. (3.16) which are SM
specific are the gauge groups (and as such the Haar measures that need to be integrated over
to produce gauge singlets), and the field content (which enters the plethystic exponential).

In the present work we studied the expansion of eq. (2.7) in powers of mass dimension,
€. However, in our previous work in (0+1) dimensions [11] we were able to obtain all-order
formulae for Hilbert series, revealing a fascinating analytic structure which could not be
seen in any finite order expansion. Can we hope to attack eq. (2.7) directly? Could this
reveal some previously hidden all-order structure of the SM EFT? While lofty, questions
along these lines merit detailed investigation of the structure underlying operator bases,
which we take up in [1].
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A Explicit comparison with [7] at dim-8

In this appendix we present the comparison with the results and method of Lehman and
Martin (LM) [7]. As explained in section 4, differences will occur as, operationally, LM
only use the first two terms in eq. (2.13) to account for IBP.

In section A.1 we highlight a simple discrepancy in the operator class H*XD? by fully
reconstructing the SM EFT operators and finding operators not present in LM. In sec-
tion A.2, we explicitly show how the LM analysis over counts the IBP relations in this class.
Finally in section A.3, we give a full list of dim-8 operators with two and three derivatives,
highlighting the additional 62 operators (for Ny = 1) to be added to the analysis of LM.

A.1 A quick example: operator class H* X D?
The Hilbert series using our method and that of LM gives:

Our analysis: Hg > 2H*H?W'D? + H?H?B'D? + h.c. (A.1)
LM’s analysis: Hs > H2HPWID? 4+ h.c. (A.2)
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It is straightforward to explicitly construct the operators in the class H*XD?; one finds
that the following three operators and their hermitian conjugates® are all independent:

[(DuH)T(DVH)} (H'H)BE, (A.3)

(Dm0 )| (W (D) (D"H)| (HIrH)WE.  (A4)

i.e. there are six operators in this class, which is consistent with our result in eq. (A.1)
and table 3. The LM analysis does not find the operator H2H2BLD? and has a different
counting of the operator H2H2W D2,

A.2 LM over counts IBP relations

Here we will show how IBPs are over-counted for the operator class H2H2BLD? discussed
above. Without imposing IBP, there are two independent operators:

[(DMH)T (DVH)} (H'H)BL,, [(HT D“H)] [(DVH)TH] BL,. (A.5)

With one less power of D, there are also two:

uvo

Ay, = [HT (D"H)} (HH)BE Ay, = [(HTH)] [(D”H)TH] BL.  (A6)

In the LM analysis, both A, and Ay, are assumed to give an independent IBP relation
(recall, IBP relations arise from 0 = 0*4;,,). Therefore after removing IBP redundancy, it
gives the number of operators as 2 — 2 = 0. However, one can check that the IBP relations
generated by Ay, and Ay, are linearly related, i.e. 0# Ay, = —0" Aa,,. This happens because
one linear combination of Ay, and Ay, can be written as a divergence over a 2-from:

14 1 14
A, = Ay, + Ay =0 [Q(HT H)QBM =0"Cl, (A7)

whose total derivative 9" A, then will be identically zero by symmetry, and hence does not
generate an IBP relation. In the Hodge dual language of section 2.2, eq. (A.7) means the
dual of A, (which is a 3-form) is the exterior derivative of the dual of €y, (which is a
2-form):%

x A ~ d(xC), (A.8)

namely that %A is an exact 3-form, whose exterior derivative is identically zero and does
not generate an exact 4-form (Hodge dual of IBP operator):

£ (0" A,) ~ d(xA) ~ d [d(xC)] = 0. (A.9)

This is an explicit example where LM counts both non-exact and exact 3-forms. However,
exact 3-forms — such as the xA above — do not generate an IBP relation.

5To be clear, hermitian conjugation includes replacing X <> Xg for field strengths, even though in
Euclidean space they are not hermitian conjugates in the usual sense.
SHere “~” means we are ignoring any proportional coefficients.
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A.3 The list of dim-8 operators with two and three derivatives

In this subsection, we list out all the independent dim-8 operators involving two and three
derivatives, highlighting the 62 operators (for Ny = 1) not found by the LM analysis.

Two derivatives. For classes involving two derivatives, we find an additional 60 opera-
tors compared to the LM analysis. We find both larger coefficients in the Hilbert series for
some of the operators found in LM, and also operators which were missing entirely. We
present the general Ny case and highlight the differences with LM in the case Ny = 1 in
the text.
Class H5D?:
Self conjugate:

2H3HT3D? (A.10)

Class H*XD?:
H?H'?B;D?, 2H?H2W,D? all + h.c. (A.11)

The first of these operators was missing from LM; we also find an additional operator of
the second type. This class was discussed in the previous subsections. This equates to 4
additional operators of this class.

Class H3¢?D?:

6NFdQHH?D?, 6N7eLHH'*D?, 6NFuQH>H'D? all + h.c. (A.12)

Compared with LM we find one additional operator of each type (coefficients 6 vs. coeffi-
cients 5). This equates to 6 additional operators of this class.

Class H>X?D?:

Self conjugate:

HH'B; BRD?, 2HH "W, WrD?, HH'G,GrD? (A.13)
and
HH'B?D?, 2HH'B,W.D?, HH'BrW.D?, 2HH W?2D?,
HH'G?D? all + h.c. (A.14)

In LM all these operators were found with coefficient 1; here we find two of them with

coefficient 2. This equates to 4 additional operators of this class.
Class HX*D?:

2N}dQH'B,D*,  2NjeLH'B.D?, 2NFuQHBLD?, N}dQH'BrD?,
NeLH'BgD?, NjuQHBgrD?, 2NFdQH'W,D?,  2NjeLH'WD?,
eNFuQHWLD?,  NulQIH'W,D?, N7 'QTHW,D?,  Nje'L'HW.D?
2NFAQH'GLD?, 2NjuQHGLD?, N}dQH'GRD?, NuQHGRD?

all + h.c. (A.15)
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All of the operators in this class that we find with coefficient 2 were found with coefficient
1 in LM; all other operators were missing from LM. This equates to 32 additional operators
of this class.

Class ¢4 D?:

Self conjugate:

+ ) ee ) uY , ,
N} + N7)d*d'?D?,  2Njdd'ee'D? AN{dd uu'D? 2Njdd' LLID?
1

AN}dd'QQ'D?, 5 (N7 +Nj) e’e!*D?, 2NjeeluuD?, 2Ntee' LLTD?,

2Ntee' QQID?, (N} + N7)u*ul?D? 2Njuu'LLID?, ANjuu'QQ'D?,

(N} + N7)L’LT?*D?, AN;QQ'LLID?, 2 (N} 4+ N7) Q°Q"*D? (A.16)
and

3N}du@*D?, 2N}{de'QLID?, 3N}euQLD? all + h.c. (A.17)

The first of these operators was not found in LM. The last of these operators was found
but with coefficient 2. This equates to 8 additional operators.
Baryon number violating terms

1
2N}duQ'LTD?, 5J\IJiZ’(?,Nf — 1)deu*D?, NteuQ"D?, N{Q*LD?
all + h.c. (A.18)

The first of these operators agrees with LM; the last three were not found in their analysis.
This equates to 6 additional operators for Ny = 1. In total we find an additional 14
operators in this class.

Three derivatives. We find one additional type of operator with three derivatives that
was not, present in the LM analysis, accounting for the remaining ‘42’ in the discrepancy.
Class H?y?D3:
Self conjugate:

2N7dd'HH'D?, 2NFee! HHD?, oNFuu' HH'D?,  ANFLL'HH'D?,
ANFQQ'HH'D? (A.19)
and
Nid'uH?*D®  + h.c. (A.20)

This is the operator (+h.c.) that was not found in LM.
Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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