Maximum Matching in Two, Three, and a Few
More Passes Over Graph Streams

Sagar Kale! and Sumedh Tirodkar?

1 Dept. of Computer Science, Dartmouth College, Hanover, NH, USA
sag@cs.dartmouth.edu.

2 School of Technology and Computer Science, TIFR, Mumbai, India
sumedh.tirodkar@tifr.res.in

—— Abstract

We consider the maximum matching problem in the semi-streaming model formalized by Feigen-
baum, Kannan, McGregor, Suri, and Zhang [I3] that is inspired by giant graphs of today. As our
main result, we give a two-pass (1/2 + 1/16)-approximation algorithm for triangle-free graphs
and a two-pass (1/2 + 1/32)-approximation algorithm for general graphs; these improve the ap-
proximation ratios of 1/2 4+ 1/52 for bipartite graphs and 1/2 + 1/140 for general graphs by
Konrad, Magniez, and Mathieu [20]. In three passes, we are able to achieve approximation ra-
tios of 1/2 4+ 1/10 for triangle-free graphs and 1/2 4+ 1/19.753 for general graphs. We also give
a multi-pass algorithm where we bound the number of passes precisely—we give a (2/3 — ¢)-
approximation algorithm that uses 2/(3¢) passes for triangle-free graphs and 4/(3¢) passes for
general graphs. Our algorithms are simple and combinatorial, use O(nlogn) space, and (can be
implemented to) have O(1) update time per edge.

For general graphs, our multi-pass algorithm improves the best known deterministic algo-

rithms in terms of the number of passes:
Ahn and Guha [I] give a (2/3 — ¢)-approximation algorithm that uses O(log(1/¢)/e?) passes,
whereas our (2/3 — €)-approximation algorithm uses 4/(3¢) passes;
they also give a (1 —¢)-approximation algorithm that uses O(logn-poly(1/¢)) passes, where n
is the number of vertices of the input graph; although our algorithm is (2/3—¢)-approximation,
our number of passes do not depend on n.

Earlier multi-pass algorithms either have a large constant inside big-O notation for the number
of passes [9] or the constant cannot be determined due to the involved analysis [22, [I], so our
multi-pass algorithm should use much fewer passes for approximation ratios bounded slightly
below 2/3.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases Semi Streaming, Maximum Matching

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Maximum matching is a well-studied problem in a variety of computational models. We
consider it in the semi-streaming model formalized by Feigenbaum, Kannan, McGregor, Suri,
and Zhang [I3] that is inspired by generation of ginormous graphs in recent times. A graph
stream is an (adversarial) sequence of the edges of a graph, and a semi-streaming algorithm
must access the edges in the given order and use O(npolylogn) space only, where n is the
number of vertices; note that a matching can have size Q(n), so Q(nlogn) space is necessary.
The number of times an algorithm goes over a stream of edges is called the number of

m ® © Sagar Kale and Sumedh Tirodkar;

R=amw~a liccnsed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

passes. A trivial (1/2)-approximation algorithm that can be easily implemented as a one-pass
semi-streaming algorithm is to output a maximal matching. Since the formalization of the
semi-streaming model more than a decade ago, the problem of finding a better than (1/2)-
approximation algorithm or proving that one cannot do better has baffled researchers [21].
In a step towards resolving this, Goel, Kapralov, and Khanna [14] proved that for any € > 0,
a one-pass semi-streaming (2/3 + €)-approximation algorithm does not exist; Kapralov [16],
building on those techniques, showed non-existence of one-pass semi-streaming (1—1/e+¢)-
approximation algorithms for any € > 0. A natural next question is: Can we do better
in, say, two passes or three passes? In answering that, Konrad, Magniez, and Mathieu [20]
gave three-pass and two-pass algorithms that output matchings that are better than (1/2)-
approximate. In this work, we give algorithms that improve their approximation ratios for
two-pass and three-pass algorithms. We also give a multi-pass algorithm that does better
than the best known multi-pass algorithms for at least initial few passes. We are able to
bound the number of passes precisely: we give a (2/3 — €)-approximation algorithm that
uses 2/(3¢) passes for triangle-free graphs and 4/(3¢) passes for general graphs. Earlier
works either have a large constant inside the big-O notation for the number of passes [9]
or the constant cannot be determined due to the involved analysis [22] [I]. For example,
the (1 — e)-approximation algorithm by Eggert et al. [9] potentially uses 288/ passes, and
for the (1 — e)-approximation algorithms by McGregor [22] and Ahn and Guha [I], the
constants inside the big-O bound cannot be determined due to the involved analysis. The
(2/3—¢)-approximation algorithm by Feigenbaum et al. [I3] uses O(log(1/¢)/¢) passes, which
is O(log(1/¢)) factor larger than the number of passes we use to get the same approximation
ratio. Our algorithms are simple and combinatorial, use O(nlogn) space, and (can be
implemented to) have O(1) update time per edge. We also give an explicit and tight analysis
of the three-pass algorithm by Konrad et al. [20] that is reminiscent of Feigenbaum et al’s [I3]
multi-pass algorithm.

Technical overview:

If we can find a matching M such that there are no augmenting paths of length 3 in M U
M*, where M* is a maximum matching, then M is (2/3)-approximate, i.e., (1/2 + 1/6)-
approximate. This is because, in each connected component of M UM *| the ratio of M-edges
to M*-edges is at least 2/3. This is the basis for the (2/3 — ¢)-approximation algorithm by
Feigenbaum et al. [I3] that uses O(log(1/¢)/c) passes. The same idea is used by Konrad et
al. [20] in the analysis of their two-pass algorithms. In the first pass, they find a maximal
matching My and some subset of support edges, say S. If My is so bad that My U M*
is almost entirely made up of augmenting paths of length 3 (i.e., |My| ~ |M*|/2), then
by the end of the second pass, they manage to augment (using length-3 augmentations) a
constant fraction of My using S and a fresh access to the edges, resulting in a better than
(1/2)-approximation. On the other hand, if M is not so bad, then they already have a good
matching. One limitation this idea faces is that a fraction of the edges in .S may become
useless for an augmentation if both its endpoints get matched in My by the end of the first
pass. Our main result is a two-pass algorithm (described in Section [5)) that differs in two
ways from the former approach. Firstly, in the first pass, we only find a maximal matching
My so that in the second pass, where we maintain a set S of support edges, S would not
contain “useless” edges. Secondly, any augmentation in our algorithm happens immediately
when an edge arrives if it forms an augmenting path of length 3 with edges in My and S.

S. Kale and S. Tirodkar

Our results:

In light of the discussion so far, one way to evaluate an algorithm is how much advantage it
gains over the (1/2)-approximate maximal matching found in the first pass. We summarize
our two-pass and three-pass results in Table [I| and multi-pass results in Table [2l We stress
that we are able to bound the number of passes precisely, without big-O notation. For
general graphs, our multi-pass algorithm improves the best known deterministic algorithms
in terms of number of passes—see the third multi-row of Table |2l We note that our multi-
pass algorithm is not just a repetition of the second pass of our two-pass algorithm. Such a
repetition will give an asymptotically worse number of passes (see, for example, the multi-
pass algorithm due to Feigenbaum et al. [I3]; the first row of Table[2). We carefully choose
the parameters for each pass to get the required number of passes. Also note that Table
shows advantages over a maximal matching—an algorithm is said to have advantage « if it
is a (1/2+ «)-approximation algorithm (because a maximal matching is (1/2)-approximate).

Table 1 Advantages over a maximal matching—advantage o means (1/2 + «)-approximation.

Problem Previous work ‘ Advantage ‘ Advantage in this work ‘
Bipartite two- Esfandiari et al. [11 1/12
Tpar 1 © Wopass san Tar? et al. [T / Not considered separately
Bipartite three-pass Esfandiari et al. [II] | 1/9.52
Triangle-free two- 1/16 in Section [5
r%ang erree Tworpass Not considered separately / (m « 1on
Triangle-free three-pass 1/10 (in Appendlxhl)
General two-pass Konrad et al. [20] ‘ 1/140 1/32 (in Section IEI)
General three-pass Not considered separately 1/19.753 (in Appendix

Table 2 Multi-pass algorithms—see Section @

Graph Results ‘ Approx ‘ # Passes ‘
Feigenbaum et al. [13] 2/3 —¢ | O(log(1/e)/e)
Bipartite Eggert et al.[9)] 1—¢ 288 /¢
Ahn and Guha [I] 1—¢ O(loglog(1/¢)/e?)

Triangle free | This work (in Section@ 2/3—¢ | 2/(3¢)

McGregor [22] randomized | 1 —¢ O((1/e)Y/#)

Ahn and Guha [T] 2/3 —¢ | O(log(1/¢e)/e%)
Ahn and Guha [I] 1—¢ O(logn - poly(1/e))
This work (in Section [6) 2/3—¢ | 4/(3¢)

General

Note of independent work

The work of Esfandiari et al. [I1] who claim better approximation ratios for bipartite graphs
in two passes and three passes is independent and almost concurrent. Our work differs in
several aspects. We consider triangle-free graphs (superset of bipartite graphs) and general
graphs, and we additionally consider multi-pass algorithms. Also, their algorithm has a post-
processing step that uses time O(y/n - |E|), whereas our algorithms can be implemented to
have O(1) update time per edge. One further detail about this appears in Appendix D}

XX:3

XX:4

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

1.1 Related Work

Karp, Vazirani, and Vazirani [I8] gave the celebrated (1 — 1/e)-competitive randomized
online algorithm for bipartite graphs in the vertex arrival setting. Goel et al. [I4] gave the
first one-pass deterministic algorithm with the same approximation ratio, i.e., 1 — 1/e, in
the semi-streaming model in the vertex arrival setting. For the rest of this section, results
involving € hold for any € > 0. As mentioned earlier, Goel, Kapralov, and Khanna [T4] proved
nonexistence of one-pass (2/3 4 ¢)-approximation semi-streaming algorithms, which was
extended to (1—1/e+¢)-approximation algorithms by Kapralov [I6]. On the algorithms side,
nothing better than outputting a maximal matching, which is (1/2)-approximate, is known.
Closing this gap is considered an outstanding open problem in the streaming community [21].

On the multi-pass front, in the semi-streaming model, Feigenbaum et al. [13] gave a
(2/3 — e)-approximation algorithm for bipartite graphs that uses O(log(1/¢)/¢e) passes; Mc-
Gregor [22] improved it to give a (1 — ¢)-approximation algorithm for general graphs that
uses O((1/€)'/¢) passes. For bipartite graphs, this was again improved by Eggert et al. [9]
who gave a (1—¢)-approximation O((1/€)®)-pass algorithm. Ahn and Guha [I] gave a linear-
programming based (1 — ¢)-approximation O(loglog(1/¢)/e?)-pass algorithm for bipartite
graphs. For general graphs, their (1 — ¢)-approximation algorithm uses number of passes
proportional to logmn, so it is worse than that of McGregor [22].

For the problem of one-pass weighted matching, there is a line of work starting with
Feigenbaum et al. [I3] giving a 6-approximation semi-streaming algorithm. Subsequent
results improved this approximation ratio: see McGregor [22], Zelke [24], Epstein et al. [10],
Crouch and Stubbs [§], Grigorescu et al.[15], and most recently in a breakthrough, giving a
(24 ¢)-approximation semi-streaming algorithm, Paz and Schwartzman [23]. The multi-pass
version of the problem was considered first by McGregor [22], then by Ahn and Guha [IJ.
Chakrabarti and Kale [5] and Chekuri et al. [6] consider a more general version of the
matching problem where a submodular function is defined on the edges of the input graph.

The problem of estimating the size of a maximum matching (instead of outputting the
actual matching) has also been considered. We mention Kapralov et al. [I7], Esfandiari et
al. [I2], Bury and Schwiegelshohn [4], and Assadi et al. [2].

In the dynamic streams, edges of the input graph can be removed as well. The works of
Konrad [19], Assadi et al. [3], and Chitnis et al. [7] consider the maximum matching problem
in dynamic streams.

1.2 Organization of the Paper

After setting up notation in Section [2] we give a tight analysis of the three-pass algorithm
for bipartite graphs by Konrad et al. [20] in Section In Section 4] we see our simple
two-pass algorithm for triangle-free graphs. Then in Section [5] we see our main result—the
improved two-pass algorithm, and then we see the multi-pass algorithm in Section [l The
results that are not covered in the main sections are covered in the appendix.

2 Preliminaries

We work on graph streams. The input is a sequence of edges (stream) of a graph G = (V, E),
where V' is the set of vertices and F is the set of edges; a bipartite graph is denoted as
G = (A, B, E). A streaming algorithm may go over the stream a few times (multi-pass) and
use space O(npolylogn), where n = |V|. In this paper, we give algorithms that make two,
three, or a few more passes over the input graph stream. A matching M is a subset of edges

S. Kale and S. Tirodkar

such that each vertex has at most one edge in M incident to it. The maximum cardinality
matching problem, or maximum matching, for short, is to find a largest matching in the
given graph. Our goal is to design streaming algorithms for maximum matching.

For a subset F' of edges and a subset U of vertices, we denote by U(F) C U the set of
vertices in U that have an edge in F incident on them. Conversely, we denote by F(U) C F
the set of edges in F' that have an endpoint in U. For a subset F' of edges and a vertex
v € V(F), we denote by Ng(v) the set of v’s neighbors in the graph (V(F), F), and we
define degp(v) := |Ng(v)].

In the first pass, our algorithms compute a mazimal matching which we denote by Mj.
We use M* to indicate a matching of maximum cardinality. Assume that My and M* are
given. For ¢ € {3,5,7,...}, a connected component of My U M* that is a path of length
i is called an i-augmenting path (nonaugmenting otherwise). We say that an edge in M,
is 3-augmentable if it belongs to a 3-augmenting path, otherwise we say that it is non-3-
augmentable.

» Lemma 1 (Lemma 1 in [20]). Let o > 0, My be a mazimal matching in G, and M*
be a mazimum matching in G such that |My| < (1/2 + «)|M*|. Then the number of 3-
augmentable edges in My is at least (1/2 — 3a)|M™*|, and the number of non-3-augmentable
edges in My is at most da| M*|.

Proof. Let the number of 3-augmentable edges in My be k. For each 3-augmentable edge
in My, there are two edges in M* incident on it. Also, each non-3-augmentable edge in My
lies in a connected component of My U M* in which the ratio of the number of M*-edges to
the number of My-edges is at most 3/2. Hence,

|M*| < 2k + ;(\M0| — k) since # non-3-augmentable edges = |My| — k,

1
< 2kz+g <<2 +a) | M| —k) because |My| < (1/2 + a)| M7,

1 3 3
= — — — Z\4>‘<
2k+(4+2a> B

which, after simplification, gives k > (1/2—3a)|M*|. And the number of non-3-augmentable
edges in My is |[Mo| —k < |[Mo| — (1/2 —3)|M*| < (1/24+a—1/2+3a)|M*| = 4a|M*|. <

We make the following simple, yet crucial, observation.

» Observation 1. Let My be a maximal matching. Then V(My) is a vertex cover, and there
is no edge between any two vertices in V'\ V(My). Therefore, even if the input graph is not
a bipartite graph, the set of edges incident on V' \ V(My), i.e., E(V \ V(My)) give rise to a
bipartite graph with bipartition (V' \ V (M), V(Mp)).

For all the algorithms in this paper, it can be verified that their space complexity is

O(nlogn) and update time per edge is O(1). We also ignore floors and ceilings for the sake
of exposition.

3 Analyzing the Three Pass Algorithm for Bipartite Graphs

We analyze the three-pass algorithm for bipartite graphs given by Konrad et al. [20], i.e., Al-
gorithm [I] by considering the distribution of lengths of augmenting paths. We also give a
tight example.

XX:5

XX:6 Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

Algorithm 1 Three-pass algorithm for bipartite graphs due to Konrad et al. [20]

1: In the first pass, find a maximal matching Mj.
2: In the second pass, find a maximal matching
My in Fy :={ab:a € A(My),b € B\ B(My)} (see Figure [1)).
3: In the third pass, find a maximal matching
Mpin F3:={ab:a € A\ A(My) and Ja’ € A(M4) such that a’b € My}.
4: Augment My using edges in M4 and Mp and return the resulting matching M.

B\ B(Mo) A(Mo) B(Mo) A\ A(Mo)

*———@0——@ ——— @

My

* i ——————— - — i 9
————————— M*
> ——————— .9 My
Mg

¢ - ———9

Figure 1 Example: state of variables in an execution of Algorithm

» Theorem 2. Algorithm (1| is a three-pass, semi-streaming, (1/2 + 1/10)-approximation
algorithm for maximum matching in bipartite graphs.

Proof. Without loss of generality, let M* be a maximum matching such that all nonaug-
menting connected components of My U M* are single edges. For ¢« = {3,5,7,...}, let k;
denote the number of i-augmenting paths in My U M*, and let k = |My N M*|. Then

|MO|:k+zi:Z21k,» and |M*|:k+zl:z+21ki. (1)
Consider an i-augmenting path byaibeazbs - - - b;11)/2a(i41)/2 in Mo U M™, where for each j,
we have a; € A and b; € B. We call the vertex a(;_1)/2 a good vertex, because an edge in
M4 incident to a(;_1)/2 can potentially be augmented using the edge b(i11)/2a(i41)/2.- To
elaborate, consider the set of all edges in M4 incident on good vertices; call it M’,. Consider
the set of edges of the type b(;y1)/2a(i41)/2 from each i-augmenting path; call it Mr. Note
that Mp is a matching. Then we can augment My using M/, and Mp by as much as [M/].

There is a matching of size), k; in F, formed by edges of the type bia; from each
i-augmenting path. Since M, is maximal in F», we have [Ma| > (>, k;)/2. Now, the
number of good vertices is), k;; therefore, the number of bad (i.e., not good) vertices is
|Mo| — 3>, ki. So the number of edges in M4 incident on good vertices (see Figure

ke 3
| M| > %* <|M0 Z’%) = 5Zkr|Mo\-

Let Bg := {b € B : 3a € A(M/) such that ab € My}. Let Mp C Mp be defined as
My :={ba € Mp : b € Bg}. Then we know that |Mp| = |M/| and M} C Mp C F3. Since
we select a maximal matching in F3 in the third pass,

| Mp| _ M| _ 3 | Mol
> —_— e = — . — .
[Mp| > = it DL e 2)

)

S. Kale and S. Tirodkar

B\ B(Mo) A(Mo) B(Mo) AN\ A(Mo)
Q= == - —--.—‘/. e
-
-
;"-—-—._... _________ M*

>~ ———@—@ ———9

Figure 2 Tight example for Algorithm |If M4 has only one edge that lands on a bad vertex and
cannot be augmented in the third pass. So [M| = |Mo| =3 and |M*| = 5.

So the output size

|M]| = [Mo| + [Mp|

3 | Mo|
2 |M0|+1 E,L kl—? by and 7
M| 3, . 3 .

ie., |M| > 3|M*|/4 — |My|/4, but we also have |M| > | Mp|, hence
3, .1
1 > s al, 312071~ 10l |

So the bound is minimized when |My| = 3|M*|/4 — |My|/4 = 3|M*|/5 = (1/2+ 1/10)|M*|.
<

As we can see in the proof above, the worst case happens when |M| = |My| = 3|M*|/5.
Setting k3 = ks > 1, k = 0, and k; = 0 for ¢ > 5 gives us the tight example shown in Figure 2]

4 A Simple Two Pass Algorithm for Triangle Free Graphs

Before seeing our main result, we see a simple two pass algorithm for triangle-free graphs.
The function SEMI() in Algorithm [2| greedily computes a subset of edges such that each
vertex in X has degree at most one and each vertex in Y has degree at most \; we call such
a subset a (A, X, Y)-semi-matching (Konrad et al. [20] call this a A-bounded semi-matching).
In Algorithm[2] we find a maximal matching M in the first pass, and, in the second pass, we
find a (A, V(My), V' \ V(My))-semi-matching S. After the second pass, we greedily augment
edges in My one by one using edges in S.

» Theorem 3. Algorithm[d is a two-pass, semi-streaming, (1/2+ 1/20)-approzimation al-
gorithm for maximum matching in triangle-free graphs.

Proof. As in the proof of Theorem [2] let M* be a maximum matching such that all nonaug-
menting connected components of My U M* are single edges. For ¢ = {3,5,7,...}, let k;
denote the number of i-augmenting paths in MyU M™*, and let k denote the number of edges
in M* N M.

Consider an i-augmenting path z1y122y223 - - - T(i41)/2Y(i+1)/2 0 Mo U M*. We call the
vertices y1 € V/(Mp) and x(;11)/2 € V(Mp) good vertices, because the edges x1y1 € M* and
T(i41)/2Y(i+1)/2 € M* can potentially be added to S by our algorithm. Denote by Vg the

XX:7

XX:8

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

Algorithm 2 Two-pass algorithm for triangle-free graphs

: In the first pass: My + maximal matching
: In the second pass: S + SEMI(\, V(My),V \ V(Mp)) (see Figure [3).
: After the second pass, augment M greedily using edges in S to get M; output M.
: function SEMI(), X,Y) > based on Algorithm 7 in Konrad et al. [20]
S0
foreach edge zy such that x € X, y € Y do

if degg(z) =0 and degg(y) < A —1 then

S+ SuU{zy}

My

® @) @

Figure 3 Example showing My and S at the end of the second pass of Algorithm [2] with A = 2.
When we greedily augment M, after the second pass, we may choose to augment usvs and lose two
possible augmentations of edges u4vs and uevs.

set of good vertices and by Vg := V(M) \ Vg the set of bad vertices. Then [Vg| =2, k;.
Note that Vg N Ve = 0 and Vg U Vp = V(My) by definition.

Let Ve := Vg \ V(S) be the set of good vertices not covered by S. An edge uv € M*
with uw € V'\ V(M) and v € V¢ was not added to .S, because degg(u) = A. Hence

2

< |V(Mp)| — ie., <
AMVre| < [V(Mo)| — [Vne| ie., [Vnc o1

[Mo, 3)

because at most |V (My)| — |Vnc| vertices in V(My) are covered by S. Now,

|V(M0) \ V(S)| = |VG \ V(S)| + |VB \ V(S)‘ VenVg=0and VgUVp = V(MQ),
< |Wnel + 1 VE] Ve = Ve \V(S), VB \ V(S)| < |VB],

2
S5 Mol + V(M) = Vel by @) and - [Vis| = [V (Mo)| = [Val,

2
= —| M, M) —2 ; S =2 -
P 1| ol + [V (Mp)| Xi:kl because |Vg| zi:k;z

S. Kale and S. Tirodkar

Using |V (Mo)| = |V (Mo) \ V(S)| + |V (Mp) NV (S)| and the above, we get

IV (Mo) NV (S)] > [V (Mo)| - (AQH|MO| IV (Mo)| - 22@»)

- (Zk - /\41_1|M0|> . (4)

We observe that at most | M| vertices in V/(My) (one endpoint of each edge) can be covered
by S without having both endpoints of an edge in M, covered. Hence, at least |V (My) N
V(S)| — | Mo| edges in My have both their endpoints covered by S, which, by (), is at least

1 A+3
2<Zki_>\+1|MO|> —|M0|=22ki—m\Mo|~ (5)

After the second pass, when we greedily augment an edge from the above edges, i.e., edges
whose both endpoints are covered by S, we may potentially lose 2(A—1) other augmentations
(see Figure [3)). To see this, consider uv € My such that u,v € V(S) and au € S and vb € S.
The graph is triangle free, so we know that a # b, and we can augment M, using the 3-
augmenting path auvb; but we may lose at most A — 1 edges incident to ¢ in S and at most
A — 1 edges incident to b in S. Therefore the number of augmentations ¢ we get after the
second pass is at least 1/(2A — 1) times the right hand side of (5, i.e.,
2 A+3
¢z 2)\—121,: T ooy Mol

So the output size |M| = |Mp| + ¢, and using the above bound on ¢ and simplifying we get:

2002 -2
Skt 2D)

M| >
M2 553 Z_ A — DA+ 1)
substituting Y-, k; = |[M*| — [Mo|, by (I), in the above,
2 2(A2 — X — 3)
M| > M|+ ——+—| M.
M| 2 =M+ s =y o Ml

Using A = 3 and the fact that M is 2-approximate, we get

2, 3 2 3. 11, 11 .
M1 > 210+ 1ol > S100° 4 gl = goir| = (5 + 55) - «

5 Improved Two Pass Algorithm

We present our main result that is a two pass algorithm in this section. In the first pass,
we find a maximal matching Mj. In the second pass, we maintain a set S of support edges
xy, such that © € V \ V(My), y € V(My), and degg(y) < Ay and degg(x) < Ay, where
Am = 1 and Ay > 1 are parameters denoting maximum degree allowed in S for matched
and unmatched vertices (with respect to My), respectively. Whenever a new edge forms a
3-augmenting path with an edge in My and an edge in S, we augment. We store the vertices
involved in a 3-augmentation in the variable I. We ignore a new edge if it is incident to
a vertex in I. Unused support edges that are incident to a vertex in I become “useless”;
hence to address this, we store the endpoints of M edges that share an endpoint with such
useless edges in the variable Ig, and we ignore a new edge if it is incident to a vertex in Ip.
Algorithm [3] gives a formal description.

XX:9

XX:10 Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

Algorithm 3 Improved two-pass algorithm: input graph G

1: In the first pass, find a maximal matching M.

2: if G is triangle-free then

3: Return IMPROVE-MATCHING (M, 2, 1)

4: else

5: Return IMPROVE-MATCHING (M, 4, 2)

6: function IMPROVE-MATCHING (Mo, Au, Am)

7: M <+ My, S+ 0,1+ QandIg+ 0

8: foreach edge xy in the stream do

9: if x or y € IUIp then

10: Continue, i.e., ignore zy.

11: else if x € V(My) and y € V(Mp) then

12: Continue, i.e., ignore zy.

13: else if there exist v and b such that yv € My and vb € S then

14: M+ M\ {yv} U {zy, vb} > a 3-augmentation
Let I, + {uz,v; : zu, € S and u,v, € Mp}.
Let I < {up,vp : upvp € My and vpb € S}.

15: Then I + I U{z,y,v,b} and Ip <+ Ig U I, UI,.

16: else
Without loss of generality, assume that x € V' \ V(M) and y € V(M).

17: if degg(z) < Ay and degg(y) < Am then > See Figure

18: S« SU{xy} > Note: Once an edge is added to S, it is never removed

from it.

19: Return M.

Setting up a charging scheme to lower bound the number of
augmentations

We first lay the groundwork and give a charging scheme.

» Observation 2. For general graphs (that are possibly not triangle-free), we need to set
AM = 2.

To see why, suppose Ay = 1. Let uv be a 3-augmentable edge in M. Then, for the edge uwv,
we might end up storing the edges ub and vb in .S, and the edge uv would not get augmented.
If Am > 2, and we store at least Ay edges incident to w, then an edge incident to v will
not form a triangle with at least one of those and wv would get augmented. So, for general
graphs, we need to set Ay > 2.

Let |My| = (1/2 + a)|M*|. For a 3-augmentable edge uv € My, let auvb be the 3-
augmenting path such that au,vb € M*. Without loss of generality, assume that au arrived
before vb. Then we make the following observation.

» Observation 3. When au arrived, it may not be added to S for one of the following reasons:
The vertex a was already matched.
There were Ay edges incident to u in S.
There were Ay edges incident to a in S.
We call some edges in My good, some partially good, and some bad. An edge is good if it got
augmented. An edge uv € My is bad if it is 3-augmentable, not good, and vertex a or b had
Au edges incident to them in S when edge au or vb arrived. An edge uv € M is partially
good if it is 3-augmentable, but neither good nor bad (“partially” good because, as we will

S. Kale and S. Tirodkar

ag Ug Ve b
@+ — - — Y — w—\ w—t — —g
e
us Vs
Q—)
aq Uyg (2 b
@ = - — Y — — 1 — — -é
®
us U3
*—e
My
u Vo - [— some M* edges
*>—e
some S edges
Uy U1
® e

Figure 4 Example showing My and some of the edges in M* and S during the second pass of
Algorithm [3] for triangle-free graphs with Ay = 2 and Am = 1. At most one of u; and v; can have
positive degree in S, because we would rather augment u;v; instead of adding the latter edge to
S. By our convention, aqus arrived before vs4bs, and acus arrived before vgbs. Since aqus was not
added to S, we have degg(as) = Au (S edges incident to a4 are not shown).

see later, we can hold some good edge u'v' € My responsible for uv not getting augmented).
Note that all 3-augmentable edges get some label according to our labeling. We require the
following lemma to describe the charging scheme.

» Lemma 4. Suppose au was not added to S because there were already Ay edges incident
tow in S. If, later, wv did not get augmented when vb arrived, then

b was already matched via augmenting path a”u''v"b, or

there exists a’'u € S and u'v' € My such that o' was matched via augmenting path a’u'v'b’.

Proof. When au arrived, |[Ng(u)| > Am. If b was unmatched when vb arrived, then some
a’ € Ng(u) \ {b} must have been matched, otherwise we would have augmented uv. Now
for triangle-free graphs b ¢ Ng(u), so |[Ng(u) \ {b}| = |Ns(u)| = 1, and for general graphs,
by Observation [2, Ay = 2, so [Ng(u) \ {b}| = A — 1> 1. <

Charging Scheme.

As alluded to earlier, we charge a partially good edge to some good edge. Recall that
for a 3-augmentable edge uv € My, we denote by au,vb € M™* the edges that form the 3-
augmenting path with uv such that au arrived before vb. We use Observation [3|and consider
the following cases. See Figure
Suppose au was not added to S because a was already matched. Then, let u'v' € My
was augmented using au/v'b’. If degg(a) < Ay —1, then we charge uv to u'v’. Otherwise,
uv is bad.
Suppose au was not added to S because degg(u) = A\y. Then we use Lemma |4 We
either charge uv to v/'v’, or if degg(b) < Ay — 1, then we charge uv to u”v”
uv is bad.

. Otherwise,

Suppose au was not added to S because degg(a) = Ay, then uwv is bad.
Otherwise, au was added to S, but uv did not get augmented when vb arrived. Then:

XX:11

XX:12

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

a u v b
[VR) —— e w— 1 — 1 -®
partially good MO
" / !
a u v Y —_————— some M* edges
% o—o °
N good
‘N some S edges
’\' " " i
S U bad v _.b a stream edge
[Y N ——

Figure 5 Example showing a good edge, a bad edge, and a partially good edge. We use param-

eters Ay = 2 and Am = 1, so we are in the triangle-free case. The edge u’v’ is not 3-augmentable

but was augmented using a”u’v’y, so u’v’ is a good edge. The edge u”’v” is a 3-augmentable edge

that was not augmented and when a”u"” arrived, degg(a”) = 2, so u”v" is a bad edge. For uv, we

did not take au in S, because degg(u) = 1, so uv is a partially good edge, and we can charge uv to
u'v" using Lemma,

Either there exists o’ € Ng(u) that was matched via augmenting path a’uv/v'b’ (note
that @’ may be same as a), then we charge uv to u'v’;
or b was already matched via augmenting path a”u”v”b, and vb was ignored; in this
case, if degg(b) < Ay — 1, then we charge uv to u’v"”, otherwise, uv is bad.

We now bound the number of bad edges in My from above.

» Lemma 5. The number of bad edges is at most Av|Mo|/Au.

Proof. We claim that for any uwv € My, degg(u) + degg(v) < Am, hence |S| < M| M.
A short argument is that the (Ay + 1)th edge would cause an augmentation and will not
be added to S. Let us assume the claim. By the definition of a bad edge, Ay edges in S
are “responsible” for one bad edge in My. Also, an edge au’ (or v"'b, resp.) in S can be
responsible for at most one bad edge that can only be uv if au ¢ S (or if vb ¢ S, resp.;
considering the 3-augmenting path auvbd). Hence, the total number of bad edges is at most
IS/ v < Am|Mo|/Au. Now we prove the claim.

We first prove for triangle-free graphs by contradiction. Let degg(u) + degg(v) > A,
and let vy € S be the (A + 1)th edge incident to one of u and v that was added to S. Since
Am = 1 and degg(v) < A, we have degg(u) > 1, i.e. Ng(u) # 0. Now when vy arrived:

the vertex y was unmatched, otherwise vy would not be added to S;

no vertex x € Ng(u) was matched, otherwise u,v € Ig, and vy would not be added to

S.

The above implies that when vy arrived, due to some & € Ng(u) the if condition on Line
became true, and we augmented uv via xuvy instead of adding vy to S. This is a contra-
diction.

For general graphs, we argue by contradiction slightly informally for the sake of brevity.
By Observation [2| for general graphs, Ay > 2. Let degg(u) + degg(v) > Av = 2. Let vy be

the second edge incident to one of u and v that was added to .S; the first edge can be xu or
/

vy’

Suppose zu was the first edge. If x # y, then we would have augmented uv via zuvy
instead of adding vy to S—a contradiction. If x = y, then after vy was processed, Ng(u) =
Ng(v) = {y}, and a third edge incident to one of v and v would not be added to S, because
it would have formed a 3-augmenting path with either yu or vy, resulting in a contradiction
that degg(u) + degg(v) = 2.

S. Kale and S. Tirodkar

Otherwise, suppose vy’ was the first edge; then Ng(v) = {y,y'} after vy was processed.
Since eventually degg(u) + degg(v) = Ay + 1 > 3 and degg(u), degg(v) < Am, we would
eventually have degg(u) > 1, so let zu € S. When zu arrived, it would have formed an
3-augmenting path with either vy or vy’ (here, taking care of the fact that one of y and '’
can be same as), resulting in a contradiction that xu was not added to S.

Thus, we get the claim and complete the proof. |

As a consequence, we get the following.

» Observation 4. In any call to IMPROVE-MATCHING(), we need to set Ay > Ay, i.e., Ay = 2.

To see why, suppose A\y < Ay. Then by Lemma [5] potentially all 3-augmentable edges in
My could become bad edges.
Recall that a 3-augmentable edge is good, partially good, or bad; so by Lemmas[1|and

1 Am| M,
good or partially good edges > <2 — 3a) M| — y
U
1 Am (1
(5-30) =3 (G +a) a0
AU — M 3A\u + A\m
= - M*|.
(P - (PER) a) ar ©)

In the following lemma, we bound the number of partially good edges in M that are charged
to one good edge.

» Lemma 6. At most 2A\y — 1 partially good edges in My are charged to one good edge in
M.

Proof. Suppose uv € My was augmented by edges xu and vy such that zu arrived before
vy, then zu € S. Now |Ng(x)|, |Ns(y)| < Au. Since zu € S, we have |[Ng(z)\ {u}| < Ay —1.
Let B := (Ng(x) \ {u}) UNg(y), then |B| < 2Ay — 1. Now, the set of partially good edges
that are charged to wv is a subset of My(B). Observing that |My(B)| < |B|] < 2Ay — 1
finishes the proof. <

The following lemma characterizes the improvement given by IMPROVE-MATCHING().

» Lemma 7. Let |My| = (1/2 + «)|M*| and M = IMPROVE-MATCHING(My, A\u, Am), then

1 AU — AM 3\U + Am " 1 AU — AM «
SN (L S L A > (14 A= Am ,
|M| > (2 + 4)\% + (1 2)\% o |M | Z\3 + 4)\% |M ‘

Proof. By @ and Lemma@ the total number of augmentations during one call to IMPROVE-
MATCHING() is at least

1 fAdu—Au [(3Au+Am o) M7 = Au—Am [(3Au+Am o) 10|
20\ 2xo Y IR 22 '

Hence, we get the following bound on the size of the output matching M:

)\U_)\M 3>\U+)\M
M| > |M, — M*
M1 > 1]+ (R - R far
1 du—XAu 3 u + Am . X
= (2—1—4)\%—&—(1—2)\% a) |[M*| because |[My| = (1/2 4 a)|M*| |
1 AU7>\1\/I * : :
> | s+ ——) |IM7 since Ay > 2 by Observation [d]. <
2 T TN

XX:13

XX:14

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

Now we state and prove our main result.

» Theorem 8. Algom'thm@ uses two passes and has an approzimation ratio of 1/2+ 1/16
for triangle-free graphs and an approzimation ratio of 1/2 + 1/32 for general graphs for
mazximum matching.

Proof. After the second pass, the output size |M| > (1/2 + (Au — Au)/(4A3))|M*| due
to Lemma [7} we use A\y = 2 and A\y; = 1 for triangle-free graphs and Ay = 4 and Ay = 2
(see Observation [2)) for general graphs to get the claimed approximation ratios. |

6 Multi Pass Algorithm

We run the function IMPROVE-MATCHING() in Algorithm [3| with increasing values of Ay,
and the approximation ratio converges to 1/2+1/6. We note that this multi-pass algorithm
is not just a repetition of the function IMPROVE-MATCHING(). Such a repetition will give
an asymptotically worse number of passes (see, for example, the multi-pass algorithm due
to Feigenbaum et al. [13]). We carefully choose the parameter Ay for each pass to get the
required number of passes.

Algorithm 4 Multi-pass algorithm: input graph G

1: In the first pass, find a maximal matching M;.
2. M + Ml

3: if (G is triangle-free then

4 for i =2 to [2/(3¢)] do

5: M <+ Improve-Matching(M, i, 1)

6: else

7 for i =2 to [4/(3¢)] do

8 M <+ Improve-Matching(M, i + 1, 2)

9: Return M.

» Theorem 9. For anye > 0, Algorz'thm is a semi-streaming (1/2+1/6—¢)-approzimation
algorithm for mazimum matching that uses 2/(3¢) passes for triangle-free graphs and 4/(3e)
passes for general graphs.

Proof. We prove the theorem for triangle-free case; the general case is similar. Let M; be
the matching computed by Algorithm @] after ith pass, and let p := [2/(3¢)], so € < 2/(3p).
Since M; is maximal, it is (1/2)-approximate. Let oy := 0, and for i € {2,3,...,p}, let

i—1 3i+1
= (1=) e
T e +(22)a !

(see Lemma |z| with Ay =4 and Ayy = 1). Then, by Lemma [7| and the logic of Algorithm
for i € [p], the matching M; is (1/2 + o;)-approximate (by a trivial induction). Now we
bound ¢, by induction. We claim that for ¢ € [p],
S 1 2

o 2 = — 57,
6 3
which we prove by induction on 3.

Base case: For i =1, we have 1/6 —a; =1/6 —0=1/6 < 2/(3-1).

S. Kale and S. Tirodkar XX:15

For inductive step, we want to show that

1 1 i1 3i+1
RPN i R P
6 T 6 a2 (22)O‘ 1S3

[\

which is implied by the following (using inductive hypothesis)

Loi1 () 8] 2 1)

6 442 22 3(i—1) 6)

1 i1 (22-3i—1\ [d—i+1
implied b - - <
HHPHEC By 6 42 +< 2i ><6(i—1)>

multiplying both sides by 12i2(i — 1), we then need to show that,

Ll L

2i%(i — 1) = 3(i — 1)® + (20* = 3i — 1)(—i +5) < 8i(i — 1),
implied by 2i* — 2i* — 3(i% — 20 + 1) + (—2® + 104 + 3¢ — 15i +i — 5) < 8> — 84,
implied by 2i* — 5i® +6i — 3 + (—2¢® + 13¢* — 14i — 5) < 8i* — 84,
implied by 8i% — 8 — 8 < 82 —8i,

which is true, so we get the claim. Therefore o, > 1/6—2/(3p) > 1/6 —¢, and by our earlier
observation, M, is (1/2 + oy,)-approximate, and this finishes the proof for triangle-free case.
The proof for general case is very similar. We define p := [4/(3¢)] and «; := 0, and for
i€{2,3,...,p}, we define

i—1 3(4+1)+2
i = ‘ 1- . i—1
¢ 4<z+1>2+< 20+ 1)?)‘“ :

ie., we use Ay =i+ 1 and Ay = 2. The corresponding claim then is that for i € [p],

1 4
Q; > o T 5
6 3
which can be verified by induction on 1. |

Acknowledgements. We thank Sundar Vishwanathan and Ashish Chiplunkar for helpful
discussions. The first author would like to thank his advisor Amit Chakrabarti and Andrew
McGregor for helpful discussions.

—— References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model
with application to the maximum matching problem. Inf. Comput., 222:59-79, January
2013. URL: http://dx.doi.org/10.1016/j.ic.2012.10.006,|doi:10.1016/j.ic.2012.
10.006.

2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in
graph streams. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1723-1742, 2017. URL: http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.
113, arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.113| doi:10.
1137/1.9781611974782.113.

3 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proc. 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1345-1364, 2016. URL:
http://dl.acm.org/citation.cfm?id=2884435.2884528.

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.113
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.113
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.113
http://dx.doi.org/10.1137/1.9781611974782.113
http://dx.doi.org/10.1137/1.9781611974782.113
http://dl.acm.org/citation.cfm?id=2884435.2884528

XX:16

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

10

11

12

13

14

15

16

Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dy-
namic data streams. In Proc. 23rd Annual European Symposium on Algorithms, pages 263—
274, 2015. URL: http://dx.doi.org/10.1007/978-3-662-48350-3_23, doi:10.1007/
978-3-662-48350-3_23

Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Mathematical Programming, 154(1):225-247, 2015. URL: http://dx.
doi.org/10.1007/s10107-015-0900-7, |doi:10.1007/s10107-015-0900-7.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for sub-
modular function maximization. In Proc. 42nd International Colloquium on Automata,
Languages and Programming, pages 318-330, 2015. URL: http://dx.doi.org/10.1007/
978-3-662-47672-7_26, /doi:10.1007/978-3-662-47672-7_26.

Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1326-1344, 2016.
URL: http://dl.acm.org/citation.cfm?7id=2884435.2884527.

Michael Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted
matching, via unweighted matching. In Proc. 17th International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems, volume 28, pages 96-104,
2014. doi:http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96

Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1):490-508, 2012. URL: http:
//dx.doi.org/10.1007/s00453-011-9556-8, doi:10.1007/s00453-011-9556-8

Leah Epstein, Asaf Levin, Julian Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM Journal on Dis-
crete Mathematics, 25(3):1251-1265, 2011. URL: http://epubs.siam.org/doi/abs/10.
1137/100801901, arXiv:http://epubs.siam.org/doi/pdf/10.1137/100801901, |doi:
10.1137/100801901.

H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. Finding large matchings in semi-
streaming. In 2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW), pages 608-614, Dec 2016. doi:10.1109/ICDMW.2016.0092,

Hossein Esfandiari, Mohammad T. Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1217-1233, 2015. URL: http://dl.acm.org/citation.cfm?id=2722129.2722210

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207-216,
December 2005. URL: http://dx.doi.org/10.1016/j.tcs.2005.09.013,|doi:10.1016/
j.tcs.2005.09.013.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proc. 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 468-485, 2012. URL: http://dl.acm.org/citation.cfm?
1d=2095116.2095157

Elena Grigorescu, Morteza Monemizadeh, and Samson Zhou. Streaming weighted match-
ings: Optimal meets greedy. CoRR, abs/1608.01487, 2016. URL: http://arxiv.org/abs/
1608.01487.

Michael Kapralov. Better bounds for matchings in the streaming model. In Proc. 2/th
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2013.

http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/s10107-015-0900-7
http://dx.doi.org/10.1007/978-3-662-47672-7_26
http://dx.doi.org/10.1007/978-3-662-47672-7_26
http://dx.doi.org/10.1007/978-3-662-47672-7_26
http://dl.acm.org/citation.cfm?id=2884435.2884527
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://epubs.siam.org/doi/abs/10.1137/100801901
http://epubs.siam.org/doi/abs/10.1137/100801901
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/100801901
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://dl.acm.org/citation.cfm?id=2095116.2095157
http://arxiv.org/abs/1608.01487
http://arxiv.org/abs/1608.01487

S. Kale and S. Tirodkar

17

18

19

20

21

22

23

24

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 734-751, 2014. URL: http://dl.acm.org/citation.cfm?id=2634074.2634129.
Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proc. 22nd Annual ACM Symposium on the Theory of
Computing, pages 352-358, 1990.

Christian Konrad. Maximum matching in turnstile streams. In Proc. 23rd Annual FEuropean
Symposium on Algorithms, pages 840-852, 2015. URL: http://dx.doi.org/10.1007/
978-3-662-48350-3_70, [doi:10.1007/978-3-662-48350-3_70.

Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Proc. 15th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 231-242, 2012 and CoRR,
abs/1112.0184, 2014. URL: http://arxiv.org/abs/1112.0184.

Andrew McGregor. Problem 60: Single-pass unweighted matchings. http://sublinear.
info/index.php?title=Open_Problems:60. Accessed: 2017-02-16.

Andrew McGregor. Finding graph matchings in data streams. In Proc. 8th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems,
pages 170-181, 2005. URL: http://dx.doi.org/10.1007/11538462_15, |[doi:10.1007/
11538462_15.

Ami Paz and Gregory Schwartzman. A (2 + &)-approximation for maximum weight
matching in the semi-streaming model. In Proc. 28th Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 2153-2161, 2017. URL: http://epubs.siam.org/
doi/abs/10.1137/1.9781611974782.140, |arXiv:http://epubs.siam.org/doi/pdf/10.
1137/1.9781611974782.140,|doi:10.1137/1.9781611974782.140.

Mariano Zelke. Weighted matching in the semi-streaming model. In Proc. 25th International
Symposium on Theoretical Aspects of Computer Science, pages 669-680, 2008.

XX:17

http://dl.acm.org/citation.cfm?id=2634074.2634129
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://arxiv.org/abs/1112.0184
http://sublinear.info/index.php?title=Open_Problems:60
http://sublinear.info/index.php?title=Open_Problems:60
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1007/11538462_15
http://dx.doi.org/10.1007/11538462_15
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.140
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.140
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.140
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611974782.140
http://dx.doi.org/10.1137/1.9781611974782.140

XX:18 Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

A Three Pass Algorithm for Triangle Free Graphs

For completeness, we present our three-pass algorithm for triangle-free graphs.

Algorithm 5 Three-pass algorithm for triangle-free graphs

1: In the first pass, find a maximal matching Mj.
2: In the second pass, find a maximal matching M; in F; := {uwv : v € V\ V(My),v €
V(Mo)}-

3: After the second pass:
M| <+ arbitrary largest subset of M; such that there is no 3-augmenting path in
M{ U My with respect to My
Vo « {z € V(M)y) : v, w such that vw € M7 and wz € My}
For x € V5, denote by P(z) the vertex v such that there exists w with vw € M7 and
wx € M. See z and P(xz) in Figure [6]

4: In the third pass: Fy:={ay:x € Vo,y e V\V (M)}

5: My <+ ()

6: for edge xy € F» do

7: if z, and y are unmarked then

8: My « My U{zy}; since the graph is triangle free, y # P(x), and we can augment
My using zy.

9: Mark P(x), z, y, and P~1(y) (if exists).

10: Let M be largest of M5 and M} which are computed below.
Augment Mj using edges in M; to get Ms.
Augment M, using edges in M] and M to get Mj.

11: Output M.

» Theorem 10. Algorithm @ is a three-pass, semi-streaming, (1/2 + 1/10)-approzimation
algorithm for maxzimum matching in triangle-free graphs, and the analysis is tight.

Proof. Let |My| = (1/2+ a)|M*|. The number of edges in M* incident on V(M*)\ V(M)
is

[V(M*)\V(Mo)| = |V (M) — [V(Mo)| = 2|M"| — 2[Mo| = (1 — 20)|[M*]; (7)
and these edges also belong to Fy. Since M; is a maximal matching in Fy,
(M| > (1 —2a)[M*|/2 = (1/2 = a)|M7|. (3)

Let ¢ be the number of 3-augmenting paths in My UMy, so |M]| = | M| — ¢ by the definition
of Mj. By Lemmal(l] there are at most 4a|M*| non-3-augmentable edges in My. So at least
| M| — ¢ — 4a|M*| edges of M| are incident on 3-augmentable edges of My. Therefore there
is a matching of size at least |M;| — ¢ — 4a|M*| in Fy; consider one such matching Mpr. We
claim that [Ms| > |Mp|/4. See Figure[6] Let zy € Ma; we note that zy disallows at most
four edges in Mg from being added to My due to the (at most) four marks that it adds,
because a marked vertex can disallow at most one edge in Mp (due to it being a matching),
which shows the claim. Hence:

S. Kale and S. Tirodkar

P(x) x
o — — — - =
O.\.\ [J
v Pl(y) — M
(% S —————
Sa ~, —_—— == Mg
. ~
~. '~
\'\ ~. /
o ~ M
\'
\'
\'
\'
o *—9 a stream edge

Figure 6 An edge xy € M> disallows at most four edges in Mr from being added to M.

| M| — ¢ — da| M ™|
4

1//1
- _ * _ _4 *
1 ((2 a) |M*| — ¢ — 4a|M I) by (8),

(-

Now, each edge in M gives one augmentation after the second pass. To see this, we observe
that for any € Vs, at any point in the algorithm, and P(x) are either both marked or
both unmarked. So when an edge xy € My arrives, x and y are unmarked, and P(z) and
P~1(y) (if it exists) are also unmarked, otherwise one of z and y would have been marked
and zy would not have been added to Ms. Since both P(z) and P~!(y) were unmarked, we
can use the augmenting path {M]({P(z)}), Mo({z}), zy}. Hence we get at least

o3 (31

WV

WV

So we get the following bound:

1 1 1 1 1
> e > [Z * e L P - x|
|M|/|M0|+<1O a) M| > <2+a> M |+<10 a) || <2+10>|M .«

The tight example is shown in Figure [7}

B Three Pass Algorithm for General Graphs

We find a maximal matching M; in the first pass. Then we use IMPROVE-MATCHING()
function from Algorithm [3] i.e.,

XX:19

XX:20

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

B\ B(Mo) A(Mo) B(Mo) A\ A(Mo)
Q= = - —--.—‘/. "
P
P
;‘--—-—._.‘ _________ M*

>~ ———@0—@ ———'9

Figure 7 Tight example for Algorithm [5; M7 has only two edges that land on bad vertices and
cannot be augmented in the third pass. So |[M| = [Mo| = 3 and |M*| = 5.

in the second pass, My < IMPROVE-MATCHING (M, 4,2), and

in the third pass, M3 - IMPROVE-MATCHING (M3, 5, 2).

We observe that M; is (1/2)-approximate. Then by double application of Lemma |7}, we get
that Ms is (1/2 4 81/1600) ~ (1/2 4 1/19.753)-approximate.

C Three Pass Algorithm for Bipartite Graphs: Suboptimal Analysis

We now give an analysis of Algorithm [1| that shows approximation ratio of only 1/2 + 1/18
that is based on Konrad et al.’s [20] analysis for their two-pass algorithm for bipartite graphs.
Afterward, we demonstrate that by not considering the distribution of lengths of augmenting
paths, we may prove an approximation ratio of at most 1/2 + 1/14. The better and tight
analysis appears in Section

» Theorem 11. Algorithm |1| is a three-pass, semi-streaming, (1/2 + 1/18)-approzimation
algorithm for maximum matching in bipartite graphs.

Proof. As usual, let |My| = (1/2 + «)|M*|. Since My is a maximal matching, there are
|B(M*)\ B(Mpy)| edges of M* that are also in F,. We have

|B(M*)\ B(Mo)| = |B(M")| — |B(Mo)| = |M"| — |Mo| ,
and since M4 is maximal, we then get the following:

(10| |Mol) = (1 - (; +a)>)= (; a) |

9)

M| > S [BOMN\B(Mo)] >

DO | =

By Lemma there are at most 4| M*| non-3-augmentable edges in My. Which means that
at least |Ma| — 4a|M*| edges of My are incident on 3-augmentable edges of My; therefore
there is a matching of size at least | M4|—4«|M*| in F3. Since we output a maximal matching
in F5, we get at least (1/2)(|Ma| — 4a|M*|) augmentations after the third pass. So we get

S. Kale and S. Tirodkar

the following bound:

1 *
M| > (Mo + 2(1Ma] = 4al1°)
1/1/1
> Mol+=(=(2—a)—da) M :
|o|+2(2(2 a) a)| L by @

1 9
= |M, - o) |MF
|o|+(8 4a)| |

1

1 9
- (2 + “) M|+ (g - 4‘“) e because [Mo| = (1/2 + a)[M,

1 1 5 .
<2+8405>M |

We also have |M| > |My| = (1/2 4+ «)|M*|. As « increases, the former bound deteriorates
and the latter improves, so the worst case « is when these two bounds are equal, which
happens at o = 1/18, and the approximation ratio we get is 1/2 4+ 1/18. <

C.1 Improved Analysis Without Considering Longer Augmenting Paths

We can analyze Algorithm [1| better if we bound |M4| more carefully. The claim is that
at least (1/2 — 7Ta)|M*|/2 edges of M4 are incident on 3-augmentable edges of My. Let
Ag C A(My) be the set of vertices in A that are endpoints of 3-augmentable edges of Moy;
also, let Ay = A(My) \ Ag. So there is a matching of size at least |Ag| in F» that covers
Ag. Any maximal matching in F5 has at least (|Ag| — |An|)/2 edges that are incident on
Ag. To see the claim, we use the facts |Ag| > (1/2 —3a)|M*| and |Ax| < 4a|M*|. So there
is a matching of size at least (1/2 — 7a)|M*|/2 in F3. We output a maximal matching in
F35; hence we get at least (1/2 — 7Ta)|M*|/4 augmentations after the third pass. So we get
the following bound:

171
> I *
|M|/|M0|+4(2 7a>M|

1 L1/ .

1 1 3 .
—<2+8—406>M|

where the second inequality is by (9). We also have [M| > |Mo| = (1/2 + a)|M*|, so the
worst case « is when these two bounds are equal, which happens at & = 1/14 and the
approximation ratio we get is 1/2 + 1/14, and we get the following theorem.

» Theorem 12. Algom'thm is a three-pass, semi-streaming, (1/2 + 1/14)-approzimation
algorithm for maximum matching in bipartite graphs.

D A Note on the Analysis by Esfandiari et al.

We demonstrate with an example that the analysis of the algorithm by Esfandiari et al. [I1]
given for bipartite graphs cannot be extended for triangle-free graphs to get the same ap-
proximation ratio. See Figure Lemma 6 in their paper, as they correctly claim, holds
only for bipartite graphs and not for triangle-free graphs. Our algorithm in Section [4] is
essentially the same algorithm except for the post-processing step; we augment the maximal
matching computed in the first pass greedily, whereas they use an offline maximum matching
algorithm. We have highlighted some other comparison points in Section

XX:21

XX:22

Maximum Matching in Two, Three, and a Few More Passes Over Graph Streams

ar ur U7
° ° e
N
N
N
a6 Ue Ve KN
>~ ——————e ° N
A
.,
us Us M by
[° A
ay Uy V4 bo
° ® ° »
\ ya
\ ya
\ .
\ & e 7
. . ® p
\ /,/ M
as \. U ’02‘/‘ _________
[) \.\ [L some M™* edges
\ golden edges
\.’LL1 U1
» ®

Figure 8 Example demonstrating that Lemma 6 in Esfandiari et al. [I1I] does not hold when
the input graph is not bipartite but is triangle-free. We use k = 3. For an M edge u;v;, there are
two M™ edges incident on it, which are a;u; and v;b;, and some of the M™ edges are not shown,
but all golden edges are shown, which we call support edges or denote by S in our terminology. It
can be seen from this example that their algorithm is not a (1/2 + 1/12)-approximation algorithm
for triangle free graphs, because out of the seven 3-augmentable edges in M, only one will get
augmented, thereby giving a worse approximation ratio.

	Introduction
	Related Work
	Organization of the Paper

	Preliminaries
	Analyzing the Three Pass Algorithm for Bipartite Graphs
	A Simple Two Pass Algorithm for Triangle Free Graphs
	Improved Two Pass Algorithm
	Multi Pass Algorithm
	Three Pass Algorithm for Triangle Free Graphs
	Three Pass Algorithm for General Graphs
	Three Pass Algorithm for Bipartite Graphs: Suboptimal Analysis
	Improved Analysis Without Considering Longer Augmenting Paths

	A Note on the Analysis by Esfandiari et al.

