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a b s t r a c t

Glacial maxima and their terminations provide key insights into inter-hemispheric climate dynamics and

the coupling of atmosphere, surface and deep ocean, hydrology, and cryosphere, which is fundamental

for evaluating the robustness of earth's climate in view of ongoing climate change. The Last Glacial

Maximum (LGM, ~26e19 ka ago) is widely seen as the global cold peak during the last glacial cycle, and

its transition to the Holocene interglacial, dubbed 'Termination 1 (T1)', as the most dramatic climate

reorganization during this interval. Climate records show that over the last 800 ka, ice ages peaked and

terminated on average every 100 ka (‘100 ka world’). However, the mechanisms pacing glacialeinter-

glacial transitions remain controversial and in particular the hemispheric manifestations and underlying

orbital to regional driving forces of glacial maxima and subsequent terminations remain poorly

understood.

Here we show evidence for a full glacial maximum in the Southern Hemisphere 65.1 ± 2.7 ka ago and

its ‘Unfinished Termination’. Our 10Be chronology combined with a model simulation demonstrates that

New Zealand's glaciers reached their maximum position of the last glacial cycle during Marine Isotope

Stage-4 (MIS-4). Southern ocean and greenhouse gas records indicate coeval peak glacial conditions,

making the case for the Southern Glacial Maximum about halfway through the last glacial cycle and only

15 ka after the last warm period (MIS-5a). We present the hypothesis that subsequently, driven by boreal

summer insolation forcing, a termination began but remained unfinished, possibly because the northern

ice sheets were only moderately large and could not supply enough meltwater to the North Atlantic

through Heinrich Stadial 6 to drive a full termination. Yet the Unfinished Termination left behind sub-

stantial ice on the northern continents (about 50% of the full LGM ice volume) and after another 45 ka of

cooling and ice sheet growth the earth was at inter-hemispheric Last Glacial Maximum configuration,

when similar orbital forcing hit maximum-size northern ice sheets and ushered in T1 and thus the

ongoing interglacial. This argument highlights the critical role of full glacial conditions in both
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hemispheres for terminations and implies that the Southern Hemisphere climate could transition from

interglacial to full glacial conditions in about 15,000 years, while the Northern Hemisphere and its

continental ice-sheets required half a glacial cycle.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Termination 1 (T1), began about 19 ka ago and transitioned the

earth from the global Last Glacial Maximum (LGM; ~26 e19 ka ago)

of Marine Isotope Stage-2 (MIS-2; ~26e11.5 ka ago) to the ongoing

Holocene interglacial. Important progress in understanding the

climate events leading into global glacial maxima and through

terminations has been made recently (Barker et al., 2009; Cheng

et al., 2009; Clark et al., 2009; Denton et al., 2010). However, the-

ories proposing the Northern Hemisphere and the maximum size

of the continental ice-sheets during the LGM to be of critical

importance for terminations (Denton and Hughes, 1981; Raymo,

1997; Abe-Ouchi et al., 2013), face opposing scenarios that assign

the leading role in glacialeinterglacial transitions to Southern

Hemisphere drivers (for example WAIS Divide Project Members

(2013); Wolff et al. (2006)).

Moreover, other basic questions remain, such as why the dura-

tions of mid-to late Pleistocene glacial cycles varied between 80 ka

and 120 ka (Huybers and Wunsch, 2005) and why even prominent

climate transitions during glacials have failed to end ice ages

(Barker et al., 2009). Here we provide new evidence addressing

these problems, based on the first comprehensive chronology and

modeling of mountain glaciers in New Zealand's Southern Alps

during MIS-4.

The MIS-4 cold period (74e59 ka ago) and its transition to the

MIS-3 mild period (59e~26 ka ago) are recorded in polar ice cores

(EPICA community members, 2004), marine sediments (Chapman

and Shackleton, 1998; Kaiser and Lamy, 2010) and speleothems

(Wang et al., 2001). However, direct terrestrial evidence and

chronologies for glacier and ice-sheet response during these pe-

riods remain sparse and controversial (see Supplementary

Discussion), in part because MIS-4 is beyond the radiocarbon

time-scale. We date and quantify the response of southern middle-

latitude summer temperature sensitive mountain glaciers to the

MIS-4 cold period and evaluate the response of the cryo-

sphereeatmosphereeocean system to the transition towards the

warmer MIS-3 climate. With the goal to highlight key drivers of

terminations, we then compare the MIS-4/3 transition with the

inter-hemispheric MIS-2 LGM and the subsequent T1.

2. Geomorphic setting, methods and analysis

2.1. Glaciers and climate

Mountain glaciers in New Zealand's Southern Alps are particu-

larly sensitive recorders of atmospheric change and respond on the

centennial and millennial scale primarily to summer temperature

variations (Oerlemans, 2005; Anderson and Mackintosh, 2006;

Anderson et al., 2010). We interpret our glacial-geological record

accordingly.

2.2. Moraines

Outboard of the LGM moraines fringing Lakes Pukaki and

Tekapo, are topographically more subdued moraines named

'Balmoral' (green in Fig. 1) as described in detail by Barrell (2014),

making New Zealand's Southern Alps one of the few locations

where such glacial landforms have not been destroyed by LGM

glaciers and related outwash floods (Burrows, 2005; Barrell, 2014).

The particularly prominent and well-preserved Balmoral moraine

belt fringing Lake Pukaki attests to a full-glacial cold period in New

Zealand prior to the MIS-2 LGM (Fig. 1).

2.3. Samples

Numerous large greywacke boulders occur embedded in

moraine ridges or ground moraine within the Balmoral moraine

belts were the targets of our 10Be surface exposure dating program.

We focused on sampling the top 2 cm of flat rock surfaces. The

quartzo-feldspathic greywacke lithology is very resistant to

erosion, which is mirrored by the surprisingly high internal con-

sistency of the boulder ages (Fig. 1, Supplementary Fig. 2).

We sampled and dated a total of 60 moraine boulders (Fig. 1;

Supplementary Table 1): 48 boulders from the Lake Pukaki

Balmoral moraines, 2 boulders from the Lake Tekapo Balmoral

moraines, and for context, 10 from the Lake Pukaki LGM moraines,

extending an earlier chronology (Schaefer et al., 2006) . In order to

date the Balmoral glacier culmination, we focused particularly on

boulders from the outermost Balmoral moraine ridges at Lake

Pukaki. We sampled 6 boulders from outer and 3 from the inner

moraine segments of the well-preserved left-lateral Maryburn lobe

area (Barrell, 2014). In the less-well-preserved terminal, left and

right lateral moraines, we sampled 33 boulders on the outer rem-

nants of the Balmoral moraine ridges (Fig. 1) and 6 boulders

forming a transect of the inner Balmoral moraines. From the total of

39 boulders from outermost moraines, we include 36 ages in our

final age determination of the Balmoral glacier culmination (3

young outliers excluded; see Fig. 1b). The 9 samples from the inner

moraine segments yield generally consistent, and chronologically

similar, results (Supplementary Fig. 2). We also present the ages of

two samples from Balmoral moraines of the adjacent Lake Tekapo

glacial trough (Fig. 1).

2.4. Geochemistry and AMS analysis

All samples were processed at the cosmogenic dating laboratory

of the LamonteDoherty Earth Observatory, the 10Be/9Be analyses

were performed at the Center for Accelerator Mass Spectrometry

(CAMS) at the Lawrence Livermore National Laboratory.We applied

standard techniques (Schaefer et al., 2009) to separate and

decontaminate quartz from the whole-rock greywacke samples

(http://www.ldeo.columbia.edu/res/pi/tcn/LDEO_Cosmogenic_

Nuclide_Lab/Chemistry.html) and standard isotope dilution

methods.
9Be currents for our samples ranged from 16 to 26 mA. Individual

AMS sample targets were measured during 2e6 runs at 5 min each,

providing high counting statistics and an internal control of the

stability of the AMS. The data show 1s analytical error ranging from

1.4% to 5.0%, with an average of 2.5%. Overall background correc-

tions, including boron correction, correction for process blank, and

sensitivity variations of the AMS during analysis were below 1% for

all samples.
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Fig. 1. a. Geomorphic map and 60 individual 10Be boulder ages in the Pukaki glacial trough. The pre-LGM Balmoral moraines are shown in light green. The LGMmoraines are shown

in red (see insert legend). (i): The terminal moraine sequence fringing Lake Pukaki; (ii): The southern left lateral Pukaki moraine sequence, including the Maryburn lobe; (iii): The

northern left lateral moraine sequence and the Balmoral moraines of the neighboring Tekapo glacial valley. All samples are shown with their 10Be ages and 1s analytical errors.

Numbers in bold indicate the 36 ages used for dating the Balmoral glacier culmination, outliers are shown in italics (3 out of 39). The samples from the inner Maryburn lobe, the

Balmoral moraine transect and the LGM samples are shown in normal font; for full details, see Tables S1 and S2. B.M. ¼ Balmoral Moraine; trans. ¼ transect; L.L. ¼ Left Lateral. b. left

panel: Boulder age probability plot of all samples from outer Pukaki Balmoral moraines (n ¼ 39), including the 3 young outliers Kiwi-X12, -994 and MB-07-04; right panel: the

same boulder age probability plot with the 3 young outliers excluded, dating the culmination of the Balmoral glacier advance of Pukaki glacier (bold summary age curve is included

in Figs. 3 and 4). Thin black lines represent individual boulder ages within 1s-uncertainties (Supplementary Table 2); the thick black line represents the probability distribution of

the boulder age population (normalized to 1). The arithmetic mean is indicated by the vertical blue line, 1s range is given by gray, 2s range given by red, and 3s range given by

green lines. We give different means within respective uncertainties and base our discussion on the arithmetic mean within standard deviation (1s) of 36 boulder ages from the

outer Balmoral moraines and include the uncertainty of the local 10Be production rate of 2.5% (Putnam et al., 2010)). The given reduced c2 statistics for the age population indicates

that the measured scatter in the 10Be ages of the 36 boulders used to date the Balmoral culmination of Pukaki Glacier can be entirely explained by the analytical 1s uncertainty.

J.M. Schaefer et al. / Quaternary Science Reviews 114 (2015) 52e6054



2.5. Production rates

We used a local 10Be production rate calibration (Putnam et al.,

2010), defined in Macaulay valley, only some 50 km away and on

similar altitude, for the past ~10 ka, and corroborated by a 10Be

production rate constraint based on LGM moraines fringing Lake

Pukaki that were indipendently dated to ~18 ka. The concordance of

the 10Be rate calibrated for the last 10 ka and that for the last 18 ka

indicates that changes in the geomagnetic field strength, which are

small during the last 10 ka but substantial between 10 ka and 18 ka

ago, do not impact the 10Be production to a measurable extent at

44oS and low altitude. This supports earlier numerical calculations

showing robustness of time-integrated 10Be production at latitudes

of 40� and higher over the last glacial cycle (Masarik et al., 2001).

Together, these findings imply that geomagnetic field changes have

minor impact on the 10Be production rate in New Zealand and that

the local 10Be production rate (Putnam et al., 2010) is also valid for

the longer periods of exposure discussed here. Further, the high

internal consistency of the Balmoral boulder ages indicates that

potentially compromising effects such as erosion or seasonal snow

cover of the boulder surfaces have been negligible (Supplementary

Discussion). Detailed assessment of the tectonic uplift in our field

area indicates that the influence on cosmogenic nuclide production

is minor (Supplementary Discussion and Putnam et al. (2010)). Use

of a local 10Be production rate means that the choice of scaling

protocol is not critical. We base our discussion on the widely used

‘Lm’ scaling ((Lal, 1991; Stone, 2000; Balco et al., 2008);

Supplementary Table 2).

2.6. Numerical modeling of the Balmoral glacial event

By reconstructing the geometry of the Pukaki glacier when it lay

at the position of the outermost mapped Balmoral moraines (Fig.1),

Porter (1975) calculated in his pioneering work an equilibrium-line

altitude (ELA) depressed 1050 m below the late 20th century value.

Here, we apply the University of Maine Ice Sheet Model

(UMISM), a 2D finite-element mass and momentum ice dynamics

solver with embedded components for calculating isostasy, ther-

modynamics, sliding, and surface mass balance (Fastook and

Prentice, 1994; Fastook et al., 2008), and constrained it to map-

ped and dated Balmoral moraines in order to derive underlying

climate and snowline parameters. A similar modeling approach

determined the summer temperature cooling during the LGM in

the adjacent Lake Ohau catchment to 6.25 ± 0.5 �C (Putnam et al.,

2013), which agrees with an independent modeling study of the

LGM glaciers and related climate changes for the entire Southern

Alps, proposing a LGM cooling of at least 6e6.5 �C (Golledge et al.,

2012).

Our model setup includes a 1 km gridded climatology derived

from the WorldClim dataset (Hijmans et al., 2005), and a degree-

day-based mass balance with an atmospheric lapse rate

(5 �C km�1) and snow/ice melt rates (4.6 and 7.2 mm melting

degree�1) measured for New Zealand (Norton, 1985; Anderson

et al., 2006). We expanded the previous 0.5 km-gridded Ohau

model domain (derived from modern SRTM topography) given in

Putnam et al. (2013) to include the Pukaki and Tekapo catchments

(Fig. 2). Our tests include a series of 5000-year equilibrium exper-

iments with temperature lowered systematically until modeled ice

margins reached Balmoral moraine belts within all three glacial

troughs, with particular emphasis on obtaining a close match to

mapped ice limits of the Pukaki trough. For simplicity, precipitation

was held at 100% modern, but we acknowledge the possibility of a

slightly drier climate over South Island during major glaciations

(Drost et al., 2007; Golledge et al., 2012).

3. Results

Our geomorphic map and glacier chronology of the Balmoral

moraines together with the new LGM dates are shown in Fig. 1,

Supplementary Fig. 2 and Supplementary Table 2. The 10Be data

from the outermost Balmoral ridges (n ¼ 39; 3 outliers) show high

internal consistency, ranging from 61 to 69 ka, dating the Balmoral

glacier culmination to 65.1 ± 2.7 ka ago (Fig. 1b). The 10Be ages from

boulders from the inner moraines (n ¼ 9) agree with this culmi-

nation date. Two samples collected from Balmoral moraines

deposited by the glacier that expanded through nearby Lake Tekapo

yield comparable ages of 63.5 ± 2.1 ka and 70.4 ± 1.9 ka. This 10Be

chronology shows robustly that the Balmoral moraines in New

Zealand's Southern Alps were deposited during MIS-4. The 10

boulder ages from LGM moraines range from 18 to 27 ka ago,

complementing earlier studies (Schaefer et al., 2006; Putnam et al.,

2013; Kelley et al., 2014).

Our model results shown in Fig. 2 indicate that a favorable

Balmoral reconstruction, in which ice remains very near mapped

geomorphic targets, is attained under a temperature depression of

7 �C relative to modern conditions. This is 0.75 �C cooler than the

MIS-2 LGM mean temperature estimate for the Ohau catchment

simulated with a similar model (Putnam et al., 2013). However, we

take the conservative view that this model result simply indicates

the existence of a climate regime very similar to full LGM conditions

during formation of the Balmoral moraines (see Supplementary

Discussion).

Fig. 1. (continued).
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Glacial geomorphic mapping, chronology and modeling results

together support the conclusion that the most extensive glacier

advance of the last glacial cycle in New Zealand's Southern Alps

culminated about 65 ka ago, and that this MIS-4 Balmoral glacier

maximum represents similar climate conditions to those during the

LGM of MIS-2.

4. Discussion

The terrestrial signature of maximum size glaciers 65 ka ago is

widely supported by complementary climate records from New

Zealand (Williams et al., 2015) and the wider Southern Hemisphere

(Fig. 3). Sea-surface temperature records off New Zealand,

Australia, in the Cape Basin (Pahnke and Sachs, 2006; Barker and

Diz, 2014), and off Chile (Kaiser and Lamy, 2010), together with

independent proxies of Southern Ocean (SO) stratification

(Ninnemann and Charles, 1997; Robinson et al., 2007) and deep SO

temperature (Elderfield et al., 2010), indicate a SO in full glacial

conditions during the peak of MIS-4, concomitant with New

Zealand's glacier culmination. Dust fluxes to Antarctica (Lambert

et al., 2008) and the SO (Martinez-Garcia et al., 2011), proxies of

glacier activity in Patagonia (Sugden et al., 2009; Kaiser and Lamy,

2010), showMIS-4 levels consistent with the LGM. SO sea ice extent

achieved LGM levels about 65 ka ago, indicated by sea salt sodium

fluxes to Antarctica (Wolff et al., 2006). Taken together, these re-

cords indicate peak glacial conditions on the continents and surface

oceans in southern latitudes during MIS-4, consistent with atmo-

spheric CO2 levels approaching the MIS-2 LGM level of ~185 ppmV

(Fig. 3).

The subsequent climate transition to MIS-3 involved major

changes of atmosphere, surface ocean and cryosphere (Figs. 3

and 4). Eustatic sea level rose >30 m between ~63 ka and 59 ka

ago (~10 m/ka sea level rise (Siddall et al., 2003), driven by melting

continental ice-sheets. Antarctic dust fluxes decreased markedly,

implying glacier recession in Patagonia (Sugden et al., 2009).

Atmospheric CO2 levels began to rise in parallel with SO destrati-

fication (Ninnemann and Charles, 1997; Robinson et al., 2007),

probably the result of increased upwelling of CO2-rich deeper SO

Fig. 2. Glaciological modeling results for MIS 4 across the Pukaki and adjacent basins. Shown are ice A) thicknesses and B) surfaces obtained from a 5000-year equilibrium

simulation with temperature depressed 7 �C below modern climatology. Blue lines delineate the mapped outer limit of Balmoral moraines.

J.M. Schaefer et al. / Quaternary Science Reviews 114 (2015) 52e6056



water (Anderson et al., 2009). Even dust fluxes to the equatorial

Pacific began to drop from nearly full-stadial level (Winckler et al.,

2008).

In Fig. 4, we directly compare the two glacial maxima of the last

glacialeinterglacial cycle and the subsequent major climate tran-

sitions, T1 and the MIS-4/3 transition, addressing the question why

T1 culminated in full and sustained interglacial warmth while the

MIS-4/3 transition stalled in a mild interstadial state, before slip-

ping back towards glacial conditions.

Both transitions display striking consistencies: Orbital forcing

represented by increasing boreal summer insolation was equally

strong (38 W/m2 increase between 70 and 58 ka and 40 W/m2

between 21 and 12 ka). Both transitions were accompanied by the

onset of major Heinrich Stadials (HS), multi-millennial periods of

extreme cold in the North Atlantic region, associated with pulses of

icebergs and meltwater from decaying northern ice sheets (HS-6

and -1, respectively). Several millennia later, an abrupt change to

much warmer North Atlantic temperatures terminated each HS.

The Intertropical Convergence Zone (ITCZ), which is related to the

earth's thermal equator, migrated southwards during both HS-6

and HS-1 (Deplazes et al., 2013), and then abruptly shifted north-

ward at their end. Likewise, Chinese monsoon intensity weakened

during, and abruptly increased after, HS-6 and HS-1 (Wang et al.,

2001).

However, Fig. 4 also displays the few quantitative key distinc-

tions between the MIS-4/3 transition and T1. Most important, the

difference in sea level (MIS-4: 95 m below present; MIS-2/LGM:

120 m) indicates that the MIS-4 northern ice sheets were at

about 80% of their LGM volume. While Earth's orbital configuration

and atmospheric CO2 concentrations for both the LGM and MIS-4

cold peaks were comparable, the rates of change during the MIS-

4/3 transition in atmospheric CO2 (MIS-4/3: ~8 ppmV/ka (Bereiter

et al., 2012); T1: ~15 ppmV/ka (Monnin et al., 2001)), and also in

Antarctic temperature (MIS-4/3: ~0.75 �C/ka; T1: ~1.5 �C/ka; Jouzel

et al. (2007)), were only about half of that during T1. The ITCZ did

not quite reach the southernmost position that it held towards the

end of HS-1 (Deplazes et al., 2013). Weakening of the monsoon

intensity was less severe during HS-6 relative to HS-1 and the

abrupt monsoon intensification at the end of HS-6was smaller than

that after HS-1 (Wang et al., 2001). SO sea ice retreat was sub-

stantial through HS-1, but minimal during the MIS-4/3 transition/

HS-6 (Wolff et al., 2006). Finally, there is no clear evidence for

warming/destratification of the deepest Southern Ocean during the

MIS-4/3 transition as occurred during T1 (Adkins, 2013).

We propose that these differences between the MIS-4 Southern

Glacial Maximum and its Unfinished Termination and the MIS-2

LGM and T1 provide support for the view that the maximum size

of the northern ice-sheets has been a necessary condition for ter-

minations (Denton and Hughes, 1981; Raymo, 1997; Clark et al.,

2009; Abe-Ouchi et al., 2013). Only the destabilization and

melting of maximum size northern ice sheets (Denton and Hughes,

1981) triggered high-intensity HS (Denton et al., 2010) with far-

field effects that were essential to transition global climate from

glacial to sustained interglacial conditions, including the SO des-

tratification (for example Sigman et al. (2010)) and the related in-

crease in SO upwelling and CO2 release to the atmosphere

(Anderson et al., 2009). By this argument, our study is not consis-

tent with the scenarios making the case for regional southern

forcing of terminations (Vandergoes et al., 2005) without northern

control (Wolff et al., 2009).

Beyond the specific termination dynamics, the robust observa-

tion is that of a full glacial maximum of the Southern Hemisphere

duringMIS-4, and the onset of a termination that did notmanage to

bring the earth's climate out of the ice-age into a sustained inter-

glacial state.

5. Conclusions

The Southern Hemisphere was in full-glacial configuration

twice during the last glacial cycle, in both cases a termination began

right after reaching the glacial culmination, that was paralleled by a

HS in the North Atlantic region. This expands the polar ice-core

Fig. 3. Southern Hemisphere records of the MIS-4 period and the MIS-4/3 transition.

A: Probability plot of the age of the glacier culmination in New Zealand (arithm. mean

and standard deviation: 65.1 ± 2.7 ka; Supplementary Fig. 2); B: Southern Ocean

alkenone-based sea surface temperature records from offshore Chile (Kaiser and Lamy,

2010) and deuterium-inferred Antarctic temperature (EPICA community members,

2004); C: Two independent Southern Ocean stratification records based on nitrogen

(Robinson et al., 2007) and carbon isotopes (Ninnemann and Charles, 1997) from

southeast Pacific sediments; D: Antarctic (Lambert et al., 2008) and southern ocean

(Martinez-Garcia et al., 2011) dust fluxes (y-axis inverted); E: Atmospheric CO2 from

the EDML Antarctic ice core (Bereiter et al., 2012) and Southern Ocean upwelling

strength derived from opal fluxes in Southern Ocean sediments (Anderson et al., 2009),

based on an alternative age model (see Supplementary Fig. 1).
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based observation that warming events in Antarctica tend to be in

phase with stadials in the Greenland ice core record (for example,

Barbante et al. (2006)), and strengthens the evidence that New

Zealand's temperature-sensitive mountain glaciers culminated

during Antarctic cold periods (Kelley et al., 2014).

This study provides a basis for estimating first-order time-scales

for the hemispheres to reach full-glacial configuration. Starting

from the near-interglacial conditions of MIS-5a about 80,000 years

ago (Simms et al., 2009; Dorale et al., 2010),15 kawere sufficient for

the marine-dominated Southern Hemisphere to approach full

glacial configuration. The Northern Hemisphere and its continental

ice-sheets reached only about 80% of the full-glacial state during

this 15 ka interval. After the MIS-4/3 transition, 60 ka ago, about

50% of the maximum northern ice sheets were left on the conti-

nents. Subsequently, almost 40 ka of cooling grew the northern ice

sheets from half to full glacial LGM size.

As a final observation, we note that major inter-termination

transitions similar to the Unfinished Termination of the MIS-4

Southern Glacial Maximum were characteristic for glacial cycles

exceeding 100,000 years in duration (EPICA community members,

2004; Lisiecki and Raymo, 2005). In contrast, about 425 ka ago, a

shorter glacial cycle began subsequent to the MIS-11 interglacial,

characterized by a quasi-steady cooling over some 55,000 years

towards the full glacial MIS-10 peak 340 ka ago that was followed

Fig. 4. Inter-hemispheric comparison of the MIS-4/3 transition and Termination 1. The end of ‘LGM NZ’ taken from Putnam et al. (2013). A: Northern insolation forcing and global

sea level (Cutler et al., 2003; Siddall et al., 2003); B: Sea surface temperature at 40oN (orange) (Chapman and Shackleton, 1998) and Greenland summit temperature proxy (gray)

(North Greenland Ice Core Project members, 2004) C: Chinese cave record (d18O from speleothems, interpreted as measure of the monsoon strength (Wang et al., 2001)) and

position of the ITCZ inferred from the color reflectance signal in Cariaco Basin sediments (black) (Deplazes et al., 2013); D: Southern Ocean stratification records based on nitrogen

isotopes (Robinson et al., 2007) and sea surface temperature at 42oS off Chile (Kaiser and Lamy, 2010); E: Antarctic temperature proxy (black) (EPICA community members, 2004)

and atmospheric CO2 concentrations (Monnin et al., 2001; Bereiter et al., 2012). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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by Termination 4. The proposed concept of Southern Glacial Max-

ima and their Unfinished Terminations might thus help to explain

the different durations of glacial cycles in the 100 ka world.
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