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Abstract

The EQUALITY problem is usually one’s first encounter with communication complexity and is one of
the most fundamental problems in the field. Although its deterministic and randomized communication
complexity were settled decades ago, we find several new things to say about the problem by focusing
on three subtle aspects. The first is to consider the expected communication cost (at a worst-case input)
for a protocol that uses limited interaction—i.e., a bounded number of rounds of communication—and
whose error probability is zero or close to it. The second is to treat the false negative error rate separately
from the false positive error rate. The third is to consider the information cost of such protocols. We
obtain asymptotically optimal rounds-versus-cost tradeoffs for EQUALITY: both expected communica-
tion complexity and information complexity scale as ®(ilog" ! 1), where r is the number of rounds and
iloghn = loglog - - -logn, with k logs. These bounds hold even when the false negative rate approaches
1. For the case of zero-error communication cost, we obtain essentially matching bounds, up to a tiny
additive constant. We also provide some applications.

As an application of our information cost bounds, we obtain new bounded-round randomized lower
bounds for the INTERSECTION problem, in which there are two players who hold subsets S,T C [n].
In many realistic scenarios, the sizes of S and T are significantly smaller than n, so we impose the
constraint that |S|,|T| < k. We study the minimum number of bits the parties need to communicate in
order to compute the entire intersection set SN 7T, using r rounds. We show that any r-round protocol has
information cost (and thus communication cost) Q(kilog” k) bits. We also give an O(r)-round protocol
achieving O(kilog" k) bits, which for r = log* k gives a protocol with O(k) bits of communication. This
is in contrast to other basic problems such as computing the union or symmetric difference, for which
Q(klog(n/k)) bits of communication is required for any number of rounds.

*This is a full version containing results from papers “Certifying Equality With Limited Interaction” (RANDOM’ 14) and “Be-
yond Set Disjointness: The Communication Complexity of Finding the Intersection” (PODC’14) by the same authors.

TPart of this work was done while G.Y. was an intern at IBM Research, Almaden. G.Y. was also supported by the Warren Center
Fellowship at the University of Pennsylvania and the Institute Postdoctoral Fellowship at Brown University, ICERM.



1 Introduction

1.1 Context

Over the last three decades, communication complexity [51]] has proved itself to be among the most useful of
abstractions in computer science. A number of basic problems in communication complexity have found a
wide range of applications throughout the theory of computing, with EQUALITY, INDEX, and DISJTOINTNESS
being notable superstars.

Revisiting these basic problems and asking more nuanced questions or studying natural variants has
extended their range of application. We highlight two examples. Our first example is DISTOINTNESS. The
optimal Q(n) lower bound for this problem [33] 48] was already considered one of the major results in
communication complexity before DISJOINTNESS was revisited in the multi-party number-in-hand model
to obtain a number of data stream lower bounds [3, 4, [15} 27]] culminating in optimal space bounds for
the (higher) frequency moments. Later, DISJOINTNESS was revisited in an asymmetric communication set-
ting [46] yielding an impressive array of lower bounds for data structures in the cell-probe model. Very
recently, DISJOINTNESS was revisited yet again in a high-error setting, yielding deep insights into extended
formulations for the MAX-CLIQUE problem [9]. Our second example is INDEX. The straightforward Q(n)
lower bound on its one-way communication complexity [[1] is already an important starting point for nu-
merous other lower bounds. Revisiting INDEX in an interactive communication setting and considering
communication tradeoffs has led to new classes of data stream lower bounds for memory-checking prob-
lems [39, 14} [16]]. Separately, lower bounding the gquantum communication complexity of INDEX [44] has
led, among other things, to strong lower bounds for locally decodable codes 35, [18]].

1.2 Our Results

In this work we revisit the EQUALITY problem: Alice and Bob each hold an n-bit string, and their task
is to decide whether these strings are equal. This is arguably the most basic communication problem that
admits a nontrivial protocol: using randomization and allowing a constant error rate, the problem can be
solved with just O(1) communication (this becomes O(logn) if one insists on private coins only); see,
e.g., Kushilevitz and Nisan [37, Example 3.13] and Freivalds [26]. This is why a student’s first encounter
with communication complexity is usually through the EQUALITY problem. Such a fundamental problem
deserves the most thorough of studies.

At first glance, the complexity of EQUALITY might appear “solved”: its deterministic communication
complexity is at least n, whereas its randomized complexity is O(1) as noted above, as is its information
complexity [6] (for more on this, see Section [[.3). However, one can ask the following more nuanced
question. What happens if Alice and Bob want to be certain (or nearly certain) that their inputs are indeed
equal when the protocol directs them to say so? And what happens if Alice and Bob want to run a protocol
with limited interaction, i.e., a bounded number of back-and-forth rounds of communication?

Formally, let EQ, : {0,1}" x {0,1}" — {0, 1} denote the Boolean function that underlies this communi-
cation problem, defined by EQ,(x,y) = 1 <= x =y. Consider the zero-error case: the players must always
correctly output EQ,(x,y) on every input (x,y). However, the players may use a randomized protocol and
their goal is to minimize the expected number of bits they exchange. If their protocol is required to use only
one round—this means that Alice sends a message to Bob, who then outputs the answer—then it is easy to
see that Alice’s message must uniquely identify her input to Bob. From this it is easy to show that on some
input, x, Alice must send at least n bits to Bob, even in expectation.

Things improve a lot if one allows two rounds of communication—Alice sends a message to Bob, who
replies to Alice, who then outputs the answer. Using standard techniques, Alice can send Bob a [logn] —bi

I'Throughout this paper we use “log” to denote the logarithm to the base 2.



fingerprint of x. When x # y, this fingerprint fails to demonstrate that EQ,,(x,y) = 0 with probability at most

1/n. If necessary, Bob responds to this failure by sending y to Alice, which costs only 1 bit in expectation.
The net result is an expected communication cost of O(logn) on unequal inputs, and O(n) on equal inputs.
Generalizing this idea, we obtain an r-round protocol where the expected cost drops to O(ilog" ') on
unequal inputs, where ilog’ n := loglog - - -logn (with j logs).

Our main high-level message in this work is that the above tradeoff between the number of rounds and
the communication cost is optimal, and that this remains the case even allowing for some false positives,
even allowing for a false negative rate of 1 —o(1), and even if we consider information cost. We shall get
precise about information cost measures in Section[2] but for now we remark that an information cost lower
bound is stronger than a communication cost bound, even in our expected-cost model.

While our main focus is on EQUALITY, our rounds-versus-information tradeoff can be applied to three
other problems: OR-EQUALITY, DISJOINTNESS, and PRIVATE-INTERSECTION. (Based on developments
since the initial announcement of our results [12], these derivative results can be proved, and in a sense
strengthened, using alternative means: see the discussion at the end of Section [I.3] However, we feel
there is value in our simpler and more direct approach.) It is well known that information cost has clean
direct-sum properties [[17, 4} 5]. Together with our results for EQUALITY, this easily gives us bounded-
round randomized lower bounds for the OR-EQUALITY problem, whose underlying function is OREQ, :
{0,117 x {0,1}"* — {0,1}, defined by OREQ, 4 (X1, .-, Xk, ¥1,- -, ¥&) = Vi_j EQ,(x;,y:): Alice holds each
x; € {0,1}" and Bob holds each y; € {0,1}". Our lower bound is of the form Q(kilog"k) for k <« 2". It
holds only for subconstant false positive rates (because EQ itself is too easy at a constant false positive rate);
however the lower bound does apply under a false negative rate as high as 1 —o(1).

The OREQ problem is closely related to DISTOINTNESS, especially the variant called small set disjoint-
ness or k-DISJy. Here, Alice and Bob are given sets A,B C [N] respectivelyﬂ with the promise that |[A| <k
and |B| < k, where 1 < k < N. Their goal is to output 1 iff ANB = @. Using this close relation (see
Lemma for a formal treatment), we obtain bounded-round lower bounds for k-DISJ as well, also of the
form Q(kilog” k), provided N > k?.

Yet another closely related problem is PRIVATE-INTERSECTION, which we also denote k-INTy. Here,
as in k-DISJ, Alice and Bob receive sets A, B C [N] with |A| < k and |B| < k. Each player should locally
output the entire set AN B. The non-Boolean problem k-INTy admits a similar Q(kilog” k) lower bound,
this time even in a constant-error setting. To complement this, we also give an upper bound of O(kilog" k)
for k-INTy using O(r) rounds; note that with O(log™ k) rounds this amounts to O(k) communication. This
should be contrasted with other basic problems such as computing the union or symmetric difference, for
which Q(klog(n/k)) bits of communication is required with any number of rounds. Given our protocol it
is straightforward to obtain the same round/communication tradeoffs (up to an additive O(logk) in commu-
nication) for computing the exact Jaccard similarity |A NB|/|A U B|, the exact Hamming distance, the exact
number of distinct elements, and the exact 1 and 2-rarity [21]], all when |A|, |B| < k.

Our lower bound for k-INTy applies directly to information cost, which is why we think of it as a lower
bound for PRIVATE-INTERSECTION. A key property of information cost is that it is a measure of privacy of
a protocol for a function f. Klauck [36]] deﬁne the privacy of a protocol IT with respect to a distribution u:

PRIVA(IT) := I(X : TI(X,Y) | Y, f(X,Y)) +1(Y : TI(X,Y) | X, f(X,Y)).

This definition coincides with icost* (IT) up to the conditioning on f(X,Y) in the mutual information ex-
pressions. However, in many cases, including this paper, this conditioning does not asymptotically af-
fect the definition, and one has PRIVH(IT) = @(icost” (IT)). One can then naturally define PRIV4(f) =
inf§_crror 1 MaXinput dist w PRIV (IT), and one has that PRIV (f) = @(ICs(f)).

2We use [n] to denote the set {1,2,...,n}.
3We have replaced the max in Klauck’s definition with a sum; this agrees with Klauck’s original definition up to a factor of 2.



There is a large body of work on solving EQUALITY privately. These are known as private equality
tests in the cryptography and privacy literature [22| 43]]. The harder problem PRIVATE-INTERSECTION is a
fundamental problem studied in private datamining, see, e.g., Freedman et al. [25]]. The problem is studied
both under computational assumptions on the players, as in Freedman et al., and also using information-
theoretic notions of privacy, such as PRIVg(f), as in the work by Ada et al. [2]. In this context, it is
worth noting that the bounded-round setting has a very good practical motivation: the number of rounds
of a protocol may in fact influence its latency drastically while the actual number of bits communicated
may not. This is because the more interactive protocols are, i.e., the larger the number of rounds, the more
coordination is needed between the players, which may not be possible if, e.g., a player goes offline.

To obtain our information cost (hence, privacy) lower bound for PRIVATE-INTERSECTION, we combine
our lower bound for EQ with a recent direct sum theorem with aborts, given by Molinaro et al. [42]. Roughly
speaking, their theorem states that the information complexity of solving all k copies of a problem is k times
the information complexity of solving each copy with a protocol that is allowed to output “abort” with a
constant 1/10 probability, but given that it does not output “abort” the protocol must be correct with a very
high 1 —1/k probability By changing such a protocol for EQUALITY so that whenever it would have
output “abort”, it instead declares that x # y, we show how to obtain an Q(kilog” k) information cost bound
for k-INTy for any r-round protocol with constant success probability. AsI(IT: A | B,ANB)+I(I1: B|A,AN
B)=I(IT: A | B) +I(IT: B | A) + O(k), it follows that PRIV /3(PRIVATE-INTERSECTION) = Q(kilog" k).

For a concise—yet technically precise—listing of our results, please see Section

1.3 Related Work

The study of the EQUALITY problem dates back to the original communication complexity paper of Yao [51]],
who showed that the deterministic communication complexity of EQ,, is at least n, using a fooling set ar-
gument. Mehlhorn and Schmidt [40] developed the rank lower bound technique, which can recover this
result. They further examined OR-EQUALITY, giving a lower bound of nk bits for deterministic protocols
that compute OREQ, 4 via the rank technique. They also gave O(n+logn) and O(nlogn) bounds for the
nondeterministic and co-nondeterministic communication complexities of OREQ, ,, respectively. Further-
more, they studied the “Las Vegas” communication complexity of OREQ, ,, which brought them close to
some of the things we study here. Specifically, they gave a zero-error private-coin randomized protocol such
that the expected communication cost on any inputs (x1,...,%,,y1,...,,) is at most O(n(logn)?).

Feder et al. [23] studied the randomized communication complexity of EQUALITY in the direct-sum
setting. Here, players have k strings each and must compute (EQ,,(x1,y1),---,EQ, (X, yx)): thus, the output is
a k-bit string. Feder et al. showed that O(k) communication suffices to compute EQUALITY on all k instances,
with error exponentially small in k. This shows that the “amortized” communication complexity of EQ,, is
O(1), even under tiny error. More recently, Braverman and Rao [10] showed that amortized communication
complexity nearly equals information complexity. Furthermore, Braverman [6] gave a specific protocol for
EQ, that has zero error and achieves internal information cost O(1) regardless of the input distribution.

The problem OREQ, ; is potentially easier than the k-fold direct sum of EQ,, and has itself been studied
a few times before. Chakrabarti et al. [17]] showed that its simultaneous-message complexity is Q(kv/n),

41t is crucial for us to use a strong direct sum theorem of [42] in the lower bound for PRIVATE-INTERSECTION. Unlike generic
direct sum and direct product theorems which apply to any function, the strong direct sum of [42] only applies to EQUALITY-
type functions but gives a much stronger guarantee in the constant error regime that we study here. This is in contrast with the
bounded round direct product theorem of [30,|31]] (and other similar results such as [32]]), who show that for r-round public-coin

randomized information complexity ICTElEl:_g/2)Q(k£2/r2) (fY) =Q( (ek/r)- (ICEP™ (1) — 0(2 /€2)) ), where € > 0 is arbitrary (the

results of [30} 31]] are stated in terms of communication complexity but their techniques also imply an information cost lower
bound). One cannot apply this theorem to our problem, as one would need to set € = ®(k‘l/ 3) to obtain our results. Because

IC?;’:BS (EQUALITY) = o(k?/3) this theorem gives a trivial bound.



which is k times the complexity of EQ,, in that model. More recently, Kushilevitz and Weinreb [38] studied
the deterministic complexity of OREQ,,; under the promise that x; = y; for at most one i € [k]. Computing
OREQ),,; under this “0/1 intersection” promise is closely related to the clique-vs.-independent set problem.
In this problem, Alice is given a clique in a graph. Bob is given an independent set, and they must decide if
their inputs intersect. Kushilevitz and Weinreb were able to show that computing OREQ,, ; under this promise
still requires Q(kn) communication whenever k < n/logn. Extending this lower bound to the setting where
k = n is an important open problem, with several implications.

For the k-D1SJ problem, Hastad and Wigderson [29] gave an O(k)-bit randomized protocol; a matching
lower bound follows easily from the Q(n) lower bound for general DISTOINTNESS. The Hastad—Wigderson
protocol is clever and crucially exploits both the public randomness and the interactive communication
between players. Saglam and Tardos [49] extend this protocol to interpolate between the one-round and
unbounded-round situations, showing that to compute k-DISJ in r rounds, ®(kilog" k) bits are necessary and
sufficient. This lower bound extends tight Q(klogk) lower bounds for one-round protocols recently given
by Dasgupta, Kumar, and Sivakumar [20] and by Buhrman et al. [13]].

A different thread of research has been studying the relationship between information and communi-
cation complexities in the abstract, i.e., for general functions and relations. Most results in this thread
have been protocol compression results [28, 15, [10, 31} [11] that show that information-efficient protocols
can be turned into communication-efficient ones. Therefore, to some extent, they imply information cost
lower bounds based on communication cost lower bounds. However, due to the the subtleties of our error
parametrization, we cannot directly infer our information complexity lower bounds from communication
lower bounds plus existing compression results. For instance, the communication lower bounds for OR-
EQUALITY and DISJOINTNESS due to Saglam and Tardos [49]—which we learned of following the initial
announcement of this work [12]—imply lower bounds for information complexity of those two problems
when combined with compression results of Harsha et al. [28]]. Additionally, with the recent direct product
theorem for bounded-round communication complexity of Jain et al. [31] and the existing result equating
information and amortized communication of Braverman and Rao [[10]], these results also extend to give in-
formation complexity lower bounds for bounded-round protocols for EQUALITY. Still, EQUALITY is one of
the most important communication complexity problems; as such, it deserves careful study. Our information
cost lower bounds are more direct and shed more light on this important problem. In particular, previous
results do not differentiate between errors for false positives and false negatives and therefore cannot admit
the high false negative rate our bounds apply to.

The recent work of Braverman et al. [8] is similar in spirit to some of our results. They consider zero-
error communication protocols for the even more fundamental AND function, obtaining exact information
cost bounds. From this they derive nearly exact communication bounds for low-error protocols for DIS-
JOINTNESS and k-DISJ. They also consider rounds-vs.-information tradeoffs for AND, showing that the
information complexity of r-round protocols decays as ©(1/r?). Our work shows that the information com-
plexity of EQUALITY decays exponentially with each additional round.

1.4 Road Map

The rest of the paper is organized as follows. Section[2]gives careful definitions of our model of computation
and error and cost measures, followed by a listing of all our results. The listing provides pointers to later
sections of the paper where these results are proved. Section [3| gives basic definitions and lemmas relating
to information theory.

The next two sections provide some warm-up. Section[d]gives upper bounds for EQUALITY including the
iterated-log upper bound described informally above. Section [5] gives matching lower bounds for expected
communication complexity, first under zero error and then under two-sided error. Though the proofs in
Sections [ and [5] are not too complex, the combined story they tell is important. Together, these results



paint a nearly complete picture of the behavior of EQUALITY in a bounded-round expected-communication
setting, and highlight the importance of studying YES and NO instances separately. Nevertheless, the reader
who is interested solely in information cost lower bounds may safely skip these sections.

Section [6] contains the full proof of our Main Theorem, which gives an information cost lower bound
for EQUALITY. Section [7| obtains lower bounds for OREQ and k-DISJ as quick applications of the Main
Theorem, and a lower bound for PRIVATE-INTERSECTION after suitably extending the Main Theorem to the
setting of protocols with abortion. Finally, Sections [§] and [9] give our protocols for k-INTy in the two-party
and multi-party settings, respectively.

2 Definitions and Formal Statement of Results

9

Throughout this paper we reserve the symbols “n” for input length of EQUALITY instances, “k” for list
length of OR-EQUALITY instances and set size of k-DISJ instances, and “N” for universe size of k-DISJ or
k-INTy instances. Many definitions and results will be parametrized by these quantities but we shall not
always make this parametrization explicit. We tacitly assume that n,k and N are sufficiently large integers.

Unless otherwise stated, all communication protocols appearing in this paper are public-coin randomized
protocols involving two players named Alice and Bob. Because our work concerns expected communication
cost in a bounded-round setting, we make the following careful definition of what communication is allowed.
In each round, the player whose turn it is to speak sends the other player a message from a prefix-free subsetE]
of {0,1}*. This subset can depend on the communication history. After the final round in the protocol, the
player that receives the last message announces the output: this announcement does not count as a round.

Let & be a communication protocol that takes inputs (x,y) € 2 x % . The transcript of &2 on input
(x,y) is defined to be the concatenation of the messages sent by the players, in order, as they execute &2 on
(x,y). We denote this transcript by £ (x,y) and remark that it is, in general, a random variable. We include
the output as the final “message” in the transcript. We denote the output of a transcript t by out(t). We
denote the length of a binary string z by |z|. The communication cost and worst-case communication cost of
Z on input (x,y) are defined to be

cost(Z;x,y) :=E[|P(x,y)|]], and cost (Z;x,y) :=max|Z2(x,y)|,

where the expectation and the max are taken over the protocol’s random coin tosses.

We now define complexity measures based on this notion of communication cost. Ordinarily we would
just define the communication complexity of a function f as the minimum over protocols for f of the worst-
case (over all inputs) cost of the protocol. When f = EQ,,, such a measure turns out to be too punishing, and
hides the subtleties that we seek to study. Notice that the -round protocol outlined in Section [I.2]achieves
its cost savings only on unequal inputs, i.e., on £~'(0). On inputs in f~!(1), the protocol ends up costing
at least n bits. The intuition is that it is much cheaper for Alice and Bob to refute the purported equality of
their inputs than to verify it. Indeed, verification is so hard that interaction has no effect on the verification
cost, whereas each additional round of communication decreases refutation cost exponentially.

In fact, this intuition can be turned into precise theorems, both in zero-error and positive-error settings,
as we shall see. To formalize things, we now define a family of complexity measures.

Definition 2.1 (Cost, Error, and Complexity Measures). Let & be a protocol that computes a Boolean
function f: 2" x % — {0,1}. We define its refutation cost, verification cost, overall cost, refutation error
(or false positive rate, or soundness error), and verification error (or false negative rate, or completeness

5 A set of strings is said to be prefix-free if no string in the set is a proper prefix of any other.



error) as follows, respectively:

rcost( ) 1= maxy, y e s-1(0) COSL( 5 X, y)

veost( ) i=max .y p1(1) COSU X, Y)
cost(P) i= max, y)e 2 x @ COSt(F;x,y),
rerr(Z) :=max ) -1 (o) Priout(2(x,y)) = 1],

verr( ) := max , y)e r-1(1) Priout(Z(x,y)) = 0].

Let A be a probability distribution on the input space 2" x %'. We then define the A-distributional error
err* () as well as the A-distributional refutation cost, etc., as follows:

I'COStl(@) = ]E(X,Y)Nl COSt(,@;X,Y) |f<X7Y) = 0]7

[
VCOSIA(@) =Ex y)n [cost(Z2;X.Y) | f(X,Y)=1],
cost* (2) = Ex y)~a [cost(Z;X,Y)],
rerr () == Ex yya[Prlout(2(X,Y)) = 1] | f(X,¥) =0],
verr* (2) 1= E x y)a[Prlout(2(X,Y)) = 0] | f(X,Y) = 1],
[

et (2) :=Ex y)a [Prlout( P (X,Y)) # f(X,Y)].

We shall usually restrict &7 to be deterministic when considering these distributional measures. Although
these measures depend on both & and f, we do not indicate f in our notation to keep things simple.

Let r > 1 be an integer and let €,6 € [0,1] be reals. We define the r-round randomized refutation
complexity and r-round A-distributional refutation complexity of f as follows, respectively:

(r),ref

Res (f):=min{rcost(Z): & uses r rounds, rerr(¥) < €, verr(’) < 6},
Di”ér)’ref( f) := min{rcost* () : 2 is deterministic and uses r rounds, rerr* (%) < g, verr* () < 8} .

We also define measures of verification complexity and overall complexity analogously, replacing “rcost”
above with “vcost” and “cost” respectively, and denote them by

r),ver A,(r),ver r A(r
RUS(f). DL (f), RUS(f), and DL (f),

respectively. We define the rotal complexity of f as follows:
R::g) (f) := min{cost (2) : P uses r rounds, rerr(?) < €,verr(#) < 8}, where
cost (P) := max (e 9 xz Cost’ (P;x,y).

Notice that refutation, verification, and overall complexities use (expected) communication cost as the un-
derlying measure, whereas total complexity uses the (more standard) worst-case communication cost.

Definition 2.2 (Information Cost and Complexity). Let &, f, and A be as above, and suppose the players
in &2 are allowed to use private coins in addition to a public random string 9R. The A-information cost of &
and the r-round A-information complexity of f are defined as follows, respectively:

icost* (2) :=1(XY : 2(X,Y) | R),

ICiér) (f) := inf{icost* (2) : P uses r rounds, rerr(2) < &, verr(P) < 8} .
where I(-: _| _) denotes conditional mutual information. For readers familiar with recent literature on in-
formation complexity [3, 6], we note that this is technically the “external” information cost rather than the

“internal” one. However, we shall study information costs mostly with respect to a uniform input distribu-
tion, and in this setting there is no difference between external and internal information cost [10].



It has long been known that information complexity lower bounds standard worst-case communication
complexity: this was the main reason for defining the notion [[17]. The simple proof boils down to

I(XY: Z2(X,Y)|R) <H(Z(X,Y)) <max |Z(X,Y)|.
In our setting, with communication cost defined in the expected sense, it is still the case that

(f) 6]

This time the proof boils down to the inequality H(Z(X,Y)) < E[|Z(X,Y)
non’s source coding theorem (see Fact [3.6 below).

A(r r
1Cey) (f) <R

], which follows from Shan-

2.1 Summary of Results for Equality

The functions EQ, and OREQ,, x have been defined in Section m already. To formalize our bounds for these
problems, we introduce the iterated logarithm functions ilog* : R, — R, which are defined as follows.

ilog’z := max{1,z}, VzeR,,
ilog* 7 := max{1,log(ilog* '2z)}, VkeN,zeR,.

For all practical purposes, we may pretend that ilog” = id, and ilog" = logoilog*~!, for k € N.

We use & to denote the uniform distribution on {0, 1}", and put y, := & ® . Thus u, is the uniform
distribution on inputs to EQ,,. Strictly speaking these should be denoted &, and L, ,, but we choose to let n
be understood from the context. In all our complexity bounds, we tacitly assume that # is sufficiently large.
The various parts of the summary theorems below are proved later in the paper, and we indicate on the right
where these detailed proofs can be found.

Theorem 2.3 (Zero-Error Bounds). The complexity of EQUALITY satisfies the following bounds:

1. R(() g)ref(EQn) <ilog 'n+3.

2. Y™ (BQM) <
3. R(()rgfref(EQn) = DSL“O ref(EQn) >ilog" 'n—1. [ Theorem
4. R(()fgfver(EQn) DS“‘O Ver(EQn) 2 n. [ Theorem

Notice that these bounds are almost completely tight, differing at most by the tiny additive constant
4. Next, we allow our protocols some error. We continue to have very tight bounds for the verification
cost (the case of one-sided error is especially interesting: just set 6 = 0 in the results below), and we have
asymptotically tight bounds in the other cases. To better appreciate the next several bounds, let us first con-
sider the “trivial” one-round protocol for EQ,, that achieves € refutation error. This protocol communicates
min{n,log(1/€)} bits: it’s as though the instance size drops from n to min{n,log(1/€)} when we allow this
refutation error. This motivates the following definition.

Definition 2.4 (Effective Instance Size). When considering protocols for EQ,, with refutation and verification
errors bounded by € and &8, respectively, we define the effective instance size to be

A :=min{n+log(1—8),log((1—-8)*/¢)}.
Theorem 2.5 (Two-Sided-Error Bounds). The complexity of EQUALITY satisfies the following bounds:
5. R( )ref(EQ,,) < (1—8)ilog" 'a+5. [Corollary



6. R(r) 5 (EQu) < (1—8)a+3. [Corollary l4:]
7. i (BQ,) > (1-8)(A—1). [Theorem[5.13)
8 RUS"(EQ,) > 4(1—6)%(A+1log(1—8) —5). [Theorem|5.14)

9. Dg“é( )"ref(EQn) = Q((1 - 8)%ilog" "' ). This bound holds for all €,8 such that § <1 —27"/% and
e/(1-8)*<1/8. [Theoremm]
10. RV (BQ,) = Q((1 — 8)*ilog" ' A). This bound holds for all £,8 such that 8 < 1—27"/ and

8/(1— 5)3 <1/64. [Theorem[5.12]]

Observe that the “constant refutation error” setting € = O(1) is not very interesting, as it makes these
complexities constant. But observe also that the situation is very different for the verification error, 0: we
continue to obtain strong lower bounds even when & is very close to 1. This is in accordance with our
intuition that verification (of equality) is much harder than refutation.

Finally, we turn to information complexity and arrive at the most important result of this paper. For
readers curious about the implications of protocol compression results for the information complexity of
EQUALITY, we refer the reader to the discussion in Section[I.3]

Theorem 2.6 (Main Theorem: Information Complexity Bound). Suppose 8 < 1 —8(ilog’~24)~'/8. Then
11. 1¢M57) (BQ,) = Q((1 - 8)*ilog" " 4). [Theorem|6.7)

2.2 On Yao’s Minimax Lemma

Distributional lower bounds imply worst-case randomized ones by an averaging argument that constitutes
the “easy” direction of Yao’s minimax lemma [S0f]. Yet, in Theorem @] we claim somewhat weaker ran-
domized bounds than the corresponding distributional ones. The reason is that in our setting, the averaging
argument will need to fix the random coins of a protocol so as to preserve multiple measures (e.g., refutation
error as well as cost). Though this is easily accomplished, we pay a penalty of small constant factor increase
in our measures.

Ironically, the “hard” direction of Yao’s minimax lemma is particularly easy in the case of EQ,,, because
EQUALITY is in a sense uniform self-reducible. See Theorem [4.3] where we show how to turn a protocol
designed for the uniform distribution into a randomized one with worst-case guarantees. In this way, the
uniform distribution is provably the hardest distribution for EQUALITY.

2.3 Applications of the Main Theorem

Our main theorem can be used to prove the following lower bounds for OR-EQUALITY, DISJOINTNESS, and
PRIVATE-INTERSECTION. We now summarize our results for the functions OREQ, x, k-DISJy and k-INTy,
which were defined in Section |1, Whenever § appears in these results, it needs to be bounded sufficiently
away from 1. Similarly, € needs to be nonnegative, and n and N need to be sufficiently large. We state these
results more precisely in Section

Theorem 2.7. The following lower bounds hold:

1. Fork <2%9" we have R](< ), 0. 99(OREQ,, 1) = Q (kilog"k). [Theorem
2. For N > k*%! we have R(() ;9 41 (k-DISIy) = Q (kilog"k). [Theorem
3. For N > k*°! we have Rg/g 13 (k-INTy) = Q(kilog" k). [Theorem



Based on developments since the original announcement of our main theorem [12], one can in fact
strengthen the first two results above. Saglam and Tardos give Q(kilog” k) lower bounds on R(lr/)3 13 (OREQu )

and Rgr/)& i /3(k—DISJ ~); the improvement lies in not requiring subconstant error. The third result above can
now be derived in another way. A communication lower bound on PRIVATE-INTERSECTION follows di-
rectly from that on k-D1SJ. One can then use the optimal bounded-round protocol compression result of [28]]
(Lemma V.3) to derive the information cost lower bound.

We remind the reader that our main objective in this paper is the thorough study of EQUALITY, in-
cluding the direct development of information cost bounds for bounded-round protocols and the analysis of

verification vs. refutation error.

2.4 Upper Bound Results for Set Intersection

In Sectionwe give a randomized protocol for k-INTy which achieves the optimal O(k) bits of communica-
tion, and simultaneously achieves O(log" k) number of rounds. Our number of rounds provides a significant
improvement on the earlier O(logk) rounds needed to achieve the optimal O(k) bits of communication given
in previous work for set disjointness [29]. We also provide a more refined tradeoff, showing that with O(r)
rounds, one can achieve communication O(kilog" k).

Theorem 2.8. For every integer r > 0 there exists a 6r-round constructive public-coin protocol for k-INTy
with total expected communication O(kilog" k) and success probability 1 — 1/ poly (k).

In Section [0 we extend this to the setting in which there are m players in the private messages model [[7,
47]] and give a protocol with O(kilog" k) average communication per player, expected number of rounds O(r-
max(1, lOi’”)), and error probability 1 — 1/2F. We give a similar guarantee with a worst-case communication
bound per player.

Our protocols for two players are communication-optimal, up to a constant factor in the number of
rounds 7, in light of the results above. For m players and O(log" k- max(1,'%™)) rounds, our O(mk) com-

munication is also optimal up to constant factors [7, 47].

3 Preliminaries

Here we collect some basic facts from probability theory and information theory. Then we outline the
theory of protocols with abortion, which is used in the final sections of the paper while studying direct sum
questions.

3.1 Probability, Entropy and Mutual Information

We will use the following fact about collision probability of a random function.

Fact 3.1. Given a subset S C [n] for size S| > 2, i > 0 and t = ©(|S|*?), a random function h: [n] — [f]
has no collisions with probability at least 1 — 1/]S|’, namely for all x,y € S such that x # y it holds that
h(x) # h(y). Moreover, a random hash function satisfying such a guarantee can be constructed using only
O(logn) random bits.

Definition 3.2. Let A be a probability distribution on a finite set S and let 7 C S be an event with A(7") # 0.
We write A | T to denote the distribution obtained by conditioning A on T'. To be explicit, A | T is given by

0, ifx¢ T,

A1) = {x(x)/x(r), ifxeT.



Also, we write H(A) to denote the entropy of a random variable distributed according to A, i.e., H(A) =
H(X), where X ~ A.

Lemma 3.3. With A,S and T as above, let f : S — R be a nonnegative function. Then Ey_;r[f(X)] <
Ex-a[f(X)]/A(T).

We collect together some basic results in information theory whose proofs can be found in any standard
textbook, e.g., Cover and Thomas [19, Chapter 2].

Fact 3.4. Let X,Y,Z and X;,X,, ... denote random variables, possibly correlated. Let supp(X) denote the
support set of X. The following facts hold.

1. Entropy span: 0 < H(X) < log|supp(X)|.
2. HX |Y) <H(X), and thus I(X : Y) > 0.
3. Chainrule: I(X;,X5,.... X, Y | Z2) =YY" I(X;: Y | X3,...,Xi-1,2).

4. Subadditivity: H(X,Y | Z) <H(X | Z) + H(Y | Z), where the equality holds if and only if X and Y are
independent conditioned on Z.

5. Fano’s inequality: Let A be a random variable, which can be used as “predictor” of X, namely there
exists a function g such that Pr[g(A) = X| > 1 — 6 for some 6 < 1/2. If |supp(X)| > 2 then

H(X | A) < 8log(|supp(X)| —1) +Hy(8),
where H;(0) = 8log(1/9) + (1 —6)log(1/(1 —6)) is the binary entropy function.
Fact 3.5 (Kraft Inequality). Let S C {0,1}* be a prefix-free set. Then

IPALEST

x€eS

Fact 3.6 (Source Coding Theorem). Let X be a random variable taking values in a prefix-free set S C {0, 1}*.
Then
E[[X[] = H(X).

Lemma 3.7. Let Z,W be jointly distributed random variables. Let & be an event. Then,
(Z:W)>Pr&1(Z:W|&)—1.
Proof. Let D be the indicator random variable for &. Then we have
(Z:W|D)=Pr[&|H(Z:W|E)+Pr[-&N(Z:W | -&) >Pr[&]1(Z:W | &). 2)
Note that I(Z: D | W) <H(D | W) < H(D) < 1. Using the chain rule for mutual information twice, we get
(Z:W|D)<IZ:WD)=UZ:W)4+UZ:D|W)<I(Z:W)+1. 3)
The lemma follows by combining inequalities (2)) and (3). O
To appreciate the next two lemmas, it will help to imagine that d < n.

Lemma 3.8. Let Z,W be jointly distributed random variables, with Z taking values in {0,1}", and let & be
an event. Then
H(Z|W)>n—d = H(Z|W,&)>n—(d+1)/Pr[&].

In particular, taking W to be a constant, we have H(Z) >n—d = H(Z | &) >n—(d+1)/Pr[&].

10



Proof. We use the fact that the entropy of Z can be at most n, even after arbitrary conditioning. This gives

n—d<H(Z|W)
= Pr[&] H(Z | W, &) + (1 — Pt[&)) H(Z | W, ~&) + Hy (Pt[&))
< P& H(Z | W, &)+ (1 —Pr[&])n+1.

The lemma follows by rearranging the above inequality. O
Lemma 3.9. Let Z be a random variable taking values in {0,1}" and let z € {0,1}". Then
H(Z)>n—d = Pr[Z=2z<(d+1)/n.

Proof. The lemma follows by rearranging the following inequality, which is a consequence of Lemma (3.8

d+1
0=H(Z|Z=2)>n— 2" 0

=" Prz=2"

3.2 Protocols with Abortion

For our eventual lower bound on PRIVATE-INTERSECTION (Section , we shall need the concept of
communication protocols that are allowed to abort. Consider a communication problem given by a function
[ X x¥ — %, and a protocol & that attempts to compute f. We shall allow & to output the special
value L, indicating “abort,” in addition to values in 2. The next definition captures the desired semantics
of such a protocol.

Definition 3.10 (Protocols with abortion). Let f be a function and #?p a deterministic protocol of the above
form, and let u be a probability distribution over 2" x %/, the domain of f. We say that &, (3, §)-computes
f with respect to u if, with (X,Y) ~ u, we have

1. (abortion probability) Pr[Z7p(X,Y)=1] < B, and

2. (failure probability) Pr[Zp(X,Y) # f(X.Y) | Zp(X.Y) #L] <é.

If & is a randomized protocol for f, we view it as a distribution over deterministic protocols and we say
that it (a, B, 0 )-computes f with respect to i if Prg, .2 [Zp (B, 8)-computes f w.rt. u] > 1 — .

We also need to define an appropriate notion of conditional information complexity for protocols with
abortion, for which we shall use the notation IC& 3 s(f 1 V). Let f be as above and let A be a distribution
over the augmented space 2" x & x 9, where Z is some finite set. Then A induces marginals it on 2" x &
and v on 9. We say that v partitions u if, with (X,Y,D) ~ A and d € supp(D), the distribution of (X,Y)
conditioned on D = d is a product distribution.

Definition 3.11 (Conditional information complexity). Let 2, f, A be as above. The conditional informa-
tion cost of & under A is defined as [(Z(X,Y) : X,Y | D), where (X,Y,D) ~ A. The conditional information
complexity of f with respect to A, denoted by IC,, 5(f | v), is defined as the infimum of conditional infor-
mation costs of protocols that compute f with worst-case error at most 8.

The information complexity of f with aborts, denoted by IC‘;JB‘ s(f | v), is the infimum of condi-
tional information costs of protocols with abortion that (a, 3, 3)—compute f- The bounded-round analogs

IC?’M (f]v)and ICi’(ﬁr)a (f | v) are defined by taking the respective infimums over only r-round protocols.
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4 Upper Bounds for Equality

In this section, we provide deterministic and randomized protocols for EQ,, with low refutation cost and low
2
verification cost. Recall Definition which introduced the quantity 77 = min {n +1log(1—9),log (1-9) }

€
as the effective instance size. One can derive one-sided-error and zero-error versions of these results by
setting & and/or € to zero as needed, and using the convention log(w/0) = +eo for w > 0. One can in fact

tighten the analysis for the case € = § = 0 to obtain the bounds in Theorem [2.3

Theorem 4.1. Suppose n,r € N and €,8 € [0,1] are such that § < 1 —2~"/% and ilog"~' i > 4. Then
D™ (kq,) < (1—8)ilog" ' +5.

Proof. To gain intuition, we first consider 8 = 0, in which case we have 7 = min{n,log(1/€)}. The basic
idea was already outlined in Section [I] Since we need only handle a random input, we do not need fin-
gerprints. Instead, Alice and Bob take turns revealing increasingly longer prefixes of their inputs: in the
jth round, the player to speak sends the next = ilog" /7 bits of her input. Whenever a player witnesses a
mismatch in prefixes, she cuts off the protocol (and the protocol outputs 0). If the protocol ends without a
cutoff, it outputs 1. The protocol described so far clearly has no false negatives, and after filling in some
details (see below), we can show that it has the desired refutation cost and refutation error.

To achieve further savings for nonzero 8, we partition {0, 1}" into sets S,7 C {0,1}" such that |S| ~
(1 —8)2". Each player cuts off the protocol at her first opportunity if her input lies in 7. Otherwise, they
emulate the above protocol on the smaller input space S x S.

We now describe our protocol precisely. Set

n':=n+[log(1-95)],
n" :=min{n’, 2+ [log((1 - 8)*/e)]},
{[ﬂogrfﬁ], if1<j<r,
W'=Y\, ifj=r.

i=

Choose an arbitrary partition of {0, 1}" into subsets S and 7 such that |S| = 2", Fix an arbitrary bijection
g:8—{0,1}".

The protocol—which we call #?—works as follows on input (x,y) € {0,1}" x {0, 1}". We write x[i; : is]
to denote the substring x; x;,+1 ...x;, of x. Each nonempty message in the protocol will be either the string
“0”, indicating cutoff, or “1” followed by a payload string. Each player maintains a variable £ that records
the length of the prefix that has been compared so far; initially they set £ < 0.

The players keep track of whether a cutoff has occurred. Once a cutoff occurs, all further messages in
the protocol will be empty strings. Once r rounds have been completed, the appropriate player will output O
if a cutoff has occurred, and 1 otherwise.

Round j proceeds as follows. Let P € {Alice, Bob} be the player who speaks in this round, and let
z € {x,y} be their input. If necessary, P cuts off if z € T. Now suppose that a cutoff has not yet occurred. If
J =1, then P sends the substring g(z)[1 : #1], sets £ <— 11, and the round ends. Otherwise, suppose P receives
a non-cutoff message with payload w. If P finds that w # g(z)[¢+ 1 : £4¢;_1] then she cuts off the protocol,
else if j < r, she continues the protocol by sending 1 followed by the next #; bits of g(z), i.e., she sends
g(@)[l+tj—1+1:0+1tj_1+1j], sets £ < L +1t;_; +1;, and the round ends.

The protocol’s logic is shown in pseudocode form below, for readers who prefer that presentation.

It is easy to see that verr*«(%?) < §, since players only cut off on an (x,x) input when x € 7. Next, note
that a false positive occurs only when (x,y) € S x S and g(x)[1 : n”"] = g(y)[1 : n”]. When n” =’ (which

12



Algorithm 1: Round j of the protocol &. Here tp = 0 and “Round r+ 17 is the output announcement.
if j < rthen
if cutoff then send emptystring;
else
if z € T then cutoff;
w < payload of most recently received message;
if w# g(2)[(+1: £+1j_1] then cutoff;
send “1” followed by g(x)[{+1j_1 +1:0+1j_1+1;], and set £ < L +1j_1 41} ;

else

if cutoff then output 0;

else
w <— payload of most recently received message;
if w# g(z)[{+1:{+1;_] then output 0;
else output 1;

corresponds, roughly, to € < (1 —§)27"), Alice and Bob end up comparing all bits of g(x) and g(y), and we
get rerr« () = 0. In the other case, we have n”” =2+ [log((1 — 8)?/¢)]. Letting (X,Y) ~ L, we have

rert(2) = Prl(X,Y) € S x $ | X #¥]-Pr[g(X)[1 : "] = g()[1 : "] | g(X) # g(¥)]
2 27

< (2n’—n) ) < 2llog(1-8)]  p—n" < 2(1+log(1-5)) . €

71 ai—op ©

Finally, we analyze the refutation cost. Let a; denote the expected total communication in rounds > j,
conditioned on not cutting off before round j. For convenience, set a,; = 0. We claim that a; < 3 for all
Jj > 2 and prove so by induction from r+ 1 ~» 3. The base case (j = r+ 1) is trivial. Conditioned on not
cutting off before the jth round, the player whose turn it is to speak receives ;| bits to compare with her
own input. Estimating as above, this will fail to cause a cutoff with probability at most 2~ %-!. Therefore, the
player to speak will send at most 1 bit in this round to indicate cutoff (or not) plus, with probability at most
271, will continue the communication, which will cost #; bits in this round and a; bits in expectation in
subsequent rounds. The net result is that

([ilog"/ 4] +3) §2+L <3.

a.,- S 1"‘271‘]—1 (t/+aj+1) S 1+ : ﬂogr_jﬁ ~

log" 7/ 7
The first two rounds are slightly different, because each player summarily cuts off when her input lies in
T. In the first round, Alice cuts off with probability at most §. In the second round, conditioned on Alice
not cutting off, Bob cuts off with probability all but (1 — §)2~"1. The refutation cost of r-round protocols is
therefore bounded by

reost (P) =ay <14+ (1-8)t; + (1 -8) (1+(1—-8)27" (1, +a3))
: r—2 -
<14 (1= 8)(filog’ 1]+ 1)+ (1 — 62 [10g_ A1 +3
ilog" “ 7
§1+(1—8)ilogr1ﬁ+2(1—6)+(1—5)2<1+ 42A>
ilog" “n
<1+ (1=8)ilog" 'a4+2(1—8)+2(1-8)*
<5+(1—8)ilog 'a. O

Theorem 4.2. With n,r,€,6 as above, we have Dgf‘é(r)’ver(EQn) <(1—-98)i+3.
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Proof. We construct a one-round protocol achieving the stated verification cost, using S,7,g as in The-
orem On input (x,y), Alice cuts off if x € T. Otherwise, she sends Bob a prefix of g(x) of length
min{n + [log(1—&)],2+ [log((1 —&)?/€)]. Bob outputs O (“unequal”) if (i) Alice cut off, (ii) y € T, or
(iii) Alice’s prefix does not match that of g(y).

As in the previous proof, this protocol—call it 2—only produces false negatives when inputs lie in 7', so
that verr«(2) < 8. And as before, we get rerr(.2) = 0 for small £ and rerr*«(2) < 22[loe(1-9)]. 4(1f3)2 <
€ otherwise. As for verification cost, the protocol always sends a bit to indicate cutoff (or not), and for all
(x,x) € S x S the protocol sends at most /i+2 bits. Thus, veost*(2) <14 (1—-8)(A+2) <(1-98)a+3. O

Theorem 4.3. Let & be an r-round deterministic protocol for EQ,. Then, there exists an r-round random-
ized protocol 2 for EQ, with verr(2) = vert*« (), rerr(2) = rerr*« (), rcost(2) = rcost' (), and
veost(Z2) = veosth (P2).

Proof. Construct 2 as follows. Alice and Bob use public randomness to generate a uniform bijection
G:{0,1}" — {0,1}". On input (x,y), they run & on (G(x),G(y)). Note that if x =y then (G(x),G(y))
is uniform over EQ, ' (1), and if x # y then (G(x),G(y)) is uniform over EQ, '(0). Thus, distributional
guarantees for & under the uniform distribution become worst-case guarantees for 2. O

Together with Theorems [4.T|and 4.2 this gives upper bounds for randomized protocols.

Corollary 4.4. Rerzs’ref(EQ,,) < (1-§)ilog"'Aa+5.

Corollary 4.5. R;gver(EQn) < (1-68)a+3.

5 Bounded-Round Communication Lower Bounds for Equality

In this section, we prove all of our communication cost lower bounds on EQ,. We deal with information
cost in the next section. We think of these lower bounds as “combinatorial” (as opposed to “information
theoretic”). An important ingredient in some of these combinatorial lower bounds is the round elimination
technique, which dates back to the work of Miltersen et al. [41]].

The proofs in this section will use Kraft’s Inequality (Fact [3.5), Shannon’s Source Coding Theorem
(Fact[3.6), as well as the following approximation lemma.
Lemma 5.1. Fora<2"2 t<log*n—2, andx € [1.1], we have ilog'~ ' n > ilog' (2"x) > (1— lOﬁ) ilog' ' n.

n

Proof. The upper bound is trivial. We prove the lower bound by induction on 7. We have log(2"x) =

n+logx > n—loga > ( — k’%)n, and the claim holds for f = 1. For ¢ > 1, we have
ilog' (2"x) > log (1 - 10%) +log (ilog’_2 n) [by induction hypothesis]
s _2loga  yiai-1y, [using 1 —w >2"2" for 0 < w < 1/2]
> (1 — 10%) ilog' 'n [using ilog' 'n >2]. O

5.1 Lower Bounds for Zero-Error Protocols

In this section, we provide nearly exact bounds for zero-error protocols.

Theorem 5.2. For all r < log*n we have Dg:‘()’(r)’ref(EQn) >ilog" 'n—1.
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To prove this theorem, we must analyze EQUALITY protocols on finite sets of arbitrary size. Given a
finite set S, define EQg to be the EQUALITY problem, but when x,y € S. In the following theorem, we let y,
be uniform over § x S.

Theorem 5.3. For all integers r > 0, we have Dgf‘d(r)’ref(EQS) >ilog"|S| — 1.

Proof. Assume ilog” |S| > 1 as otherwise there is nothing to prove. Define m = log|S|. It might be helpful
to think of m as an integer, but this is not necessary.

The proof proceeds by induction on r. When » = 1, Alice must send her entire input to achieve zero error
O (gqr) >
ilog’ |T| — 1 for all finite sets 7', and let % be an optimal (£ + 1)-round deterministic protocol for EQs. We
aim to show that rcost“«(2?) > ilog" ™! |S| — 1 =ilog’m — 1. Let my,..., m; be the possible messages Alice
sends in the first round of &2. For 1 <i <t, Let A; denote the set of inputs on which Alice sends m;, and let
¢; denote the length of m;. Assume without loss of generality that /1 < £, < --- < /. Since &2 is optimal,
we must have |A;| > |Az] > -+ > |A;|: otherwise, we can permute which messages are sent on which sets A;
and reduce the overall cost of the protocol.

We analyze the cost of &2 by conditioning on Alice’s first message. Under the uniform distribution,
Alice sends m; with probability p; := |A;|/2". If y & A;, Bob refutes equality and the protocol aborts. Thus,
over x # y inputs, the probability that Bob aborts is (|A;| — 1)/(2" — 1). Furthermore, conditioned on the
events that (i) Alice’s first message is m; and that (ii) Bob doesn’t abort, Alice and Bob’s inputs are each

uniform over A;. Thus, the remaining communication is at least Dg“d(z) ’ref(EQAi).
Fix 1:=2/ ilogﬁf1 m. Call the ith message small if p; < T and large otherwise. We bound

in a single round. This costs [m] > ilog' |S| — 1 bits, and the theorem holds. Now, assume D}’

Al —1
2m— 1

reost(2) = ) p,-(ﬁ,-—i—

1<i<t

Dgf’dw)’ref(EQAi ))

—-m u,(0),ref
> Yy Pi(*lOgPHr(Pi*z )Dg,o() (EQA,-))

1<i<t

> Y pi(—logpi)+ ) Pi(_Ingi +(pi—2")(ilog" |A;] — 1))
small m; large my;
> Pr[small message] - (ilog’(m) — 1) + Z pi(— log p; + piilog’ |Aj| — pi — 1)
large my;

= Pr[small message] - (ilogg(m) -1+ Z pif(pi),

large my;

where we define f(x) := —logx + xilog/(2"x) —x — 1. The first inequality holds by the source coding
theorem (Fact[3.6)) and the third inequality holds because p; < 7 for all small messages.

We now claim that f/(x) > 0 for all x € [7,1]. We prove this by explicitly calculating the derivative of
f.If x>, then —1/(xIn2) > —ilog’~'(m)/(2In2). By Lemma we have

1 1
'(x) = ———— +ilog’ (2"x) — : —1
Fx) xIn2 g (2" (1n2)(lnx-2’”)H§;%ln(ilogfx-2m)
> _ilozgf_;m tilog! U m— (ilog"~' m)ilog’ m ()1
n m

= (ilog" " m) (1 — 2ln2> —1—0(1) = Q(ilog" 'm),
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which proves the claim. It now follows that for large messages, f(p;) is minimized at f(7). Note that

f(z) = —log 7+ tilog' (2"1) — 71— 1

(l_ilogz(m)—l) 2 _q

> ilogfm—1+ —
=108 i m ilog"'m

2
——ilog" 'm
logg’lm ¢

> ilogé m—1.
Plugging this back into our inequality for the cost of &7, we get
rcosths () > Pr[small message] - (ilog’ m — 1) + Pr[large message] - (ilog! m — 1) = ilog‘m—1. [
Theorem 5.4. Dgfo’(r)’ver(EQn) > n. Note that this lower bound is independent of r.

Proof. Let & be a deterministic zero-error protocol for EQ,. As the protocol has no error, the communica-
tion matrix is partitioned into monochromatic rectangles. In particular, there are 2" 1-rectangles, since each
(x,x) input must map to a different rectangleﬂ Let 7, and ¢, denote the protocol transcript corresponding
to (x,x) and the length of this protocol transcript, respectively. Note that {7,} form a prefix-free coding
of {0,1}". By Kraft’s inequality, we have ¥, 2% < 1. Therefore, in expectation E[2~%] < 27", and by
Jensen’s inequality, we get the following.

—n>logE[2~%] > E[log(2~%)] = —E[4,].

Multiplying each side of the inequality by —1, we have E,[¢,] > n. This is precisely vcost*«(Z?), thus the
proof is complete. O

Theorem 5.5. R(()f())’ver(EQn) > n. As above, this lower bound is independent of r.

Proof. Let & be a randomized zero-error protocol for EQ,,. Given any string s, let &, denote the determin-
istic protocol obtained by fixing the public randomness to s. Proceeding along the same lines as in the proof
of Theorem [5.4] we have E[/(, ;] > n, where /, ; is the length of the protocol transcript in & on input (x,x).
This holds for every &, hence E, [/, ;] > n. Therefore, there exists x such that E[¢, ;] > n. Recalling the
definition of vcost, we have vcost(Z?) > cost(Z;x,x) = E[ly ] > n, completing the proof. O

5.2 Refutation Lower Bounds for Protocols with Two-Sided Error

In this section, we give combinatorial lower bounds on the refutation cost of EQUALITY protocols that admit
error. All of the bounds in this section will be asymptotic rather than nearly exact. For this reason, we
will strive for simplicity of the proofs at the possible expense of some technical accuracy. For instance, we
will often drop ceilings or floors in the mathematical notation. We will also assume that players have the
ability to instantly abort a protocol when equality has been refuted. This is easily implemented, as seen in
Section[5.T]at negligible communication cost. We prefer to avoid the technical machinery needed to express
this explicitly.

Definition 5.6. An (n,r,€,8,c)-EQUALITY protocol & is a r-round deterministic protocol with rerr*« (%) <
g, verr* () < 8, and rcostt (P) < c.

For the sake of brevity, we often drop the “EQUALITY” and simply refer to an (n,r, €, 0, c)-protocol. Our
first lemma demonstrates that disallowing false negatives changes the communication complexity very little.

OIf (x,x) and (y,y) were in the same rectangle, then so would (x,y) and (y,x). Thus, the protocol would err on these inputs.
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Lemma 5.7. If there exists a (n,r,€,0,c)-EQUALITY protocol, then there exists a (n',r,€',0,c¢’)-EQUALITY
protocol, where ' = n+1log(1—8), & =2¢/(1—-38)% and ¢’ =2c/(1 —§)>.

Proof. Let S = {x: out(Z(x,x)) = 0} be the set of inputs on which & gives a false negative, and let T =
{0,1}"\ S. Since 2 has false negative rate & under the uniform distribution, we have |T| > (1 —§)2" =2" .

First create a new EQ, protocol &’ which works as follows. On input (x,y), Alice aborts and outputs 0
if x € S; otherwise, the players emulate &2 and output out(Z(x,y)). Note that &2’ makes precisely the same
false negatives as in &, and aborting when x € § can only decrease the false positive rate and the expected
communication on inputs in EQ;, ! (0). Thus, &' is also a (n,r, €, §, c)-protocol.

Next, fix an arbitrary bijection g : {0, 1}”/ — T, and construct an EQ,, protocol 2 in the following way.
On input (X,Y), players emulate 2’ on input (g(X),g(Y)) and output out(Z?'(g(X),g(¥))). Note that
g(X),g(Y) €T, so there are no false negatives. There can be as many false positives as in &?’. However, the
sample space is smaller (22 — 2" vs 22" —2"), so the false positive rate can increase. By Lemma the
overall error is at most 2&/(1 — §)?. Similarly, the communication in .2 on any input (X,Y) is the same as
the communication in %’ on input (g(X),g(Y¥)), but since the sample space is smaller (again 22" — 2" vs.
22" _2"), the expected communication can increase. However, the overall increase in communication is at
most a factor of 2/(1 — §)? by Lemma O

Lemma 5.8 (Combinatorial Round Elimination for EQUALITY). If there is an (n,r,€,0,c)-EQUALITY pro-
tocol, then there is an (n—3c —2,r —1,12€23¢,0,12¢23¢)-EQUALITY protocol.

Proof. Let Zbea (n,r,€,0,c)-protocol. Let Z(x,y) = 1 if the protocol errs on input (x,y), and let Z(x,y) =0
otherwise. Then we have

By [Eyie[|Z(x,3)]]] <c, and  E, [Eyx[Z(x,y)]] <€.

Call x good if (1) By [Z(x,y)|] < 3¢, and (2) Ey.,[Z(x,y)] < 3€. By two applications of Markov’s inequal-
ity and a union bound, at least 2" /3 of the x are good. Next, fix Alice’s first message m so it is constant
over the maximal number of good x. Any message m sent on a good x must have |m| < 3¢ (otherwise it
would violate the goodness of x.) It follows that m is constant over a set A of good x of size |A| > 2"73¢72,
This induces a (r — 1)-round protocol 2 for EQ4. It remains to bound the cost and error of 2. Applying
Lemma [3.3]twice, we have that the cost and error are bounded by (respectively)

2" .
reost(2) = Exea [Eyeay[| 2(x,)]]] < 315073 Bxea [Eye o1y yial| 2 (x,3)]]] < 12627,
n

2
Verr“” (Q) = E)CGA [EyeAJ?éX[Z(x,y)]] S WEXEA [Eye{oJ}rz7},¢x[Z(x,y>]:| < 128236. ]

Corollary 5.9. Let n, j,r.d be integers with n > d, d sufficiently large, and r > 1. Suppose there exists an
(n,r,el,0,0)-protocol, where { = éilog/ d. Then, there exists an (n—3(—2,r—1,&l',0,{')-protocol with
¢ = tilog/'d.

Proof. This boils down to the following estimations, which are valid for all sufficiently large d.
. o . - 1 .
12023 = 2(ilog/ d)22 "¢’ = 2ilog/ dm <g ilog/'d. O

Theorem 5.10 (Lower Bound for Protocols with False Negatives Disallowed). Let n be a sufficiently large
integer, € < 1/4 a real, and r > 1. Fix ii := min{n,log(1/€)}. Then, Dg“d(r)’ref(EQn) = Q(ilog" 7).

Proof. In this proof we tacitly assume ilog’ ! 7i > 100.
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Suppose for the sake of a contradiction that there exists a (n,r,€,0, é ilog"! fi)-protocol 2. Applying
Lemma gives an (n— %ilogr_1 i, r—1, %ilogr_zﬁ, 0,5 ilog’_2 f1)-protocol &', Next, applying Corol-
lary repeatedly, a total of r — 2 times, gives an (n — %): 1logf i, 1, £, 0, 6> -protocol. Finally, applying
Lemmaonce more gives an (n — %Z;;(]) ilogj i, 0, 2£ﬁ2”/ 20, 2n2”/ 2) -protocol 2.

Note that since 2 has false negative rate zero, 2 must output 1 with certainty. Thus, 2 errson all X #Y
inputs; i.e., 2 has false positive rate 1. On the other hand, i < log(1/¢€), so the false positive rate of 2 is
2620 < (/e < 1 /2. This is a contradiction as long as the problem remains nontrivial.

Since ilog/7i > 100, we have Y- it +1 ilog/i < 1 1log fi. Also notice that since 7 < n, we have n —
%Z;: ilog/7i > n/5. Thus, we have a zero-round protocol for EQ,y for some n' = Q(n) that has false
positive rate < 1/2 but must output 1 with certainty, a contradiction. O

Theorem 5.11 (Lower Bound for Protocols with Two-Sided Error). Let n be a sufficiently large integer, and
let €,8 be reals such that § <1 —2""/% and g/(1 — §)*> < 1/8. Let i be as given in Definition Then,

D (Bg,) = Q((1 - 8)2ilog” ! ).

Proof. Fixd = min{n/2 log((1 —&)2/2¢)}, so that logd = @(log#). Suppose, to the contrary, that there

exists an (n,r,€,0, 12( — 8)?ilog"'d)-protocol Z. Since n+log(1 — &) > n/2, Lemma gives an
(n/2,r,2¢/(1—6)2,0, ¢ilog"" d)-protocol. The rest of the proof echoes the proof of Theorem|S.10 O

Next, we prove a combinatorial lower bound for randomized communication complexity.

Theorem 5.12. Let n be a sufficiently large integer, € and & reals such that § < 1 —2'"""2 and 64e <
(1—38)3. Then, R( ) ref(EQn) = Q((1—8)%ilog" ' #), where it is as in Deﬁnition

Proof. Let & be an r-round randomized protocol with rerr(%?) = g,verr(Z?) = 8, and rcost'«(F) = c.
Definez=1—-0,8 =4¢/(1 —§), and é =4c/(1 — ). Let & denote the deterministic protocol obtained
from & by setting its random string to s. Call a string s good if (i) verr*« () < 1 —z/2, (ii) rerr*« () < &,
and (iii) rcost« () < é. Applying a Markov argument to each of these three conditions, we see that

Pr[s is bad] < +i42 <1,

1—z/2 4 4

where we used (1 —z)/(1—z/2) < 1—z/2. Thus there exists a good string 5. Note that 2, is a [n,r, €, 8,¢]-
protocol, and by Theorem 5.11} &é = Q((1 — §)?ilog’ ! 4). Therefore, ¢ = Q((1 — §)?ilog’ ' 4). O

5.3 Verification Lower Bounds for Protocols with Two-Sided Error

Theorem 5.13. Dg“é(r)’ver(EQn) > (1—10)(A—1), where fi is as in Definition

Proof. Fix a deterministic protocol & achieving rerr*« (&) = € and verr*«(%?) = §. This protocol naturally
partitions the communication matrix for EQ,, into combinatorial rectangles. Let Ry, ..., R, be the rectangles
on which & outputs 1. Let s; denote the number of (x,x) inputs in R;. Since &7 has false negative rate 0, we
have };s; = 2"(1 —93). Let p; = 5;/2" and ¢; = p;/(1 — &). Notice that p; is the probability that (x,x) € R;
for a uniformly chosen x. Similarly, g; is the probability that (x,x) € R; conditioned on & verifying equality
on (x,x). We now analyze the false positive rate. Recall that there are 22" — 2" total x # y inputs. It is easy
to see that R; contains at least sl-2 —s; false positives. Therefore, we have

1 2 N Si(si_l) (. AN\ _ _A—n(] _ N 2

€




Rearranging terms and noting that ¢; = p; /(1 — &), we have

E[Qi]:i%'z 1_ 2Zp,_ )(e+2 "(1- 6))=(1_88)2+(12:n6)§2-2ﬁ.

i=1

Next, we analyze the verification cost of &. Let ¢; denote the length of the protocol transcript for inputs in
the rectangle R;. Observe that the transcripts &2 (x,x) with out(Z(x,x)) = 1 give a prefix-free encoding of
the set of rectangles {Ry,...,R.}. Therefore,

veostt (P) = |2 x| 2 Z =(1-96
xe{0,1}" 2 i=1

(- 8)Efloga]  —(1 - B)logEla] > —(1—8)(+1) = (1-)-1).

gili > (1-6) )_qi(—logg:)

ll"l“
MQ

1

where the second inequality is from the source coding theorem (Fact and the third is from Jensen’s
inequality. O
Theorem 5.14. RS (£Q,) > L(1—8)2(7+1log(1 — &) —5).

87

Proof. Suppose there exists a randomized protocol & with rerr(Z?) < €, verr(?) < 8, and vcost(Z?) < m.
For a string s, let & denote the deterministic protocol obtained from & by fixing the public randomness
to s. By the cost and error guarantees of 2, for all (x,y) € EQ, (1) we have E[cost(Z;x,y)] < m and
E, [Pr[out(Z(x,y)) = 0]] < 8, while for (x,y) € EQ!(0) we have E [Prlout(Z(x,y)) = 1]] < &. In partic-
ular, letting (X,Y) ~ 1, we have

Esxy [Prlout(Z,(X,Y))=1|X #Y]| <&
E; x y [Priout(Z,(X,Y) =0|X =Y]] <6,
Esxy[cost(ZuX,Y) | X =Y]|<m

Definez=1-8,&=4¢e/(1—8),6=1—2z/2, and i = 4m/(1 — §). Call a string s good if (i) verr(Z,) <
1 —z/2, (ii) rerr(Z5) < €, and (iii) vcost'« (&) < . Applying a Markov argument to each condition,

Pr[s is bad] < 448 <1,

1—/2 44

where we used (1 —2z)/(1 —z/2) <1—z/2. Thus, there exists a good string 5. Note that &; is a determin-
istic (&, 0)-error EQ, protocol. Using Definition [2.4|to figure the new effective instance size and applying
Theorem|[5.13] we obtain

4m Z (z/ )? Z .
- Hu _ = _
=35 > veostt (Fy) > 2<n11n{n+log(z/2) log ——— } 1) > 2(n—Hogz 5).

The proof is completed by rearranging the above inequality and substituting z =1 — 4. 0

The analysis in the above proof is very loose when § is bounded away from 1. In particular, when there

are no false negatives (i.e., when & = 0), we are able to show that Rg())’ver > cii for every constant ¢ < 1.

6 Bounded-Round Information Complexity of Equality

In this section we prove Theorem [2.6] which we think of as the most important result of this paper. We
wish to lower bound the bounded-round information complexity of EQUALITY with respect to the uniform
distribution. Recall that we are concerned chiefly with protocols that achieve very low refutation error,
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though they may have rather high verification error. We will prove our lower bound by proving a round
elimination lemma for EQ,, that targets information cost, and then applying this lemma repeatedly.

This proof has much more technical complexity than our earlier lower bound proofs. Let us see why.
There are two main technical difficulties and they arise, ultimately, from the same source: the inability to use
(the easy direction of) Yao’s minimax lemma. When proving a lower bound on communication cost, Yao’s
lemma allows us to fix the random string used by any purported protocol, which immediately moves us into
the clean world of deterministic protocols. This hammer is unavailable to us when working with information
cost. The most we can do is to “average away’’ the public randomness. We then have to deal with private coin
randomized protocols the entire way through the round elimination argument. As a result, our intermediate
protocols, obtained by eliminating some rounds of our original protocol, do not obey straightforward cost
and error guarantees. This is the first technical difficulty, and our solution to it leads us to the concept of a
“kernel” in Definition [6.1] below.

The second technical difficulty is that we are unable to switch to the simpler case of zero verification
error like we did in the proof of Theorem [2.5] Parts (9) and (I0). Therefore, all our intermediate protocols
continue to have verification error. Since errors scale up with each round elimination, and the verification
error starts out high, we cannot afford even a constant-factor scaling. We must play very delicately with our
error parameters, which leads us to the somewhat complicated parametrization seen in Definition [6.2]below.

6.1 The Round Elimination Argument

Definition 6.1 (Kernel). Let p and ¢ be probability distributions on {0, 1}", let S C {0,1}", and let £ > 0 be
a real number. The triple (p,q,S) is defined to be an ¢-kernel if the following properties hold.

[K1] H(p) >n—{¢and H(q) >n—¥.
[K2] p(S)>2""and ¢(S) > 3.
[K3] For all x € S we have g(x) > 27",

Some intuition about kernels might be helpful here. Recall that in the combinatorial round elimination
lemma of Lemma [5.8] we show that after fixing one round of communication, we are still able to solve EQ
on inputs uniformly distributed over a smaller set, albeit with some degredation in cost/error parameters. As
mentioned above, we are not able to maintain straightfoward cost and error guarantees in the information-
theoretic setting. However, the idea that we can solve EQ when inputs are uniformly distributed over a
still-large set should still intuitively hold. Instead of uniformly distributed inputs, we’d like to argue that
after eliminating a round of communication, we’re able to solve EQ when inputs are almost uniform over
some smaller set.

Our kernel definition captures enough of this intuition to make the information-theoretic round elim-
ination work. The set S plays the role of the smaller set players will solve EQ on post-round-elimination.
Instead of uniform inputs, Alice and Bob’s inputs come from some high-entropy product distribution. More-
over, the support of these distributions on S is not too low. To maintain the cost/error guarantees, we need
Bob’s inputs to be reasonably spread out over S. Finally, we need to additionally parameterize how close
to uniform the input distributions are; this parameter degrades in the round elmination, along with our error
guarantees. Nevertheless, we’re able to show that as rounds of communication are eliminated, we retain EQ
protocols on inputs that remain “reasonably close to uniform” over a reasonably large set S. Our specific
protocol parameterization lies below.

Definition 6.2 (Parametrized Protocols). Suppose we have an integer r > 1, and nonnegative reals ¢,a,b,
and c. A protocol & for EQ,, is defined to be an [r,,a, b, c]-protocol if there exists an ¢-kernel (p, g, S) such
that the following properties hold.

20



[P1] The protocol & is private-coin and uses r rounds, with Alice speaking in the first round.
[P2] We have err?2415%S(57) = Prix v)~peqlout(Z(X,Y)) # EQ,(X,Y) | (X,Y) € S x §] <274
[P3] We have verr”?¢/5*5(92) = Pry._,[out( 2 (X,X)) =0|X €S| < 1-27".

[P4] We have icost’® () < c.

We alert the reader to the fact that considers overall error, and not refutation error. We encourage
the reader to take a careful look at and verify the equality claimed therein. It is straightforward, once
one revisits Definition [2.1|and recalls that & denotes the uniform distribution on {0, 1}".

Since we have a number of parameters at play, it is worth recording the following simple observation.

Fact 6.3. Suppose that ¢/ > ¢,c’ > ¢,a’ < a, and b’ > b. Then every (-kernel is also an ¢'-kernel, and every
[r,¢,a,b,c]-protocol is also an [r,¢',a’, b, ¢']-protocol.

Theorem 6.4 (Information-Theoretic Round Elimination for EQUALITY). If there exists an [r,{,a,b,c|-
protocol with r > 1 and ¢ > 4, then there exists an [r—1,0',d’ b’ ,¢'|-protocol, where

0= (c+ )220+ d=a—(c+0)22+8,

b :=b+2, ¢ = (c42)20120+6,

Proof. Let & be an [r,{,a,b,c|-protocol, and let (p,q,S) be an ¢-kernel satisfying the conditions in Defi-
nition Assume WLOG that each message in & is generated using a fresh random string. Let X ~ p
and Y ~ ¢ be independent random variables denoting an input to &. Let My, ..., M, be random variables
denoting the messages sent in &2 on input (X,Y’), with M; being the jth message; note that these variables
depend on X, Y, and the random strings used by the players. We then have

¢ >icost’®(P) =1(XY : MiM> ... M,) =1(X : M) +1(XY : M>...M, | My), 4

where the final step uses the chain rule for mutual information, and the fact that M; and Y are independent.
In particular, we have I(X : M;) < ¢, and so H(X | M;) = H(X) —I(X : M;) > n—{—c. By Lemma[3.8]

_€+c+1
p(S)

Let . be the set of messages that Alice sends with positive probability as her first message in &, given
the random input X, i.e., .# := {m: Pr[M; = m] > 0}. Consider a particular message m € .#. Let &,
denote the following protocol for EQ,. The players simulate &2 on their input, except that Alice is assumed
to have sent m as her first message. As a result, &7/ has r — 1 rounds and Bob is the player to send the first
message in ). Let T, and ¢’ be the distributions of (X | M; =mAX € S) and (Y | Y € §), respectively.

Observe that icost™ %7 (2. ) = 1(XY : M, ...M, | M; = m A (X,Y) € S x §). Letting L denote a random
first message distributed identically to M;, we now get

H(X |M,X €S)>n >n—({+c+1)2°. (5)

Ey [icost™® (2,)] =1(XY : My...M, | My,(X,Y) € S x S)
< (XY :My...M, | M;)+1
- p(8)q(S)
where the first inequality uses Lemma and the fact that X,Y are independent conditioned on M| (since
M, is a function of X only) and the second inequality uses (@) and Property Examining Proper-

ties[[P2] and [[P3], we obtain

< (c41)2, (6)

EL [CITEL@q/(Qi)] — errP®LI|S><S<CgZ) S 27(17 (7)
Ep [verr”@é(,@i)] = verrP®e IS () <1270, (8)
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Definition 6.5 (Good message). A message m € ./ is said to be good if the following properties hold:
[G1] H(my) =H(X | My =mAX €8) >n— (£ +c+1)2040+3,
[G2] icost™®4 () < 2040+ (e 4 1),
[G3] err”‘“®ql(9,’n) < p-ath+3
[G4] verr™®¢ (! ) <1—27071,

Notice that for all m € .# we have H(X | M; = m,X € S) < n. Hence, viewing (3), (6), (7) and (8)
as upper bounds on the expected values of certain nonnegative functions of L, we may apply Markov’s
inequality to these four conditions and conclude that

1-27°
T 22 =32 0.

Thus, there exists a good message. From now on, we fix m to be such a good message.
We may rewrite the left-hand side of [G4]|as Ez.r [Prlout(Z) (Z,Z)) = 0]]. So if we define the set
T := {x €8 Prlout(#,(x,x)) =0] < 1—27""2} and apply Markov’s inequality again, we obtain

Pr[Lis good] > 1 —27073 — 27073 _o=b=3 _

1_2—17—1 L
T ®

Tn(T) 2 1
Defining the distribution p’ := 7, | 7 and the set §' := {x € T': p/(x) > 27"}, we now make two claims.
Claim 1: The triple (¢, p/,S’) is an ¢'-kernel.
Claim 2: We have err? ©71S5' (2! ) <24 yerrd ©818<S' (0! ) <1 -2 and icost? 4 (2,) < (.

Notice that these claims essentially say that £/, has all the properties listed in Deﬁnition except that Bob
starts 2] . Interchanging the roles of Alice and Bob in #2], gives us the desired [r— 1,¢',d',b’, ¢']-protocol,
which completes the proof of the theorem.

It remains to prove the above claims. We start with Claim 1. Starting with the lower bound on H(7m,)
given by Property of the good message m, and using Lemma [3.8] followed by (9), we obtain

(C+€+ 1)22+b+3 +1
7o (T)
We may lower bound H(q') using Properties [K1]|and [K2]|for (p,g,S) and applying Lemma[3.8] We have

H(p) =H(fw | T) >n— >n—(c+ L4222 >p 0 (10)

0+1
H(¢) =H(Y | Y €5) Zn—_(;) Sn_20+1)>n—0.
q
Thus, (¢, p',S') satisfies Property [[K1]| for an ¢'-kernel. It is immediate that it also satisfies Property [[K3]
by definition, for all x € §', we have p/(x) > 27",
It remains to verify Property [[K2], which entails showing that p'(S") > J and that ¢/(S") > 2" We can
lower bound p’(S’) as follows:

. 1
P)=1—- Y pPx=1—- Y px=1-27">_. (11)
re0. 1} " ?
pl(x)<2n=

To prove the second inequality, we first derive a lower bound on H(p' | §), thence on |§’|, and finally on
¢'(S"). We already showed that H(p') > n — (c +£+2)2+20+5 at (T0). By Lemmal3.8|and (TT), we get

(cH0+42)20F2045 1
P'(S)

H(p,’S/) >n— >n— <(c+€+2)2€+2b+6+2) Zn_(c+£+4)2€+2b+6’

22



and so |§'| > 2~ (2 Since ¢/ = ¢ | S and ' C S, we have

q’(S') > q(S/) > ‘S/| mian(y) > ‘S/| mib(lq(y) > 2n7(c+1./+4)2f+2b+627n7£ _ 2757(C+£+4)2é+2b+6 ’
yes’ S

where the final inequality uses Property Recalling the definition of ¢ and applying a crude estimate
(using the bound ¢ > 4), we get ¢/(S’) > 2. This finishes the proof of Claim 1.

We now prove Claim 2. Of the three bounds we need to prove, the verification error bound is the easiest.
Recalling how T was defined, and noting that S’ C T, we immediately obtain

verr? “¢5 S (7 ) = Byr._g [Priout( 25, (Y, ¥')) = 0] | Y/ € S| < 1-27P72,

To establish the overall error bound, we use

et 0I5 (g ) < SN Ph) e () 2 (12)
VTP E)(S) T m(T)P () () T 2252
— 9= at2bH6+(c )22 < g—a+(c+e)2 s : (13)

where the final inequality in follows from Property [K2]| for an ¢'-kernel and Property [G3], and
just uses a crude estimate (this time ¢ > 1 suffices). It remains to establish the information cost bound in

Claim 2. We do this as follows.

icost” ®4 (P! ) =1(XY : My...M,|M; =mAX €T AY €8)
I(XY:Mz...Mr‘Ml :m/\(X,Y) GSXS)—I—]

14
PriXeT | M =mA(X,Y) €S xS] (14)
_ icost™® (2! )+ 1 15)
7o (T)

26 e+ 1) + 1
< —_— < (c+2)22S, (16)
where uses Lemmal[3.7] uses the independence of X and Y and uses Property [[G2]|and Eq. (9).
This completes the proof of Claim 2 and, with it, the proof of the theorem. O

The following easy corollary of Theorem [6.4] will be useful shortly.

Corollary 6.6. Let 71, j,r € N and a,b € R with i sufficiently large, j > 1, r > 1, and b > 0. Suppose
there exists an [r,{,a — {, b, {]-protocol, with b < { = éilogj fi. Then there exists an [r—1,0'.a—{',b+2,']-
protocol with b+2 < {' = (ilog/ ™' /i)1/2 < Lilog/ ™' i.

Proof. This simply boils down to the following estimation, which is valid for all sufficiently large 7:
(0+£0)25°2+8 = 27 (jlog/ ﬁ)2(3/8)ﬂ°gjﬁ =27 (ilog/ "' 1)*/®log(ilog’ ' /1) < (ilog/ ' 71)"/2 . O

6.2 Finishing the Proof

We are now ready to state and prove the main lower bound on protocols with two-sided error.

Theorem 6.7 (Restatement of Main Theorem). Let i = min{n + log(1 — §),log((1 — d)/€)}. Suppose
8 <1—8(ilog"27i)~ /3. Then we have ICQL%(’)(EQ,,) =Q((1—8)%ilog" ' 7).
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Proof. We may assume that r < log* i1, for otherwise there is nothing to prove. The slight difference between
ii above and A, as in Definition[2.4} is insignificant and can be absorbed by the Q(-) notation.

Suppose, to the contrary, that there exists an r-round randomized protocol Z* for EQ,,, with rerr*« (7*) <
g, verrt«(27*) < § and icostt (22*) <2710(1 — §)3ilog ! /1. Recall that we denote the uniform distribution
on {0,1}" by & and that u, = £ ® . We have

errt (%) = (1 =27 rert"(2*) + 2 "verr (") < e+27"(§ —e) < e+27".

Let &; be the private-coin protocol for EQ, obtained from &7* by fixing the public random string of &7* to
be 5. We have Eferrs(27])] < & +27", Ey[verr ()] < 8, and Eicost(2})] <27'°(1 — §) ilog"™" 7.
By Markov’s inequality, there exists s such that &Z; simultaneously has err*« () < 4(e+27")/(1-9),
verrte () < (1+8)/2, and icost( ;) < 2714(1 — §)?ilog" ! 7i: this is because

1-86 26 1-8 (1-98)?

e A >0.
4 1+6 4 2(1+9)
Let & = 2} for this s. Then (&,&,{0,1}") is a 0-kernel and &2 is an [r, 0, log 4(81%25,,1), log 25,27 14(1 -

8)?ilog ! ii]-protocol. Recalling Fact and using log % > 7i— 1, we see that

1

2 is an {r, 0,7i—3,log 15 +1,2714(1 - §)*ilog"" ﬁ} -protocol.

Put /; := %ilogj i for j € N. Applying round elimination (Theorem to & and weakening the resulting
parameters (using Fact givesus an [r—1,4,_y,ii—¥{,_1,log ﬁ +3,4,_1]-protocol &'

The upper bound on § gives us log ﬁ +3 </,_, and so the conditions for Corollary apply. Starting
with &’ and applying that corollary repeatedly, each time using the looser estimate on £’ in that corollary, we
obtain a sequence of protocols with successively fewer rounds. Eventually we reach a [1,¢;,71— ¢;,1log ﬁ +
2(r—1)+ 1,4,]-protocol. Applying Theorem one more time, and using the tighter estimate on ¢ this
time, we get a [0, a2 -2, log ﬁ +2r+1,i" 2]-protocol 2. Weakening parameters again, we see
that 2 is a [0, i'/2, %ﬁ, %logﬁ, ii'/?]-protocol. Let (p,q,S) be the /i'/?-kernel for 2. By Property [K1], we
have H(q) > n—i'/?. Using Lemma and Property [[K2], we then have
il 41

q(8)

Since £ involves no communication, it must behave identically on any two input distributions that have

the same marginal on Alice’s input. In particular, this gives us the following crucial equation:

H(q|S)>n— >n—(2i'242). (17)

Pr out(2(X,X))=1|XeS = Pr Jout(2(X,Y))=1|(X,Y)eSxS]. (18)
X~p (X.,Y)~p®q
Let a denote the above probability. Considering the left-hand side of (18]), we have
o =1 —verr?®5I5xS( @) > p-3logn — =1/3, (19)

On the other hand, whenever 2 outputs 1 on an input (x,y), then either x =y or 2 errs on (x,y). Therefore,
considering the right-hand side of (I8), we have

a< Pr [X=Y|(X,)Y)eSxS|+ Pr [out(P(X,Y))#EQ,(X,Y)|(X,Y)€ESxS]

(X,Y)~p®q (X,Y)~p®q
<max Pr [Y = x| +err??455(2)
X€S Yr~q|S
2~l/2 3 B
< ni_'_ +2_%” (20)
n
<2 V235l yoat Q1)

where (20) follows from by applying Lemma[3.9] and 1)) uses 7i < n.
The bounds and are in contradiction for sufficiently large 7i, which completes the proof.  [J
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7 Applications of the Main Theorem

7.1 Lower Bounds for Or-Equality and Disjointness

In this section we apply our new understanding of the bounded-round information complexity of EQUALITY
to obtain two other lower bounds: one for OR-EQUALITY, and the other for the much-studied DISJOINTNESS
problem with small-sized sets. As we shall see, both lower bounds are tight in certain error regimes.

Theorem 7.1 (Lower Bound for Or-Equality). Let k,n,r € N and &,€ € [0,1]. Put € =&+ k/2" and

il =log 1;5. For 8 < 1—8(ilog"2/i)~'/8, we have

RV (OREQ, i) > k-1CHY (EQ,) = Q(k(1 - 8)?ilog’ ' 7).

Proof. We just need to show the first inequality and then apply Theorem That inequality is proved via
standard direct sum arguments for information complexity [[17, 4} 5]. In fact, the old simultaneous-message
lower bound for OREQ,, ; from Chakrabarti et al. [17] applies more-or-less unchanged. For completeness,
we now give a self-contained proof.

Let & be an r-round protocol for OREQ, with rerr(#?) < g, verr(#?) < 6, and Rgzs(OREka) >
max{rcost(Z?),vcost(Z)}. Alice and Bob solve EQ, by the following protocol 2;, where j is some fixed
index in {1,2,...,k}. Given an input (x,y) € {0,1}" x {0,1}", they generate X := (Xy,...,X;) ~ £ and
Y := (Y1,..., %) ~ E®F respectively, using private coins. They “plug in” x and y into the jth coordinates of
X and Y respectively, thereby creating

Zj,x = (X17...,Xjfl,x,XjJrl’...,Xk) and Wm = (Yl7...,ijl,y,YjLi»l,...,Yk),
respectively. Finally, they emulate & on input (Z;, W; ). Observe that

OREQux(Z)x,Wjy) #EQu(x,y) = (x#y) A (Jie K\ {/}: Xi=Y).
Therefore, verr(2;) < verr(#?) < § and, by a union bound,
n
rerr(2;) <rerr(2)+ ) Pr[X;=Y,] <e+k/2"=¢".
i=1
Since 2; solves EQ, with these error guarantees, it follows that icost (2;) > 1ch) (EQp).

e.6
Now, let (X,Y) ~ u and let 2R denote the public randomness used by &?. We can now lower bound

R;ZS(OREQn,k) as follows:

Rg)g(OREka) > MaXy, vy €011 {0,114 COSU(PZS X1,y Xk V15 -5 Vk)
> Elcost(Z; X1, ., Xk, Y1y, Yi)]
>H(Z(X1,... . XY, X)) 22)
>SUPXL, .. XY, Y XY XY | R)

I(Q(XIV'WX]UYD"WY/():Xi7Yi|g{) (23)

v
gl

~.
Il
—

1(2;(X,Y): XY | R) (24)

Il
MW

~.
Il
—_

icost(2;) > k-1C%V) (EQ,),

I
M?V‘

~.
Il
_
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where uses Fact[3.6|and uses the independence of {X;Y1,..., XY} and the resulting subadditivity
of mutual information, and (24) holds because, for all j € [k], the distributions of (2;(X,Y),X,Y,R) and
(2(X1,....X1,... . Y),X;,Y;,R) are identical. This completes the proof. O

By plugging in € = 0, § = 0 in Theorem [7.1] we obtain the following corollary.
Corollary 7.2. R{)(OREQ, ;) = Q(kilog" ! (n — logk)). O

Armed with the above lower bound, we now derive a lower bound for k-DISJ via a simple reduction,
which is probably folklore. For completeness, we again give a formal proof. A similar observation has
also been made by Saglam and Tardos [49]. Note that the reduction interchanges verification and refutation
erTors.

Lemma 7.3 (Reductions from OREQ to k-DISJ and from EQ¥ to k-INTy). Let k,N be integers such that
N > k€ for some constant ¢ > 2. Let n = Llog (%)J If there exists a protocol & for k-D1SIy then there exists
a protocol 2 for OREQ, such that rerr(2) < verr(Z?) and verr(2) < rerr(Z) and vcost(2) < rcost(Z)
and rcost(2) < vcost( ). Moreover, the same reduction can be applied between EQX and k-INTy.

Proof. Given an input instance (xi,...,Xk,Y1,...,Yk) of OREQ, s, we can transform it into an instance (A, B)
of k-D1SJy as follows:

A:{xl,x2+2n,x3—|—2-2n, ...,xk+(k—1)2"}
B:{yl7y2+2nay3+2'2n7 7yk+(k_1)2n}

It is easy to observe that AN B # 0 iff 3i € [k] such that x; = y; because x; € {0,1,...,2" — 1}. Therefore,
OREQ k(X1,-.+,Xk,¥1,---,Yk) = —k-DISIy(A,B), which completes the proof. The reduction from EQf to
k-INTy is the same. OJ

Corollary 7.4. We have:

r

RSS’ (k-DISIy) > R&)S(OREQUog(N/k)j,k)

)
£

Combining Corollary [7.4 with Theorem[7.1] we arrive at the following theorem.

Theorem 7.5 (Lower Bound for k-Disjointness). Let k,N,r € N, €,6 € [0, 1] and ¢ > 2 be such that N > k¢
and 8 < 1—8(ilog"27i)~'/3, where ii = log ﬁ. Then

Ry (k-D1siy) = Q(k(1 — 8)*ilog’~" 7).

In particular, with § = 1 —Q(1) and & < k=W, we have Rg)s(k—DISJN) = Q(kilog"k). O
By plugging in € = § = 0 above we arrive at a further special case that is worth highlighting.

Corollary 7.6. With N > k221, ye have RY) (k-Dis1y) = Q(kilog’ k). O
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7.2 Tightness

Our lower bounds in Section[7.T|have the weakness that they apply only in zero-error or small-error settings.
However, they are still tight in the following sense. We can design protocols that give matching upper bounds
under similarly small error settings. For OREQ, we give such a protocol below. For k-DI1SJ, a suitable analysis
of a recent protocol of Saglam and Tardos [49] gives similar results.

Theorem 7.7. For all r < log*k, there exists a r-round protocol & for OREQ, x with worst-case communi-
cation cost O(kilog" k), rerr(2) < 2~ =110k 4y verr(2) = 0.

Proof. We begin with a high-level sketch of the proof, before giving formal proof details. Alice begins
the protocol by sending, in parallel, & different z-bit equality tests, one for each of her inputs. Note that
for any i where x; # y;, Bob witnesses non-equality with probability 1 —27". Assuming OREQ, x(x,y) =0,
there will be roughly k/2" coordinates i where x; # y; has not yet been witnessed. Bob now tells Alice
which of his coordinates remain “alive” and sends #'-bit equality tests for each of these coordinates, where
' =2'. Note that Bob’s overall communication is roughly k bits, and that after receiving this message, Alice
witnesses non-equality on all but a 2~ _fraction of unequal pairs. In each round, players end up sending an
exponentially longer equality test on an exponentially smaller number of coordinates. When communication
ends, players output OREQ(X1,...,X,V1,-..,Vk) = | unless x; # y; has been witnessed for all i. One potential
issue with the above protocol is that too many coordinates could remain, and players wouldn’t be able to
communicate exponentially more bits about the remaining coordinates. This could happen both when an
unusually large number of equality tests fail, or just for the simple reason that x; = y; for many coordinates.
In either case, the players simply abort and output OREQ,, = 1. This will cause an increase in error, but the
increase will be small, and it will only increase the false positive rate. A formal proof lies below.

Before formally analyzing the complete protocol, we introduce some additional terminology and nota-
tion. For0 < j <r,letz;:= ilogr_jk and §;:=1/zj. For1 < j<r,lettj:=2zj_y,andlett, := 2H;:1 ilogjk.
Finally, let ¢ := 2k and for2 < j <r,letc;:=2k H{:_II 0;. Note that t, = (4kilog" k) /c,.

Now we are ready to formally describe our protocol. The protocol proceeds in a number of rounds.
Throughout, players maintain a vector w € {0, 1}* (initialized to w = 1%), where w; = 0 iff x; # y; has been
witnessed. Coordinate i is deemed “live” if w; = 1. Each round of communication is a three part message—
first, a bit indicating whether to abort the protocol; second, an updated description of which coordinates
remain live, and finally an equality test for each remaining live coordinate. Say coordinate i is live after
Jj rounds if x; # y; has not been witnessed by the first j rounds of equality tests. Note that the player that
receives the jth message that determines which coordinates are live after j rounds. The sender of the jth
message must wait until round j + 2 to learn which coordinates failed the jth equality test. We describe this
more completely below.

In the first round of communication, Alice sends a ¢ -bit equality test for each of the k live coordiantes,
at a total cost of kt; = 2kzp = O(kilog” k) bits. Assuming the protocol has not yet aborted, in the jth round
of communication (1 < j < r), the player to speak first updates her copy of w by considering the (j — 1)th
message: first, she notes which i were live at the end of round j — 2 using the second part of the (j — 1)th
message. Then, for each live i, she sets uses the third part of the message to test equality on (x;,y;), setting
w; = 0if x; # y; has been witnessed. At this point, w describes the set of coordinates that are live after j — 1
rounds. Now, if more than c; coordinates remain live, she sends “1”, signifying that the protocol should
abort and output OREQ,; = 1. Otherwise, she sends 0, followed by a description of which coordinates
remain live, followed by a ;-bit equality test for each of the remaining live coordinates. In this way, the jth
message is at most O(1 +k + c;t;) bits.

The receiver of the final message updates his copy of w, evaluates each equality test, and outputs
OREQ, « = 1 if any coordinates remain live. Otherwise, he outputs OREQ, ; = 0.
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The overall communication is O(kr + 25‘21 cjtj). Note that cit; = 4kilog"k, and c,t, = 4kilog" k. Fur-
thermore, since z; > 2 forall j > 1, we have forall2 < j <r

j-1 = ot
le‘j = (ZkH(S,) . (ZZJ;[) = 4kH 51' = cj,ltj,15j,2 < % .
i=1 i=1

Thus, the summation Z;;i cjt; telescopes, and the overall communication is O(kr +kilog” k) = O(kilog" k)
Note also that the protocol outputs OREQ, x = 0 only when x; # y; was witnessed for every i. Thus, the
protocol produces no false negatives.

A false positive can happen for one of two reasons: either the protocol aborts (outputting OREQ,, x = 1),
or one or more coordinates remain live at the end of the protocol, despite having x; # y; for all i.

In the former case, note that (conditioned on not aborting before round j) we have at most ¢; live
coordinates during round j. Players execute a 7;-bit equality test during this round. Thus, a coordinate
remains live after this test with probability at most 27/ = 2721 = 5/2 < 8;/2. By a Chernoff bound and
the fact that ¢ = c¢;0;, the probability that more than ¢ coordinates remain live after round j is at most

.. 52 — .
e %18 < ek for any € > 0 and large enough k. In the latter case, note that the final equality test uses

tr=2[T= ilog’ k bits. Therefore, players fail to witness x; # y; with probability at most 2~ = 2~ 21T ilogk

By a union bound, the overall false positive rate is at most 2™ [j-ilog’k O

7.3 Private Intersection and Strong Direct Sum for Equality
We now prove our result for PRIVATE-INTERSECTION.

Theorem 7.8 (Lower Bound for PRIVATE-INTERSECTION). Let k,N,r € N and ¢ > 2 be such that N > k°.
Then:

R(")

1/371/3(k'INTN) = Q(kilog" k).

Using the reduction from Corollary it suffices to show the lower bound for EQX, where n = |log(N /k) |.
In the proof we will use the following modification of the strong direct sum theorem of [42]] (Theorem 2.1),
which uses protocols with abortion (see definitions in Section [3.2)). The simulation procedure used in the
proof of this theorem in [42] preserves the number of rounds in the protocol, which allows us to state their
theorem as:

Theorem 7.9 (Strong Direct Sum [42]). Let 6 < 1/3. Then for every function f: X X % — % and
distribution A on 2" x % x D with marginal W, on 2" x % and marginal v, on D, such that [, is partitioned
k
by v, it holds that IS (£4|vk) > Qi) 1C"!) | (£]v,).
200100 %

110

Using the direct sum above it remains to show the following:

Lemma 7.10. There exists a distribution on & X % x & with marginals W, on & x % and v, on 9, such
that v, partitions [, and

IC‘lifﬁ(or,)l/lo,a/k(EQn|Vp> = Q(ilog'k).

Proof. In the proof we can use the same hard distribution as in [42]. To construct u, and v, let Dy be a
random variable uniformly distributed on {0, 1} and let D be a random variable uniformly distributed on
{0,1}". Let (X,Y) be a random variable supported on {0,1}" x {0,1}" such that, conditioned on Dy = 0

7For some values of k, 7, we might have > ilog” k. In fact, it is possible to describe the set of ¢ j live coordinates using log( ( Lk))
J

bits. This sum also telescopes, so it is possible to reduce the O(kr) cost of describing {c;} to just O(k) bits. Thus, the overall cost
remains O(kilog” k).
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we have X and Y distributed independently and uniformly on {0, 1}", and conditioned on Dy = 1 we have
X =Y =D. Let u, be the distribution of (X,Y) and let v, be the distribution of (DyD). Note that v,
partitions ,,. Also, this distribution satisfies that Pr[X = Y] > 1/3 and PrX # Y| > 1/3.

Let W be a random variable distributed according to v,,. Let E be an indicator variable over the private
randomness of &2 which is equal to 1 if and only if conditioned on this private randomness & satisfies
that it aborts with probability at most 1/10 and succeeds with probability at least 1 — § /k conditioned on
non-abortion. Given such protocol with abortion & we transform it into a protocol 2’ which never aborts,
has almost the same information complexity and gives correct output on non-equal instances with high
probability, while being correct on equal instances with constant probability. This is done by constructing
' so that whenever &2 outputs “abort”, the output of &’ is X # Y, otherwise & = &’. Under the
distribution p,, conditioned on the event E = 1 the protocol &’ has the property that if X # Y, then it
outputs X =Y with probability at most (1/k)/Pry, [X # Y] < 3/k. However, if X =Y, then the protocol
may output X 7 Y with probability 1/10+ (1/k)/Pry [X =Y] < 1/10+3/k < 1/5, where the latter follows
for k > 30. Thus, conditioned on E = 1, the protocol &7’ has failure probability € = 1/k on non-equal
instances X # Y, and constant failure probability 6 = 1/5 on equal instances X =Y, as desired. In this
regime we can use Theorem [2.6]

We have:

Icqlfii)i)l/lo,a/k(EQan) >1(7: X, Y|W)
—QU(Z : X,Y|W,E=1))—1
=Q(Z : X, YWE=1))-2.

Here the inequality is by definition of information compelxity and the equalities follows from Fact [3.4]
together with the fact that H(E) < 1, Pr[E = 1] = 19/20, and the fact that the transcripts of the protocols &
and 22’ only differ in a single bit. The right-hand side can be bounded as follows.

Proposition 7.11.

(2 X,Y|W,E =1)) = QIC}} <(EQ))-

Proof. This follows from the construction of the distributions u, and v, that we use. If Dy = O then
X =Y and the information revealed by % is equal to zero. Otherwise, if Dy = 1 then the distribution
of (X,Y) is uniform. Because the latter happens with probability 1/2 we have I(Z?' : X, Y|W,E = 1)) >

1/2- ICi‘/’,(ﬁ/S(EQn)) as desired. O
Using Proposition [7.11| we have IC?%((;)I /10,6 /k(EQn|Vp) = Q(IC?/](Q /5(EQn))- The proof is completed
by noting that setting € = 1 /kand § = 1/5 in Theoremgives ICﬁL/’](:)LS(EQn) = Q(ilog" k). O

8 Two-Party Set Intersection

In this section we give upper bounds in both private and public randomness model. In the private random
string model, the players do not share a random string, but rather are allowed to use private randomness. By
a result of Newman [43]], any problem that can be solved in the public random string model can be solved
in the private random string model, adding only O(loglogT) to the communication complexity, where T
is the number of different inputs to the players. One unfortunate aspect of this reduction is that it is non-
constructive in the sense that for each input length 7, the protocol either uses a hard-wired advice string that
depends on n, or the players must search for the advice string, which doesn’t require communication but
can result in unnecessary computation. We give our upper bounds in the public random string model, but
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describe how to translate them into constructive protocols in the private random string model, preserving
optimality.

We start by describing a simple protocol with linear communication in Section 8.1 and then show how
to achieve an optimum round vs. communication trade-off in Section [8.2]and Section

8.1 Warmup: An O(v/k)-Round Protocol

Theorem 8.1. There exists an O(\/k)-round constructive randomized protocol for k-INTy with success
probability 1 — 1/poly(k). In the model of shared randomness the total expected communication is O(k)
and in the model of private randomness it is O(k+1loglogN)

Proof. W.l.0.g we can assume that N = k¢ for a constant ¢ > 2 since if the universe size is N > k then
parties can pick a random hash function H: [N] — [k¢], which gives no collisions on the elements in SUT
with probability at least 1 —1/Q(k¢~2).

The parties pick a random hash function 4: [N] — [k]. For a set U C [N] we use notation U; = A~ (i) NU
for the preimage of i in U. Using preimages S; and 7; the parties construct a collection of instances of
EQUALITY, which contains an instance of EQUALITY (s,7) for every (s,7) € S; x T; for every i € [k].

Formally, for two sets of instances of a communication problem C, say C; = C(xy,y1),...,C(x;i,yi)
and C; = C(x},¥}),...,C(x;,y") let’s denote their concatenation, which corresponds to solving C; and Cy
simultaneously as

CLUCs = (x1,01)s - (50,310, (Fh ), (1)
Let’s denote as E; = | s 4)e(s,x7;) EQ(s,?) the collection of instances of equahty corresponding to hash value

i. The collection of all 1nstances constructed by the parties is £ = |_|,-:
The expected number of instances E[|E|] is given as:

E[lE]] = [ZIS HT|] :iE[‘Si|’E‘]

k
< Y E[[(SUT); ZVar (SUT)ll+E[I(SUT)) (25)
i=1

i=

Given that for a set Z, the random variable |Z;| is distributed according to a binomial distribution B(|Z|, 1 /k),
for each i we have Var[| (SUT),|] <2k-(1/k)(1—1/k) <2 and E[|(SUT),|] <2so E[|E|] < 6k.
We use the following result of [23]]:

Theorem 8.2 ([23])). There exists a constructive randomized protocol for EQX with O(\/k) rounds, which

has success probability 22K Iy the public randomness model the expected total communication is O(k)
and in the private randomness model it is O(k +logn).

In the shared randomness model the result now follows immediately. In the private randomness model
the parties need to construct two random hash functions A and #, using Fact with only O(logN) +
O(logk) = O(logN) random bits. These bits are exchanged through the channel in the first round of the
protocol and are added to the total communication, bringing it down to O(k +1logN). To further reduce the
communication we can use the hashing scheme of Fredman, Komlos and Szemeredi [24]] as the first step of
the protocol. In [24] it is shown that mapping elements [N] by taking a remainder modulo a random prime
g = O(k*logn) gives no collisions on a subset of size O(k) with probability 1 — 1/poly(k). Applying this
result to SUT we can reduce the length of strings in the instances of equality down to O(logk + loglogN).
Thus, we can now specify the pairwise independent hash function using only O(logk +loglogN) random
bits. See Appendix A.1.1 in [34] for a detailed discussion.
O
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8.2 Auxiliary Protocols

WEe first describe auxiliary protocols BASIC-INTERSECTION (Lemma and EQUALITY (Fact that
we use as building blocks in our main algorithm in Section[8.3] For a two-party communication protocol &
we denote the output of the protocol for the first party as &4 (x,y) and for the second party as Zp(x,y).

Lemma 8.3 (Protocol BASIC-INTERSECTION(S,T)). For any integer i > 1, there exists a public-coin pro-
tocol &P such that for any S,T C [n], the sets ' = P4(S,T) and T' = Pg(S,T) satisfy the following
properties:

1. S CST'CT.
2. If SNT = 0 then S'NT' = 0 with probability 1.
3. IfSNT # 0 then (SNT) C (S'NT'). Also, with probability 1 — 1 /N it holds that ' =T’ = (SNT).
The total communication in the protocol is
O(i- (S| +|T])log(|S| +|T))
and the protocol can be executed in 4 rounds.

Note that Lemma guarantees that §’ N7 is always a superset of the intersection. Also, if the sets S’
and T’ are equal then each of them is exactly the intersection of S and T'.

Proof. The parties first exchange the sizes of their sets |S| and |T'| and determine m = |S| +|T|. Using shared
randomness they pick a random hash function /: [n] — [t], where t = ®(m'*?). They exchange sets /(S) and
h(T) using total communication O(i-mlogm). The outcome of the protocol is 24 (S,T) = h~'(h(T))NS
and P(S,T) =h~'(h(S))NT. Since exchanging the sizes of the sets takes two rounds and another two
rounds are required to exchange 4(S) and a(T), the total number of rounds of communication is 4.

By construction we have S’ = A~ (h(T)) NS C S and similarly 77 C T so the first property holds. If
SNT =0then S NT = (WY (h(T))NS)N (A~ (h(S))NT) C (SNT) = 0 and the second property holds.
Because S C h~!(h(S)) and T C A~ ' (h(T)) we have

SAT C (Y ((T)NS)N (kL (r(S))NT) =85 NT,

the first part of the third property. Moreover, if the hash function /4 has no collisions among SUT then

S =h Y h(T)NS=TNS
and

T'=h ' (h(S))NT =SNT.
The proof is completed using the analysis of collision probability given by Fact[3.1] O

We have the following corollary.
Corollary 8.4. If for the protocol & in Lemma|8.3|it holds that P4(S,T) = P5(S,T) then
Pa(S,T)= P(S,T)=8SNT.

In our main protocol in Section [8.3| we will use an EQ,, test with the following guarantees to verify
correctness of the protocol BASIC-INTERSECTION. The following guarantee is achieved by a protocol,
which uses a random hash function # into & bits.

Fact 8.5. There exists a public-coin protocol & for EQ,, with the following properties.
1. If x =y then P4(x,y) = Pp(x,y) = 1 with probability 1.
2. If x # y then P4 (x,y) = Pp(x,y) = 0 with probability at least 1 — 1/2k.

The total communication in the protocol is O(k) and it can be executed in two rounds.
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8.3 The Main Protocol
In this section we give the full protocol, proving Theorem [2.8]

Proof. For r =1 the parties use shared randomness to pick a hash function A: [N] — [k] for ¢ > 2. Then
each of the parties uses cklogk bits to exchange /(S) and h(T') respectively. By Fact[3.1]the probability that
h has a collision on a set SUT is at most 1 — 1/@(k°72).

For r > 1 consider a tree .7 of depth r with the set of nodes at the i-th level for 0 < i < r denoted as L;
(these are the nodes at distance i from the leaves). Let the degree at the i-th level for 2 < i < r be equal to
d; = ilog" 'k /ilog"~"*! k and the degree at the first level is d; = ilog" ! k. Note that this guarantees that the
total number of leaves in the tree is k. For a node v € .7, let ¢(v) denote the set of children of v. For a node
v e 7, let €(v) denote the set of all leaves in the subtree of v. Note that for a node v € L; the number of
such leaves is | (v)| = ilog k.

Definition 8.6 (Set assignment). A set assignment <7 to the leaves of .7 is a vector &7 = (,...,9%),
consisting of k sets. We say that the set .7 is assigned to a corresponding leaf £ in 7.

Every set assignment to the leaves of .7 naturally induces a set assignment on all internal vertices of .7.
Let of = (4, ..., %) be a set assignment for the leaves of .7. For every internal node v € .7 we denote an
assignment induced at this vertex by & as &, = Ujce () -

Now we describe the protocol used by the parties. First, Alice and Bob use shared randomness to pick
a hash function 4: [N] — [k]. Using this hash function they define initial assignments of sets S~! and 7!
respectively as follows. For a leaf £ € [k] of 7, let S, ' =h~'(h(¢))NSand T, ' =h~ ! (h(£))NT.

Then the protocol proceeds in r stages. In stage i for 0 < i < r the parties construct new assignments to
the leaves of .7, which induce new assignments on the internal nodes. We will show that after r stages the
parties obtain an assignment to the leaves, such that with high probability the set induced by this assignment
in the root of .7 is exactly SN7T. We use notation S’ and T’ respectively for the i-th assignment that the
parties make to the leaves of the tree. The description of the i-th stage is given as Algorithm This
completes the description of the protocol.

Algorithm 2: Protocol for k-INTy. Round i.
Input: Sets S, T € [k]¥, assignments §'~!, 71,

1: For every v € L; run the protocol EQUALITY(S’ L Ti=1) with success probability 1 —1/(ilog" 1 k)*.

2: Let .# be the set of vertices for which the equahty protocol above returns i1 2 T'~1. We call these
vertices failed.

3: For every v € .7 and every leaf u € €(v) run BASIC-INTERSECTION(S. !, T/~ 1) with success
probability 1 —1/(ilog” "' k)* and assign S', = 224 (Si!, T/=") and T! = PPp(Si~!, T/~1) respectively.

4: For every v ¢ .Z and every leaf u € €'(v) assign ', = S/~ i and T} = T 1.

In the rest of the proof we first analyze the correctness probability of the protocol above (the key lemma
is Lemma and then total communication (Lemma [8.10). The proof of Theorem [2.§]is completed by
observing that the protocol can be executed in O(r) rounds.

Lemma 8.7. After stage i for every leafu € .7 it holds that St = T! with probability at least 1 — 1/ (ilog" ' k)*,
taken over all the randomness of the protocol.

Proof. If u is in the subtree of a node v, which is not failed at level i then we know that S, = T, and thus S, =
T, for each u € %(v) with probability at least 1 —1/(ilog’ "~ k)* by the guarantee of the EQUALITY(S,,T;)
test. Otherwise, u is in the subtree of a failed node v at level i. In this case the claim follows because we run
BASIC-INTERSECTION protocol for this leaf with success probability at least 1 — 1/(ilog" "~ ! k)*. O
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We call a node v € L; correct if after stage i it holds that S = T}'.

Corollary 8.8. Every node v € L; is correct with probability at least 1 — 1/(ilog" "~ k)3. In particular, the
root of the tree is correct with probability at least 1 —1/k>.

Proof. From Lemma applied to the level i it follows that after the execution of stage i for every leaf
u € € (v) it holds that S\ = T, with probability at least 1 — 1/(ilog" "' k)*. Hence, by a union bound over
all ilog"™" k such leaves with probability at least

1 —ilog"k/(ilog" ' k)* > 1 —1/(ilog" " k)*
we have S = T O
The correctness proof of the protocol now follows from Corollary together with the following in-
variant applied to the root of the tree after round r — 1.
Proposition 8.9. If for a node v € 7 Alice and Bob assign S’ and T} to it respectively then if S|, = T! then
Si=T! =8,NT,.

Proof. Note that this invariant is maintained by BASIC-INTERSECTION (Corollary [8.4). During the execu-
tion of the protocol the sets S, and 7, only change when we apply BASIC-INTERSECTION to the leaves in

. Clearly, if the invariant is maintained for all leaves then it is also maintained for all internal nodes as
well. O

Now we analyze the total communication in the protocol. For a leaf u € .7 let n,, denote the expected
number of times the BASIC-INTERSECTION protocol was run on the sets assigned to u.

Lemma 8.10. For every leaf u € .7 it holds that E[n,] = O(1).

Proof. For a leaf u let’s denote it’s unique predecessor in level i as p;(u). Formally, p;(u) = v if and only if
v € L; and u is in the subtree of v. We can express E[n,| as:

Z Pr[pi(u) is failed] - (4ilog" " k)

r—1
< Z d; - Prlv is an incorrect child of p;(u)] (4ilog" k),

i=0
r—1 : r—i
1 k 1 .
<Y . (4ilog" k) = O(1)
Silog" "k (ilog" k)3
where the first inequality holds by a union bound and the second by Corollary O

The total expected communication in the protocol can be expressed as the sum of the total communica-
tion for EQUALITY and BASIC-INTERSECTION. The total communication for EQUALITY is:

r—1

Y ILi] (4ilog" k)
i=0

r—1
O(kilog" k) +Z (k/ilog""k) - (4ilog" k)
=1

= O(kilog" k) + O(rk)
= O(kilog" k).
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The expected total communication for BASIC-INTERSECTION is by Lemma [8.3]equal to:

k
E | Y (ISil +|7i]) log(ISi| + |Ti]) -
i=1

k

Z{E (ISil +1Ti]) og(|Si| + [TV E[ni],

i=
where the equality follows from the independence of the random variables. Because for every i we have
E[n;j] = O(1) by Lemma to complete the proof it is sufficient to show that E[(|S;| + |T;|)log(|S:| +
|T;|)] = O(1) and thus the total communication for BASIC-INTERSECTION is O(k). We have E[(]S;| +
|T:)1og(|S:| + |T:))] < E[(|S:| + |T;|)?], where the right-hand side is constant by the same argument as used
to bound each term in @]) Finally, the bound on the number of rounds of communication follows from
the fact the communication in each of the r stages for the EQUALITY tests can be done in parallel in two
rounds (Fact[8.5). After in four more rounds we can perform all BASIC-INTERSECTION protocols in parallel
(Lemma 8.3). This gives 6r rounds of communication. O

9 Multi-Party Set Intersection in the Message Passing Model

In the multi-party case we have m players, each holding a set S; C [n] such that |S;| < k. The goal of the
parties is to output a set S = (L, S;. We allow arbitrary communication between the parties (i.e. any
player i can send a message to any player j). In each round of the protocol the parties first perform some
local computation and then can exchange messages. This is known as the message passing model (see
e.g. [7]). We consider two optimization goals: minimizing the total communication (or equivalently average
communication per player) and minimizing the worst-case communication per player. In both cases we keep
the number of rounds as small as possible.

First, observe that we can amplify the success probability of the two-party protocol in Theorem 2.8 to
be 1 — 1/2% while keeping the expected total communication O(kilog” k) and only incurring a penalty in
the number of rounds: the protocol will have expected O(r) rounds instead of worst-case 6r rounds. This
follows by repeating the protocol if it hasn’t succeeded. The latter condition can be checked by exchanging
k-bit equality checks after the protocol terminates. With a total of O(1) expected repetitions this gives
expected O(r) number of rounds and success probability which is only limited by the equality checks and is
thus 1 —1/2% by Fact

Using this observation we obtain a protocol with the following guarantee for the average-case multi-
party setting.

Corollary 9.1. (Average-case) For every r > 0 there exists a protocol for m-party Set Intersection in the
message passing model with expected average communication per player O(kilog" k), expected number of

rounds O (r -max (1, 10%'")) and error probability 1 — 1 /2.

Proof. First, the set of m players is partitioned into groups of size at most 2¥. Consider one such group,
which consists of players holding sets Sy, ...,S,«. The player holding S is chosen as a coordinator. Within
the group all players execute the modified version of the two-party protocol described above with the co-
ordinator, who computes sets T; = Sy N S; for each 2 < i < 2. This step is repeated until the coordinator
succeeds in verifying that ﬂ?iz T, = ﬂ,zi | S; with probability at least 1 — 1/2. This is done by using a 2k-bit
equality check with each of the players. By Fact the equality check succeeds with probability 1 — 1/2%
and hence by a union bound over the 2¥ players in the group the desired success probability follows. Once
all m’ = [m/2*] coordinators succeed in verifying their sets the protocol is executed recursively among them
for their respective sets.
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The number of active players decreases exponentially between the levels and thus the total communi-
cation is dominated by the first level. The first level has average complexity O(kilog” k) per player and
expected O(r) rounds using the same reasoning as for the case of two-parties discussed above. The total
number of levels of recursion is max (1,log, m) = max{1,k~'logm}, which gives the claimed bound on the
total number of rounds. O

Taking r = log" k in Corollary we get average communication O(k) per player, which matches the
lower bounds of [47, [7] who show that average communication (k) is necessary for solving SET INTER-
SECTION and SET DISJOINTNESS in the message passing model.

In the protocol from Corollary every coordinator has to perform O(2*kilog”k) communication per
level. By increasing the number of rounds we can amortize this cost among the players.

Corollary 9.2. (Worst-case) For every r > 0 there exists a multi-party protocol in the message passing

model with worst-case communication O (kz ilog" k - max (1, loim per player, expected number of rounds

o (rk max(1, loim)) and error probability 1 —1 /2.

Proof. The protocol is executed recursively in max <1, loim) levels and in each level the players are assigned

to groups of size at most 2% as in Corollary Consider one such group. Instead of using a coordinator in
each level the players are assigned to the leaves of a complete binary tree of depth k. They run the two-party
protocol recursively in pairs. This gives expected number of rounds O(rk) per level and the bound on the
number of rounds follows. When the two-party protocol is executed for the top two nodes in the tree (the
children of the root) the parties also perform a k-bit equality check in order to certify the correctness of the
result with probability 1 — 1 /2K, If this check fails then the entire computation in the tree is repeated, which
gives O(1) repetitions in expectation using the same reasoning as before. Finally, adding up over all nodes
on a path of length k the worst-case communication per level is O(k?ilog” k) which gives the bound on the
desired worst-case communication per player. O

10 Concluding Remarks

We have gained new insight into the complexity of EQUALITY, one of the cornerstones of the theory of
communication complexity. To do so, it was important to consider the expected communication cost of a
protocol on a fixed input, and to limit the amount of interaction that our players can use. It was also important
to treat 1-inputs (i.e., equal pairs) and O-inputs separately. Our results have applications to other important
communication problems, namely DISTOINTNESS and PRIVATE-INTERSECTION.

The upper bounds in Section show that our OREQ and k-DISJ lower bounds are not absolutely im-
provable: they are already tight in small-error settings. One drawback in our direct-sum approach is that
the error requirements in our OREQ and k-DISJ lower bounds needs to be similar to the (small) error for
EQUALITY protocols. On the other hand, the Saglam—Tardos approach [49], which directly attacks OREQ,
overcomes this to obtain the same communication lower bound even under constant error. This raises the
interesting theoretical question of whether a direct-sum approach can be strengthened to “boost” the error.

In recent work on direct sum questions in communication complexity, there has been some exciting
progress on a related matter. Molinaro, Woodruff, and Yaroslavtsev [42] show how to obtain constant-error
direct sum theorems from small-error hardness of the underlying problem. Unfortunately, their technique
depends crucially on the k-fold direct sum problem’s output being a k-tuple consisting of the solutions to
all of the k independent instances of the underlying problem. In our setting, these k bits are combined
into a single bit by an OR operation, which gives out much less information, causing their technique to
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fail.

Showing similar results for problems with a single-bit output is a challenging open problem whose

resolution ought to yield even more insights about communication complexity.

Our results for PRIVATE-INTERSECTION raise two main open questions. First, it is open whether the

number of rounds in our two-party protocol (Theorem[2.8)) can be reduced from 6r to r while preserving the
total communication of O(kilog” k). This would match results of [49] for k-DISJ. The second open question
is to design better multi-party protocols than those that we obtain in Section[9] Our multi-party protocols are
obtained by using our two-party protocol as a black-box and we expect that it might be possible to obtain
better results by analyzing the problem directly.
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