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Abstract— Calibration is often an important and necessary
step in the use of image-guided systems. In the case of the
AX = Y B problem, the relative hand-eye (X) and robot-
world (Y) transformations must be determined to provide
accurate data for use in control. As an added difficulty, the
exact correspondence between the streams of sensor data (A’s
and B’s) is typically unknown due to asynchrony in sampling
rates and processing time. One common scenario is a constant
shift between the two data streams. Therefore, in this paper
we present a probabilistic method to simultaneously solve for
X and Y without a priori knowledge of the correspondence
between the streams of A’s and B’s. We begin by discussing
probability density functions on SFE(3) and then use Euclidean-
group invariants to obtain an exact solution for X and Y. We
then present a method to simultaneously recover X and Y and
the correspondence between temporally shifted data sets using
a correlation method. Following this, we show how to solve the
problem in the case when the data are completely scrambled,
corresponding to a complete loss of temporal information.
Finally, we numerically simulated the proposed method with
asynchronous data and noise added to the stream of B’s to
verify its efficiency and robustness.

I. INTRODUCTION

Image-guided systems have been widely employed in ap-
plications throughout robotics such as robot-assisted surgery,
autonomously guided vehicles, etc. Sensors such as a camera,
a laser scanner, or an ultrasound probe are usually mounted
on the distal end of a robotic manipulator. For a typical
“hand-eye” system as described above, the relative transfor-
mation between the sensor with respect to the end-effector
should be accurately calibrated, and it is often characterized
as the well-known AX = XB problem. A variation of
this problem is the AX = Y B problem, where both the
hand-eye transformation and the pose of the robot base with
respect to the world frame need to be calibrated. In a typical
environment, the relationships between the sensor frame,
robot frame, and world frame are variant and uncertainties
exist. Therefore, simultaneous coordinate calibrations have
to be determined frequently in order to enable the robot to
respond to dynamic environments.

In the AX = Y B problem, data streams of A’s and
B’s can be respectively obtained via different sensors. The
data streams may arrive in an asynchronous fashion due
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Fig. 1. (1) The hand-eye and robot-world calibration problem formulated
as AX=YB. (2) The hand-eye calibration problem formulated as AX=XB.
Note: matrices A and B above have different physical meanings in the
AX = XB and AX = Y B problems. (The Universal Robot pictured
above is from the laboratory of Prof. Emad Boctor of Johns Hopkins
University).

to the different working frequencies of the sensors. This
asynchrony causes a shift between the two data streams
which can obscure the correspondence between the A’s
and B’s. Moreover, data loss can destroy information about
correspondence altogether. In this paper, a novel method is
presented to solve for X and Y without a priori knowledge
of the correspondence between the A’s and B’s.

The hand-eye calibration problem can be modelled as
AX = X B, where A and B are the homogeneous transfor-
mation matrices describing the relative motions of the end-
effector and the sensor respectively. As shown in Fig. 1 part
(2), A= AY(A* Y=L and B = (BY)~1B**L. Given multiple
pairs of (A;, B;) with correspondence (note that (A;, B;)



are the relative transformations obtained from the raw data),
many deterministic methods have been proposed to solve for
X. To the best of the authors’ knowledge, Shiu [1] and Tsai
[2] are the first to solve the AX = X B sensor calibration
problem. The other methods include but are not limited to the
quaternion, dual quaternion, screw theory, Lie group theory,
motor algebra, convex optimization and gradient descent
methods [3]-[11]. All of the methods above assume a priori
knowledge of the exact correspondence between A; and B;.
For data streams {A;} and {B;} that are asynchronous,
several methods have been proposed in the literature to
solve for X using data without a priori knowledge of the
correspondence. These methods assume that there are some
corresponding pairs of data in the streams of the {A4;} and
{Bj}; however, the exact correspondence is unknown a priori
[12], [13].

Simultaneous estimation of the hand-eye and robot-world
transformations has been viewed as the AX = Y B problem.
As shown in Fig. 1 part (1), Y is the transformation from
the robot base to the world frame, A denotes the pose of the
sensor in the world frame and B is the transformation from
the end-effector to its fixed base. The A and Bin AX =YB
are different from those in AX = X B where the former uses
absolute transformations and the latter uses relative transfor-
mations. This problem has been solved by many different
methods such as the Kronecker product, quaternion, dual
quaternion, and nonlinear optimization methods [14]-[21].
Simulatneous calibration of X and Y can be problematic
in that all the methods above assume exact correspondence
between {A4;} and {B;}, which is not the case in the real
world, and this is why a simultaneous solution for X and
Y in the AX = Y B problem can be a challenging issue.
Another similar problem involves the calibration of multiple
robots in terms of hand-eye, tool-flange, and robot-robot
transformations, and it is formulated as the AXB =Y (CZ
problem [22] which will not be discussed in detail here. In
the above methods, the correspondence between A and B is
known a priori. In this paper, we focus on one case of the
AX = Y B problem where there is no a priori knowledge
of the correspondence between the data streams.

The rest of the paper is organized as follows. In Section II,
a novel probabilistic method is presented to solve for eight
candidates of X and Y. In Section III, an algorithm involving
both a temporal correlation calculation and Euclidean group
invariants is proposed to recover the correspondence between
{A;} and {B;}, which is used to select the optimal solution
among the candidates. The simulation results obtained by
taking noisy data without correspondence are illustrated in
Section IV. In Section V, we briefly discuss the case where
one can obtain (X,Y’) without recovering the correspon-
dence between the data sets. Finally, conclusions are drawn
based on the numerical results and possible future work is
pointed out.

II. SOLVING AX=YB USING A PROBABILISTIC METHOD
ON MOTION GROUPS

In this section, a brief introduction to the concept of
probability density functions (PDFs) on the special Euclidean
group SE(3) is presented and the probabilistic representation
of AX =Y B is derived.

Any rigid body transformation matrix can be viewed as a
group element of SE(3) :

H(R,1) = ( oo ) € SE(3), ReSOB3) (1)

where SO(3) denotes the special orthogonal group, t € R3
is a translational vector, T' denotes the transpose of a vector
or matrix, and H is the symbol for an element of SFE(3)
(which is a six-dimensional Lie group) represented as a 4 x 4
homogeneous transformation matrix. The identity element of
SE(3) is then the 4 x 4 identity matrix, I4.

Given a large set of pairs (A;, B;) € SE(3) x SE(3)
where 7 = 1,--- ,n, the following equation is true if the
correspondence is known as a priori:

A, X = YB,. )

For a group element H € SE(3), a Dirac delta function
0(H) is defined to be finite only at the identity and zero
elsewhere,

&m_{o it H# 1L, ®)

and also satisfies the identity constraint

/ S(H)H = 1. o)
SE(3)

A shifted Dirac delta function can be defined as §4(H) =
§(A~'H). Given K,H € SE(3) and two well-behaved
functions f; and fs, their convolution on SE(3) is defined
as [23], [24]

(fr+ fo)(H) = /S oy BUORU o K )

where o denotes the group product for SFE(3), which is
simply matrix multiplication. The integral over SE(3) can
be expressed in various coordinates, and both the bounds
of the integral and the integration measure dH will take on
different appearances that depend on these coordinates. For
example, if H is parameterized in terms of the Cartesian
coordinates t = [z,y,2]T, and R = Rzxz(a,B3,7) is an
Euler-angle description of rotations, then the integral over
SE(3) is the six-dimensional integral where x,y, z range
over —oo to 400, «, range from 0 to 27 and [ ranges
from O to 7. In these coordinates, the integration measure
takes the form

dH = sin fdadfdydxdydz = dRdt.



Alternatively, exponential coordinates can be used, in which
case the six-dimensional integral over SFE(3) and the mea-
sure take the form described in [25].

When it is clear that the argument of a function is H €
SE(3), sometimes it will be convenient to abbreviate f(H)
as f and (f1 * fo)(H) as f1 x fo to avoid a proliferation of
parentheses.

The convolution operation is bi-linear in the sense that

(a1 fr+buf'y) * fa = ar(f1 * f2) + b1 (f'y * fa)

and

fr#(arfz +01f'3) = ar(fo* f2) + ba(fi = f'y).
Moreover, convolution inherits associativity from the under-
lying group:

Jre(fax f3) = (fr = f2) = fs.

But convolution is generally not commutative, fi * fo #*

Ja* f1.
Employing the properties of the § function, it is straight-
forward to see that:

(f = 8)(H) = /S o IS o K = 51D, 6)

Therefore, for each A; and B;, the following equations can
be obtained:

(JAi *5}()([‘[) = 5(A;1HX71)
(oy *6p,)(H) =8(Y*HB; ).

(7a)
(7b)

Using Eq. (2) and Eq. (3), the above two equations can be
combined into a single equation as:

(0a; % 0x)(H) = (0y * 0p,)(H). (8)
Defining the PDF of {4;} and {B;} as:

FaCH) = =30, (11) ©a)
i=1

Fo(H) = 3" b5, (1), ob)
=1

then by using the bi-linearity of convolution, add n instances
of Eq. (8), and substitute Eq. (9) into the summation, and
we will have:

(faxdx)(H) = (0y = fp)(H).

The convolution of two highly-focused PDFs have some
interesting properties that can be used to solve for X. In
particular, the mean M and covariance Y of a PDF f(H)
on SE(3) are defined as:

(10)

/ log(M~'H)f(H)dH = Q4 (11a)
SE(3)

z:/ log” (M~ H)[log¥ (M~ H)|" f(H)dH (11b)
SE(3)

where the explicit expression of the matrix logarithm log(H)
along with its vectorized form log" (H) are given in [26] as

0 —hy hy T
hs 0  —hy hs
“hy —h; 0 hg
O 0 0 0

log(H) =h = (12)

where h = log"(H) € R6*! and h is the corresponding Lie
algebra element, h € se(3), such that H = exp h.

If fo(H) is given as in Eq. (9), then the corresponding
discrete version of the mean M 4 and covariance X 4 will be:

> log(M ' A;) = 0y (13a)
1=1

5= log" (M, 4;)[log" (M A)]".  (13b)
i=1

Given {A4;} with the cloud of frames A; clustering around
M 4, an iterative formula can be used for computing M 4 [25]
as:

1 n
FHIN 4 =F My oexp [ § log(*M ;' o A)) (14)
n
=1

An initial estimate of the iterative procedure can be chosen

as:
1 n
My = f§ log(A4;) | .
A = €eXp <ni_1 og( ))

Alternatively, M 4 can be obtained by solving a nonlinear
optimization problem with the cost function
2

Z log(M ;' A;)

i=1

Cl(MA) =

Note, however, that mathematically this is not the same as
minimizing

Co(Ma) = |[log(M; 4|,
i=1
though in practice they often are minimized by very close
values of M 4.

A similar procedure can be used to compute Mpg. > 4 and
Y. p are then straightforward to compute once M4 and Mp
are known.

The mean and covariance for the convolution (f; * f2)(g)
of two “highly-focused” functions f; and f2 (i.e., those for
which [|3;]| << 1) are calculated as in [25]:

Mo = M1 M,
Yo = Ad(My S AdT (Mg ) 4 2,

(15a)
(15b)

where



Here the “hat” notation when applied to the three-
dimensional vector ¢ gives

0 —t3 to
t= ts 0 —t (16)
—ty —t; O

Because X and Y are constant, their corresponding PDF
will be dx(g) and dy (g), of which the mean and covariance
are Mx = X, Yx = Qg and My =Y, Xy = Qg, respec-
tively. Therefore, the following equations can be obtained
using Eq. (15):

MsX =Y Mp
Ad( X HE,AdT (X7 = 2p.

(17a)
(17b)

This is a nonparametric result, meaning that the underlying
probability density functions f4(H) and fp(H) need not
be Gaussian or belong to any other family of parametric
distributions. Moreover, it can be shown as below that in the
context of AX =Y B, Eq. (17a) and Eq. (17b) don’t require
fa and fp to be highly concentrated.

Starting with Eq.(10), performing a convolution on both
of the left sides of the equation with §y—1(H), and using
the associativity of convolution, we will have:

(Oy-1 % fax0x)(H) = fp(H).

Use the definition of mean as in Eq. (11) along with Eq. (18),
we have

(18)

| tog(h i) fu()ar =

SE(3)

/ log(Mg H)(0x—1 % fa % 6x)(H)dH =
SE(3)

/ log(Mz'H) f4a(YHX Y)dH = Q4. (19)
SE(3)

Change the variable as K = Y HX ! and use the invariance
of integration [23], then Eq. (19) becomes:

/ log(Mz'Y 'K X) fa(K)dK = Qj. (20)
SE(3)
which falls into the form of the mean definition of {A;}.
If we further multiply X and X ~! on the left and right of
both sides of Eq. (20), then X[log(Mz'Y 'K X)X}
log(M ;' K). Knowing that X [log(M;'Y 'K X)]X !
log(XM5'Y~'K), and we have XMy'Y ™! = M’
which is equivalent to Eq. (17a). Eq.(17b) follows from [25]
because the F'(A, B) term as defined in [25] has products
of covariances of the functions being convolved, and delta
functions have zero covariance so the F'(A, B) term is zero,
which results in Eq. (17b).

The problem of solving the above equations, Eq. (17a)
is decomposed into a rotational equation and a translational
equation as follows:

Ry, Rx = Ry Ry
Ryrtx +tym, = Ryty, +1ty.

(21a)
21b)

¥4 and Xp can be decomposed into blocks as

2L 2 ) < L ¥2 ) : .
and B 2B ), respectively. Knowing
(2?4 Dy Sh Tp

T T
that X1 = ROX R{( tx ), then the first two blocks

of Eq. (17b) can be written as follows:

Y, = Rx Sy, Rx (22a)
Y3, = Rx Sy Rx (RYtx) + RXS3, Rx. (22b)

Because Eq. (22a) is a similarity transformation between
¥}, and i, . they share the same eigenvalues and can
be eigendecomposed into ¥}, = Qur, AQY,, and X}, =
QusAQY;, where A is a diagonal matrix whose diagonal
elements are the eigenvalues of X}, (or ¥}, ), and Qar,
(or Qnry) is a square matrix whose columns are the corre-
sponding eigenvectors. The following equation is obtained
after substituting 31, and ¥}, into Eq. (22a):
B A

A = Q% R Quy)MQY;, Rx Q) = PAPT

where P = Q1 Rx Q- Since Qs and Qay,, are further
constrained to be rotation matrices, the orthogonal matrix P
satisfies Eq. (24).

(23)

T __ —
{P =p! (24)

det(P) = £1.
Combing Eq. (23) and Eq. (24), then an orthogonal matrix
P can be one of P or —P :

1 0 0 -1 0 0
P = o1 0], o -1 0],
0 0 1 0 0
(25)
-1 0 0 1 0 0
0 1 0 |,lo -1 o0
0 0 -1 0 0 -1

Therefore, there are eight candidates for Rx which can be
calculated via Rx = Qar, PQ&B, and the corresponding ¢ x
can be obtained from Eq. (22b). Given known X, Y can be
solved from ¥ = M X Mgl. At last, eight candidate pairs

of {X}, Y} can be obtained as:
) (26)
where £k =1,2,...,8.

xom (T o), vem (0
0 1
The problem then becomes selecting the best pair of
{Xk, Yy} from the eight candidates. Based on screw theory,
it is known that a homogeneous transformation H can be
expressed by the four screw parameters (6,d, n,p) as:

e (I3 — e™")p +dn
me (G )

where 6 is the angle of rotation, d is the translation along
the rotation axis, n is the unit vector representing the axis of

27)



rotation and p is the position of a point on the line relative
to the origin of a space-fixed reference frame with p-n = 0.

Moreover, AX;,, = Y,B can be written as AX, =
Xy (X, 'Y;.B). Defining B¥ = X 'Y, B, we have AX}, =
X B*. As discussed in [27], [28], for AX = X B problem,
there exist two Euclidean-group invariant relationships for
each pair of (4;, BF)(i = 1,--- ,n;k =1,...,8) as follows:

04, = Opr,da, = dpgs. (28)
Among the eight pairs (X, Yy ), one can find an optimal
solution which minimizes the cost function defined as:

n

1
(X,Y) =argmin = (|| 04, — Opx || + |l da, — dgs |).
(X Ye) T ) )
(29)

Eight candidates of (X%, Y}) are calculated using the prob-
abilistic method on SE(3), which doesn’t require the corre-
spondence between A; and B; to be known. However, the
correspondences need to be recovered to pick the optimal
(Xk,Y)). Note that the Euclidean-group invariant relation-
ships in the context of AX = Y B problem are still unknown.
Therefore, AX =Y B is converted into AX = X B problem
to recover the correspondence of data using invariants.

III. SOLUTION WITH UNKNOWN CORRESPONDENCE
BETWEEN A; AND B}

In most cases, the two sets of homogeneous transfor-
mations {A;} and {B;} are calculated based on the data
obtained from different sensors. Due to the asynchronous
timing of the sensor readings, the correspondence between
{A;} and {B;} is usually unknown. This section deals with
the case where there is a shift between {A;} and {B;},
and the Euclidean-group invariants are used to recover the
correspondence between the data streams. The advantage of
the above probabilistic solution lies in that X and Y can be
calculated even if there is no a priori knowledge of the corre-
spondence. However, there are still eight possible candidates
of (X, Yx) to choose from and by using Euclidean-group
invariants, it is straightforward to determine which is the
optimal pair if the correspondence between A; and Bj’.C can
be known.

The Discrete Fourier Transform (DFT) decomposes a
time-domain signal into its constituent frequencies. The input
is a finite list of equally spaced samples of a function. Given
a discrete signal consisting of a sequence of N complex
numbers zg, 1, -- ,rn—1, the DFT is denoted by X, =
F(xy) as:

N-1 o
X, = n —i—="NkK). 30
nz:% Ty - exp(—i N nK) (30)
where ¢ here is the imaginary unit.

The Inverse Discrete Fourier Transform (IDFT) is denoted
as:

1 N-1

27
Tn = 57 Z X - e:cp(zﬁnff).

n=0

€Y

The discrete convolution of two sequences f,, and g, is
defined as:

N
(f*9)(r) =D f(ty)glt; = 7).

Jj=0

(32)

In the convolution theorem, the Fourier transform of a
convolution is the product of the Fourier transforms, namely:

frg=F[F(f) Flg)

The correlation theorem indicates that the correlation
function, Corr(f, g), will be larger for a shift vector where
the two sequences f, and g, share more similar features.
The correlation can be obtained based on the convolution
theorem. The DFT of Corr(f, g) is equal to the product of
the DFT of f,, and the complex conjugate F* of the DFT
of gn:

(33)

Corr(f,g9) = fxg=F '[F(f) - F*(9)]

Compared to the standard time-domain convolution algo-
rithm, the complexity of the convolution by multiplication in
the frequency domain is significantly reduced with the help
of the convolution theorem and the Fast Fourier Transform
(FFT).

Given two sequences {04, } and {OB;_C} corresponding to
{A;} and {Bj’?}, the shift that is needed to recover the data
correspondence is obtained as below. Firstly, 64; and 6z«
are normalized as: ’

(34)

(9}3;' - MBk)

Oa, —
O —pa) g, (35)

01k =
gA OBk

where pa(ppr) is the mean of 04, (0pr) and oa(ope) is
the standard deviation. '

Here, the correlation function Corr (61 i, 02 1) is the func-
tion of the time sequence index n which describes the
probability of these two sequences being separated by this
particular index. The index corresponding to the maximum of
Corr(61,x, 02,1) indicates the amount of shift 75, ¢+ between

{04} and {0 }.

Tsnift = argmax(Corr(01 5, 02.1))
index

(36)

Therefore, the correspondence between the two sequences
can be found. The data of 64, or d 4, are shifted by —7p; s
to obtain a sequence of new pairs (04, (i + Tshift),Opr)
and (dAi (i + Tshift); ngc), where max(O, Tshift) <1 lﬁ
man(n,n + Tepife). The 'data stream can be shifted back to
regain correspondence to synchronize the data streams once
the shift is computed, and the optimal solution of X and
Y can also be recovered by minimizing the cost function in
Eq. (29) using the Euclidean-group invariants as shown in
Section II.
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Fig. 2. The translational and rotational errors versus the shift between data

streams {A;} and {B;}.
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Fig. 3. Box-and-whisker plots of translational and rotational errors versus
the covariance noise on data stream {B;}.

(a) Xsotved (b) Yiotvea

Fig. 4. (a) The solved X (in red) and the actual X (in black) for 10
simulation trials with covariance noise of 0.05 and shift of 2. (b) The
solved Y (in blue) and the actual Y (in black) for 10 simulation trials
with covariance noise of 0.05 and shift of 2.

IV. SIMULATION STUDIES

For the numerical experiments in this section, the rota-
tional and translational errors for X and Y are measured
as

_ vV pT
Error(Rx) =/ log” (Rx,,,.. 8% ) |ls

Error(tx) = txsomed = tXirue |l

Error(Ry) =|| log" (Ry,,,,., Rvi,..) |,
and
ET’T‘OT‘(ty) :H Wsotvea = Wirne ”7
respectively.

There are multiple ways of generating the data streams
{A;} and {B;}. One way is to first generate {B;} and then
map it to {A;} using A = YBX 1. {B;} can be obtained
by randomly sampling on the Lie algebra of B from a zero
mean multivariate Gaussian distribution as follows:

Li method

0 1 2 3 4 5

Shah method

0 n T T T ]
0 1 2 3 4 5

Fig. 5. Orientation and translation errors of X and Y versus shift using
Li’s and Shah’s methods without correspondence.

5; € N(0;%) C RS

B; = exp(d;)exp(t)

(37a)
(37b)

where the mean ;1 = 0 € se(3) and the covariance matrix
¥ € R%%6 is a diagonal matrix with same diagonal elements
o. The hat operator § converts a 6 by 1 vector into its
corresponding Lie algebra. The data stream {A;} can be
easily obtained as described above. After employing the pro-
posed probabilistic method, 8 sets of sequences (64,,05x)
and (d4,,dpr) can be obtained respectively where i =
1,---,100 and k = 1,...,8.

If the data stream {A;} is shifted by m units relative
to {B;}, then the maximum of the cross correlation can
be used to recover the shift. After that, we can shift the
data stream {A;} back to its original position to recover the
correct correspondence with { B; }, which will be used to find
a correct solution satisfying the Euclidean-group invariants
as defined in Eq. (28). Therefore, a unique pair of (Xy, Y%)
(k=1,---,8) can be selected to minimize the cost function.
In Fig. 2, because the shift between {A;} and {B;} is
calculated accurately, the translational and rotational errors
fluctuate by only a small amount compared to the errors of
the no-shift data streams.

To test the robustness of the proposed method, noise is
added to {B;} as B¢ = Bexp(Xnoise)» Where each
element of the Lie Algebra x,,;s. belongs to the Gaussian
distribution defined as N ~ (finoise, Onoise)- In Fig. 3, as
the covariance noise o,,,;s. increments from 0.01 to 0.08,
the errors of Rx, Ry, tx, and ty increase as shown in the
box-and-whisker plot. There are several outliers outside the
whiskers, while the median is calculated as the final solved X
and Y. Fig. 4 shows the solved (X,Y)s in red and blue with
the actual (X,Y) in black with covariance noise of ¢ = 0.05
and shift n = 2.

The probabilistic method can recover the correspondence
between shifted data streams, which is useful for other sensor
calibration methods. In the AX = Y B problem, there have
been many calibration methods developed for solving X
and Y given data streams with correspondence. However,
few of them considered the cases without correspondence.
When data streams of A and B are shifted or asynchronous,
most of these methods fail to give a valid solution. To
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Fig. 6. Orientation and translation errors of X and Y versus shift using

Li’s and Shah’s methods with correspondence.

further test the effectiveness of our method, we shift the data
sequence of {A4;} by n =0,1,2,3,4,5 with respect to the
data sequence of {B;} such that Ay, “matches” Bj where
k=12 ---m—nandi = 1,2,--- ;m. We augment
other AX = Y B solvers with our probabilistic approach
by recovering the correspondence between shift data sets. In
Li’s method [19], X and Y are solved for at the same time,
while Shah [20] solved for X and Y in a separate way. As
shown in Fig. 5, when dealing with the shifted data streams
{Ak4n, Br}, the errors on both rotations and translations
are significant. After recovering the correspondence between
data streams by using the probabilistic method, Li and Shah’s
methods achieve the same level of performance as shown in
Fig. 6.

V. A BRIEF CASE STUDY WITH COMPLETELY
SCRAMBLED DATA

In this section, we will briefly discuss the case where
{A;} and {B;} are completely scrambled. Unlike the case
of shifted data, it is extremely hard to recover the cor-
respondence between two completely scrambled data sets
{A;} and {B,}. The correlation theorem can’t be applied
because there is no shift in the scrambled data sets. Euclidean
group invariants are not practical either because given {A;}
and {B;} both of which have the size of m, there are
m! = m x m — 1 x ---1 combinations between the data
sets, and it is extremely computationally intensive to test
all the combinations. Without recovering the correspondence
between the data sets, it is impossible to choose the optimal
solution from the eight candidates of { X%, Y }.

In the above approach, we used Eq. (17b) to calculate X}
and Eq. (17a) to obtain the corresponding Y. However, we
now show that one can calculate the eight candidates of ¥
independently and employ Eq. (17a) as a constraint to filter
out the optimal {X, Y’} pair. Given the equation AX =Y B,
apply an inverse on both sides of the equation and we will
have B~'Y ! = X1 A~ Following the same derivations
from Eq. (6) to Eq. (17b), we have:

MY t=X"1M,u
Ad(Y)S5 1 AdT (V) =S 4-1.

(38a)
(38b)
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Fig. 7. Rotation error in X and Y v.s. scrambling rate for the prob and
Li’s methods

Similarly, Eq. (38b) can give eight candidates of Y !, or
equivalently, the eight candidates of Y. Let Xj; where
k1l = 1,2,---,8 denote the Xs obtained from Eq. (17b)
and Yz where k2 = 1,2,---,8 denote the Y's obtained
from Eq. (38b), and we can use Eq. (17a) and Eq. (38a) to
form a minimization problem as:

min|[MaXi — YieMp||r + IMpY,o' — X Myl F
(39
which can give the optimal (X1, Yxo) pair. We call this
approach the prob method, and compare it with Li’s method
for testing its effectiveness of handling scrambled data sets.
For simplicity, we use Eq. (38a) and Eq. (38b) to generate
{B;}, whereas compute {A;} using A; = X 'Y B; without
exerting noise on B;. Then {A;} is scrambled at each
percentage from 0% up to 100%. 50 times of simulations
are performed for each percentage rate and the same error
metrics are used as in Section V. As shown in Fig. (7) and
Fig. (8), as the percentage of scrambled data goes up, the
errors in rotation and translation for Li’s method gradually
diverge, while the errors for the prob method are very
stable and small. This shows the significant advantage of
the probabilistic method in handling disordered data sets.
However, Li’s method is still more accurate when the exact
correspondence is known between {A;} and {B;}.

VI. CONCLUSIONS

In this paper, we developed a probabilistic approach
to simultaneously obtain X and Y in the AX = YB
sensor calibration problem. Without a priori knowledge of
the correspondence between {A;} and {B;}, the proposed
probabilistic method on Lie groups is used to constrain the
possible solutions of X and Y to eight pairs of candidates.
Given shifted data streams of {A;;s} and {B;}, using
the correlation theorem with Euclidean-group invariants, the
correspondence is recovered to determine the correct solution
among the eight candidates. In the numerical simulation,
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Fig. 8. Translation error in X and Y v.s. scrambling rate for the prob and
Li’s methods

the method performs well with different sets of data sam-
ples. Lastly, we brought up a new approach to deal with
completely disordered data sets and show its effectiveness
in simulation.Future work will be to improve the prob
method and investigate on its performance dealing with noisy
scrambled data sets.
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