


• Equilibrium Characterization: We show that the invest-

ment decisions of the firms form a Nash equilibrium

which supports the social welfare. We offer explicit

expressions for optimal storage investments and equi-

librium prices for sharing in Section IV.

• Coalitional Stability: We prove that at this Nash equilib-

rium, no firm or subset of firms is better off defecting

to form their own coalition. This is a much stronger

stability guarantee than that offered in general Nash

equilibrium theory, where only individual rationality is

assured.

The remainder of this paper is organized as follows. In

Section II, we describe our problem formulation. Then, we

treat the optimal storage investment problem when there is

no sharing between firms in Section III. We investigate the

case when the firms have the opportunity of sharing their

unused capacity in Section IV. We conduct simulations to

verify our proposed theory to illuminate our results in Section

V. Concluding remarks and future directions are given in

Section VI.

II. SYSTEM MODEL

Consider a scenario where an aggregator serves electricity

to a set N of firms. The aggregator acts as the interface

between these firms and the power grid, and itself does

not consume any electricity. In other words, the aggregator

purchases the total electricity needed by the firms from the

grid and then resells it to the firms. We imagine the firms can

trade electricity with each other, or purchase from the grid

through the intermediary aggregator. These physical delivery

of electricity for these transactions are conducted over a

private distribution system within the aggregators purview.

Prices imposed by the grid are passed through to the firms.

The aggregator does not have the opportunity to sell excess

electricity back to the grid (that is, there is no net metering).

Remark: Examples of this situation includes industrial park,

university campus, and residential complex. The aggregator

might be the owner of the industrial park, the university

campus, or the housing complex community, respectively.

The common feature of these examples is that it is possible

to develop behind the meter transactions, which could be

outside the regulatory jurisdiction of the utility. Also, in these

examples, there is a single metered connection point with the

utility company, and the underlining distribution grid could

be private.

In our system, each day is divided into two fixed, contigu-

ous periods – peak hours and off-peak hours. The firms face

the common time-of-use (ToU) prices, as illustrated in Figure

2. During peak hours, they face a price πh, while during off-

peak hours, they face a discounted price π`. These prices are

usually fixed and known.

We denote the consumption of firm k during peak and

off-peak periods by the random variables Xk and Yk re-

spectively. Let FXk
(·) and FYk

(·) be the known cumulative

distribution functions (cdf s) of these random variables. These
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Fig. 2: Time-of-Use Pricing.

can be estimated from historical data using standard methods

[12].

If storage is sufficiently cheap, firms will invest in storage

to arbitrage ToU pricing. They could charge their storage dur-

ing off-peak hours when electricity is cheap, and discharge

it during peak hours when it becomes expensive. Note that

the energy that held in storage is always acquired at price

π`.

Let πs be the daily capital cost of storage amortized over

its lifespan. Define the arbitrage price

πδ = πh − π` > 0. (1)

Clearly, we require πs < πδ for storage to offer a viable

arbitrage opportunity.

Remark: Electricity storage is expensive. Tesla’s Powerwall,

for example, offers the amortized cycle cost around 25¢/kWh

[13].

At current storage prices, ToU pricing rarely offers ar-

bitrage opportunities. An exception is PG&E A6 program

where the electricity price for peak hours (from 12:00 pm to

6:00 pm) is around 54¢/kWh; the price for partial peak hours

(from 8:30 am to 12:00 pm, and from 6:00 pm to 9:30 pm) is

around 25¢/kWh; and that for off peak hours (the rest of the

day) is around 18¢/kWh [14]. Our results offer a framework

for the analysis of shared storage in the future when storage

prices are even lower. Storage prices are projected to reduce

by 30% by 2020 [13].

To simplify our analysis we assume that the electricity

storage is lossless, and is perfectly efficient in charging and

discharging. Also, the storage investments by the firms are

made simultaneously. We will briefly discuss how to dispense

with these assumptions in the concluding remarks.

III. MAIN RESULTS: NO SHARING

In this section, we treat the single firm case. The analysis

will help us better understand the structure of the problem

and cast light on solving the more complicated case - firms

which can share energy between each other.

A. Optimal Investment Decisions

Let X,Y be the random peak and off-peak consumption

of a firm. When there is no storage system, its daily expected

cost, denoted by J0, is composed of two parts: the energy



payment during peak hours, and the energy payment during

off-peak hours:

J0 = E [πhX + π`Y ] . (2)

When the firm elects to invest in storage capacity C,

its daily cost, denoted by J(C), has a new component -

the amortized storage cost. In addition, the other two parts

- the energy payment during peak and off peak hours -

no longer remain the same. The firm can always fully

charge the battery during off-peak hours to avoid purchasing

energy from the aggregator during peak hours. Thus, the

firm will purchase (X − C)+ from the aggregator during

peak hours, where (x)+ = max{x, 0}, and then purchase

Y + min{C,X} during off-peak hours to support its own

off-peak consumption and recharge the battery. Hence, its

daily expected cost is

J(C) = πsC + E
⇥

πh(X − C)+
⇤

+ E [π`Y + π` min{C,X}] .
(3)

Theorem 1. The optimal decision of a firm under no sharing

is to purchase Co kWh of storage where

F (Co) =
πδ − πs

πδ

= γ. (4)

F (·) is the cdf of random variable X .

Remark: It is straightforward to observe that the optimal stor-

age investment Co is monotone decreasing in the amortized

storage price πs and monotone increasing in the arbitrage

price πδ .

B. An Example: Merge Firms

To better understand the sharing economy in smart grid,

we consider a simple scenario: two firms want to merge

together. Before merging, their optimal decisions are to

purchase C1 and C2 of storage, respectively. After merging,

the optimal decision for the merged firm is to purchase Cm

of storage. Intuitively, Cm should be smaller than the sum

of C1 and C2 since without sharing, firms might over-invest

in storage because they are going it alone and do not have

the opportunity to buy stored electricity from other firms.

However, we use the following example to highlight that

they might also under-invest because they forgo revenue

opportunities that arise from selling their stored electricity

to other firms. The particular nature of this sub-optimality

depends on the statistical character of their consumption

relative to other firms.

Consider two firms, indexed by k = 1, 2, whose peak

period demands are the discrete random variables X1, X2

respectively. Suppose X1, X2 are i.i.d., and for k = 1, 2,

Xk =

⇢

1 with probability 0.5,

2 with probability 0.5.

Then, we have

FXk
(x) =

8

<

:

0 if x < 1,

0.5 if x 2 [1, 2),

1 if x > 1.

γ
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Fig. 3: Under- and over-investment.

For fixed γ 2 [0, 1], the optimal storage investment of both

firms is identical, and using Theorem 1, we know

Co = F−1

Xk
(γ) =

⇢

1 if γ 2 [0, 0.5],

2 if γ 2 (0.5, 1].

Their combined storage investment is Cm = 2Co.

On the other hand, for the merged entity, we can calculate

the cdf FX(x) for the combined peak period demand X =
X1 +X2:

FX(x) =

8

>

>

<

>

>

:

0 if x < 2,

0.25 if x 2 [2, 3),

0.75 if x 2 [3, 4)

1 if x ≥ 4.

Using Theorem 1 again, we can show the optimal storage

investment D for the merged entity, which is

D = F−1

X (γ) =

8

<

:

2 if γ 2 (0, 0.25],

3 if γ 2 (0.25, 0.75],

4 if γ 2 (0.75, 1].

We compare Cm and D in Figure 3. We note that D < Cm

when γ 2 (0.25, 0.5) and D > Cm when γ 2 (0.5, 0.75). ⌅

IV. MAIN RESULTS: WITH SHARING

In the situation where firms can share their unused storage

capacity, we must explore the market structure that supports

this sharing. As electricity is an undifferentiated good, it is

natural to consider a spot market for stored energy in this

context. We derive the equilibrium price for shared electricity

in this spot market. This allows us to analyze the competitive

behavior and the storage investment decisions of these firms.

Consider again the set N of firms. Firm k 2 N has chosen

to invest in Ck kWh of storage to arbitrage against the ToU

pricing it faces. On a given day, suppose the total energy

consumption of firm k is Xk during peak hours, and Yk

during off-peak hours. Similar to the analysis in Section III,

the firm will choose to service Xk first using its cheaper

stored energy. This may result in a surplus of stored energy

or deficit of demand. The excess energy available to firm k

in its storage is (Ck−Xk)
+. The deficit of energy that firm k

must acquire during peak hours is (Xk−Ck)
+. The collated



surplus from the firms can be sold to other firms that face a

deficit, which enables the sharing between firms.

A. The Spot Market for Stored Energy

Let S be the total supply of energy available from storage

from the collective of firms after they service their own peak

period demand. Let D be the total deficit of energy that must

be acquired by the collective of firms (after they service their

own peak period demand). It is clear that

S =
X

k2N

(Ck −Xk)
+, D =

X

k2N

(Xk − Ck)
+.

Consider a competitive spot market for trading energy. If

S > D, the suppliers compete against each other and drive

the price down to their (common) acquisition cost of π`.

Note that unsold supply is simply held. Since all supply

was acquired at price π`, this is equivalent to selling unsold

supply at π` to an imaginary buyer, and buying it back

during the next off-peak period at price π`. Note that the

storage is completely discharged during the peak period, and

fully recharged during the subsequent off-peak period. So the

entire supply S is sold at π` if S > D.

If S < D, consumers compete and drive up the price

to that offered by the aggregator πh. Note that all unmet

demand can be supplied by the aggregator (through the grid).

This is also at price πh. Thus, the entire demand is supplied

at price πh if D > S.

The market clearing price is therefore

πeq =

⇢

π` if S > D,

πh if S < D.
(5)

Note that πeq can be defined arbitrarily between π` and πh

when S = D, and it won’t affect our subsequent analysis

because the clearing price πeq is a continuous random

variable. In fact, S and D are also random variables due

to the randomness in Xk’s.

B. Optimal Investment Decisions

Let us first examine the expected cost function, denoted

by Jk, for firm k:

Jk(Ck) = πsCk + π`Ck + π`E [Yk]

+ E
⇥

πeq(Xk−Ck)
+−πeq(Ck−Xk)

+
⇤

.
(6)

The five terms above are (in sequence) amortized cost of

storage system, recharging of storage, supporting the off-

peak demand, buying deficits, and selling surpluses.

Note that

(Xk − Ck)
+ − (Ck −Xk)

+ = Xk − Ck.

Thus, combining the last two terms in (6) yields

Jk(Ck) = πsCk+π`Ck+π`E [Yk]+E [πeq(Xk−Ck)] . (7)

Note that, this cost function does not solely depend on Ck,

but also all the other Ci’s, i 2 N , i 6= k. They are coupled

through πeq . This naturally forms a game between all the

firms.

Energy Sharing Game

• Players: the set N of all the firms;

• Strategies: the optimal energy storage investment Ck;

• Payoffs: for each firm k 2 N , its expected payoff

function gk(Ck) = −Jk(Ck).

Thus, the optimal investment decision for firm k is simply

firm k’s best response to all the other firms’ choices.

Denote the total demand during peak hours of all firms by

Xc =
X

k2N

Xk.

We further denote the probability density function of Xc by

fXc(·). Suppose firm i, i 6= k, has invested in Ci kWh of

storage. Denote

C−i =
X

i 6=k

Ci.

To avoid degenerate cases, we make the following statistical

assumption:

Assumption 2. The probability density function fk(·) is

continuously differentiable and fXc(x) > 0 for x ≥ 0.

Then, we can characterize the best response as follows.

Lemma 3. The first order optimality condition of firm k

under sharing is as follows:

0 =πs − Prob(S < D)πδ + πδC
0
kfXc(C0

k + C−i)

− πδfXc(C0
k + C−i)E

⇥

Xk|X
c = C0

k + C−i

⇤

.
(8)

C. The Competitive Equilibrium

Based on Lemma 3, we can further characterize the

competitive Nash equilibrium and analyze its properties.

Theorem 4. If there exists a Nash equilibrium, then the

energy sharing game admits a unique Nash equilibrium,

i.e. all firms make optimal storage investments. At this

equilibrium, the optimal storage investments of the forms are

given by

Co
k = E[Xk|X

c = Cc], k 2 N . (9)

where Cc =
P

k C
o
k solves

F (Cc) =
πδ − πs

πδ

= γ. (10)

These optimal storage investments support the social welfare.

Remark: Theorem 4 shows that given the existence of

equilibrium, the optimal decisions, i.e., Co
k forms a Nash

equilibrium, and the cumulative investments coincide with

the optimal investment of the combined entity. Furthermore,

according to Theorem 4, the only information needed by each

firm is the aggregate decisions and the aggregate statistics.

This warrants protecting the private information of other

firms. The uniqueness proof relies on Assumption 2. If this

assumption is violated, we can construct examples where

infinitely many equilibria exist. For example, when the total

energy consumption Xc is a constant, it is straightforward to

verify that any storage investment satisfying
P

k Ck = Xc

is a Nash equilibrium.
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Fig. 4: ToU pricing: (a) real three-period pricing, (b)
simplified two-period pricing.
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Fig. 5: Sample cumulative distribution functions of Xk’s.

Theorem 5. The Nash equilibrium of Theorem 4 has the

following properties:

(a) If firm k has peak-period consumption Xk = 0, it

will not invest in storage, i.e. Co
k = 0.

(b) The investment decisions of the firms are individually

rational.

(c) No firm or subset of firms is better off defecting to

form their own coalition.

Remark: As the aggregator does not itself consume electric-

ity, it has no profit incentive to invest in storage. An impor-

tant consequence of the above result is that the aggregator

is in a position of neutrality with respect to the firms. It can

therefore act to supply the information necessary for firm

k to make its optimal investment choice. This information

consists of (a) the joint statistics of Xk and Xc, and (b) the

cumulative optimal investment Cc of all the firms. With this

information, firm k can compute its share of the optimal

storage investment Co
k as in (9). As a result, the private

information Xi, i 6= k of the other firms is protected. The

neutrality of the aggregator affords it a position to operate

the market and determine the market clearing price of shared

storage.

V. SIMULATION STUDIES

Having proved the theoretical properties of our scheme, in

this section, we seek to use numerical examples to illuminate

its performance. For instance, in real world, when users

choose not to share with each other, do they often over invest

or under invest? How much the end users may benefit from

sharing? To answer these questions, we need to setup the

ToU pricing scheme and utilize real data to model users’

peak hour consumption - Xk’s.

Figure 4(a) shows the three-period pricing scheme (peak,

partial peak, and off peak), employed by PG&E during

the summer. In the simulation, for simplicity, we use the

simplified two-period pricing scheme, as shown in Figure

4(b). We set πh = 54¢/kWh, and π` = 21.5¢/kWh, which is

the average of the partial peak and off peak prices. We use

the Pecan Street data set [15] to validate the performance

of our results. Figure 5 demonstrates some sample cdf s of

the Xk’s. In particular, Figure 5(a) shows the general cdf of

a user. Figure 5(b) and (c) illustrates that some of the users

may be constantly away from home during peak hours, while

others have a constant background load. In addition, some

user may even have a step function as the cdf, as shown in

Figure 5(d). This means that this user has a rather stable

demand during peak hours.

It is straightforward that we do not want most of the

correlation coefficients between firms close to one, in which

case there will be little potential for sharing to improve

the social welfare. We plot the histogram of the pairwise

correlation coefficients in the Pecan Street data set in Figure

6. The average pairwise correlation coefficient between the

users is around 0.5, and there are also many valuable users

creating negative correlations. In this situation, we conduct

the simulation to compare two cases:

• without sharing: the users choose not to share their

storage systems with others;

• with sharing: we employ the peer-to-peer sharing

scheme to enable the energy sharing between the users.

We have already showed that in these two cases, in

principle, it is not clear which case will lead to a smaller total

storage capacity. Figure 7 demonstrates that, for the Pecan

Street data set, sharing will likely reduce the average storage

investment, and hence reduce the total storage investments.

In other words, without sharing, the users are likely to

over invest the storage systems. Also, with the number of

participants in the aggregator increases, the average storage

capacity under no sharing stays the same (after 50 partici-

pants) while the average storage capacity under sharing is

increasing. Hence, we believe sharing will further speed up

the deployment of end user storage systems in the near

future.

Finally, we investigate the average net profit for the partici-

pants. Recall that we have defined the expected costs for each

user without storage system, J0 in (2), and without storage

system, J(C) in (3). Thus, we can define the difference

between these two costs as the net profit for each user. More
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precisely, the net profit L(C) is:

L(C) = J0 − J(C)

= (πh − π`)E [min{C,X}]− πsC.
(11)

Based on this definition, Figure 8 shows that although the

users earn more than 55¢ per day without sharing on average,

sharing can improve the average net profit by almost 50%.

We imagine for industrial loads, sharing will also be able to

improve the average net profit by a comparable percentage.

Unfortunately, without the access to proper industrial load

data sets, we are not able to verify this conjecture.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the sharing economy for

smart grid. In particular, we analyze the peer-to-peer energy

transactions between a collection of firms. We characterize

the competitive equilibrium and demonstrate its properties.

Finally, we use numerical studies to illustrate the real world

performance of proposed scheme. Besides the degenerate

case that we discuss in Section IV-C, we are aware of

examples where a Nash equilibrium does not exist. We

plan to characterize the sufficient conditions for the Nash

equilibrium existence in our subsequent work.

Our work is built upon two assumptions. The first one

assumes the storage is lossless and perfectly efficient. Most

of our analysis can accommodate the power losses and charg-

ing or discharging inefficiencies. However, the competitive

equilibrium analysis could be challenging, especially when

every storage system has its own characteristics. The second

assumption is related to the equilibrium realization. When the

decisions are made sequentially, instead of simultaneously,

we need to introduce the notion of membership fee from club

theory [16]. In essence, every new firm who wants to join the

aggregator needs to pay a membership fee to accommodate

the change in the equilibrium. And this fee could be positive

or negative if including the new firm will make everyone

better off (e.g., the new firm’s peak hour energy consumption

has negative correlations with most of the existing firms). A

rigorous treatment to dispense these assumptions is one of

the most interesting future research directions for us.

APPENDIX: PROOFS

A. Proof of Theorem 1

The cost function for a single firm under no sharing is

J(C) =πsC + E
⇥

πh(X − C)+ + π`Y + π` min{C,X}
⇤

=πsC + πh

Z 1

C

(x− C)fX(x)dx+ E [π`Y ]

+ π`C Prob (X ≥ C) + π`

Z C

0

xfX(x)dx.

One can verify that this is strictly convex in C. The optimal

investment Co is the unique solution of the first-order

optimality condition:

0 =
dJ

dC
= πs − πh

Z 1

C

fX(x)dx+ π`Prob (X ≥ C)

= πs + (π` − πh) (1− F (C)) .

Rearranging this expression yields the claim. 2

B. Proof of Lemma 3

Note that the clearing price πeq is random. Let

p = Prob (S > D) . (12)

Denote the total storage in the system by Ct, where

Ct =
X

k2N

Ck.

Then, we have

E [πeq] = pπ` + (1− p)πh = πh − pπδ,

∂E [πeq]

∂Ck

= −fXc(Ct)πδ.

Recall that the expected cost function for firm k:

Jk(Ck) = πsCk + π`Ck + E [π`Yk + πeq(Xk − Ck)] (13)

The random variables πeq and Xk are possibly dependent.

Taking derivatives with respect to Ck:

0 =πs − (1− p)πδ + πδfXc(Ct)Ck

− πδf
c
X(Ct)

Z 1

xk=0

xkfXk|Xc(xk|C
t)dxk.

(14)



Note that
Z 1

xk=0

xkfXk|Xc(xk|C
t)dxk = E

⇥

Xk|X
c = Ct

⇤

. (15)

Combining (15) into (14) yields the lemma. 2

C. Proof of Theorem 4

Let Dk, k = 1, · · · , n be any Nash equilibrium. We show

that D = C⇤ where

C⇤
k = E [Xk | Xc = Q] , Fc(Q) = γ =

πδ − πs

πδ

Under Assumption 2, simple algebra reveals that Q is the

unique solution of

πs − πδ + πδFc(Q) = 0

Let β =
P

k Dk, and define the constants

K1 = πs − πδ + πδFc(β)

K2 = πδfXc
(β) > 0

Define the index sets

M = {i : Di > 0}, N = {j : Dj = 0}

Since D is a Nash equilibrium, it follows that Di satisfies

the first-order optimality conditions. For i 2 M:

0 =
dJi(Ci | D−i)

dCi

∣

∣

∣

∣

D

= K1 −K2 · E [Xi −Di | Xc = β] (16)

The first-order optimality conditions for j 2 N are:

0 
dJj(Cj | D−j)

dCj

∣

∣

∣

∣

D

= K1 −K2 · E [Xj −Dj | Xc = β] (17)

Summing these conditions, we get

0  nK1 −K2 ·
n
X

k=1

E [Xk −Dk | Xc = β]

= nK1 −K2 · E [Xc − β | Xc = β]

= nK1

Thus, K1 ≥ 0. Using (16), for any i 2 M we write

E [Xi −Di | Xc = β] =
K1

K2

≥ 0 (18)

Next, we have

0 =

n
X

k=1

E [Xk −Dk | Xc = β]

=
X

i2M

E [Xi −Di | Xc = β] +
X

j2N

E [Xj | Xc = β]

≥
X

i2M

E [Xi −Di | Xc = β]

≥ 0

Here, we have used (18) and the fact that the random

variables Xj are non-negative. As a result, we have

for i 2 M: E [Xi −Di | Xc = β] = 0

for j 2 N: E [Xj −Dj | Xc = β] = E [Xj | Xc = β] = 0

So for k = 1, · · · , n,

0 = E [Xk −Dk | Xc = β] () Dk = E [Xk | Xc = β]

Using this in (16) yields

0 = K1 = πs − πδ + πδFc(β)

This implies β = Q, and it follows that Dk = C⇤
k for all k,

proving the claim. 2

D. Proof of Theorem 5

It is straightforward to verify part (a). The proof techniques

for part (b) and part (c) are quite similar. Hence, we only

show the proof of part (b).

Let us consider the costs for firm k in three situations.

• The minimal cost under no sharing: We denote the

optimal purchased storage capacity by C
i,⇤
k , and the

associated cost by J i
k(C

i,⇤
k ).

• The cost under sharing but firm k chooses to install a

storage system with capacity of C
i,⇤
k (defecting from

the equilibrium). We denote the associated cost by

Jk(C
i,⇤
k ).

• The minimal cost under sharing: Firm k invests the

optimal capacity Co
k . We denote the associated cost by

Jk(C
o
k).

By the definition of Co
k , it is obvious that

Jk(C
o
k)  Jk(C

i,⇤
k ). (19)

Therefore, to prove the individual rationality, it suffices

to show that Jk(C
i,⇤
k )  J i

k(C
i,⇤
k ) for any given parameters

(i.e., Cj , 8j 2 N , j 6= k,Xj , 8j 2 N ).

In fact, there are only four cases to justify and two of them

are trivial.

When S > D and C
i,⇤
k > Xk,

Jk(C
i,⇤
k ) = J i

k(C
i,⇤
k ).

Similarly, when S  D and C
i,⇤
k  Xk, the above equality

still holds.

When S > D and C
i,⇤
k  Xk, we know πeq = π`. Thus,

Jk(C
i,⇤
k ) = πsC

i,⇤
k + π`C

i,⇤
k ,

J i
k(C

i,⇤
k ) = πsC

i,⇤
k + π`C

i,⇤
k + πj(Xk − C

i,⇤
k ).

These imply that Jk(C
i,⇤
k )  J i

k(C
i,⇤
k ).

For the last case, when S  D and C
i,⇤
k > Xk, we know

πeq = πh. Thus,

Jk(C
i,⇤
k ) = πsC

i,⇤
k + π`Xk − πh(C

i,⇤
k −Xk)

+ π`(C
i,⇤
k −Xk),

J i
k(C

i,⇤
k ) = πsC

i,⇤
k + π`Xk.

Again, Jk(C
i,⇤
k )  J i

k(C
i,⇤
k ).

Above all, we know Jk(C
i,⇤
k )  J i

k(C
i,⇤
k ). Together with

(19), we prove part (b). 2
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