DEX: Query Execution in a Delta-based Storage System

Amit Chavan
University of Maryland, College Park

amitc@cs.umd.edu

ABSTRACT

The increasing reliance on robust data-driven decision-making across
many domains has made it necessary for data management systems
to manage many thousands to millions of versions of datasets,
acquired or constructed at various stages of analysis pipelines over
time. Delta encoding is an effective and widely-used solution to
compactly store a large number of datasets, that simultaneously
exploits redundancies across them and keeps the average retrieval
cost of reconstructing any dataset low. However, supporting any
kind of rich retrieval or querying functionality, beyond single dataset
checkout, is challenging in such storage engines. In this paper, we
initiate a systematic study of this problem, and present DEX, a novel
stand-alone delta-oriented execution engine, whose goal is to take
advantage of the already computed deltas between the datasets for
efficient query processing. In this work, we study how to execute
checkout, intersection, union and t-threshold queries over record-
based files; we show that processing of even these basic queries leads
to many new and unexplored challenges and trade-offs. Starting from
a query plan that confines query execution to a small set of deltas, we
introduce new transformation rules based on the algebraic properties
of the deltas, that allow us to explore the search space of alternative
plans. For the case of checkout, we present a dynamic programming
algorithm to efficiently select the optimal query plan under our cost
model, while we design efficient heuristics to select effective plans
that vastly outperform the base checkout-then-query approach for
other queries. A key characteristic of our query execution methods
is that the computational cost is primarily dependent on the size
and the number of deltas in the expression (typically small), and
not the input dataset versions (which can be very large). We have
implemented DEX prototype on top of git, a widely used version
control system. We present an extensive experimental evaluation
on synthetic data with diverse characteristics, that shows that our
methods perform exceedingly well compared to the baseline.

Keywords

Delta encoding; versioning; query processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. .. $15.00
DOI: http://dx.doi.org/10.1145/3035918.3064056

171

Amol Deshpande
University of Maryland, College Park

amol@cs.umd.edu

1. INTRODUCTION

Data-driven methods and products are becoming increasingly com-
mon in a variety of communities, leading to a huge diversity of
datasets being continuously generated, modified, and analyzed.
Many more datasets are typically created as intermediate results of
data analysis pipelines. An increasingly important consideration for
the underlying data management systems is that, all of these datasets
and their versions over time need to be stored and queried for a variety
of reasons including auditing, provenance, transparency, accountabil-
ity, introspective analysis, and backups [10, 17, 31, 35, 45, 52]. As
aresult, there has been an increasing interest in using no-overwrite
or immutable data stores, where all data ever generated or produced
is somehow persisted, either directly or in the form of /ineages that
can be used to reconstruct them.

Delta encoding is a cornerstone of many no-overwrite storage
systems that are focused on archiving and maintaining vast quantities
of datasets (simply put, a collection of files). Archival and backup
systems often store multiple versions or snapshots of large datasets
that have significant overlap across their contents using deltas. In
version control systems, both for software (e.g., Git, SVN) and
datasets (e.g., DataHuB [10], noms [1]), it is common to store
related file versions using this technique to save disk space while
maintaining entire modification history. Delta encoding can result in
remarkable improvements in storage requirements when compared
to plain compression — in [11], the authors observe 65x reduction in
storage space when just 100 snapshots of the Linux kernel repository
were (individually) compressed using gzip vs using delta encoding.

At a high level, delta encoding consists of representing a target
file content as the mutation, or delta, from a source file content.
Intuitively, the source and target files are selected such that they have
a large overlap across their contents and hence their delta is small.
Furthermore, the source file itself may be represented as a delta from
another file, and so on, creating a “graph” of files and deltas. The
compressed storage is obtained by keeping only a few select files,
commonly referred to as materialized files, and deltas (instead of the
files they represent) in this graph, such that it is possible to re-create
any file by walking the path of deltas starting from a materialized
file and ending at the desired file.

ExampLE 1. Consider a toy repository containing two files that
evolve as in Fig. 1(a). A node in this graph (called a version graph)
represents a version or snapshot of the repository and an edge
represents a derivation or transformation relationship between two
versions. For instance, from V| to Vo, we see that file A7 was modified
to A4 while A| remained unmodified. When available, information
about such transformations are kept track of as edge meta-data.

Fig. 1(b) shows how a delta-based storage system might store all
files in all versions. Such a solution is typically meant to capture
redundancies in the file contents across all versions of the repository

Figure 1: A delta encoding-based solution to store files, Ay, ..., A7 across
versions Vi, . .., V. The weights on the edges indicate delta sizes.

and ensure a reasonable trade-off between storage costs and access
costs. We call this representation the storage graph. Nodes in this
graph represent files, and edges represent the deltas that are used
to construct one file given another. For instance, an edge between
Ay and Aj indicates that we can construct Az given Ay and the
respective delta. For algorithmic convenience, we include an empty
file, Ay, as an entry point to traverse the storage graph. All files
directly connected to Ay, i.e., A| and Ay, are materialized files, and
are stored in their entirety. Further, the deltas, indicated by the
edges, are also stored.

Note that although a tree would be sufficient to guarantee that we
can construct any file, the storage system may decide to include ad-
ditional deltas to make co-accesses efficient; e.g., if Az is commonly
accessed with Ay and As it would be beneficial to store it as a delta
from both Ay and As.

There has been significant work on various aspects of delta
encoding-based storage systems: computing near-optimal deltas for
a variety of data formats [20, 43], quickly finding ideal files to delta
from [22], and supporting delta storage in file systems, scientific
databases, network transport, etc. [39, 45]. However, existing delta-
oriented storage engines offer limited or no support for querying
the data stored within them; the primary query type supported by
those engines is checkout, i.e., reconstructing a specific version of a
dataset or a file. With such storage engines becoming efficient and
mainstream, there is an increasing desire and opportunity to perform
rich analysis queries over the historical information contained within
such data stores [16]. The queries of interest include auditing or
provenance queries over the datasets (e.g., identify the datasets where
a particular property holds), analyzing the evolution of a dataset over
time (i.e., temporal analytics), and comparing results of SQL-like
queries over different versions of the same dataset (obtained through,
e.g., applying different analysis pipelines to the same initial dataset).
In general, combining in situ query processing [6] with the ability
to query different versions of the same dataset can dramatically
enhance the utility of immutable data stores.

However, delta-oriented storage engines of today require users to
“check out” complete file/dataset versions in order to manipulate them.
This approach is less than ideal particularly when the individual
versions are large and the users need to access multiple versions
for their analysis task. First, irrespective of the size of the query
result, this approach entails creating all the input versions before
query processing can begin, resulting in large memory and/or I/O
usage. Second, it requires users to maintain another system to assist
in executing the queries. Third, this approach fails to exploit the
fact that most datasets evolve through changes that are small relative
to the dataset sizes. Because the storage engine is aware of these
properties, we argue that we can leverage this information to design
computationally cheap methods to evaluate a query by pushing
down query execution to the level of deltas. At first glance, this
technique might be seen as an analogue to the notion of incremental
view maintenance in relational databases [28]. However, a “query”
in a relational database is typically defined on a single “version”,
whereas here we consider queries that span and reason about multiple

172

versions simultaneously. In fact, the work on temporal analytics is
closer in spirit than the work on incremental view maintenance.

In this paper, we initiate a systematic study of the problem of
supporting rich analysis queries over delta-oriented storage engines,
and describe the initial prototype of DEX, a novel storage manager
and query processing engine for delta-based storage. Specifically,
in this paper, we focus on the storage design and implementation of
DEX for a class of semi-structured datasets that we call datafiles,
and for a class of basic queries that includes multi-version checkouts,

intersections, unions, and 7-threshold queries. A datafile is a file

whose contents can be seen as a set of records, i.e., the order of

records within a datafile is immaterial, and no two records in a

datafile are identical. Examples of such files include CSV files,

JSON documents, log files, to name a few, and these constitute a large

fraction of files in a typical data lake. A common method to represent

a delta between two datafiles is to maintain the “deletions” and

“additions” required to go from one datafile to the other. There is
an inherent tension between the amount of information available in
the deltas and the storage space they require, which directly impacts
the types of queries that can be executed purely using the deltas.

We chose the above delta format both because it is commonly used

in practice, and because it strikes a good balance between storage

space and query efficiency.

The current DEX prototype is built on top of git, a widely used
source control system, analogous to how extensions like Git Large
File Storage [2] are implemented. We provide an API, similar to
git, to handle the standard version management tasks like commit,
checkout, status, etc. The notable difference is that when a user
starts tracking changes to a file (i.e., “adds” the file to the repository),
she has an option to register the file as a datafile. Such files are
stored by DEX using the techniques described in this paper, while
all other files are managed by git.

Our key technical contributions are summarized as follows:

e To our knowledge, ours is the first work to systematically study
how to optimize execution of different types of queries against
delta-oriented storage engines.

e We develop a general cost-based optimization framework based
on key algebraic properties regarding composition of the deltas.
The result of this framework is a compact algebraic expression
that confines query execution to a small set of deltas. As a side
effect, the computational cost is dependent on the size and the
number of deltas in the expression (which are typically small) in
contrast to the size of the input datasets.

e We develop optimal algorithms for executing single-file or multi-
file checkout queries assuming reasonable restrictions on the
evaluation plan search space.

e We develop a series of intuitive transformation rules that help
simplify the search space for intersection, union, and z-threshold
queries, and use them in conjunction with cost-based solutions
for base cases, to develop effective search algorithms.

e We have developed a prototype implementation of DEX on top of
git, and we present a comprehensive evaluation against synthetic
datasets of varying characteristics. Our results show that our
methods perform exceedingly well compared to the baselines,
even for simple queries like single-file checkouts.

2. SYSTEM OVERVIEW

We begin with a brief description of the user-facing data model and
system architecture of DEX before describing the different types of
queries that we support. Thereafter, we describe the system data
model, i.e., the physical organization of data, and the primitives used
by the system to evaluate the queries. While DEX can be integrated
with any system that needs to store a large number of dataset

Ca
e

DEX CLI

Users

""""" B
Version Graph
Storage !
Git Graph ,
translation Builder icceoy g: :
1
b)) R
A 4 . 2 - %
Delta Storage Version Graph Storage
Git
Storage

Backend Data Store

Figure 2: System Architecture of DEX; our focus in this work is largely on
the design of the “Query Processor.”

snapshots, in this work, we describe our models and associated terms
in the context of a dataset version control system.

2.1 User Data Model

The user data model in DEX has two main abstractions — datafile,
and version — that form the basis of all user interactions.

As mentioned above, a datafile is a file whose contents are
interpreted as set of records. The user specifies a record separator
when a datafile is added in the system. Within a datafile, we
consider a record as an unstructured sequence of bytes. The only
constraint we impose, however, is that a datafile cannot contain
identical records: two records are said to be identical if they both
have the same sequence of bytes. For instance, textual flat files such
as CSV or logs can be seen as containing one record per line.

A version is a point-in-time snapshot of one or more datafiles
typically residing in a directory on the user’s file system. A version,
identified by a unique ID, is immutable, and can be created at any
point in time by any user who has access to the repository.

In addition to datafiles and versions, DEX also captures the
version-level provenance — derivation and transformation relation-
ships among the set of all versions — in a data structure called the
version graph. Nodes in a version graph correspond to versions
and edges capture relationships such as derivation, branching, trans-
formation, etc, between two versions. One important use of this
metadata is to allow rich queries over versions and provenance by
means of any supported language/API (e.g., [16]). In this work, we
do not limit ourselves to any particular API, but instead assume that
we have an efficient method for finding all the datafiles referenced
in a query. Since a version graph is typically much smaller than
the datafile contents, it can be kept and traversed in memory to
identify the versions that are referenced in a query.

We use the following notation to formalize the above discussion.
Let V be the set of all versions. Each version V € V contains
a finite number of datafiles, say, V = {A},...,A;}. Let A =
{Aj,..., A, } be the set of all datafiles across all versions. Note
that it is possible for a datafile to be present in more than one
version — this happens when the said datafile is not modified in the
respective versions. The set of datafiles that appear in a version
are kept track of as metadata in the corresponding node of the version
graph. Let A, = {ry,...,rm} be the set of records contained in
datafile A,. As mentioned before, no two records in a datafile
are identical, i.e., r; # 1, Vri,rj € Ag.

2.2 Queries

We now describe the semantics of each of the core operations that
are the primary focus of this paper.

Checkout: Checkouts are the primary mechanism for reading off
older versions of a dataset and it is imperative that a storage manager
support them. Any version or any set of datafiles can be checked

173

out, and the result is copied to the location suggested by the user (typ-
ically, it will be a directory on the user’s machine). When a checkout
query is issued, the version graph is consulted to identify the set
of datafiles that comprise it. Specifically, the checkout operation
takes as input a set of k > 1 datafiles Ay = {Ay,,...,Ax, } C A
and outputs k files, one for each datafile. Henceforth, we use the
notation CHECKOUT(Ay) to denote the checkout operation.

Intersect: The intersect operation is an important operation when
comparing the contents of a datafile that was modified across
multiple versions. Similar to set intersection, given a set of k > 2
datafiles Ax = {Ay,,...,Ax, } C A, the intersect operation
outputs a single datafile containing records that appear in a/l
datafiles in A, ie, {r:r € Ay, A--- Ar € Ay, }. We use the
notation I(Ay) to denote the intersect operation.

Union: The union operation, denoted by U(Ay), returns a single
datafile containing records that appear in any of the datafiles in
A, ie {r:reAy V---VreAy}

t-Threshold: Given as input a set of k > 3 datafiles A and an
integer 1 < 1 < k, the t-threshold operation, denoted by T;(Ay),
returns a single datafile that contains records appearing in at least
t of the datafiles in Ay. This generalizes the above operations —
t = 1 and t = k correspond to union and intersection respectively.

Although the above set of operations is intended as a starting
point for investigating the nascent topic of query processing over
deltas, these operations already enable many interesting queries.
For example, comparing the results of intersection, union and/or
t-Threshold across the versions of an evolving dataset can provide
insights into the evolution process (e.g., properties of the records
that change frequently vs those that remain static). Intersection or
t-Threshold across the results of different machine learning pipelines
on the same input dataset can help us identify which types of records
are difficult to predict correctly, which can help an analyst steer the
training process. Further, t-Threshold can return, for each record,
a bitmap indicating the versions to which it belongs; depending on
the semantics of the versions being queried, that information could
be used for a variety of purposes including correlation analysis,
anomaly detection, and visualizations. Finally, if specific analyses of
interest are known in advance, materialized views (e.g., projections,
results of aggregate queries or joins) can be computed in advance as
the dataset versions are ingested; by exploiting the overlaps, these
materialized views could be persisted cheaply in the storage engine
itself. Although this requires a priori planning, the benefits at the
time of querying could be tremendous. We plan to build support for
defining and automatically materializing such views in future work,
in addition to enriching the class of operations themselves.

2.3 System Architecture

The DEX prototype is built on top of git and has three major
components: (a) a set of command line utilities, DEX CLI, written
in Python, to allow the user to interact with the repository in the
form of the standard add, commit, checkout, etc., commands (similar
to git), (b) the Storage Graph Builder which decides how best to
store a collection of datafiles (i.e., which deltas to use), and (c)
the Query Processor, written in Java, that executes user queries
against the deltas. DEX CLI passes through the version management
tasks not pertaining to datafiles to git; the user may specify a file
to be a datafile through a flag to the add command, and any tasks
pertaining to those files are sent to the Storage Graph Builder (in
case of add or commit) or the Query Processor.

The Storage Graph Builder performs tasks that primarily answer
the question: When we have a collection of thousands of versions
of datafiles, how to identify a good storage solution, i.e., decide

which datafiles to materialize and which datafiles to encode
as deltas off of other datafiles? We encode this solution as an
undirected weighted graph called the storage graph (§ 2.4.1).

In this work, our focus is on the Query Processor module, which
accepts queries from users, uses the version graph to identify the
datafiles referenced in the query, fetches appropriate deltas by
analyzing the storage graph, and executes the queries.

The two data structures (storage and version graphs) as well as the
deltas are persisted in a file system (other data stores like distributed
key-value stores could also be used instead). Although the deltas
themselves could be stored in a distributed fashion, in the current
prototype, the Query Processor is designed to run in a single process.
We expect this will be sufficient in most cases, since most queries
are expected to touch only a small portion of the data; however, our
techniques are easily parallelizable to handle large deltas.

2.4 System Data Model

Next, we discuss the storage graph and the delta encoding scheme
used in DEX to store the versions on disk. Thereafter, we describe
few properties of the deltas and discuss methods of combining them
that will be useful in subsequent sections.

2.4.1 Storage Graph

Let G = (V,E) be a storage graph (see Fig. 3 for an example).
Note that this graph is different from version graph, described in
§2.1. While the version graph captures derivation or transformation
relationships between versions of datasets, the storage graph repre-
sents information at the granularity of datafiles (encompassing all
versions) and is meant to indicate delta relationships between them.
Moreover, the storage graph is used by internal query execution
routines and, unlike version graph, is not intended to be exposed
to the end user. The vertex set V of the storage graph captures all
unique datafiles across all versions, and a special empty datafile,
Ag. Thus, V = Ayg U A. The purpose of Ay is to simplify many of
algorithms that use the storage graph, both during its creation and
during query evaluation (see [11] for a detailed usage).

An edge e(A;, Aj) € E represents the delta between datafiles
A; and Aj, and the edge set E represents the deltas that are chosen to
store all datafiles. The weight of the edge w, represents the storage
cost (size in bytes) of the delta. For an edge e(Ag, A;), we represents
the storage cost of A; in its entirety (i.e., A; is materialized).

We require that G be a connected graph so that it is possible to
reconstruct any of the datafiles in A. Specifically, a path from
Ap to A; indicates the materialized datafile (one following Ag on
the path) and the sequence of deltas to apply in order to recreate A;.
Thus, to store all the datafiles in (A, it is sufficient to store only
the materialized datafiles in G and all the deltas in E.

Prior systems have made use of the storage graph representation [3,
11, 48, 49], albeit with different monikers, to model a delta based
solution to store data versions. The storage graph also generalizes the
sequence-of-deltas model where the versions are ordered according
to a certain criteria, e.g., timestamp, file size, etc., and every version
except the first is stored as a delta against the previous one. The
sequence-of-deltas model, although conceptually simple, has the
downside that the retrieval time grows linearly with the number of
versions stored. The storage graph representation addresses this
limitation by allowing multiple versions to be derived from one
version. For instance, if we require that every datafile derives 3
datafiles not derived by others, we can pack approximately 80K
datafiles and have a maximum delta sequence of length 10.

2.4.2 Delta Representations and Tradeoffs

A key question for a delta encoding-based storage engine is selecting

174

the delta variant, i.e., the particular format/algorithm for computing
the delta between two files. This is because different delta formats
are appropriate for different types of files: a UNIX-style line-by-line
diff is a common delta format for plain text files, while an XOR is more
suited to numerical array-oriented data. Exploiting the structure in
the data, if known, can often lead to better deltas (e.g., for XML [46],
or relations [40]). Column-based deltas may be more appopriate
when a large number of records are changed slightly, e.g., due to
a schema change. Furthermore, a particular delta format may be
directed or undirected: if a delta A between source file A and target
file B is directed, it may only be used to recreate B given A, and not
vice versa. An undirected delta between two files, on the other hand,
can accept either file as source and recreate the other.

The desire to execute queries directly on deltas (as we propose
in this work) brings another dimension to this choice. There is
an inherent tension in the amount of information stored in a delta,
and our ability to push query execution on to them. In this work,
we pick one of the most commonly used delta formats suitable for
record-oriented files, that offers a good balance between the storage
space required and the ability to execute queries. In addition, one
can also consider keeping additional information or indexes, together
with the deltas, to speed up certain queries (analogously to the work
on in situ query processing [6]). For instance, Bloom filters [13] on
deltas can be used to prevent unnecessary searches when selecting
records that satisfy a predicate, aggregate summaries on deltas [42]
can be used to speed up certain classes of aggregate queries, and as
shown in Appendix D, bitmaps can be used to create a filtered index
to speed up the queries described in this paper. Understanding these
tradeoffs for different types of data and query classes is a rich area
for future work that we plan to pursue.

2.4.3 Set-backed Deltas and Properties

The delta format that DEX uses, called Set-backed Deltas, is an
undirected delta format, similar to the standard UNIX line-by-line
diff. A set-backed delta A between a source datafile A; and a target
datafile Aj, is a set of two datafiles, A~ and A*, that correspond
to “deletions” and “insertions” respectively. A~ is the set of records
that are present in A; but not in A;, while AT is the set of records
that are not present in A; but present in A;. A can also be used to
reconstruct A; from A; by exchanging A~ and A*.

In DEX, we require deltas to be consistent [24], i.e., a delta does
not contain the same record in A~ and A*. This does not preclude
updates to a record, including schema changes, since an update can
be recorded as deleting the old record and adding a new record.

DerINITION 2 (CoNSISTENT DELTA). A delta is said to be con-
sistent if A~ N AT = 0.

Because datafiles and deltas are sets, we will often make use of the
following three standard operations on sets — union (U), intersection
(N) and difference (—). Continuing the example, when we use A to
construct A; from A; we call this operation patching A; using A,
and denote itas A; = A; ® A.

DerINITION 3 (PATCH). A; ® A = (A; — A7) U A"

OBSERVATION 4. If A is consistent, A; ® A = (A; — A7) UAT =
(A; UAY) — A~

Next, we describe another important property of set-deltas, called
contraction. Intuitively, delta contraction corresponds to combining
two deltas into a single delta such that the new delta has the same
effect as applying the individual deltas. Formally, if A}, A,, A3 are
three datafiles and A} = A(Aj, Ay), Ay = A(Aj, Az), we use the
patch operator as before to represent contraction as follows,

Ao
1100

(©
., A1, nodes shaded in
blue (A}, Az) indicate materialized datafiles, edge annotations indicate the
disk size of the delta; (b) access tree for Q(A13), this is the shortest path from
Ag to Ajp; (c) access tree for Q(Ag, Ag, Ag, Aq2), this is the minimimum
cost Steiner tree for the terminals {A, Ag, Ag, Ag, A2}

(@) (b)
Figure 3: (a) A storage graph over datafiles Ay, ..

DEerINITION 5 (DELTA CONTRACTION). A = A1 @ Ay, where,
A‘:(AI—A;)UA_; AJrz(Ai'—AE)UAzr (H

Although delta contraction, as defined above, can be applied to two
arbitrary deltas, the result is well-defined only if the target datafile
of A is same as the source datafile of A,. The result A has the
same source datafile as Ay and derives the target datafile of A,.

This definition can be generalized to a sequence of deltas: the
contraction of a sequence of deltas Ay, ..., A, is the result of the
operation A; @ - - - @ Ayy.

Given the above properties, we can infer that:

OBSERVATION 6. If Ay and A, are consistent, then their contrac-
tion, A = A1 ® Ay, is also consistent.

OBSERVATION 7. The patch operation is associative, i.e., (A; ®
Ay)® Az = A1 & (Ay & Az).

Although some of these observations might seem straightfor-
ward, formalizing them is crucial to argue the correctness of the
transformations that we do later.

3. QUERY EXECUTION PRELIMINARIES

We begin with a more formal treatment of the query optimization
problem, with first discussing the optimization metrics of interest
and introducing the two-phase optimization approach that we take.
We then briefly discuss the issues of cost and cardinality estimation
and the search space of query evaluation plans.

Given a query, Q(Ay) where Q is one of {Cueckour, I, U, Ty}
(§2.2) against a given storage graph G, there are two somewhat
independent stages in the overall query execution. First, we need to
identify all the relevant datafiles and deltas in G that are necessary
to execute Q(Ay). We refer to this problem as finding an access
tree of Q(Ay), and describe it in detail in §3.2.

Second, given an access tree, we need to devise an efficient
evaluation plan, that describes exactly what operations are used
to compute the result of Q(Ay). This plan is represented as a
delta expression: an algebraic expression where the operands are
datafiles and deltas from the storage graph G, and the operations
are patch and primitive set operations. During this stage, we also
consider the problem of finding a good ordering of evaluating
the different operations in the delta expression. We describe the
techniques for each query Q € {Cueckour, I, U, T;} in § 4.

3.1 Optimization Metrics

To be able to develop a systematic cost-based approach to query
execution, we first need to identify appropriate optimization metrics
and cost models. It is unfortunately difficult to develop a single cost
metric that captures the costs of the two stages discussed above, which

175

also makes it hard to do joint optimization across them. Because
the backend store is likely to be relatively expensive to access (we
expect it to be distributed in general), we would like to minimize
the amount of data that is read from the backend store; this also
reduces the network I/0. Once the data has been gathered, however,
the different ways to evaluate a query can have very different CPU
costs and wall-clock time. Hence, for the second phase, we would
prefer to use a metric that tracks the CPU cost.

We adopt a two-phase approach in DEX inspired by this. We
first find the best “access tree” that minimizes the total amount of
data that needs to be read (in bytes) from the backend store. In
other words, we identify the set of datafiles and deltas that have
the smallest total size, that are sufficient to reconstruct the required
datafiles. We then search for the best evaluation plan according to
a cost model that estimates the CPU resources needed by the plan.
We discuss the specifics in further detail in § 3.4 when we discuss
the operator implementations.

We do not explicitly account for disk access costs during the
second phase for several reasons. First, although the overall storage
graph and the delta sizes in total are expected to be very large, the
access tree for any given query is typically much smaller and the
deltas constituting that will typically fit in the memory of a powerful
machine. More importantly, most of our algorithms (§ 3.4) access
the deltas sequentially (while reading and writing), and thus even
if the deltas were disk resident (or intermediate results needed to
be written to disk), the CPU and/or the memory bandwidth is still
the main bottleneck. One exception here is binary search or gallop
search (that an intersection operation might employ) where our
approach might underestimate the cost of an intersection in case of
extreme skew. However, our cost estimation procedure can be easily
modified to account for that case. Moreover, the deltas are typically
stored in a compressed fashion on disk, thereby making it necessary
to uncompress them by reading them once into memory, and further
making the overall computation CPU-bound.

3.2 Access Tree

Given a query Q(Ay), an access tree, Go = (Vp, Eg) is a subgraph
of G such that: (i) Ag U Ay, € Vp €V, and (ii) G is a tree, i.e., a
connected graph with no cycles.

The first condition implies that all datafiles required by the
query are part of the access tree. The second condition ensures that
we have a valid and minimal solution: (i) Valid: because Gg is
connected, there exists at least one path between Ag and Ay;, which
denotes the materialized datafile and the sequence of deltas to
apply to reconstruct Ay, (i) Minimal: because G¢ is a tree, for
every Ay, € Ay, Go contains exactly one path from Ag to Ay, .

We define the cost of an access tree as the sum of weights of

all edges in it, i.e., C(Gp) = ZeeEQ we. When the edge weights
correspond to the sizes of the deltas, this definition captures the
cost metric mentioned above. To address the problem of identifying
the least cost access tree, we consider two cases, k = 1 and k£ > 1.
We refer to these as single datafile access and multiple datafile
access respectively.
Single datafile Access: When k = 1, A} = {Ay,}. Any A to
Ay, pathin G satisfies the conditions of an access tree. Thus, finding
the least cost access tree amounts to finding the shortest path between
Ap and Ay, and we use the classical Dijkstra’s algorithm.

Multiple datafile Access: When k > 1, the problem of finding
a low cost access tree is equivalent to finding a Steiner Tree [33].
Here, the set of nodes Ay U Ay act as terminals and our objective is
to find a minimum cost Steiner tree that contains all of them. This
problem is AP X-Hard, i.e., arbitrarily good approximations cannot
be achieved in polynomial time (unless £ = N'P). In this work, we

use the classical 2-approximation algorithm, which finds a tree with
cost at most 2 times the optimal.

ExampLe 8. Consider the query CaEckout({Ag, Ag, Ag, A12})
on the storage graph in Fig. 3(a). Fig. 3(c) shows the least cost
access tree for this query.

3.3 Search Space

Cost-based optimization requires us define the search space of
potential, equivalent plans. The search space that we use in this
work revolves around two equivalences: (i) associativity of the
patch operation, and (ii) De Morgan’s laws for set theory. We can
thus generate equivalent evaluation plans by repeatedly applying
those equivalence rules. Unfortunately the number of different
evaluation plans is very large, even with just the first rule (§ 4.1).
Unlike relational query optimization, the set of potential intermediate
results is not easy to define either, and thus this problem does not
seem amenable to dynamic programming-style algorithms used
there. We instead take a hybrid approach where we use a series
of heuristic transformation rules, based on De Morgan’s laws, to
simplify the expressions, and use a dynamic programming-based
algorithm (that exploits the associativity of patch) to optimize the
sub-expressions in the simplified expression.

Apart from generating alternative query expressions using logical
equivalence rules, it is also possible to expand the search space
of candidate plans by considering the impact of physical access
structures on the data, e.g., secondary indexes. For instance, B-Trees
on datafiles or deltas can be helpful when records are filtered on
some attribute, bloom filters on deltas can help in evaluating queries
like set difference, and so on. Additional considerations also arise
when a join result is required across multiple versions — the delta
chains for the different sets of datafiles (corresponding to the different
relations) may not be “aligned” and the access tree selection will
have to consider possibility of “joint” optimizations. Understanding
this search space further, especially for richer queries involving joins
and aggregates, remains a rich area for future work.

3.4 Cost and Cardinality Estimation

The cost of executing any of the set operations mentioned so far
depends on the physical datafile format and the specific implemen-
tation of the operation. Since there exist several implementations
for the set operations, there exist several cost functions. In DEX, the
primary method of storing a datafile is clustered storage. In this
method, records are stored in a sorted manner based on a suitable
derived key (e.g., SHA1). There are several algorithms for evaluating
a set expression between two or more operands based on this storage
format and we outline our choices next alongwith their respective
cost. To keep the discussion simple, we describe algorithms and
their respective cost functions when all input data for a specific
operation fits in memory and there is no paging of intermediate
results to disk. Even if some deltas are large enough to require using
disk, most of the algorithms below access the deltas sequentially
and thus can be used with small modifications. We note that our
optimization algorithms are largely agnostic to the specific choices
for operator implementations, and can be used as long as the costs
of the operations can be estimated.

Intersection: To compute the intersection of / datafiles, Ay, ..., A,
we use an adaptive algorithm introduced in [19] called Small Adap-
tive (SA). SA first sorts the set of input datafiles according to their
size. For each element in the smallest datafile, SA performs a
gallop search on the second smallest datafile. A gallop search
consists of two stages. In the first stage, we determine a range in
which the element would reside if it were in the datafile. This

176

range is found by identifying the first exponent j such that the
element at 2/ is greater than the searched element. In the second
stage, a binary search is performed in the range (271, 2/) to find if
the element exists. If found, a new gallop search is performed in the
remaining [— 2 datafiles to determine if the element is present in
the intersection, otherwise a new search is performed. After this step,
each datafile has an examined range (from the beginning to the
position returned by the current gallop search) and an unexamined
range. SA then selects two datafiles with the smallest unexamined
range and repeats the process until one of the datafiles has been
fully examined.

Because intersections only make sets smaller, as the algorithm
progresses with several sets, the time to do each intersection effec-
tively reduces. In particular, as pointed to in [19], the algorithm
benefits largely if the set sizes vary widely, and performs poorly if
the set sizes are all roughly the same. Since one gallop search takes
O(logi) time, where i is the index where the element would be in
the datafile, we can model the worst case cost of intersection as,

Cn(Ar,.... Ap) = 1| Ay | log(|Ar]/1A1]), 2
where A| and A; are the smallest and largest datafiles respectively.

Union: To take a union of / datafiles {Ay,..., A;}, we perform a
linear scan over all lists to merge them, and output the result.

Cu(Ay,.. ., A = A+ + 4] (3)

Set Difference: To compute the set difference A; — Ay, we choose
the better among the following two based on input sizes: perform a
linear scan over both datafiles and use a merging algorithm, or for
each element in Ay, perform a gallop search on Aj;, including the
element in the output if the search fails. This can be captured using
the cost function,

C-(A1, Ay) = min{|A] + |Az]. [A1[log(|A2|/|A1 D} (4

Patch: This is a binary operation where the two inputs are either (i)
adatafile (M) and adelta (A), or (ii) two deltas (A and Ay). In the
first case, the output datafile can be computed by performing one
linear scan over each of M, A* and A~ and evaluating Definition 3,
making the cost function,

Co(M.A) = |M| +|Al. ©)
Typically, |[M| > |A7|, and we use the linear scan approach to
compute the set difference. In the second case, the output A can be
computed by evaluating Definition 5. Note that the datafiles of

A, are scanned twice, once to compute A and once to compute A~
Thus, the cost function is given as,

Co(A1,A2) = |Aq] +2]|As]. (6)

Cardinality Estimation: Because we restrict the search space as
discussed in § 3.3, we require intermediate result size estimates only
when two deltas are patched.

A1 A2 A3

Oz 00

Let A = A} & Ay, where A} and A, are deltas between three
datafiles as above. Let x = |A7| and y = |A*|. We want to
estimate x and y. By definition, A is a consistent delta between A
and Aj. Therefore, |A3] = |Aj| — x + y. Since |A|| and |A3] are
known, we can estimate x from y, or vice versa.

From Definition 5 we can obtain intervals for both x and y as,

x € [max(0, [AT] = A3) + A7 | 1AT |+ 147 1],
y € [max(0, [AT| - [A7]) + AT AT | + 1A]] -

We estimate the quantity with the smaller interval, where the value
is chosen uniformly at random from the corresponding interval.

4. QUERY EXECUTION ALGORITHMS

Next we present a series of algorithms for cost-based optimization
for each of the different query types.

4.1 Checkout Queries

Let CueckouT(Ay) and G denote a checkout query and its access
tree resp. We first consider the case when k£ = 1 (single datafile
checkout) followed by the case k > 1 (multiple datafile checkout).

4.1.1 Single datafile Checkout

Recall that the access tree QQ, when k = 1, is the shortest path from
Ap to Ay, in G. The delta expression for single datafile checkout
is therefore, of the form, Q : M ®@ A} ® Ay & - - - & Ay, where M is
the materialized datafile.

Evaluation Algorithms: Since the @ operation is associative, we
can evaluate Q in multiple ways by changing the placement of
“parentheses”. For instance, one method is to evaluate the expression
from left-to-right, i.e., Q : (M ®A1)®A)®---®Ay,). Alternately,
we can evaluate the expression from right-to-left, or in any arbitrary
fashion that repeatedly combines two operands at a time, until we are
left with the result. These evaluation methods, in general, will have
varying costs. The total number of evaluation orders is equivalent to
the classical problem of counting the number of ways of associating
m applications of a binary operator, and is given by the (m — 1)th
Catalan number, which is Q4™ /m3/?2).

Note that a greedy algorithm that iteratively combines two deltas
having the least cost is not always the optimal strategy.

ExampLE 9. Consider the expression, Q : A| & Ay & Az, where
the deltas are such that |A1| = x, |Ay| ~ |A3] = y, x < y. Intuitively,
the deltas Ay, A3 are larger compared to Ay and they are such that
they almost “undo” each other. The greedy algorithm will pick the
plan (A1 ® Ap) ® Az with estimated cost =~ 2x + 5y, while the optimal
plan A} & (Ay ® A3) has cost ~ x + 2y + 2¢&, where € = |Ay @ Az].

For sake of completeness, we have reproduced the classical
dynamic programming algorithm to select the (estimated) best
evaluation order in Appendix A.1. We call this the path contraction
(PC) algorithm. We use PC extensively in subsequent sections to
determine the best evaluation order to combine a sequence of deltas.
The runtime of PC is ®(m°>) where m is the number of deltas.

As discussed in § 3.3, we have syntactically restricted the space
of alternative evaluation plans for checkout by only considering the
associativity of the patch operation. Although additional transforma-
tions could be used to expand the search space, we could not identify
any such transformation rules for checkout that were effective outside
of pathological cases.

4.1.2 Multiple datafile Checkout

Since G is a tree, there exists exactly one path from Ag to each
A; € Ay. Let p(A;) denote the sequence of deltas on this path. A
straightforward method to evaluate the query is to consider the delta
expression for each A; based on the deltas in p(A;) and use PC to get
the optimal execution order. However, doing so does not take into
account the opportunity for shared computation. Specifically, two or
more paths may share sub-expressions and we end up evaluating a
sub-expression multiple times if we consider each path independently.
We illustrate this with the help of an example.

ExampLe 10. Consider the query CHeckout(Ag, Ag, Ag, A12)
and the access tree in Fig. 3(c). We write one expression for each of

177

Ag, Ag, Ag and Ay respectively, as follows,
QA ®A(A], Ar) ® A(Ap, Ag) ® A(Ag, Ag);
A ® A(A1, A3) ® A(A3, As) @ A(As, Ag);
A & A(A1, A3) © A(A3, Ag);
A; ® A(A1, A3) © A(A3, Ag) ® A(As, A10) ® A(A10. Ar2)

Note that if we evaluate each of these independently, based on how
the parenthesization is performed, we will evaluate A} & A(A1, Az)
thrice, or A(Aq, A3) ® A(A3z, Ag) twice.

Evaluation Algorithms: The above can be seen as the problem
of how to plan the execution of a batch of queries, where each
query is a single datafile checkout, analogous to multi-query
optimization. The goal here is to design a strategy that recognizes
the possibilities of shared computation so that we can re-use the result
of sub-expressions to the extent possible in order to obtain a globally
optimal evaluation plan. To that effect, we develop a dynamic
programming algorithm, called tree contraction (TC), to select the
best evaluation plan after accounting for shared computation. At
a high level, TC breaks up the problem into two questions: how
do we decide which sub-expressions to share and how do we best
parenthesize each (sub-)expression? We already know how to
compute the solution for the latter using PC. The solution to the
former is based on enumerating all possibilites for sub-expression
sharing and recursively solving the rest of the problem with the help
of the extra state information computed during PC. The pseudocode
of TC is shown in Appendix A.2, and its time complexity is O(m3)
where m is the number of deltas in the access tree.

Before we conclude this discussion, it will be helpful to understand,
as the following example shows, why a simple greedy strategy of
always sharing the largest possible expression (from left to right) is
not always optimal.

ExampLE 11. Consider the following access tree to checkout A3
and Ag.

M Ay A, Ay A

Ay Ay A3 A;

The instance is constructed such that Ay, A3, Ay are large (say,
y & |Ap| = |Az] = |Ay|) and Az, Ay “undo” most of the changes done
by Ay. Ay is asmall independent set of changes, say, x = |A|, x < y.
The greedy strategy will force us to share A" = Ay & Ay and
|A’| ~ x + y. Thus the cost of the greedy strategy is ~ 3x + 8y. On
the other hand, evaluating A| & (A & A3), A| & (A ® Ay) incurs a
cost = 2x + 6y.

4.2 Intersection Queries

Given an intersect query /(A) and its access tree G, a straightfor-
ward method, that we treat as a baseline, is to first use TC to perform
CHeckouT(Ay) followed by the intersection. This approach, how-
ever, only considers the associativity of patch and the sharing of
sub-expressions in order to find a good evaluation order. We now
develop a set of transformation rules on the access tree that allow us
to compute partial intersection results using only the deltas. Since a
delta between two datafiles already captures a notion of difference
between them, we leverage this information and avoid redundant
computation while finding the intersection.

The transformation rules are based on identifying two simple
structures in the access tree G, called line and star (Fig. 4). In
each figure, we use boxes to denote datafiles in Ay and circles to
denote other datafiles. Also, if a box or circle is filled, it denotes
a materialized datafile.

Line Access Trees: Consider the query I(A}, A>) withthe datafiles
as arranged in Fig. 4(a). Here, A; is the materialized datafile

(b)
Figure 4: (a) A line of two or more datafiles; (b) A line when the
materialized datafile M is not a part of query input; (c) A star.

while Aj is stored as a delta from Aj. It is easy to see that:
R:AlﬁAzzAl—AI.

In general, for the query I(Ay) with the datafiles as arranged in
Fig. 4(a), the result R is computed as,
R=IA)=A1—-(Aj U---UA_)) @)
Note that the above equality does not hold if there are other
datafiles in Gp even if G is a line. We use this equality to
introduce our first transformation rule that “reduces” the deltas in a
line structure to a single delta that gives the result for the intersect
query. Conceptually, this reduced delta acts as a delta between two
datafiles: the same materialized datafile as in the line and a
(new) datafile representing the intersection result.

T1:— If Ay,...,Ag_; are the deltas in the line, then the reduced
delta, A;, for the intersect query is composed as,

- AT UAZ - . At -
Af =ATUASU-—UA ;5 Af =0

This transformation rule significantly reduces the amount of data
that needs to be subsequently processed.

To handle the case when the materialized datafile is not a part of
the line, as in Fig. 4(b), we use a two-step approach. First, assuming
that A; is the materialized datafile and we can use rule T1 to
compute the reduced delta A;. Second, we can contract A and
A; since they share the datafile Aj. The result is computed as
R=MaAaA.

Next, we discuss how to evaluate eq. (7). Consider the identity,
X-YUZ)=(X-Y)-Z,forthree sets X, Y, Z. If |Y|, |Z] < | X]|,
observe that X — (Y U Z) will often have less cost than (X —Y) — Z.
Intuitively, if we do the set difference first, then |X — Y| will be
comparable to | X| and will end up being scanned again. Specifically,
under the cost model stated in §3.4, when |X| > 3 max(|Y|,|Z|),
performing X — (Y U Z) will result in a reduced cost. We therefore
use the following greedy heuristic when evaluating eq. (7).

Hl1:- Let £ = {AI, .. .,AI;_I}, R = M. We iteratively perform the
following until £ is empty: let A’ be the largest size delta in
L. If |R| > 3|A’|, we replace the largest two deltas in £ by
their union; else, we set R = R — A’.

Star Access Trees: Consider the query I(A}, Ay) withthe datafiles
as arranged in Fig. 4(c). Here, M is the materialized datafile and
A1 and Aj are stored as deltas from M. We have that:
R=A;NAy=(M—-(A] UAY)) U(A] NAY)

To see why, recall that A" indicates the set of records to be removed
from M to get A;. Hence, no record in A; can be a part of the
intersection result. Additionally, new records (that do not exist in
M) can be added only if they belong to all of Alf.

In general, for the query I(Ay) with the datafiles as arranged
in Fig. 4(c), the result R is computed as,

R=I1(A) = (M - (u{;lA;)) U (kA @)

The result R is written in terms of the materialized datafile M.
This leads us to our second tarnsformation rule that “reduces” the
deltas in a star structure to a single delta that gives the result for
the intersect query. Conceptually, this reduced delta acts as a delta
between M and the intersection result.

178

T2:— If Ay, ..., Ay are the deltas in the star, then the reduced delta
Ayg, for the intersect query is composed as,

- —k A-. + kAt
Ag =Uin A Ag =04

We use H1 to evaluate Equation (8). Since none of Alf can help
reduce intermediate result sizes, the intersection of Al.*s can be done
independently. Finally, we also make the following observation.

OBSERVATION 12. A; and Ag are consistent.

Arbitrary Access Trees: We develop an algorithm, called Contract
and Reduce (C&R), that puts the above two techniques together for
arbitrary access trees. With minor modifications, the same algorithm
can be used for other types of queries, and hence we describe its
general form. The pseudocode for C&R is shown in Appendix A.3.

Starting with a query Q € {I,U,T;}, and its access tree G as
inputs, C&R iteratively evaluates partial delta expressions, effectively
reducing the size of Gp. Each iteration of the algorithm has two
phases: contract phase and reduce phase. In the contract phase,
we identify all maximal continuous delta paths: a path where all
nodes, except the start and end node, have exactly 2 neighbors, and
none of the intermediate nodes is a part of Ay. Each path should be
of length > 2 and be the longest possible. Every such path is then
contracted to a single delta using PC. Specifically, if Ay,..., A, is
the sequence of deltas on the path between two nodes Ay and Ay in
G, we use PC to find the best order to evaluate A, = A1 & -+ ® Ay,
execute the operations, and replace the sequence by the delta A,
between Ay and Ay,.

In the reduce phase, we find all lines and stars in G and reduce
them according to the appropriate transformation rules — T1/T3 for
lines and T2/T4/T5 for stars. Each transformation takes as input
two or more deltas, either in a line or star configuration, and replaces
them by a single delta. Note that if all paths are contracted, and
number of deltas in G is more than 1, there will at be at least one
reduction to be performed.

The algorithm ends when there is only one delta remaining in
G- At this point, we simply apply the delta to the materialized
datafile in G and return the result. We illustrate the behaviour
of the algorithm with the help of an example in Appendix A.3.

4.3 Union

In this section, we give transformation rules for /ine and star for
the query U(Ay). We can then use C&R with the mentioned rules to
evaluate arbitrary access tree structures.

Line: Consider the query U(Aj) with the datafiles as arranged
in Fig. 4(a). Then: R = A U (UL, A).

The transformation rule for a line can therefore be stated as,

T3:— If Ay,...,Ar_ are the deltas in the line, then the reduced

delta, A;, for the union query is composed as,

-_0n + _ |k +
Ap =0, A=V A
Star: If the datafiles are arranged as shown in in Fig. 4(c), we
have that: R = U(Ay) = (M - (mjf:lA;)) U Uk AN,

=171
To see why, since A} indicates the set of records to be removed from
M to get A;, if a record is absent in the union, it must have been
present in all A;". New records that are added in any A;“ are a part

of the union result. Then:

T4:— If Ay, ..., Ay are the deltas in the star, then the reduced delta
Ay, for the union query is composed as,

- _ R~k -. + _ |k +
Ay =MisiAis Ay =V 4
We conclude this section by mentioning that similar to the inter-
section case, A; and Ag, for the union query, are consistent.

4.4 :-Threshold

In order to evaluate a 7-threshold query 7;(Ay), we make use of
multiset-backed deltas during intermediate query execution, instead
of the set-backed deltas that we have been using so far. This
introduces two important issues during the execution of C&R that
are the main focus of this section. First, we need to re-define the
semantics of delta contraction in this new setting. Second, a line
cannot be reduced in a straightforward manner as before. We begin
with some definitions, describe the transformation rule for a star,
and then discuss each of two issues in detail.

A multiset, unlike a set, allows multiple instances of any of its
elements. We represent a multiset as A = {(r,¢) : ¢ € Nx1}, where
r is an element and N is the set of natural numbers. The number
¢ is referred to as the multiplicity of 7. A set is a multiset with all
multiplicities as 1.

Consider the following two operations concerning multisets.

DeriniTiON 13 (MuLtiset UNION). Multiset union, denoted by
A = A W Ay, returns a multiset containing elements that occur
either in Ay or Ay, where Ay and Ay are either multisets or sets.
The multiplicity of an element in A is the sum of its multiplicites in
Ay and Aj.

DeriNiTION 14 (MULTISET RESTRICT). If A is a multiset, Ac<p
is the set of elements in A with multiplicity at most p. Similarly,
Ac>p is the set of elements with multiplicity at least p.

We now describe how to evaluate T; (A) when G is a star.

Star: Consider the query R = T3(Ay), i.e., find all records that
appear in at least 3 of {Ay, Ay, A3, A4}, when they are arranged in a
star (Fig. 4(c)). Suppose the delta A is such that A~ = AI (C] AE (C]
A7 WA and AT = AT W A; WAt w AI. Here, A~ and A* are
multisets, and A is a multiset-backed delta. Then:
R=T3(Ay)=(M~-A__,)UA"

c>2 c>3
To understand why, consider a record (r, ¢) € A™. This indicates that
r € M and c of 4 deltas, {A], A5, A3, A}}, ask to delete r. So long
as ¢ > 2, r will absent from at least 2 of {A1, Ay, A3, A4}. Similarly,
consider a record (s, ¢) € A™. This indicates that s ¢ M and ¢ of 4
deltas, {Al_, A7, Ag, AZ}, ask to add s. So long as ¢ > 3, k will be
present in at least 3 of {A}, Ay, A3, As}.

More generally, the transformation rule for a star can be stated as
below.

TS5:— If Ay, ..., Ay are the deltas in the star, then the reduced delta
Ay, for the z-threshold query is composed as,

- —_wk A—. + _ wk At
As =9 A5 As =94

We note the following: (i) With every multiset-backed delta, we
keep an integer value 2 < p(A) < k which indicates the number
of datafiles in Ay that are reduced by this delta. For instance,
p(A) = 4, in the previous example. In general, the access tree will
have several disjoint stars (or lines) which are reduced at different
times in the evaluation process. We discuss how p(A) is used shortly.
(ii) The deltas A;Z ket +]) and A:Zt are consistent.

We now describe the semantics of the patch operation in the
presence of multiset deltas.

Delta Contraction: Algorithm 4, shown in Appendix A, computes
the result of A = Ay @ Ay, where Ay, is a multiset delta. Note that
due to the nature of C&R, only the last delta in any sequence of deltas
can be a multiset delta. The result delta A is also a multiset delta.
The main idea here is to preseve semantics of two values: (i) the
multiplicity ¢ of a record r, and (ii) the number of datafiles that
are reduced due to the delta, p(A). Since this is a patch operation,

179

we can simply set p(A) < p(Ay). Recall that a record (r’,¢”) € Aj
indicates that ¢’ of p(Ay) deltas ask us to remove r’. Now consider
arecord r € A, If r ¢ Aj, then we can add (r, p(Ay)) to A*.
However, if r € Ay, then we need to “fix” the multiplicity of r, i.e.,
add (r, p(Ay) — ¢) to A*, where c is the multiplicity of r in AS. The
other case is similar.

We use Algorithm 4 in place of the patch operator defined in §3.4
when one of the operands is a multiset delta. Its estimated cost is
modeled as, Cg(Ax, Ay) = [Ax| + 2|Ay|, and we can use PC during
the contract phase as before.

Line: Consider the query, R = T>(Ay), with the datafiles as
shown below. Ap A A A AL A
%_J
A,

Consider a record r such that r € AT, and r € Ay. Although r is
present in two opposite deltas, » € R. More generally, in the case
of t-threshold queries, simply knowing whether a record is in A7
or Alf is not sufficient to conclude if it is present in the result. We
also require knowledge of the “position” of the delta containing the
record on the line. Alternately, we can reduce the line by considering
deltas in right-to-left order, by the following simple modification
to Algorithm 4. Suppose that we know how to contract Ay & A3
to obtain a multiset delta Ay as shown. We show how to modify
Algorithm 4 to compute A = Ay ® Ay. The central idea is again to
set record multiplicites and p(A) correctly. Note that p(Ay) = 2, as
it reduces A3 and A4. Since, A is also meant to reduce A,, we set
p(A) = p(Ay) + 1 (line 1). Consider a record r € A;’. Ifr ¢ Ay,
then we can add (r, p(Ay) + 1) to A™ (line 6). On the other hand,
if r € Ay, we add (r, p(Ay) —c + 1) to A" (line 4) where c is the
multiplicity of r in AJ. The other case is similar.

S. EXPERIMENTAL EVALUATION

In this section, we present a comprehensive evaluation of our DEX
prototype. The key takeaway from our study is that, pushing down
computation to the deltas can lead to signifincant savings, an order-of-
magnitude in many cases. Surprisingly, even for a single datafile
checkout, we see large benefits in the computational time. We
also show, through an illustrative experiment (Appendix D), that
using auxiliary data structures like bitmaps can increase the benefits
many-fold, indicating that this is a rich direction for future work.
All experiments were conducted on a single machine with Intel
Core i7-4790 CPU (3.60 GHz, 8MB L3 cache), 32GB of mem-
ory, running Ubuntu 16.04 and OpenJDK 64-bit server JVM (ver.
1.8.0_111). Our choice to write the query processor in Java was
primarily based on getting quick development time while still being
reasonably performant on large datasets. While using a low-level
language (e.g., C) will reduce the absolute query execution times, it
will not change our primary objective which is to measure relative
speedup of our techniques compared to the baseline. All time mea-
surements are recorded as wall-clock time. Unless otherwise stated,
to measure response time, we run each query 10 times and consider
the median. To account for the adaptive performance of some of
the set operations, we repeat the above on 25 datasets with identical
properties (described next) and report the median. As discussed
in § 3.4, our computations are CPU bound, and we did not find an
appreciable difference in warm cache vs cold cache settings; for
consistency, we report results for a warm cache setting.

Datasets: Lacking access to real-world versioned datasets with
sufficient and varied structure, we instead developed a synthetic data
generator to generate datasets with very different characteristics for a
wide variety of parameter values. This enables us to carefully study

Time (Seconds)

150 30 60
HLR B Greedy mPC H LR HGreedy mPC Naive B PC M Greedy mTC
=25 gso
100 220 2 10
3 3
215 § 30
50 I | g 10 I g 20
i =
o . L Al
o [/ H- I- I- n | | I 0 - | [| l I 0 — I I. u 1 I I
25 50 75 100 150 200 300 im 2M 3Mm am 5M 25 50 75 100 150 200 300

Number of deltas
Figure 5: Effect of varying #A when [A| = 5%

the performance of our techniques in various settings. Formally, ev-
ery experiment setting is characterized by a 4-tuple, (T, |A|, |A|, #A),
where |A| and |A| refer to the average number records in a datafile
and average size of the deltas in the dataset (as a percentage of |Al).
T denotes the shape of the access tree that is used, and is one of:
line-shaped (1), star-shaped (s) and line-and-star (Ls); and #A refers
to the number of deltas in the access tree. All records are 64-byte
randomly generated strings. For more details on dataset generation
process, please see Appendix B.

Single datafile Checkout: We begin with evaluating the perfor-
mance of PC, i.e., Algorithm 1, against two heuristics for the case of
single datafile checkout. Fig. 5 shows the median response time of
this analysis (in milliseconds) on the vertical axis, and the horizontal
axis is the number of deltas (#A) in the expression. The other
parameters of the dataset are fixed at (T = [, |A| = 3M, |A| = 5%).

The LR heuristic simply evaluates the delta expression from left-to-
right starting with the materialized datafile. This is the standard
heuristic used in prior delta-based storage engines, like git. On the
other hand, the GREEDY heuristic iteratively patches two operands
having the least estimated cost.

We observe that in each instance, PC performs better than GREEDY
which performs better than LR. Specifically, we note up to 7.0-8.8X
improvement in median response times when comparing PC with LR
and up to 14% improvement when comparing with GReepy. The
performance gap between LR and the other methods also increases
slightly as the number of deltas goes up. This is because the left
input of every patch operation in LR has a large size, in contrast
to both GREEDY and PC, that “balance” their inputs in a cost-based
manner. Also, because we assume that every record in a datafile
is equally likely to be modified and there is no set of “hot” records,
i.e., records that are modified often, we observe that the intermediate
result sizes continue to grow in GREEDY and PC as well. We observe
similar trends for other delta sizes and omit their results.

Next, we study the effect of varying average datafile size on the
response times. Fig. 6 shows the result of this study on the dataset
(T = 1,|A| = 1%, #A = 100) when |A]| is varied from 1 million
records to 5 million records. In this case, we observe a 8.9-10.5X
speedup when compared to LR, with the GREEDY solution being
approximately close to PC.

Finally, although PC has cubic time complexity in the number of
deltas, the solutions it finds are, in all cases, better than alternatives
even after taking optimization time into consideration. When
#A = 100, the average time to find the optimal solution was 1.2ms.

Multiple datafile Checkout: We now evaluate the time taken to
checkout k = 8 datafiles on the dataset (T = Is, |A| = 5%, |A| =
IM). We evaluate TC, i.e., Algorithm 2, by comparison against three
approaches. The Na1ve approach simply performs a checkout of
each datafile independently using LR. The second approach uses
PC to checkout individual datafiles. Both these approaches do not
take into account sharing of intermediate results. The third approach,

Average datafile size

Figure 6: Effect of varying |A]|

180

Number of deltas

Figure 7: Effect of varying #A when [A| = 5%

Checkout N Intersect ® C&R

i

7722272222222
-3
IS
1=}
724

N
o
i
~
i

=
€]

©
N

©

N}
~
w

=
o
[A R AN B AR A)
~
SN

o
~

IS

~

w
~
Y, -
A

I

Time (Seconds)

7zzzzZZZ7Z~773

IS
[N}
%23

W -

o
N
=}

26

LI B B B
2 4 6 810

w

7

ZZZ R

7
D
Z

7

2 4 6 8 10

(I

2 4 6 8 10

Query size (k)
(b) T=I

Figure 8: Effect of access tree structure when [A| = 1%, #A = 100

o

(a) T=s (c) T=Is

20 +
1 Checkout N Intersect W C&R 2.4
] 4.4
—] 6.9
215 1.9 167 77
<] 236 104
g 0] 23 25.1
b 2.9
2 1 6.7 4
g 1 132 53
= 5 {166 |
0J'- 'a [| I I T | I I I
o 1n O n O O O O O 1n O 1n O O O O
— NN ~NO Wn O O - NN ™~NO Wn O O
- = N ™M - = N ™M
Number of deltas
(a) k=4 (b) k=8

Figure 9: Effect of query size when [A] = 1%

called GREEDY, shares the results of the largest sub-expressions as
much as it can (e.g., for two datafiles, the result of the expression
from the root of the access tree to their lowest common ancestor is
always shared).

Fig. 7 reports the median checkout time (in seconds) as the number
of deltas (#A) in the access tree is varied. We observe that overall
GREEDY and TC have similar response times and TC performs slightly
better than GREEDY in each case (between 7.2 —10.8% improvement).
Also, when compared to Na1ve, we observe a 5.1-6.8X improvement
in median response time.

The average optimization time when #A = 300 was 18.4ms.

Intersect: In the following set of experiments, we compare the
running time of evaluating /(A) using two algorithms. The baseline
approach simply performs a checkout of all the datafiles in Ay
using TC, followed by their intersection. The second approach
measures the performance of C&R, i.e., Algorithm 3.

Because C&R makes decisions based on the shape of the access
tree, we first study the effect of varying the shape of the access
tree on intersect performance. Fig. 8 shows the median response
time against the query size for the three types of access trees: line,
star, and line-and-star. The other parameters of the dataset are
(|A] = 3M, |A| = 1%, #A = 100). The numbers on top of each bar
indicate the speedup obtained. We note speedups of upto 12X when
using C&R. The speedup obtained for 7 = / is smaller than others

18 4

1 1M -2M-+3M-e-4M=5M 1% 2% +-3% 4% *5%
14 E
o 12 3
310 e
(9}
g8 :
(%] 6 3
4 3
2
O a
2 4 6 8 10 2 4 6 8 10
Query size (k) Query size (k)

Figure 10: Intersect — Effect of |A| Figure 11: Intersect — Effect of |A|
primariliy due to the shape of the access tree — in a line, the smallest
path between root and a query datafile cannot be reduced using
any of the tranformation rules and must be contracted using PC.

In the next experiment, reported in Fig. 9 we study the effect of
varying the number of deltas in the access tree of I(Ay). Here,
we use the dataset (T = Is,|A| = 3M, |A| = 1%) and vary #A; we
report the results for k£ = 4,8. As we can see, our techniques are
particularly effective, giving a speedup upto 16X and 25X, for k = 4
and k = 8 respectively. The speedup decreases as the number of
deltas increases primarily due to larger intermediate delta sizes.

Fig. 10 shows the speedup obtained when the average datafile
size is varied between 1M and 5M records; other dataset parameters
are (T = Is, |A] = 1%, #A = 50). We observe that our techniques
show significant benefit, obtaining upto 17X speedup. Further, we
note that datafile size does not affect C&R to a large degree.

Fig. 11 reports the speedup obtained when the average delta size
in the dataset, |A|, is varied between 1% and 5% of the average
datafile size; other dataset parameters are (7' = Is, |A| = 3M,#A =
50). We note a speedup of 2.8-16X when |A| = 1% that decreases
gradually to 2-6X when |A| = 5%. This confirms our hypothesis
that if the deltas between the datafiles are small, significant
improvements can be obtained by using the deltas in query execution
in a more direct manner. When the deltas get large, the intermediate
result sizes grow too, which results in a reduced speedup.

Union: The results for U(Ay) are similar to the intersection case
although with smaller speedup values. We report one such result
in Fig. 12: the effect of varying query size (k) for datasets with
different average delta size |A|. The other parameters of the dataset
are (T = Is,#A = 50,|A| = 3M). We note a speedup of 1.6-8.6X
when |A| = 1% that decreases gradually to 1.5-4.1X when |A| = 5%.

t-Threshold: We use the adaptive algorithm of [8] as a baseline for
our t-threshold experiments. Similar to adaptive set intersection,
this algorithm uses gallop search in order to find the position of an
element 7 in a set. Moreover, it maintains a min heap of size k —¢ + 1,
containing at most one element per set, in order to select a “good”
element to probe other sets during each iteration. Fig. 13 reports
the effects of varying (k, r) across datasets with different delta sizes.
The other parameters of the dataset are (T = s, #A = 50, |A| = 3M).
We observe a speedup of 3.5-5X when |A| = 1% that gradually
reduces as the delta size increases. When |A| = 5%, we report a
speedup of 2.1-3.1X. The overall speedup in this case is less than
that obtained in the intersection or union query because unlike the
two, the size of the intermediate results does not decrease when
transforming lines and stars.

6. RELATED WORK

Queries in delta-based storage: Delta encoding has been used
in a variety of systems to provide trade-offs among time, space,
and compression performance, e.g., to reduce data transfer time for

181

Speedup

O R NWA/RARULOON OO

1% 2% +3% 4% %5%

1% 2%

3% 4% %5%

10 4,3 6,4 8,6

Query size, Threshold (k,t)

10,8
Query size (k)

Figure 12: Union — Effect of |A| Figure 13: t-Thres. — Effect of |A|
text/HTTP objects [41], to reduce access time in a file system [39], to
store many versions of the generated artifacts in source code control
systems (e.g., git) or other types of data [10, 40, 48]. Recently,
Bhattacherjee et al. [11] provided a principled study of the trade-off
between storage costs and access costs for many of the above schemes.
However, the focus of many of the existing delta encoding schemes
has been to access the objects in their entirety and to the best of our
knowledge, they have not considered the tradeoff between storage
and “computability over deltas”. Even version control systems that
provide functionality to compare multiple objects, e.g., merge, diff,
etc., first recreate all required files before operating upon them.
Recently, [49] presented an indexing technique to support “time
travel” queries for scientific arrays wherein they support approximate
queries that can quickly identify which versions are relevant to a
user and return the approximate content of these versions. However,
they did not consider queries that compared the contents of two or
more array versions.

Temporal indexing: There has been extensive research on temporal
databases [44], and to some extent, versioned databases. Such
systems have proposed various index structures to store and access
historical data. For instance, Postgres used R-trees [29] to index
historical data, with recent data residing in a B+Tree. More recently,
Oracle 11g supports “Total Recall” feature [4] that creates read-only
archives to support long-term archiving of versions. Immortal DB,
which was built into Microsoft SQL Server, integrated a temporal
indexing technique called the TSB-tree [37, 38] to provide high
performance access and update for both current and historical data.
Such systems and index structures, however, were meant for either
fast complete version access or single record access to historical
data. Moreover, their data structures are optimized to support a
linear, temporal chain of versions.

Buneman et al. [14] proposed an archiving technique based on
identifying changes to (keyed) records across versions, specifically
temporal versions of hierarchical data, that are then merged into one
hierarchy represented in XML format. Because they also compared
against a diff-based storage solution, we present a brief comparison
to highlight the respective strengths and weaknesses of the two
strategies. Broadly stated, their scheme, henceforth referred to as BA,
merges all hierarchical elements across versions into one hierarchy by
identifying an element by its key and storing it only once, along with
the sequence of version timestamps where the respective element
appears. We reimplemented their technique in our framework,
using either sorted lists or bitmaps to store the sequence of version
ids where an element appears (see Appendix C for more details).
Buneman et al. compared the performance of their archiver against
two approaches based on deltas: (i) “cumulative diff”, where every
version is stored as a delta against a common (typically first) version,
and (ii) “incremental diff”, or “sequence-of-deltas”, where every
version is stored as a delta against the previous version, resulting
in a line storage graph. However, cumulative diff has a large space

overhead [11, 14], and incremental diff results in large checkout
times due to long delta chains.

We consider single (k = 1) and multiple (k = 4) datafile
checkout on the dataset (|A| = 5%, |A| = 1M). Additionally,
for BA, we vary the number of datafiles (N) in the archive as
N =10, 50, 100, 250, 500, 1000. The bitmap implementation gives
superior performance (up to 19%) for N = 100 onwards and we
use that to report checkout time, while for N = 10,50, we use
the sorted list implementation. As noted previously, we can pack
approximately N = 80K datafiles in a storage graph (with certain
constraints) and get a delta chain of size at most 10 to checkout any
single datafile; therefore, we set #A = 10, 25 for fair comparison.

DEX; #A BA; archive size (N)

10 25 10 50 100 250 500 1000
k=11|125 550 97 388 659 1286 2677 5362
k=4 |263 483 | 144 596 1110 2484 5160 9550

Table 1: Median checkout time (ms) in DEX and BA

As we can see, BA performs better than a sequence-of-deltas
approach for checkout queries. When k = 1 storing N = 50
datafiles gives better response times in BA than storing N = 25
datafiles in a sequence-of-deltas approach (demonstrated by k =
1, #A = 25). However, checkout times for BA increase rapidly as the
archive size grows, and DEX is vastly superior to BA under more
reasonable assumptions about the storage graph (in the context of a
versioning/data lake scenario, it is not clear how to extend some of
the optimizations in [14] that depend on the linearity of timestamps).

In short, the main difference between DEX and the sequence-of-
deltas approach (that [14] primarily compared against) is that we
assume that the storage graph is constructed using a technique that
avoids very long delta chains (e.g., “skip links”-based approach [49],
techniques that balance storage and retrieval costs [11, 34], greedy
heuristic used by git, etc.). We further note that BA suffers from
three major limitations: (i) the entire archive must be read even when
checking out a single version, (ii) adding a new version requires an
expensive merge operation that scans the entire archive (unlike a
delta-oriented storage engine where only a single delta may be added),
and (iii) decentralization is much more difficult in BA (in theory one
could maintain multiple archives and merge them periodically, but
we are not aware of any work that has attempted that).

Deltas and computing: The concept of making deltas “first-class
citizens” was explored in Heraclitus [24]. To support “what-if”
scenario analysis, they provided general-purpose constructs for
creating, accessing, and combining deltas. In the specific realization
of their paradigm for the relational model, deltas are a set of signed
atoms where the positive atoms correspond to “insertions” and the
negative atoms correspond to “deletions”. In addition, the deltas
have structure and can be manipulated directly by constructs in
user programs, e.g., to delete all records satisfying a predicate. In
contrast, our use of deltas is at the physical level and not exposed
to the users. They do not consider optimizing the different types of
queries against a delta storage. Executing queries with hypothetical
state updates was also considered in [27]. Here the state updates (or
deltas) were allowed to be expressions and the authors considered
rewriting such queries into an optimized form based on their novel
rules for substituion and the rules for relational algebra. Such rules
are however not applicable in our setting. Record-based deltas
were also used in [26, 51] to provide the capability of sharing data
and updates among different participants. However, they focused
on formalizing the semantics of the update exchange process, e.g.,
mapping updates across schemas and filtering them according to
local trust policies, and the challenges introduced therein.

182

Connections to materialized views: Our techniques benefit from
good storage graph constructions. Several algorithms were proposed
in [11] to construct a storage graph that meets a specified set of
constraints on, e.g., storage cost and retrieval cost, while also taking
query workload into account. Similar problems have been considered
in the context of materialized view and index selection to speed
up query processing. Broadly speaking, research in this area has
focused on three issues: (i) determining the search space or class of
views to consider for materialization, (ii) choosing a subset of views
and indexes to materialize depending on various constraints like
storage overhead, maintenance overhead, effectiveness on the query
workload, etc., [5, 50] and (iii) quickly determining which views to
consider to answer a given query [25, 30]. In our problem setting,
set-backed deltas can be considered as a form of materialized views
(which can be used to reconstruct base relations), with this work
addressing the problem of how to use such views to answer queries.

Evaluating set expressions: Several algorithms and data structures
have been proposed in literature to solve union, intersection and
difference problems on sets [7, 18, 23, 32] by minimizing the number
of comparisons required. Although the ordered list representation
is the most common, some algorithms also consider representing
sets in other data structures, e.g., skip lists [47], machine word-
based representations [21], etc., to obtain additional speedup. A
comparison of few of these methods is available in [9, 19]. Speeding
up set operations is largely orthogonal to our approach and we can
make use of some of these techniques as additional operators with the
appropriate cost model. As mentioned earlier, in this work, we use an
adaptive set intersection algorithm that was shown to have reasonably
good performance in [19] without requiring any preprocessing
step. The larger problem here, however, is how to efficiently
evaluate a set expression consisting of union, intersection and
difference. [12] consider evaluating union-intersection expressions
in a worst-case efficient way for a non-comparison based model.
However, their approach uses hash-based dictionaries, which would
require an additional pre-processing step, and it remains an open
problem whether their results can be extended to handle set difference.
Recently, [36] showed that, for a similar cost model, a union-
intersection expression can be rewritten to perform intersections
before unions with often a reduced cost. Their approach, however,
did not consider rewrites in the presence of set difference.

7. CONCLUSION AND FUTURE WORK

With a growing interest in maintaining all data ever analyzed for
a variety of reasons including auditing and accountability, delta-
oriented storage engines (in the form of version control systems or
archival systems) are becoming increasing common. Such storage
engines contain a vast amount of useful information about how the
datasets evolved over time, what types of analyses were performed
over them, and their results; this opens up the door to executing
arich collection of introspective queries about analyses and work-
flows themselves. In this paper, we initiated a systematic study
of this problem, by formally analyzing a simple class of queries
and developing cost models and optimization algorithms for them.
As we showed, even these simple queries exhibit interesting and
unexplored computational challenges and the benefits of optimizing
their execution can be tremendous (orders-of-magnitude in many
cases). Generalizing the classes of queries and delta types are rich
directions for future work that we plan to pursue towards designing
a powerful, general-purpose query engine for such storage engines.

Acknowledgements: This work was supported by NSF under grants
[IS-1513972 and 1IS-1513443. We thank the anonymous reviewers
for their valuable feedback that helped us improve the paper.

8. REFERENCES

[1] https://github.com/attic-labs/noms.

[2] https://git-1fs.github.com/.

[3] Git Packfiles. https://git-scm.com/book/en/v2/
Git-Internals-Packfiles. Accessed: February 15, 2017.

[4] Oracle Total Recall with Oracle Database 11g Re-

lease 2. http://www.oracle.com/technetwork/database/

focus-areas/storage/total-recall-whitepaper-171749.pdf. Ac-

cessed: November 11, 2016.

S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated

Selection of Materialized Views and Indexes in SQL Databases.

In PVLDB, pages 496-505, 2000.

I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Aila-

maki. NoDB: Efficient query execution on raw data files. In

SIGMOD, pages 241-252,2012.

R. Baeza-Yates. A fast set intersection algorithm for sorted

sequences. In Annual Symposium on Combinatorial Pattern

Matching, pages 400-408. Springer, 2004.

[8] J. Barbay and C. Kenyon. Deterministic algorithm for the t-
threshold set problem. In Algorithms and Computation, pages
575-584. Springer, 2003.

[9] J. Barbay, A. Lépez-Ortiz, T. Lu, and A. Salinger. An ex-

perimental investigation of set intersection algorithms for text

searching. ACM Journal of Experimental Algorithmics, 2010.

A. P. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,

A. Elmore, S. Madden, and A. Parameswaran. DataHub:

Collaborative Data Science & Dataset Version Management at

Scale. In CIDR, 2015.

S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. Parameswaran. Principles of Dataset Versioning: Exploring
the Recreation/Storage Tradeoff. In PVLDB, pages 1346-1357,
2015.

P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union -
intersection expressions. In ISAAC, pages 739-750, 2007.

B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422-426, 1970.

P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving
scientific data. ACM Trans. Database Syst., 29:2-42, 2004.
S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap
performance with roaring bitmaps. Software: Practice and
Experience, 2015.

[16] A. Chavan, S. Huang, A. Deshpande, A. Elmore, S. Madden,
and A. Parameswaran. Towards a Unified Query Language for
Provenance and Versioning. 7aPP, 2015.

[17] J.Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren.
Provenance: A future history. In OOPSLA, pages 957-964.
ACM, 2009.

[18] E. Demaine, A. Lépez-Ortiz, and J. Munro. Adaptive Set
Intersections, Unions, and Differences. In SODA, pages 743—
752, 2000.

[19] E. D. Demaine, A. Lépez-Ortiz, and J. I. Munro. Experiments
on adaptive set intersections for text retrieval systems. In
ALENEX, 2001.

[20] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An
optimal decomposition algorithm for tree edit distance. ACM
Trans. Algorithms, 6(1):2:1-2:19, Dec. 2009.

[21] B. Ding and A. C. Konig. Fast set intersection in memory.
PVLDB, pages 255-266, 2011.

(3]

(6]

(7]

[10]

[11]

[12]
[13]
[14]

[15]

183

[22] F. Douglis and A. Iyengar. Application-specific delta-encoding
via resemblance detection. In USENIX Annual Technical
Conference, General Track, pages 113-126, 2003.

[23] Z. Galil and G. F. Italiano. Data structures and algorithms
for disjoint set union problems. ACM Comput. Surv., pages
319-344, 1991.

[24] S.Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevat-
ing deltas to be first-class citizens in a database programming
language. ACM Trans. Database Syst., 21(3):370-426, 1996.

[25] J. Goldstein and P-A. Larson. Optimizing queries using
materialized views: A practical, scalable solution. In SIGMOD,
pages 331-342, 2001.

[26] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.

Update exchange with mappings and provenance. In PVLDB,

pages 675-686, 2007.

T. Griffin and R. Hull. A framework for implementing hypo-

thetical queries. In SIGMOD, pages 231-242, 1997.

A. Gupta and I. S. Mumick. Maintenance of materialized

views: Problems, techniques, and applications. In Materialized

Views, pages 145-157. 1999.

A. Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD, pages 47-57, 1984.

A.Y. Halevy. Answering queries using views: A survey. The

VLDB Journal, 10(4):270-294, 2001.

P. Helland. Immutability changes everything. In CIDR, 2015.

F. K. Hwang and S. Lin. A simple algorithm for merging two

disjoint linearly ordered sets. SIAM Journal on Computing,

1(1):31-39, 1972.

R. M. Karp. Reducibility among combinatorial problems. In

Complexity of computer computations. Springer, 1972.

S. Khuller, B. Raghavachari, and N. Young. Balancing min-

imum spanning trees and shortest-path trees. Algorithmica,

14(4):305-321, 1995.

R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson,

M. Kirchberg, Q. Liang, and B. S. Lee. Trustcloud: A frame-

work for accountability and trust in cloud computing. In /EEE

World Congress on Services, July 2011.

T. Lee, J. Park, S. Lee, S. Hwang, S. Elnikety, and Y. He.

Processing and optimizing main memory spatial-keyword

queries. PVLDB, 9(3):132-143, 2015.

[37] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang,
and Y. Zhu. Immortal DB: Transaction time support for SQL
server. In SIGMOD, pages 939-941, 2005.

[38] D. Lomet, M. Hong, R. Nehme, and R. Zhang. Transaction
time indexing with version compression. In PVLDB, pages
870-881, 2008.

[39] J. MacDonald. File system support for delta compression.
2000.

[40] M. Maddox, D. Goehring, A. J. Elmore, S. Madden, A. G.
Parameswaran, and A. Deshpande. Decibel: The relational
dataset branching system. PVLDB, 9(9):624-635, 2016.

[41] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential benefits of delta encoding and data compression for
http. In SIGCOMM, pages 181-194, 1997.

[42] 1. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of
data cubes and summary tables in a warehouse. In SIGMOD,
pages 100111, 1997.

[43] E. W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, pages 251-266, 1986.

[27]

(28]

[29]
(30]

[31]
(32]

[33]

[34]

[35]

[36]

[44] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time
databases: A survey. IEEE Trans. on Knowl. and Data Eng.,
pages 513-532, 1995.

J. Paulo and J. Pereira. A survey and classification of storage
deduplication systems. ACM Computing Surveys, 2014.

S. Ronnau, J. Scheffczyk, and U. M. Borghoff. Towards XML
Version Control of Office Documents. In Proc. of the ACM
Symposium on Document Engineering, pages 10-19, 2005.

[45]

[40]

[47] P. Sanders and F. Transier. Intersection in integer inverted in-
dices. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, pages 71-83, 2007.

A. Seering, P. Cudré-Mauroux, S. Madden, and M. Stonebraker.
Efficient versioning for scientific array databases. In ICDE,
pages 1013-1024, 2012.

E. Soroush and M. Balazinska. Time travel in a scientific array
database. In ICDE, pages 98—109, 2013.

Z. A. Talebi, R. Chirkova, Y. Fathi, and M. Stallmann. Exact
and inexact methods for selecting views and indexes for OLAP
performance improvement. In EDBT, pages 311-322, 2008.
N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD, pages
13-24, 2006.

D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. Hendler, and G. J. Sussman. Information accountability.
Communications of the ACM, 51(6):82-87, 2008.

(48]

[49]

[50]

[51]

[52]

APPENDIX
A. ALGORITHMS

We outline the pseudocode for the missing algorithms below.

A.1 Path Contraction (rc)

The input to PC is a materialized datafile, say M, followed by a
sequence of deltas, say Ay, ..., A, and the output is the datafile
represented by the corresponding delta expression, M @A &- - -®A,,.
The algorithm uses the property that if the optimal solution splits
the contraction of a path of length m into two sub-paths, then the
contraction of each of the two sub-paths must be optimal (otherwise,
we can improve the solution for the sub-paths to enhance the overall
solution). For 0 < i < j < m, let C[i, j] denote the minimum cost to
contract the sequence A, ..., Aj;, D[i, j] denote the estimated size
of the corresponding intermediate result, and S[i, j] denote how to
best split the sequence. For notational convenience only, if M is
present, Ag = M. The pseudocode of PC is shown in Algorithm 1.

A.2 Tree Contraction (1¢)

The input to TC is an access tree G and the output is the set of
datafiles Aj. The pseudocode of TC is shown in Algorithm 2 and
we explain it with the help of Fig. 14.

First, note that if Gp has more than one materialized datafile,
then we can consider the sub-trees rooted at each materialized
file independently. Fig. 14(a) shows an access tree to checkout
Ay, Ay, A3. Let M be the root of this access tree. Starting from M,
let B; be the first node that has / > 1 children. Let By, ..., B;_| be
the intermediate nodes on the M — B; path. Let Go(B}),0 < j <1,
be the access tree rooted at B; (this tree is equivalent to deleting the
nodes M, By, ..., Bj_j from Gp). For example, Fig. 14(b) shows
two components: (i) the path p(B;_1) (above), and (ii) the access
tree Go(B;_1) (below). Let split(Gp) denote the operation that
splits G at B; into [access trees, one for each child of B;. This is
showin in Fig. 14(c). Let split-par(Gg) denote the operation that

184

splits G at B; into [access trees, one for each child of B;, but this
time preserving the parent sequence of deltas in each split. This is
shown in Fig. 14(d).

Algorithm 1: Path Contraction (PC)

Input :A materialized datafile M (optional); Ay, ..., Am
Result: Minimum cost to evaluate M @ A1 @ ... Ay,
1 for [< 2 tomdo
2 fori —0tom—-1+1do
3 jei+l-1
4 Cli, j] «
min; << C[i, k]+Clk +1, j1+ Co(D[i, k], D[k +1, j])
5 S[i, j] « argmin; ¢4 ; Cli, k] + C[k + 1, j] +
Ca(Dli, k], DIk + 1, 1)
/* Update estimated size of A; ®---®A; */
6 Dli, j] « EstimateSize(D[i, S[i, j1], D[S[i, j] + 1, j])
7 end
8 end

9 return C[1, m] (final cost) and S (splitting markers)

Algorithm 2: Tree Contraction

Input :Access Tree Gp
Apply PC for each p(A;), A; € Aj. Memoize C[], S[] and D[].
return Best-Subexp({}, Gp)

[S

3 Procedure Best-Subexp (L, Gp)
Input :Deltas, £; Access tree, QQ

if G is a path then return Best solution for {£L U G}
forall0 < j <ido
Ap(B;) < estimated delta for the sequence p(Bj)

L'=LuU Ap(Bj)
cost_g « Best-Subexp(L’, Go(B;)))
Ap(B;) < estimated delta for the sequence p(B;)
L= LUAyp
cost_g «— ZQ/Q esplit(Go) Best-Subexp (L, Q'Q)
cost_g «— ZQ’Q esplit-par(Go) Best-Subexp (L, Q’Q)
return Best cost_g

N

b il

Figure 14: An instance of the Tree Contractlon algorlthm, (a) is an access
tree for the query CHECKOUT(A |, Ay, A3).

e ® N N ! s

10
11

12

13

(@) (d)

At a high level, TC breaks up the problem into two questions:
how do we decide which sub-expressions to share and how do we
best parenthesize each (sub-)expression? We already know how to
compute the solution for the latter using PC. Therefore, we begin with

A Q(AsAr)
©)
Ax2
Al Q(As,Ag,A12)
As Q(As,A9,A12) As Q(As.AgA12)
) © ®

Figure 15: Access tree during the progress of C&R

applying PC for all p(A;), A; € Aj. However, apart from the best
solution for the complete expression, we also return the following
information about each path p(A;), all of which is computed by PC
during its execution. Let Ay, ..., A, be the sequence of deltas on
the path p(A;) and i, j be indices such that 0 < i < j < m. Then we
return: (i) the minimum cost to contract the sequence A;, ..., A,
denoted by Cli, j], (ii) the estimated size of the intermediate delta,
denoted by D[, j], and (iii) the split marker, indicating how to best
split the the sequence, denoted by S[i, j]. We re-use these estimates
of intermediate delta sizes and partial contraction costs wherever the
corresponding sub-expressions are considered for sharing. To decide
which sub-expression to share, we simply enumerate all possibilities
for the sub-expression starting from the root of the access tree (this
is done in line 5). The rest of the problem is solved recursively
where £ is the sequence of sub-expressions that are considered to
be shared. Finally, we also need to account for the possibility of not
sharing any sub-expression.

The time complexity of TC is O(m3) where m is the number of
deltas in the access tree.

A.3 Contract and Reduce (csr)

Algorithm 3 describes the general form of C&R for all queries.
Specifically, it takes as input a query Q € {I, U, T;}, and its access
tree G, and outputs the appropriate result. We describe its behavior
with the help of the following example.

Algorithm 3: Contract and Reduce (C&R)

Data: Query Q € {/,U,T;} and access tree Go
1 while G contains more than one delta do
2 Contract Phase:
3 P « list of maximal continuous delta paths of length
> 2in QQ
Contract all paths in P using PC and update G
if Go becomes a line/star then
return R « result using H1
Reduce Phase:
L « list of line structures in Go
Reduce each line in L based on Q, i.e., apply one of
T1/T3, and update Gp
§ « list of star structures in G
Reduce each star in S based on Q, i.e., apply one of
T2/T4/T5, and update Go
/* At this point QQ contains one delta.
12 return R < Root(Gp) ® A

[N S

10
11

*/

185

ExampLE 15. Consider the query I(Ag, Ag, Ag, A12) with access
tree as in Fig. 15(a). In the first iteration, during the contract phase,
we compute the deltas: (1) Ac1 = A ®A3 D Ag, (2) Acp = Ay ® A7,
and (3) Acz = Ag & Ag (Fig. 15(b)). In the reduce phase where we
reduce Ag and A1y arranged in a line (Fig. 15(c)). This reduction
puts Ag and Q(Ag, A12) in a star, which is then reduced as in
Fig. 15(d)). In the next iteration, during the contract phase, we
compute Aoy = Ay ® Agy (Fig. 15(e))). In the reduce phase, we
reduce the star Ag and Q(Ag, Ag, A1) which leaves the access tree
with a single delta.

A.4 Multiset Delta Contraction

During the execution of C&R for 7-threshold queries, we will encounter
expressions of the form Ay ® Ay, where Ay, is a multiset-based delta.

Here, we outline a linear time algorithm (shown in Algorithm 4)
that computes the contraction in a manner that helps us compute the

query result. Recall that p(A) is the number of datafiles in Ay
that are reduced by A and c is the multiplicity of a record.

Algorithm 4: Patch operation for multiset-based deltas

Data: Set-backed delta Ay, and multiset-based delta Ay,
Result: Multiset delta A = Ay @ A,
1 Initialize A < Ay, p < p(A) < p(Ay)
2 for r € At do
3 if r € A™ then
4 Remove (r, ¢) from A~, Add (r, p — ¢) to AT
5 else
6 Add (r, p) to A"
7
8
9

for r € A} do
if 7 € AT then
Remove (r, ¢) from A, Add (r,p — ¢) to A~
else
Add (r,p) to A~
return A

B. DATASET GENERATION

Lacking access to real-world versioned datasets with sufficient and
varied structure, we instead developed a synthetic data generator
to generate datasets with very different characteristics for a wide
variety of parameter values. This enables us to carefully study the
performance of our techniques in various settings. Formally, every
dataset is characterized by a 4-tuple, (7, |A|, |A|,#A), where the
meaning of each paramter is as follows.

e Structure of access tree (7): Since Algorithm 3 makes de-
cisions based on the presence of lines and stars, we control
their occurrence when selecting datasets. Figure 16 shows three
different types of access trees that we consider during evaluation:
line-shaped (1), star-shaped (s) and line-and-star (s).

e Average datafile size (|A|): This controls the average number
of records in a datafile. Each record is a tuple consisting of a
random 64 byte string, integer and double values.

o Average delta size (JA]): This controls the average size of the
deltas in the dataset. We represent this in terms of percent size
compared to |A].

e Number of deltas in access tree (#A): This parameter controls
the number of number of deltas in the access tree and hence the
overall deltas that are considered during execution.

Parameter Explanation Values
k Query size 2,4,6,8, 10
A Average datafile size 1 million(M), 2M, 3M, 4M, 5SM
A Average delta size 1%, 2%, 3%, 4%, 5%
#A Number of deltas 10, 25, 50, 75, 100
T Shape of access tree Line (1), Star (s), Line-and-star (Is)

Table 2: Possible values of parameters characterizing a synthetic dataset

C. COMPARISONS WITH TEMPORAL IN-
DEXING [14]

In this section, we present further background on the temporal
indexing techniques by Buneman et al. [14], and discuss how we
reimplemented and compared against their approach.

Broadly speaking, their technique, referred to as BA henceforth,
focuses on storing multiple temporal versions of a hierarchical
dataset (e.g., a large XML document). At a high level, BA merges
all hierarchical elements across the versions into a single hierarchy
by identifying an element by its key and storing it only once, along
with the sequence of version timestamps (as intervals) where the
respective element appears. Answering a checkout query thus
requires scanning the entire archive, and using the intervals to decide
which elements belong to the answer.

We re-implemented the BA in-memory archiving algorithm in
our framework as faithfully as we could. We represent a dataset of
records as a one-level hierarchical document with all the records as
children of the root node. When merging two datasets into a single
archive, we identify the common records and only store them once.
Due to the nonlinear nature of “version ids” (unlike timestamps) in
our problem setting, we tried two different implementations to keep
the set of version ids for an element/record: (1) a sorted list or (2) a
bitmap. In the sorted list implementation, the version ids associated
with every record are stored in a sorted array and during retrieval,
we use binary search to decide if the record is present in the desired
version. In the bitmap implementation, a bitmap of size equal to

186

Ao Ao Ao -©-0.5M -=-1M ~+-1.5M -4-2M -2.5M —-3M
(o) (e} 'O.. 1400 T
i (f 1200 ¢
1000
[=N
% f % % 3 800
3
. 2 600
- VRN 2 YL ® 400
S o068 665 =
() (b) © 0

N

4 6

Query size (k)

8 10

Figure 16: Access tree shapes; (a)
Line, (b) Star, (c) Line-and-star

Figure 17: Effect of bitmap size

the number of versions in the archive is used with each record to
indicate the versions that the record is present in. We use the roaring
bitmap library [15] to store these bitmaps. During retrieval, a simple
scan through the archive can retrieve any version. We note that it is
not clear how to extend some of the optimizations in Buneman et
al., most notably “timestamp trees”, that depend on the linearity of
timestamps, to the nonlinear nature of version ids in a decentralized
versioning/data lake scenario.

D. EXPERIMENTS WITH BITMAP DELTAS

We have also built support for a filtered index to answer intersection
and union queries, and we show the results for an illustrative experi-
ment. Akin to a relational database, a filtered index in DEX is suited
to answer queries that always select from a finite “universal” set of
records. In this case, we can encode a set of records using a bitmap,
where the order of records is determined by their SHA1 value. The
index creation step creates a bitmap of size || for each materialized
datafile and two bitmaps for each delta in the storage graph. We
can then use the bitwise AND(A), OR(V) and NOT (=) operations to
compute set intersection, union and difference. In this experiment,
we use a compressed bitmap library called roaring bitmaps [15] .
Fig. 17 shows the effect of index size on the intersect query. Here,
we measure the speedup vs query size for index size ranging from
500K-3M records. As expected, for small universal sets, we get

largely improved speedup ratios (up to 1200X). With large universe
sizes, there is however a penalty incurred when selecting the records

themselves given the bitmap information.

