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ABSTRACT
The increasing reliance on robust data-driven decision-making across

many domains has made it necessary for data management systems

to manage many thousands to millions of versions of datasets,

acquired or constructed at various stages of analysis pipelines over

time. Delta encoding is an effective and widely-used solution to

compactly store a large number of datasets, that simultaneously

exploits redundancies across them and keeps the average retrieval

cost of reconstructing any dataset low. However, supporting any

kind of rich retrieval or querying functionality, beyond single dataset

checkout, is challenging in such storage engines. In this paper, we

initiate a systematic study of this problem, and present DEX, a novel

stand-alone delta-oriented execution engine, whose goal is to take

advantage of the already computed deltas between the datasets for

efficient query processing. In this work, we study how to execute

checkout, intersection, union and t-threshold queries over record-

based files; we show that processing of even these basic queries leads

to many new and unexplored challenges and trade-offs. Starting from

a query plan that confines query execution to a small set of deltas, we

introduce new transformation rules based on the algebraic properties

of the deltas, that allow us to explore the search space of alternative

plans. For the case of checkout, we present a dynamic programming

algorithm to efficiently select the optimal query plan under our cost

model, while we design efficient heuristics to select effective plans

that vastly outperform the base checkout-then-query approach for

other queries. A key characteristic of our query execution methods

is that the computational cost is primarily dependent on the size

and the number of deltas in the expression (typically small), and

not the input dataset versions (which can be very large). We have

implemented DEX prototype on top of git, a widely used version

control system. We present an extensive experimental evaluation

on synthetic data with diverse characteristics, that shows that our

methods perform exceedingly well compared to the baseline.
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1. INTRODUCTION
Data-driven methods and products are becoming increasingly com-

mon in a variety of communities, leading to a huge diversity of

datasets being continuously generated, modified, and analyzed.

Many more datasets are typically created as intermediate results of

data analysis pipelines. An increasingly important consideration for

the underlying data management systems is that, all of these datasets

and their versions over time need to be stored and queried for a variety

of reasons including auditing, provenance, transparency, accountabil-

ity, introspective analysis, and backups [10, 17, 31, 35, 45, 52]. As

a result, there has been an increasing interest in using no-overwrite
or immutable data stores, where all data ever generated or produced

is somehow persisted, either directly or in the form of lineages that

can be used to reconstruct them.

Delta encoding is a cornerstone of many no-overwrite storage

systems that are focused on archiving and maintaining vast quantities

of datasets (simply put, a collection of files). Archival and backup

systems often store multiple versions or snapshots of large datasets

that have significant overlap across their contents using deltas. In

version control systems, both for software (e.g., Git, SVN) and

datasets (e.g., DataHub [10], noms [1]), it is common to store

related file versions using this technique to save disk space while

maintaining entire modification history. Delta encoding can result in

remarkable improvements in storage requirements when compared

to plain compression – in [11], the authors observe 65x reduction in

storage space when just 100 snapshots of the Linux kernel repository

were (individually) compressed using gzip vs using delta encoding.

At a high level, delta encoding consists of representing a target
file content as the mutation, or delta, from a source file content.

Intuitively, the source and target files are selected such that they have

a large overlap across their contents and hence their delta is small.

Furthermore, the source file itself may be represented as a delta from

another file, and so on, creating a “graph” of files and deltas. The

compressed storage is obtained by keeping only a few select files,

commonly referred to as materialized files, and deltas (instead of the

files they represent) in this graph, such that it is possible to re-create

any file by walking the path of deltas starting from a materialized

file and ending at the desired file.

Example 1. Consider a toy repository containing two files that
evolve as in Fig. 1(a). A node in this graph (called a version graph)
represents a version or snapshot of the repository and an edge
represents a derivation or transformation relationship between two
versions. For instance, from V1 to V2, we see that file A7 was modified
to A4 while A1 remained unmodified. When available, information
about such transformations are kept track of as edge meta-data.

Fig. 1(b) shows how a delta-based storage system might store all
files in all versions. Such a solution is typically meant to capture
redundancies in the file contents across all versions of the repository
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Figure 1: A delta encoding-based solution to store files, A1, . . . , A7 across

versions V1, . . . ,V6. The weights on the edges indicate delta sizes.

and ensure a reasonable trade-off between storage costs and access
costs. We call this representation the storage graph. Nodes in this
graph represent files, and edges represent the deltas that are used
to construct one file given another. For instance, an edge between
A2 and A3 indicates that we can construct A3 given A2 and the
respective delta. For algorithmic convenience, we include an empty
file, A0, as an entry point to traverse the storage graph. All files
directly connected to A0, i.e., A1 and A4, are materialized files, and
are stored in their entirety. Further, the deltas, indicated by the
edges, are also stored.

Note that although a tree would be sufficient to guarantee that we
can construct any file, the storage system may decide to include ad-
ditional deltas to make co-accesses efficient; e.g., if A3 is commonly
accessed with A2 and A5 it would be beneficial to store it as a delta
from both A2 and A5.

There has been significant work on various aspects of delta

encoding-based storage systems: computing near-optimal deltas for

a variety of data formats [20, 43], quickly finding ideal files to delta

from [22], and supporting delta storage in file systems, scientific

databases, network transport, etc. [39, 45]. However, existing delta-

oriented storage engines offer limited or no support for querying

the data stored within them; the primary query type supported by

those engines is checkout, i.e., reconstructing a specific version of a

dataset or a file. With such storage engines becoming efficient and

mainstream, there is an increasing desire and opportunity to perform

rich analysis queries over the historical information contained within

such data stores [16]. The queries of interest include auditing or

provenance queries over the datasets (e.g., identify the datasets where

a particular property holds), analyzing the evolution of a dataset over

time (i.e., temporal analytics), and comparing results of SQL-like

queries over different versions of the same dataset (obtained through,

e.g., applying different analysis pipelines to the same initial dataset).

In general, combining in situ query processing [6] with the ability

to query different versions of the same dataset can dramatically

enhance the utility of immutable data stores.

However, delta-oriented storage engines of today require users to

“check out” complete file/dataset versions in order to manipulate them.

This approach is less than ideal particularly when the individual

versions are large and the users need to access multiple versions

for their analysis task. First, irrespective of the size of the query

result, this approach entails creating all the input versions before

query processing can begin, resulting in large memory and/or I/O

usage. Second, it requires users to maintain another system to assist

in executing the queries. Third, this approach fails to exploit the

fact that most datasets evolve through changes that are small relative

to the dataset sizes. Because the storage engine is aware of these

properties, we argue that we can leverage this information to design

computationally cheap methods to evaluate a query by pushing
down query execution to the level of deltas. At first glance, this

technique might be seen as an analogue to the notion of incremental

view maintenance in relational databases [28]. However, a “query”

in a relational database is typically defined on a single “version”,

whereas here we consider queries that span and reason about multiple

versions simultaneously. In fact, the work on temporal analytics is

closer in spirit than the work on incremental view maintenance.

In this paper, we initiate a systematic study of the problem of

supporting rich analysis queries over delta-oriented storage engines,

and describe the initial prototype of DEX, a novel storage manager
and query processing engine for delta-based storage. Specifically,

in this paper, we focus on the storage design and implementation of

DEX for a class of semi-structured datasets that we call datafiles,

and for a class of basic queries that includes multi-version checkouts,

intersections, unions, and t-threshold queries. A datafile is a file

whose contents can be seen as a set of records, i.e., the order of

records within a datafile is immaterial, and no two records in a

datafile are identical. Examples of such files include CSV files,

JSON documents, log files, to name a few, and these constitute a large

fraction of files in a typical data lake. A common method to represent

a delta between two datafiles is to maintain the “deletions” and

“additions” required to go from one datafile to the other. There is

an inherent tension between the amount of information available in

the deltas and the storage space they require, which directly impacts

the types of queries that can be executed purely using the deltas.

We chose the above delta format both because it is commonly used

in practice, and because it strikes a good balance between storage

space and query efficiency.

The current DEX prototype is built on top of git, a widely used

source control system, analogous to how extensions like Git Large

File Storage [2] are implemented. We provide an API, similar to

git, to handle the standard version management tasks like commit,
checkout, status, etc. The notable difference is that when a user

starts tracking changes to a file (i.e., “adds” the file to the repository),

she has an option to register the file as a datafile. Such files are

stored by DEX using the techniques described in this paper, while

all other files are managed by git.

Our key technical contributions are summarized as follows:

• To our knowledge, ours is the first work to systematically study

how to optimize execution of different types of queries against

delta-oriented storage engines.

• We develop a general cost-based optimization framework based

on key algebraic properties regarding composition of the deltas.

The result of this framework is a compact algebraic expression

that confines query execution to a small set of deltas. As a side

effect, the computational cost is dependent on the size and the

number of deltas in the expression (which are typically small) in

contrast to the size of the input datasets.

• We develop optimal algorithms for executing single-file or multi-

file checkout queries assuming reasonable restrictions on the

evaluation plan search space.

• We develop a series of intuitive transformation rules that help

simplify the search space for intersection, union, and t-threshold

queries, and use them in conjunction with cost-based solutions

for base cases, to develop effective search algorithms.

• We have developed a prototype implementation of DEX on top of

git, and we present a comprehensive evaluation against synthetic

datasets of varying characteristics. Our results show that our

methods perform exceedingly well compared to the baselines,

even for simple queries like single-file checkouts.

2. SYSTEM OVERVIEW
We begin with a brief description of the user-facing data model and

system architecture of DEX before describing the different types of

queries that we support. Thereafter, we describe the system data

model, i.e., the physical organization of data, and the primitives used

by the system to evaluate the queries. While DEX can be integrated

with any system that needs to store a large number of dataset
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Figure 2: System Architecture of DEX; our focus in this work is largely on

the design of the “Query Processor.”

snapshots, in this work, we describe our models and associated terms

in the context of a dataset version control system.

2.1 User Data Model
The user data model in DEX has two main abstractions – datafile,

and version – that form the basis of all user interactions.

As mentioned above, a datafile is a file whose contents are

interpreted as set of records. The user specifies a record separator

when a datafile is added in the system. Within a datafile, we

consider a record as an unstructured sequence of bytes. The only

constraint we impose, however, is that a datafile cannot contain

identical records: two records are said to be identical if they both

have the same sequence of bytes. For instance, textual flat files such

as CSV or logs can be seen as containing one record per line.

A version is a point-in-time snapshot of one or more datafiles

typically residing in a directory on the user’s file system. A version,

identified by a unique ID, is immutable, and can be created at any

point in time by any user who has access to the repository.

In addition to datafiles and versions, DEX also captures the

version-level provenance – derivation and transformation relation-

ships among the set of all versions – in a data structure called the

version graph. Nodes in a version graph correspond to versions

and edges capture relationships such as derivation, branching, trans-

formation, etc, between two versions. One important use of this

metadata is to allow rich queries over versions and provenance by

means of any supported language/API (e.g., [16]). In this work, we

do not limit ourselves to any particular API, but instead assume that

we have an efficient method for finding all the datafiles referenced

in a query. Since a version graph is typically much smaller than

the datafile contents, it can be kept and traversed in memory to

identify the versions that are referenced in a query.

We use the following notation to formalize the above discussion.

Let V be the set of all versions. Each version V ∈ V contains

a finite number of datafiles, say, V = {A1, . . . , At }. Let A =

{A1, . . . , An} be the set of all datafiles across all versions. Note

that it is possible for a datafile to be present in more than one

version – this happens when the said datafile is not modified in the

respective versions. The set of datafiles that appear in a version

are kept track of as metadata in the corresponding node of the version

graph. Let Aa = {r1, . . . , rm} be the set of records contained in

datafile Aa . As mentioned before, no two records in a datafile

are identical, i.e., ri � rj, ∀ri, rj ∈ Aa .

2.2 Queries
We now describe the semantics of each of the core operations that

are the primary focus of this paper.

Checkout: Checkouts are the primary mechanism for reading off

older versions of a dataset and it is imperative that a storage manager

support them. Any version or any set of datafiles can be checked

out, and the result is copied to the location suggested by the user (typ-

ically, it will be a directory on the user’s machine). When a checkout

query is issued, the version graph is consulted to identify the set

of datafiles that comprise it. Specifically, the checkout operation

takes as input a set of k ≥ 1 datafiles Ak = {Ax1
, . . . , Axk } ⊂ A

and outputs k files, one for each datafile. Henceforth, we use the

notation Checkout(Ak ) to denote the checkout operation.

Intersect: The intersect operation is an important operation when

comparing the contents of a datafile that was modified across

multiple versions. Similar to set intersection, given a set of k ≥ 2

datafiles Ak = {Ax1
, . . . , Axk } ⊂ A, the intersect operation

outputs a single datafile containing records that appear in all
datafiles in Ak , i.e., {r : r ∈ Ax1

∧ · · · ∧ r ∈ Axk }. We use the

notation I(Ak ) to denote the intersect operation.

Union: The union operation, denoted by U(Ak ), returns a single

datafile containing records that appear in any of the datafiles in

Ak , i.e., {r : r ∈ Ax1
∨ · · · ∨ r ∈ Axk }.

t-Threshold: Given as input a set of k ≥ 3 datafiles Ak and an

integer 1 < t < k, the t-threshold operation, denoted by Tt (Ak ),

returns a single datafile that contains records appearing in at least
t of the datafiles in Ak . This generalizes the above operations –

t = 1 and t = k correspond to union and intersection respectively.

Although the above set of operations is intended as a starting

point for investigating the nascent topic of query processing over

deltas, these operations already enable many interesting queries.

For example, comparing the results of intersection, union and/or

t-Threshold across the versions of an evolving dataset can provide

insights into the evolution process (e.g., properties of the records

that change frequently vs those that remain static). Intersection or

t-Threshold across the results of different machine learning pipelines

on the same input dataset can help us identify which types of records

are difficult to predict correctly, which can help an analyst steer the

training process. Further, t-Threshold can return, for each record,

a bitmap indicating the versions to which it belongs; depending on

the semantics of the versions being queried, that information could

be used for a variety of purposes including correlation analysis,

anomaly detection, and visualizations. Finally, if specific analyses of

interest are known in advance, materialized views (e.g., projections,

results of aggregate queries or joins) can be computed in advance as

the dataset versions are ingested; by exploiting the overlaps, these

materialized views could be persisted cheaply in the storage engine

itself. Although this requires a priori planning, the benefits at the

time of querying could be tremendous. We plan to build support for

defining and automatically materializing such views in future work,

in addition to enriching the class of operations themselves.

2.3 System Architecture
The DEX prototype is built on top of git and has three major

components: (a) a set of command line utilities, DEX CLI, written

in Python, to allow the user to interact with the repository in the

form of the standard add, commit, checkout, etc., commands (similar

to git), (b) the Storage Graph Builder which decides how best to

store a collection of datafiles (i.e., which deltas to use), and (c)

the Query Processor, written in Java, that executes user queries

against the deltas. DEX CLI passes through the version management

tasks not pertaining to datafiles to git; the user may specify a file

to be a datafile through a flag to the add command, and any tasks

pertaining to those files are sent to the Storage Graph Builder (in

case of add or commit) or the Query Processor.

The Storage Graph Builder performs tasks that primarily answer

the question: When we have a collection of thousands of versions

of datafiles, how to identify a good storage solution, i.e., decide
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which datafiles to materialize and which datafiles to encode

as deltas off of other datafiles? We encode this solution as an

undirected weighted graph called the storage graph (§ 2.4.1).

In this work, our focus is on the Query Processor module, which

accepts queries from users, uses the version graph to identify the

datafiles referenced in the query, fetches appropriate deltas by

analyzing the storage graph, and executes the queries.

The two data structures (storage and version graphs) as well as the

deltas are persisted in a file system (other data stores like distributed

key-value stores could also be used instead). Although the deltas

themselves could be stored in a distributed fashion, in the current

prototype, the Query Processor is designed to run in a single process.

We expect this will be sufficient in most cases, since most queries

are expected to touch only a small portion of the data; however, our

techniques are easily parallelizable to handle large deltas.

2.4 System Data Model
Next, we discuss the storage graph and the delta encoding scheme

used in DEX to store the versions on disk. Thereafter, we describe

few properties of the deltas and discuss methods of combining them

that will be useful in subsequent sections.

2.4.1 Storage Graph
Let G = (V, E) be a storage graph (see Fig. 3 for an example).

Note that this graph is different from version graph, described in

§2.1. While the version graph captures derivation or transformation

relationships between versions of datasets, the storage graph repre-

sents information at the granularity of datafiles (encompassing all

versions) and is meant to indicate delta relationships between them.

Moreover, the storage graph is used by internal query execution

routines and, unlike version graph, is not intended to be exposed
to the end user. The vertex set V of the storage graph captures all

unique datafiles across all versions, and a special empty datafile,

A0. Thus, V = A0 ∪ A. The purpose of A0 is to simplify many of

algorithms that use the storage graph, both during its creation and

during query evaluation (see [11] for a detailed usage).

An edge e(Ai, Aj ) ∈ E represents the delta between datafiles

Ai and Aj , and the edge set E represents the deltas that are chosen to

store all datafiles. The weight of the edge we represents the storage

cost (size in bytes) of the delta. For an edge e(A0, Ai), we represents

the storage cost of Ai in its entirety (i.e., Ai is materialized).

We require that G be a connected graph so that it is possible to

reconstruct any of the datafiles in A. Specifically, a path from

A0 to Ai indicates the materialized datafile (one following A0 on

the path) and the sequence of deltas to apply in order to recreate Ai .

Thus, to store all the datafiles in A, it is sufficient to store only

the materialized datafiles in G and all the deltas in E .

Prior systems have made use of the storage graph representation [3,

11, 48, 49], albeit with different monikers, to model a delta based

solution to store data versions. The storage graph also generalizes the

sequence-of-deltas model where the versions are ordered according

to a certain criteria, e.g., timestamp, file size, etc., and every version

except the first is stored as a delta against the previous one. The

sequence-of-deltas model, although conceptually simple, has the

downside that the retrieval time grows linearly with the number of

versions stored. The storage graph representation addresses this

limitation by allowing multiple versions to be derived from one

version. For instance, if we require that every datafile derives 3

datafiles not derived by others, we can pack approximately 80K

datafiles and have a maximum delta sequence of length 10.

2.4.2 Delta Representations and Tradeoffs
A key question for a delta encoding-based storage engine is selecting

the delta variant, i.e., the particular format/algorithm for computing

the delta between two files. This is because different delta formats

are appropriate for different types of files: a UNIX-style line-by-line

diff is a common delta format for plain text files, while an XOR is more

suited to numerical array-oriented data. Exploiting the structure in

the data, if known, can often lead to better deltas (e.g., for XML [46],

or relations [40]). Column-based deltas may be more appopriate

when a large number of records are changed slightly, e.g., due to

a schema change. Furthermore, a particular delta format may be

directed or undirected: if a delta Δ between source file A and target

file B is directed, it may only be used to recreate B given A, and not

vice versa. An undirected delta between two files, on the other hand,

can accept either file as source and recreate the other.

The desire to execute queries directly on deltas (as we propose

in this work) brings another dimension to this choice. There is

an inherent tension in the amount of information stored in a delta,

and our ability to push query execution on to them. In this work,

we pick one of the most commonly used delta formats suitable for

record-oriented files, that offers a good balance between the storage

space required and the ability to execute queries. In addition, one

can also consider keeping additional information or indexes, together

with the deltas, to speed up certain queries (analogously to the work

on in situ query processing [6]). For instance, Bloom filters [13] on

deltas can be used to prevent unnecessary searches when selecting

records that satisfy a predicate, aggregate summaries on deltas [42]

can be used to speed up certain classes of aggregate queries, and as

shown in Appendix D, bitmaps can be used to create a filtered index

to speed up the queries described in this paper. Understanding these

tradeoffs for different types of data and query classes is a rich area

for future work that we plan to pursue.

2.4.3 Set-backed Deltas and Properties
The delta format that DEX uses, called Set-backed Deltas, is an

undirected delta format, similar to the standard UNIX line-by-line

diff. A set-backed delta Δ between a source datafile Ai and a target

datafile Aj , is a set of two datafiles, Δ− and Δ+, that correspond

to “deletions” and “insertions” respectively. Δ− is the set of records

that are present in Ai but not in Aj , while Δ+ is the set of records

that are not present in Ai but present in Aj . Δ can also be used to

reconstruct Ai from Aj by exchanging Δ− and Δ+.

In DEX, we require deltas to be consistent [24], i.e., a delta does

not contain the same record in Δ− and Δ+. This does not preclude

updates to a record, including schema changes, since an update can

be recorded as deleting the old record and adding a new record.

Definition 2 (Consistent Delta). A delta is said to be con-
sistent if Δ− ∩ Δ+ = ∅.

Because datafiles and deltas are sets, we will often make use of the

following three standard operations on sets – union (∪), intersection

(∩) and difference (−). Continuing the example, when we use Δ to

construct Aj from Ai we call this operation patching Ai using Δ,

and denote it as Aj = Ai ⊕ Δ.

Definition 3 (Patch). Ai ⊕ Δ = (Ai − Δ
−) ∪ Δ+

Observation 4. If Δ is consistent, Ai ⊕ Δ = (Ai − Δ
−) ∪ Δ+ =

(Ai ∪ Δ
+) − Δ−.

Next, we describe another important property of set-deltas, called

contraction. Intuitively, delta contraction corresponds to combining

two deltas into a single delta such that the new delta has the same

effect as applying the individual deltas. Formally, if A1, A2, A3 are

three datafiles and Δ1 = Δ(A1, A2),Δ2 = Δ(A2, A3), we use the

patch operator as before to represent contraction as follows,
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Figure 3: (a) A storage graph over datafiles A1, . . . , A12, nodes shaded in

blue (A1, A3) indicate materialized datafiles, edge annotations indicate the

disk size of the delta; (b) access tree for Q(A12), this is the shortest path from

A0 to A12; (c) access tree for Q(A6, A8, A9, A12), this is the minimimum

cost Steiner tree for the terminals {A0, A6, A8, A9, A12 }

Definition 5 (Delta Contraction). Δ = Δ1 ⊕ Δ2, where,
Δ− = (Δ−1 − Δ+2 ) ∪ Δ

−
2 ; Δ+ = (Δ+1 − Δ−2 ) ∪ Δ

+
2 (1)

Although delta contraction, as defined above, can be applied to two

arbitrary deltas, the result is well-defined only if the target datafile

of Δ1 is same as the source datafile of Δ2. The result Δ has the

same source datafile as Δ1 and derives the target datafile of Δ2.

This definition can be generalized to a sequence of deltas: the

contraction of a sequence of deltas Δ1, . . . ,Δm is the result of the

operation Δ1 ⊕ · · · ⊕ Δm.

Given the above properties, we can infer that:

Observation 6. If Δ1 and Δ2 are consistent, then their contrac-
tion, Δ = Δ1 ⊕ Δ2, is also consistent.

Observation 7. The patch operation is associative, i.e., (Δ1 ⊕

Δ2) ⊕ Δ3 = Δ1 ⊕ (Δ2 ⊕ Δ3).

Although some of these observations might seem straightfor-

ward, formalizing them is crucial to argue the correctness of the

transformations that we do later.

3. QUERY EXECUTION PRELIMINARIES
We begin with a more formal treatment of the query optimization

problem, with first discussing the optimization metrics of interest

and introducing the two-phase optimization approach that we take.

We then briefly discuss the issues of cost and cardinality estimation

and the search space of query evaluation plans.

Given a query, Q(Ak ) where Q is one of {Checkout, I,U,Tt }
(§2.2) against a given storage graph G, there are two somewhat

independent stages in the overall query execution. First, we need to

identify all the relevant datafiles and deltas in G that are necessary

to execute Q(Ak ). We refer to this problem as finding an access
tree of Q(Ak ), and describe it in detail in §3.2.

Second, given an access tree, we need to devise an efficient

evaluation plan, that describes exactly what operations are used

to compute the result of Q(Ak ). This plan is represented as a

delta expression: an algebraic expression where the operands are

datafiles and deltas from the storage graph G, and the operations

are patch and primitive set operations. During this stage, we also

consider the problem of finding a good ordering of evaluating

the different operations in the delta expression. We describe the

techniques for each query Q ∈ {Checkout, I,U,Tt } in § 4.

3.1 Optimization Metrics
To be able to develop a systematic cost-based approach to query

execution, we first need to identify appropriate optimization metrics
and cost models. It is unfortunately difficult to develop a single cost

metric that captures the costs of the two stages discussed above, which

also makes it hard to do joint optimization across them. Because

the backend store is likely to be relatively expensive to access (we

expect it to be distributed in general), we would like to minimize

the amount of data that is read from the backend store; this also

reduces the network I/O. Once the data has been gathered, however,

the different ways to evaluate a query can have very different CPU

costs and wall-clock time. Hence, for the second phase, we would

prefer to use a metric that tracks the CPU cost.

We adopt a two-phase approach in DEX inspired by this. We

first find the best “access tree” that minimizes the total amount of

data that needs to be read (in bytes) from the backend store. In

other words, we identify the set of datafiles and deltas that have

the smallest total size, that are sufficient to reconstruct the required

datafiles. We then search for the best evaluation plan according to

a cost model that estimates the CPU resources needed by the plan.

We discuss the specifics in further detail in § 3.4 when we discuss

the operator implementations.

We do not explicitly account for disk access costs during the

second phase for several reasons. First, although the overall storage

graph and the delta sizes in total are expected to be very large, the

access tree for any given query is typically much smaller and the

deltas constituting that will typically fit in the memory of a powerful

machine. More importantly, most of our algorithms (§ 3.4) access

the deltas sequentially (while reading and writing), and thus even

if the deltas were disk resident (or intermediate results needed to

be written to disk), the CPU and/or the memory bandwidth is still

the main bottleneck. One exception here is binary search or gallop

search (that an intersection operation might employ) where our

approach might underestimate the cost of an intersection in case of

extreme skew. However, our cost estimation procedure can be easily

modified to account for that case. Moreover, the deltas are typically

stored in a compressed fashion on disk, thereby making it necessary

to uncompress them by reading them once into memory, and further

making the overall computation CPU-bound.

3.2 Access Tree
Given a query Q(Ak ), an access tree, GQ = (VQ, EQ) is a subgraph

of G such that: (i) A0 ∪ Ak ⊆ VQ ⊆ V , and (ii) GQ is a tree, i.e., a

connected graph with no cycles.

The first condition implies that all datafiles required by the

query are part of the access tree. The second condition ensures that

we have a valid and minimal solution: (i) Valid: because GQ is

connected, there exists at least one path between A0 and Axi , which

denotes the materialized datafile and the sequence of deltas to

apply to reconstruct Axi , (ii) Minimal: because GQ is a tree, for

every Axi ∈ Ak , GQ contains exactly one path from A0 to Axi .

We define the cost of an access tree as the sum of weights of

all edges in it, i.e., C(GQ) =
∑

e∈EQ
we. When the edge weights

correspond to the sizes of the deltas, this definition captures the

cost metric mentioned above. To address the problem of identifying

the least cost access tree, we consider two cases, k = 1 and k > 1.

We refer to these as single datafile access and multiple datafile

access respectively.

Single datafile Access: When k = 1, A1 = {Ax1
}. Any A0 to

Ax1
path in G satisfies the conditions of an access tree. Thus, finding

the least cost access tree amounts to finding the shortest path between

A0 and Ax1
, and we use the classical Dijkstra’s algorithm.

Multiple datafile Access: When k > 1, the problem of finding

a low cost access tree is equivalent to finding a Steiner Tree [33].

Here, the set of nodes A0 ∪Ak act as terminals and our objective is

to find a minimum cost Steiner tree that contains all of them. This

problem is APX-Hard, i.e., arbitrarily good approximations cannot

be achieved in polynomial time (unless P = NP). In this work, we
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use the classical 2-approximation algorithm, which finds a tree with

cost at most 2 times the optimal.

Example 8. Consider the query Checkout({A6, A8, A9, A12})

on the storage graph in Fig. 3(a). Fig. 3(c) shows the least cost
access tree for this query.

3.3 Search Space
Cost-based optimization requires us define the search space of

potential, equivalent plans. The search space that we use in this

work revolves around two equivalences: (i) associativity of the

patch operation, and (ii) De Morgan’s laws for set theory. We can

thus generate equivalent evaluation plans by repeatedly applying

those equivalence rules. Unfortunately the number of different

evaluation plans is very large, even with just the first rule (§ 4.1).

Unlike relational query optimization, the set of potential intermediate

results is not easy to define either, and thus this problem does not

seem amenable to dynamic programming-style algorithms used

there. We instead take a hybrid approach where we use a series

of heuristic transformation rules, based on De Morgan’s laws, to

simplify the expressions, and use a dynamic programming-based

algorithm (that exploits the associativity of patch) to optimize the

sub-expressions in the simplified expression.

Apart from generating alternative query expressions using logical

equivalence rules, it is also possible to expand the search space

of candidate plans by considering the impact of physical access

structures on the data, e.g., secondary indexes. For instance, B-Trees

on datafiles or deltas can be helpful when records are filtered on

some attribute, bloom filters on deltas can help in evaluating queries

like set difference, and so on. Additional considerations also arise

when a join result is required across multiple versions – the delta

chains for the different sets of datafiles (corresponding to the different

relations) may not be “aligned” and the access tree selection will

have to consider possibility of “joint” optimizations. Understanding

this search space further, especially for richer queries involving joins

and aggregates, remains a rich area for future work.

3.4 Cost and Cardinality Estimation
The cost of executing any of the set operations mentioned so far

depends on the physical datafile format and the specific implemen-

tation of the operation. Since there exist several implementations

for the set operations, there exist several cost functions. In DEX, the

primary method of storing a datafile is clustered storage. In this

method, records are stored in a sorted manner based on a suitable

derived key (e.g., SHA1). There are several algorithms for evaluating

a set expression between two or more operands based on this storage

format and we outline our choices next alongwith their respective

cost. To keep the discussion simple, we describe algorithms and

their respective cost functions when all input data for a specific

operation fits in memory and there is no paging of intermediate

results to disk. Even if some deltas are large enough to require using

disk, most of the algorithms below access the deltas sequentially

and thus can be used with small modifications. We note that our

optimization algorithms are largely agnostic to the specific choices

for operator implementations, and can be used as long as the costs

of the operations can be estimated.

Intersection: To compute the intersection of l datafiles, A1, . . . , Al ,

we use an adaptive algorithm introduced in [19] called Small Adap-

tive (SA). SA first sorts the set of input datafiles according to their

size. For each element in the smallest datafile, SA performs a

gallop search on the second smallest datafile. A gallop search

consists of two stages. In the first stage, we determine a range in

which the element would reside if it were in the datafile. This

range is found by identifying the first exponent j such that the

element at 2j is greater than the searched element. In the second

stage, a binary search is performed in the range (2j−1, 2j ) to find if

the element exists. If found, a new gallop search is performed in the

remaining l − 2 datafiles to determine if the element is present in

the intersection, otherwise a new search is performed. After this step,

each datafile has an examined range (from the beginning to the

position returned by the current gallop search) and an unexamined

range. SA then selects two datafiles with the smallest unexamined

range and repeats the process until one of the datafiles has been

fully examined.

Because intersections only make sets smaller, as the algorithm

progresses with several sets, the time to do each intersection effec-

tively reduces. In particular, as pointed to in [19], the algorithm

benefits largely if the set sizes vary widely, and performs poorly if

the set sizes are all roughly the same. Since one gallop search takes

O(log i) time, where i is the index where the element would be in

the datafile, we can model the worst case cost of intersection as,

C∩(A1, . . . , Al) = l |A1 | log(|Al |/|A1 |), (2)

where A1 and Al are the smallest and largest datafiles respectively.

Union: To take a union of l datafiles {A1, . . . , Al}, we perform a

linear scan over all lists to merge them, and output the result.

C∪(A1, . . . , Al) = |A1 | + · · · + |Al |. (3)

Set Difference: To compute the set difference A1 − A2, we choose

the better among the following two based on input sizes: perform a

linear scan over both datafiles and use a merging algorithm, or for

each element in A1, perform a gallop search on A2, including the

element in the output if the search fails. This can be captured using

the cost function,

C−(A1, A2) = min{|A1 | + |A2 |, |A1 | log(|A2 |/|A1 |)}. (4)

Patch: This is a binary operation where the two inputs are either (i)

a datafile (M) and a delta (Δ), or (ii) two deltas (Δ1 and Δ2). In the

first case, the output datafile can be computed by performing one

linear scan over each of M , Δ+ and Δ− and evaluating Definition 3,

making the cost function,

C⊕(M,Δ) = |M | + |Δ |. (5)

Typically, |M | > |Δ−|, and we use the linear scan approach to

compute the set difference. In the second case, the output Δ can be

computed by evaluating Definition 5. Note that the datafiles of

Δ2 are scanned twice, once to compute Δ+ and once to compute Δ−.

Thus, the cost function is given as,

C⊕(Δ1,Δ2) = |Δ1 | + 2|Δ2 |. (6)

Cardinality Estimation: Because we restrict the search space as

discussed in § 3.3, we require intermediate result size estimates only

when two deltas are patched.

Let Δ = Δ1 ⊕ Δ2, where Δ1 and Δ2 are deltas between three

datafiles as above. Let x = |Δ−| and y = |Δ+ |. We want to

estimate x and y. By definition, Δ is a consistent delta between A1

and A3. Therefore, |A3 | = |A1 | − x + y. Since |A1 | and |A3 | are

known, we can estimate x from y, or vice versa.
From Definition 5 we can obtain intervals for both x and y as,

x ∈
[
max(0, |Δ−1 | − |Δ+2 |) + |Δ−2 |, |Δ

−
1 | + |Δ−2 |

]
,

y ∈
[
max(0, |Δ+1 | − |Δ−2 |) + |Δ+2 |, |Δ

+
1 | + |Δ+2 |

]
.

We estimate the quantity with the smaller interval, where the value

is chosen uniformly at random from the corresponding interval.
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4. QUERY EXECUTION ALGORITHMS
Next we present a series of algorithms for cost-based optimization

for each of the different query types.

4.1 Checkout Queries
Let Checkout(Ak ) and GQ denote a checkout query and its access

tree resp. We first consider the case when k = 1 (single datafile

checkout) followed by the case k > 1 (multiple datafile checkout).

4.1.1 Single datafile Checkout
Recall that the access tree GQ , when k = 1, is the shortest path from

A0 to Ax1
in G. The delta expression for single datafile checkout

is therefore, of the form, Q : M ⊕ Δ1 ⊕ Δ2 ⊕ · · · ⊕ Δm, where M is

the materialized datafile.

Evaluation Algorithms: Since the ⊕ operation is associative, we

can evaluate Q in multiple ways by changing the placement of

“parentheses”. For instance, one method is to evaluate the expression

from left-to-right, i.e., Q : (((M ⊕Δ1)⊕Δ2)⊕ · · ·⊕Δm). Alternately,

we can evaluate the expression from right-to-left, or in any arbitrary

fashion that repeatedly combines two operands at a time, until we are

left with the result. These evaluation methods, in general, will have

varying costs. The total number of evaluation orders is equivalent to

the classical problem of counting the number of ways of associating

m applications of a binary operator, and is given by the (m − 1)th

Catalan number, which is Ω(4m/m3/2).

Note that a greedy algorithm that iteratively combines two deltas

having the least cost is not always the optimal strategy.

Example 9. Consider the expression, Q : Δ1 ⊕ Δ2 ⊕ Δ3, where
the deltas are such that |Δ1 | = x, |Δ2 | � |Δ3 | = y, x 
 y. Intuitively,
the deltas Δ2,Δ3 are larger compared to Δ1 and they are such that
they almost “undo” each other. The greedy algorithm will pick the
plan (Δ1 ⊕Δ2) ⊕Δ3 with estimated cost ≈ 2x+5y, while the optimal
plan Δ1 ⊕ (Δ2 ⊕ Δ3) has cost ≈ x + 2y + 2ε, where ε = |Δ2 ⊕ Δ3 |.

For sake of completeness, we have reproduced the classical

dynamic programming algorithm to select the (estimated) best

evaluation order in Appendix A.1. We call this the path contraction
(PC) algorithm. We use PC extensively in subsequent sections to

determine the best evaluation order to combine a sequence of deltas.

The runtime of PC is Θ(m3) where m is the number of deltas.

As discussed in § 3.3, we have syntactically restricted the space

of alternative evaluation plans for checkout by only considering the

associativity of the patch operation. Although additional transforma-

tions could be used to expand the search space, we could not identify

any such transformation rules for checkout that were effective outside

of pathological cases.

4.1.2 Multiple datafile Checkout
Since GQ is a tree, there exists exactly one path from A0 to each

Ai ∈ Ak . Let ρ(Ai) denote the sequence of deltas on this path. A

straightforward method to evaluate the query is to consider the delta

expression for each Ai based on the deltas in ρ(Ai) and use PC to get

the optimal execution order. However, doing so does not take into

account the opportunity for shared computation. Specifically, two or

more paths may share sub-expressions and we end up evaluating a

sub-expression multiple times if we consider each path independently.

We illustrate this with the help of an example.

Example 10. Consider the query Checkout(A6, A8, A9, A12)

and the access tree in Fig. 3(c). We write one expression for each of

A6, A8, A9 and A12 respectively, as follows,
Q :A1 ⊕ Δ(A1, A2) ⊕ Δ(A2, A4) ⊕ Δ(A4, A8);

A1 ⊕ Δ(A1, A3) ⊕ Δ(A3, A5) ⊕ Δ(A5, A9);

A1 ⊕ Δ(A1, A3) ⊕ Δ(A3, A6);

A1 ⊕ Δ(A1, A3) ⊕ Δ(A3, A6) ⊕ Δ(A6, A10) ⊕ Δ(A10, A12)

Note that if we evaluate each of these independently, based on how
the parenthesization is performed, we will evaluate A1 ⊕ Δ(A1, A3)

thrice, or Δ(A1, A3) ⊕ Δ(A3, A6) twice.

Evaluation Algorithms: The above can be seen as the problem

of how to plan the execution of a batch of queries, where each

query is a single datafile checkout, analogous to multi-query

optimization. The goal here is to design a strategy that recognizes

the possibilities of shared computation so that we can re-use the result

of sub-expressions to the extent possible in order to obtain a globally

optimal evaluation plan. To that effect, we develop a dynamic

programming algorithm, called tree contraction (TC), to select the

best evaluation plan after accounting for shared computation. At

a high level, TC breaks up the problem into two questions: how

do we decide which sub-expressions to share and how do we best

parenthesize each (sub-)expression? We already know how to

compute the solution for the latter using PC. The solution to the

former is based on enumerating all possibilites for sub-expression

sharing and recursively solving the rest of the problem with the help

of the extra state information computed during PC. The pseudocode

of TC is shown in Appendix A.2, and its time complexity is O(m3)

where m is the number of deltas in the access tree.

Before we conclude this discussion, it will be helpful to understand,

as the following example shows, why a simple greedy strategy of

always sharing the largest possible expression (from left to right) is

not always optimal.

Example 11. Consider the following access tree to checkout A3

and A4.

The instance is constructed such that Δ2,Δ3,Δ4 are large (say,
y ≈ |Δ2 | ≈ |Δ3 | ≈ |Δ4 |) andΔ3,Δ4 “undo” most of the changes done
byΔ2. Δ1 is a small independent set of changes, say, x = |Δ1 |, x 
 y.
The greedy strategy will force us to share Δ′ = Δ1 ⊕ Δ2 and
|Δ′| ≈ x + y. Thus the cost of the greedy strategy is ≈ 3x + 8y. On
the other hand, evaluating Δ1 ⊕ (Δ2 ⊕ Δ3),Δ1 ⊕ (Δ2 ⊕ Δ4) incurs a
cost ≈ 2x + 6y.

4.2 Intersection Queries
Given an intersect query I(Ak ) and its access tree GQ , a straightfor-

ward method, that we treat as a baseline, is to first use TC to perform

Checkout(Ak ) followed by the intersection. This approach, how-

ever, only considers the associativity of patch and the sharing of

sub-expressions in order to find a good evaluation order. We now

develop a set of transformation rules on the access tree that allow us

to compute partial intersection results using only the deltas. Since a

delta between two datafiles already captures a notion of difference

between them, we leverage this information and avoid redundant

computation while finding the intersection.

The transformation rules are based on identifying two simple

structures in the access tree GQ , called line and star (Fig. 4). In

each figure, we use boxes to denote datafiles in Ak and circles to

denote other datafiles. Also, if a box or circle is filled, it denotes

a materialized datafile.

Line Access Trees: Consider the query I(A1, A2)with the datafiles

as arranged in Fig. 4(a). Here, A1 is the materialized datafile
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Figure 4: (a) A line of two or more datafiles; (b) A line when the

materialized datafile M is not a part of query input; (c) A star.

while A2 is stored as a delta from A1. It is easy to see that:

R = A1 ∩ A2 = A1 − Δ−1 .

In general, for the query I(Ak ) with the datafiles as arranged in

Fig. 4(a), the result R is computed as,

R = I(Ak ) = A1 − (Δ−1 ∪ · · · ∪ Δ−k−1
) (7)

Note that the above equality does not hold if there are other

datafiles in GQ even if GQ is a line. We use this equality to

introduce our first transformation rule that “reduces” the deltas in a

line structure to a single delta that gives the result for the intersect

query. Conceptually, this reduced delta acts as a delta between two

datafiles: the same materialized datafile as in the line and a

(new) datafile representing the intersection result.

T1:– If Δ1, . . . ,Δk−1 are the deltas in the line, then the reduced

delta, Δl , for the intersect query is composed as,

Δ−l = Δ
−
1 ∪ Δ−2 ∪ · · · ∪ Δ−k−1

; Δ+l = ∅

This transformation rule significantly reduces the amount of data

that needs to be subsequently processed.

To handle the case when the materialized datafile is not a part of

the line, as in Fig. 4(b), we use a two-step approach. First, assuming

that A1 is the materialized datafile and we can use rule T1 to

compute the reduced delta Δl . Second, we can contract Δ and

Δl since they share the datafile A1. The result is computed as

R = M ⊕ Δ ⊕ Δl .
Next, we discuss how to evaluate eq. (7). Consider the identity,

X − (Y ∪ Z) = (X −Y ) − Z , for three sets X,Y, Z . If |Y |, |Z | 
 |X |,

observe that X − (Y ∪ Z) will often have less cost than (X − Y ) − Z .

Intuitively, if we do the set difference first, then |X − Y | will be

comparable to |X | and will end up being scanned again. Specifically,

under the cost model stated in §3.4, when |X | > 3 max(|Y |, |Z |),
performing X − (Y ∪ Z) will result in a reduced cost. We therefore

use the following greedy heuristic when evaluating eq. (7).

H1:– Let L = {Δ−
1
, . . . ,Δ−

k−1
}, R = M . We iteratively perform the

following until L is empty: let Δ′ be the largest size delta in

L. If |R| > 3|Δ′|, we replace the largest two deltas in L by

their union; else, we set R = R − Δ′.

Star Access Trees: Consider the query I(A1, A2)with the datafiles

as arranged in Fig. 4(c). Here, M is the materialized datafile and

A1 and A2 are stored as deltas from M . We have that:

R = A1 ∩ A2 =
(
M − (Δ−1 ∪ Δ−2 )

)
∪ (Δ+1 ∩ Δ+2 )

To see why, recall that Δ−i indicates the set of records to be removed

from M to get Ai . Hence, no record in Δ−i can be a part of the

intersection result. Additionally, new records (that do not exist in

M) can be added only if they belong to all of Δ+i .

In general, for the query I(Ak ) with the datafiles as arranged

in Fig. 4(c), the result R is computed as,

R = I(Ak ) =
(
M − (∪k

i=1
Δ−i )

)
∪ (∩k

i=1
Δ+i ) (8)

The result R is written in terms of the materialized datafile M.

This leads us to our second tarnsformation rule that “reduces” the

deltas in a star structure to a single delta that gives the result for

the intersect query. Conceptually, this reduced delta acts as a delta

between M and the intersection result.

T2:– If Δ1, . . . ,Δk are the deltas in the star, then the reduced delta

Δs , for the intersect query is composed as,

Δ−s = ∪k
i=1
Δ−i ; Δ+s = ∩k

i=1
Δ+i

We use H1 to evaluate Equation (8). Since none of Δ+i can help

reduce intermediate result sizes, the intersection of Δ+i s can be done

independently. Finally, we also make the following observation.

Observation 12. Δl and Δs are consistent.

Arbitrary Access Trees: We develop an algorithm, called Contract
and Reduce (C&R), that puts the above two techniques together for

arbitrary access trees. With minor modifications, the same algorithm

can be used for other types of queries, and hence we describe its

general form. The pseudocode for C&R is shown in Appendix A.3.

Starting with a query Q ∈ {I,U,Tt }, and its access tree GQ as

inputs, C&R iteratively evaluates partial delta expressions, effectively

reducing the size of GQ . Each iteration of the algorithm has two

phases: contract phase and reduce phase. In the contract phase,

we identify all maximal continuous delta paths: a path where all

nodes, except the start and end node, have exactly 2 neighbors, and

none of the intermediate nodes is a part of Ak . Each path should be

of length > 2 and be the longest possible. Every such path is then

contracted to a single delta using PC. Specifically, if Δ1, . . . ,Δu is

the sequence of deltas on the path between two nodes Ax and Ay in

GQ , we use PC to find the best order to evaluate Δρ = Δ1 ⊕ · · · ⊕ Δu ,

execute the operations, and replace the sequence by the delta Δρ
between Ax and Ay .

In the reduce phase, we find all lines and stars in GQ and reduce

them according to the appropriate transformation rules – T1/T3 for

lines and T2/T4/T5 for stars. Each transformation takes as input

two or more deltas, either in a line or star configuration, and replaces

them by a single delta. Note that if all paths are contracted, and

number of deltas in GQ is more than 1, there will at be at least one

reduction to be performed.

The algorithm ends when there is only one delta remaining in

GQ . At this point, we simply apply the delta to the materialized

datafile in GQ and return the result. We illustrate the behaviour

of the algorithm with the help of an example in Appendix A.3.

4.3 Union
In this section, we give transformation rules for line and star for

the query U(Ak ). We can then use C&R with the mentioned rules to

evaluate arbitrary access tree structures.

Line: Consider the query U(Ak ) with the datafiles as arranged

in Fig. 4(a). Then: R = A1 ∪ (∪k
i=1
Δ+i ).

The transformation rule for a line can therefore be stated as,

T3:– If Δ1, . . . ,Δk−1 are the deltas in the line, then the reduced

delta, Δl , for the union query is composed as,

Δ−l = ∅; Δ+l = ∪k
i=1
Δ+i

Star: If the datafiles are arranged as shown in in Fig. 4(c), we

have that: R = U(Ak ) =
(
M − (∩k

i=1
Δ−i )

)
∪ (∪k

i=1
Δ+i ).

To see why, since Δ−i indicates the set of records to be removed from

M to get Ai , if a record is absent in the union, it must have been

present in all Δ−i . New records that are added in any Δ+i are a part

of the union result. Then:

T4:– If Δ1, . . . ,Δk are the deltas in the star, then the reduced delta

Δs , for the union query is composed as,

Δ−s = ∩k
i=1
Δ−i ; Δ+s = ∪k

i=1
Δ+i

We conclude this section by mentioning that similar to the inter-

section case, Δl and Δs , for the union query, are consistent.
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4.4 t-Threshold
In order to evaluate a t-threshold query Tt (Ak ), we make use of

multiset-backed deltas during intermediate query execution, instead

of the set-backed deltas that we have been using so far. This

introduces two important issues during the execution of C&R that

are the main focus of this section. First, we need to re-define the

semantics of delta contraction in this new setting. Second, a line

cannot be reduced in a straightforward manner as before. We begin

with some definitions, describe the transformation rule for a star,

and then discuss each of two issues in detail.

A multiset, unlike a set, allows multiple instances of any of its

elements. We represent a multiset as A = {(r, c) : c ∈ N≥1}, where

r is an element and N≥1 is the set of natural numbers. The number

c is referred to as the multiplicity of r. A set is a multiset with all

multiplicities as 1.

Consider the following two operations concerning multisets.

Definition 13 (Multiset Union). Multiset union, denoted by
A = A1 � A2, returns a multiset containing elements that occur
either in A1 or A2, where A1 and A2 are either multisets or sets.
The multiplicity of an element in A is the sum of its multiplicites in
A1 and A2.

Definition 14 (Multiset Restrict). If A is a multiset, Ac≤p

is the set of elements in A with multiplicity at most p. Similarly,
Ac≥p is the set of elements with multiplicity at least p.

We now describe how to evaluate Tt (Ak ) when GQ is a star.

Star: Consider the query R = T3(A4), i.e., find all records that

appear in at least 3 of {A1, A2, A3, A4}, when they are arranged in a

star (Fig. 4(c)). Suppose the delta Δ is such that Δ− = Δ−
1
� Δ−

2
�

Δ−
3
� Δ−

4
and Δ+ = Δ+

1
� Δ+

2
� Δ+

3
� Δ+

4
. Here, Δ− and Δ+ are

multisets, and Δ is a multiset-backed delta. Then:

R = T3(A4) = (M − Δ−c≥2) ∪ Δ
+
c≥3

To understand why, consider a record (r, c) ∈ Δ−. This indicates that

r ∈ M and c of 4 deltas, {Δ−
1
,Δ−

2
,Δ−

3
,Δ−

4
}, ask to delete r . So long

as c ≥ 2, r will absent from at least 2 of {A1, A2, A3, A4}. Similarly,

consider a record (s, c) ∈ Δ+. This indicates that s � M and c of 4

deltas, {Δ−
1
,Δ−

2
,Δ−

3
,Δ−

4
}, ask to add s. So long as c ≥ 3, k will be

present in at least 3 of {A1, A2, A3, A4}.

More generally, the transformation rule for a star can be stated as

below.

T5:– If Δ1, . . . ,Δk are the deltas in the star, then the reduced delta

Δs , for the t-threshold query is composed as,

Δ−s = �k
i=1
Δ−i ; Δ+s = �k

i=1
Δ+i

We note the following: (i) With every multiset-backed delta, we

keep an integer value 2 ≤ p(Δ) ≤ k which indicates the number

of datafiles in Ak that are reduced by this delta. For instance,

p(Δ) = 4, in the previous example. In general, the access tree will

have several disjoint stars (or lines) which are reduced at different

times in the evaluation process. We discuss how p(Δ) is used shortly.

(ii) The deltas Δ−
c≥k−t+1

) and Δ+c≥t are consistent.

We now describe the semantics of the patch operation in the

presence of multiset deltas.

Delta Contraction: Algorithm 4, shown in Appendix A, computes

the result of Δ = Δx ⊕ Δy , where Δy is a multiset delta. Note that

due to the nature of C&R, only the last delta in any sequence of deltas

can be a multiset delta. The result delta Δ is also a multiset delta.

The main idea here is to preseve semantics of two values: (i) the

multiplicity c of a record r, and (ii) the number of datafiles that

are reduced due to the delta, p(Δ). Since this is a patch operation,

we can simply set p(Δ) ← p(Δy). Recall that a record (r ′, c′) ∈ Δ−y
indicates that c′ of p(Δy) deltas ask us to remove r ′. Now consider

a record r ∈ Δ+x . If r � Δ−y , then we can add (r, p(Δy)) to Δ+.

However, if r ∈ Δ−y , then we need to “fix” the multiplicity of r , i.e.,

add (r, p(Δy) − c) to Δ+, where c is the multiplicity of r in Δ−y . The

other case is similar.

We use Algorithm 4 in place of the patch operator defined in §3.4

when one of the operands is a multiset delta. Its estimated cost is

modeled as, C⊕(Δx,Δy) = |Δx | + 2|Δy |, and we can use PC during

the contract phase as before.

Line: Consider the query, R = T2(A4), with the datafiles as

shown below.

Consider a record r such that r ∈ Δ+
1

, and r ∈ Δ−
3

. Although r is

present in two opposite deltas, r ∈ R. More generally, in the case

of t-threshold queries, simply knowing whether a record is in Δ−i
or Δ+i is not sufficient to conclude if it is present in the result. We

also require knowledge of the “position” of the delta containing the

record on the line. Alternately, we can reduce the line by considering

deltas in right-to-left order, by the following simple modification

to Algorithm 4. Suppose that we know how to contract Δ2 ⊕ Δ3

to obtain a multiset delta Δy as shown. We show how to modify

Algorithm 4 to compute Δ = Δ1 ⊕ Δy . The central idea is again to

set record multiplicites and p(Δ) correctly. Note that p(Δy) = 2, as

it reduces A3 and A4. Since, Δ is also meant to reduce A2, we set

p(Δ) = p(Δy) + 1 (line 1). Consider a record r ∈ Δ+
1

. If r � Δ−y ,

then we can add (r, p(Δy) + 1) to Δ+ (line 6). On the other hand,

if r ∈ Δ−y , we add (r, p(Δy) − c + 1) to Δ+ (line 4) where c is the

multiplicity of r in Δ−y . The other case is similar.

5. EXPERIMENTAL EVALUATION
In this section, we present a comprehensive evaluation of our DEX

prototype. The key takeaway from our study is that, pushing down

computation to the deltas can lead to signifincant savings, an order-of-

magnitude in many cases. Surprisingly, even for a single datafile

checkout, we see large benefits in the computational time. We

also show, through an illustrative experiment (Appendix D), that

using auxiliary data structures like bitmaps can increase the benefits

many-fold, indicating that this is a rich direction for future work.

All experiments were conducted on a single machine with Intel

Core i7-4790 CPU (3.60 GHz, 8MB L3 cache), 32GB of mem-

ory, running Ubuntu 16.04 and OpenJDK 64-bit server JVM (ver.

1.8.0_111). Our choice to write the query processor in Java was

primarily based on getting quick development time while still being

reasonably performant on large datasets. While using a low-level

language (e.g., C) will reduce the absolute query execution times, it

will not change our primary objective which is to measure relative

speedup of our techniques compared to the baseline. All time mea-

surements are recorded as wall-clock time. Unless otherwise stated,

to measure response time, we run each query 10 times and consider

the median. To account for the adaptive performance of some of

the set operations, we repeat the above on 25 datasets with identical

properties (described next) and report the median. As discussed

in § 3.4, our computations are CPU bound, and we did not find an

appreciable difference in warm cache vs cold cache settings; for

consistency, we report results for a warm cache setting.

Datasets: Lacking access to real-world versioned datasets with

sufficient and varied structure, we instead developed a synthetic data

generator to generate datasets with very different characteristics for a

wide variety of parameter values. This enables us to carefully study
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Figure 7: Effect of varying #Δ when |Δ | = 5%

the performance of our techniques in various settings. Formally, ev-

ery experiment setting is characterized by a 4-tuple, 〈T, |A|, |Δ |, #Δ〉,
where |A| and |Δ | refer to the average number records in a datafile

and average size of the deltas in the dataset (as a percentage of |A|).
T denotes the shape of the access tree that is used, and is one of:

line-shaped (l), star-shaped (s) and line-and-star (ls); and #Δ refers

to the number of deltas in the access tree. All records are 64-byte

randomly generated strings. For more details on dataset generation

process, please see Appendix B.

Single datafile Checkout: We begin with evaluating the perfor-

mance of PC, i.e., Algorithm 1, against two heuristics for the case of

single datafile checkout. Fig. 5 shows the median response time of

this analysis (in milliseconds) on the vertical axis, and the horizontal

axis is the number of deltas (#Δ) in the expression. The other

parameters of the dataset are fixed at 〈T = l, |A| = 3M, |Δ | = 5%〉.

The LR heuristic simply evaluates the delta expression from left-to-

right starting with the materialized datafile. This is the standard

heuristic used in prior delta-based storage engines, like git. On the

other hand, the Greedy heuristic iteratively patches two operands

having the least estimated cost.

We observe that in each instance, PC performs better than Greedy

which performs better than LR. Specifically, we note up to 7.0-8.8X
improvement in median response times when comparing PC with LR

and up to 14% improvement when comparing with Greedy. The

performance gap between LR and the other methods also increases

slightly as the number of deltas goes up. This is because the left

input of every patch operation in LR has a large size, in contrast

to both Greedy and PC, that “balance” their inputs in a cost-based

manner. Also, because we assume that every record in a datafile

is equally likely to be modified and there is no set of “hot” records,

i.e., records that are modified often, we observe that the intermediate

result sizes continue to grow in Greedy and PC as well. We observe

similar trends for other delta sizes and omit their results.

Next, we study the effect of varying average datafile size on the

response times. Fig. 6 shows the result of this study on the dataset

〈T = l, |Δ | = 1%, #Δ = 100〉 when |A| is varied from 1 million

records to 5 million records. In this case, we observe a 8.9-10.5X
speedup when compared to LR, with the Greedy solution being

approximately close to PC.

Finally, although PC has cubic time complexity in the number of

deltas, the solutions it finds are, in all cases, better than alternatives

even after taking optimization time into consideration. When

#Δ = 100, the average time to find the optimal solution was 1.2ms.

Multiple datafile Checkout: We now evaluate the time taken to

checkout k = 8 datafiles on the dataset 〈T = ls, |Δ | = 5%, |A| =
1M〉. We evaluate TC, i.e., Algorithm 2, by comparison against three

approaches. The Naive approach simply performs a checkout of

each datafile independently using LR. The second approach uses

PC to checkout individual datafiles. Both these approaches do not

take into account sharing of intermediate results. The third approach,
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called Greedy, shares the results of the largest sub-expressions as

much as it can (e.g., for two datafiles, the result of the expression

from the root of the access tree to their lowest common ancestor is

always shared).

Fig. 7 reports the median checkout time (in seconds) as the number

of deltas (#Δ) in the access tree is varied. We observe that overall

Greedy and TC have similar response times and TC performs slightly

better than Greedy in each case (between 7.2−10.8% improvement).

Also, when compared to Naive, we observe a 5.1–6.8X improvement

in median response time.

The average optimization time when #Δ = 300 was 18.4ms.

Intersect: In the following set of experiments, we compare the

running time of evaluating I(Ak ) using two algorithms. The baseline

approach simply performs a checkout of all the datafiles in Ak
using TC, followed by their intersection. The second approach

measures the performance of C&R, i.e., Algorithm 3.

Because C&R makes decisions based on the shape of the access

tree, we first study the effect of varying the shape of the access

tree on intersect performance. Fig. 8 shows the median response

time against the query size for the three types of access trees: line,

star, and line-and-star. The other parameters of the dataset are

〈|A| = 3M, |Δ | = 1%, #Δ = 100〉. The numbers on top of each bar

indicate the speedup obtained. We note speedups of upto 12X when

using C&R. The speedup obtained for T = l is smaller than others
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primariliy due to the shape of the access tree – in a line, the smallest

path between root and a query datafile cannot be reduced using

any of the tranformation rules and must be contracted using PC.

In the next experiment, reported in Fig. 9 we study the effect of

varying the number of deltas in the access tree of I(Ak ). Here,

we use the dataset 〈T = ls, |A| = 3M, |Δ | = 1%〉 and vary #Δ; we

report the results for k = 4, 8. As we can see, our techniques are

particularly effective, giving a speedup upto 16X and 25X, for k = 4

and k = 8 respectively. The speedup decreases as the number of

deltas increases primarily due to larger intermediate delta sizes.

Fig. 10 shows the speedup obtained when the average datafile

size is varied between 1M and 5M records; other dataset parameters

are 〈T = ls, |Δ | = 1%, #Δ = 50〉. We observe that our techniques

show significant benefit, obtaining upto 17X speedup. Further, we

note that datafile size does not affect C&R to a large degree.

Fig. 11 reports the speedup obtained when the average delta size

in the dataset, |Δ |, is varied between 1% and 5% of the average

datafile size; other dataset parameters are 〈T = ls, |A| = 3M, #Δ =
50〉. We note a speedup of 2.8-16X when |Δ | = 1% that decreases

gradually to 2-6X when |Δ | = 5%. This confirms our hypothesis

that if the deltas between the datafiles are small, significant

improvements can be obtained by using the deltas in query execution

in a more direct manner. When the deltas get large, the intermediate

result sizes grow too, which results in a reduced speedup.

Union: The results for U(Ak ) are similar to the intersection case

although with smaller speedup values. We report one such result

in Fig. 12: the effect of varying query size (k) for datasets with

different average delta size |Δ |. The other parameters of the dataset

are 〈T = ls, #Δ = 50, |A| = 3M〉. We note a speedup of 1.6-8.6X
when |Δ | = 1% that decreases gradually to 1.5-4.1X when |Δ | = 5%.

t-Threshold: We use the adaptive algorithm of [8] as a baseline for

our t-threshold experiments. Similar to adaptive set intersection,

this algorithm uses gallop search in order to find the position of an

element r in a set. Moreover, it maintains a min heap of size k − t+1,

containing at most one element per set, in order to select a “good”

element to probe other sets during each iteration. Fig. 13 reports

the effects of varying (k, t) across datasets with different delta sizes.

The other parameters of the dataset are 〈T = ls, #Δ = 50, |A| = 3M〉.

We observe a speedup of 3.5-5X when |Δ | = 1% that gradually

reduces as the delta size increases. When |Δ | = 5%, we report a

speedup of 2.1-3.1X. The overall speedup in this case is less than

that obtained in the intersection or union query because unlike the

two, the size of the intermediate results does not decrease when

transforming lines and stars.

6. RELATED WORK
Queries in delta-based storage: Delta encoding has been used

in a variety of systems to provide trade-offs among time, space,

and compression performance, e.g., to reduce data transfer time for

text/HTTP objects [41], to reduce access time in a file system [39], to

store many versions of the generated artifacts in source code control

systems (e.g., git) or other types of data [10, 40, 48]. Recently,

Bhattacherjee et al. [11] provided a principled study of the trade-off

between storage costs and access costs for many of the above schemes.

However, the focus of many of the existing delta encoding schemes

has been to access the objects in their entirety and to the best of our

knowledge, they have not considered the tradeoff between storage

and “computability over deltas”. Even version control systems that

provide functionality to compare multiple objects, e.g., merge, diff,
etc., first recreate all required files before operating upon them.

Recently, [49] presented an indexing technique to support “time

travel” queries for scientific arrays wherein they support approximate
queries that can quickly identify which versions are relevant to a

user and return the approximate content of these versions. However,

they did not consider queries that compared the contents of two or

more array versions.

Temporal indexing: There has been extensive research on temporal

databases [44], and to some extent, versioned databases. Such

systems have proposed various index structures to store and access

historical data. For instance, Postgres used R-trees [29] to index

historical data, with recent data residing in a B+Tree. More recently,

Oracle 11g supports “Total Recall” feature [4] that creates read-only

archives to support long-term archiving of versions. Immortal DB,

which was built into Microsoft SQL Server, integrated a temporal

indexing technique called the TSB-tree [37, 38] to provide high

performance access and update for both current and historical data.

Such systems and index structures, however, were meant for either

fast complete version access or single record access to historical

data. Moreover, their data structures are optimized to support a

linear, temporal chain of versions.

Buneman et al. [14] proposed an archiving technique based on

identifying changes to (keyed) records across versions, specifically

temporal versions of hierarchical data, that are then merged into one

hierarchy represented in XML format. Because they also compared

against a diff-based storage solution, we present a brief comparison

to highlight the respective strengths and weaknesses of the two

strategies. Broadly stated, their scheme, henceforth referred to as BA,

merges all hierarchical elements across versions into one hierarchy by

identifying an element by its key and storing it only once, along with

the sequence of version timestamps where the respective element

appears. We reimplemented their technique in our framework,

using either sorted lists or bitmaps to store the sequence of version

ids where an element appears (see Appendix C for more details).

Buneman et al. compared the performance of their archiver against

two approaches based on deltas: (i) “cumulative diff”, where every

version is stored as a delta against a common (typically first) version,

and (ii) “incremental diff”, or “sequence-of-deltas”, where every

version is stored as a delta against the previous version, resulting

in a line storage graph. However, cumulative diff has a large space
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overhead [11, 14], and incremental diff results in large checkout

times due to long delta chains.

We consider single (k = 1) and multiple (k = 4) datafile

checkout on the dataset 〈|Δ | = 5%, |A| = 1M〉. Additionally,

for BA, we vary the number of datafiles (N) in the archive as

N = 10, 50, 100, 250, 500, 1000. The bitmap implementation gives

superior performance (up to 19%) for N = 100 onwards and we

use that to report checkout time, while for N = 10, 50, we use

the sorted list implementation. As noted previously, we can pack

approximately N = 80K datafiles in a storage graph (with certain

constraints) and get a delta chain of size at most 10 to checkout any

single datafile; therefore, we set #Δ = 10, 25 for fair comparison.

DEX; #Δ BA; archive size (N)

10 25 10 50 100 250 500 1000

k = 1 125 550 97 388 659 1286 2677 5362

k = 4 263 483 144 596 1110 2484 5160 9550

Table 1: Median checkout time (ms) in DEX and BA

As we can see, BA performs better than a sequence-of-deltas

approach for checkout queries. When k = 1 storing N = 50

datafiles gives better response times in BA than storing N = 25

datafiles in a sequence-of-deltas approach (demonstrated by k =
1, #Δ = 25). However, checkout times for BA increase rapidly as the

archive size grows, and DEX is vastly superior to BA under more

reasonable assumptions about the storage graph (in the context of a

versioning/data lake scenario, it is not clear how to extend some of

the optimizations in [14] that depend on the linearity of timestamps).

In short, the main difference between DEX and the sequence-of-

deltas approach (that [14] primarily compared against) is that we

assume that the storage graph is constructed using a technique that

avoids very long delta chains (e.g., “skip links”-based approach [49],

techniques that balance storage and retrieval costs [11, 34], greedy

heuristic used by git, etc.). We further note that BA suffers from

three major limitations: (i) the entire archive must be read even when

checking out a single version, (ii) adding a new version requires an

expensive merge operation that scans the entire archive (unlike a

delta-oriented storage engine where only a single delta may be added),

and (iii) decentralization is much more difficult in BA (in theory one

could maintain multiple archives and merge them periodically, but

we are not aware of any work that has attempted that).

Deltas and computing: The concept of making deltas “first-class

citizens” was explored in Heraclitus [24]. To support “what-if”

scenario analysis, they provided general-purpose constructs for

creating, accessing, and combining deltas. In the specific realization

of their paradigm for the relational model, deltas are a set of signed
atoms where the positive atoms correspond to “insertions” and the

negative atoms correspond to “deletions”. In addition, the deltas

have structure and can be manipulated directly by constructs in

user programs, e.g., to delete all records satisfying a predicate. In

contrast, our use of deltas is at the physical level and not exposed

to the users. They do not consider optimizing the different types of

queries against a delta storage. Executing queries with hypothetical

state updates was also considered in [27]. Here the state updates (or

deltas) were allowed to be expressions and the authors considered

rewriting such queries into an optimized form based on their novel

rules for substituion and the rules for relational algebra. Such rules

are however not applicable in our setting. Record-based deltas

were also used in [26, 51] to provide the capability of sharing data

and updates among different participants. However, they focused

on formalizing the semantics of the update exchange process, e.g.,

mapping updates across schemas and filtering them according to

local trust policies, and the challenges introduced therein.

Connections to materialized views: Our techniques benefit from

good storage graph constructions. Several algorithms were proposed

in [11] to construct a storage graph that meets a specified set of

constraints on, e.g., storage cost and retrieval cost, while also taking

query workload into account. Similar problems have been considered

in the context of materialized view and index selection to speed

up query processing. Broadly speaking, research in this area has

focused on three issues: (i) determining the search space or class of

views to consider for materialization, (ii) choosing a subset of views

and indexes to materialize depending on various constraints like

storage overhead, maintenance overhead, effectiveness on the query

workload, etc., [5, 50] and (iii) quickly determining which views to

consider to answer a given query [25, 30]. In our problem setting,

set-backed deltas can be considered as a form of materialized views

(which can be used to reconstruct base relations), with this work

addressing the problem of how to use such views to answer queries.

Evaluating set expressions: Several algorithms and data structures

have been proposed in literature to solve union, intersection and

difference problems on sets [7, 18, 23, 32] by minimizing the number

of comparisons required. Although the ordered list representation

is the most common, some algorithms also consider representing

sets in other data structures, e.g., skip lists [47], machine word-

based representations [21], etc., to obtain additional speedup. A

comparison of few of these methods is available in [9, 19]. Speeding

up set operations is largely orthogonal to our approach and we can

make use of some of these techniques as additional operators with the

appropriate cost model. As mentioned earlier, in this work, we use an

adaptive set intersection algorithm that was shown to have reasonably

good performance in [19] without requiring any preprocessing

step. The larger problem here, however, is how to efficiently

evaluate a set expression consisting of union, intersection and

difference. [12] consider evaluating union-intersection expressions

in a worst-case efficient way for a non-comparison based model.

However, their approach uses hash-based dictionaries, which would

require an additional pre-processing step, and it remains an open

problem whether their results can be extended to handle set difference.

Recently, [36] showed that, for a similar cost model, a union-

intersection expression can be rewritten to perform intersections

before unions with often a reduced cost. Their approach, however,

did not consider rewrites in the presence of set difference.

7. CONCLUSION AND FUTURE WORK
With a growing interest in maintaining all data ever analyzed for

a variety of reasons including auditing and accountability, delta-

oriented storage engines (in the form of version control systems or

archival systems) are becoming increasing common. Such storage

engines contain a vast amount of useful information about how the

datasets evolved over time, what types of analyses were performed

over them, and their results; this opens up the door to executing

a rich collection of introspective queries about analyses and work-

flows themselves. In this paper, we initiated a systematic study

of this problem, by formally analyzing a simple class of queries

and developing cost models and optimization algorithms for them.

As we showed, even these simple queries exhibit interesting and

unexplored computational challenges and the benefits of optimizing

their execution can be tremendous (orders-of-magnitude in many

cases). Generalizing the classes of queries and delta types are rich

directions for future work that we plan to pursue towards designing

a powerful, general-purpose query engine for such storage engines.
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APPENDIX
A. ALGORITHMS
We outline the pseudocode for the missing algorithms below.

A.1 Path Contraction (PC)
The input to PC is a materialized datafile, say M, followed by a

sequence of deltas, say Δ1, . . . ,Δm and the output is the datafile

represented by the corresponding delta expression, M⊕Δ1⊕· · ·⊕Δm.

The algorithm uses the property that if the optimal solution splits

the contraction of a path of length m into two sub-paths, then the

contraction of each of the two sub-paths must be optimal (otherwise,

we can improve the solution for the sub-paths to enhance the overall

solution). For 0 ≤ i ≤ j ≤ m, let C[i, j] denote the minimum cost to

contract the sequence Δi, . . . ,Δj , D[i, j] denote the estimated size

of the corresponding intermediate result, and S[i, j] denote how to

best split the sequence. For notational convenience only, if M is

present, Δ0 = M . The pseudocode of PC is shown in Algorithm 1.

A.2 Tree Contraction (TC)
The input to TC is an access tree GQ and the output is the set of

datafiles Ak . The pseudocode of TC is shown in Algorithm 2 and

we explain it with the help of Fig. 14.

First, note that if GQ has more than one materialized datafile,

then we can consider the sub-trees rooted at each materialized

file independently. Fig. 14(a) shows an access tree to checkout

A1, A2, A3. Let M be the root of this access tree. Starting from M ,

let Bi be the first node that has l > 1 children. Let B0, . . . , Bi−1 be

the intermediate nodes on the M − Bi path. Let GQ(Bj ), 0 ≤ j < i,
be the access tree rooted at Bj (this tree is equivalent to deleting the

nodes M, B0, . . . , Bj−1 from GQ). For example, Fig. 14(b) shows

two components: (i) the path ρ(Bi−1) (above), and (ii) the access

tree GQ(Bi−1) (below). Let split(GQ) denote the operation that

splits GQ at Bi into l access trees, one for each child of Bi . This is

showin in Fig. 14(c). Let split-par(GQ) denote the operation that

splits GQ at Bi into l access trees, one for each child of Bi , but this

time preserving the parent sequence of deltas in each split. This is

shown in Fig. 14(d).

Algorithm 1: Path Contraction (PC)

Input :A materialized datafile M (optional); Δ1, . . . ,Δm
Result: Minimum cost to evaluate M ⊕ Δ1 ⊕ . . .Δm

1 for l ← 2 to m do
2 for i ← 0 to m − l + 1 do
3 j ← i + l − 1

4 C[i, j] ←
mini≤k< j C[i, k]+C[k+1, j]+C⊕(D[i, k],D[k+1, j])

5 S[i, j] ← arg mini≤k< j C[i, k] + C[k + 1, j] +
C⊕(D[i, k],D[k + 1, j])

/* Update estimated size of Δi ⊕ · · · ⊕ Δj */

6 D[i, j] ← EstimateSize(D[i, S[i, j]],D[S[i, j] + 1, j])
7 end
8 end
9 return C[1,m] (final cost) and S (splitting markers)

Algorithm 2: Tree Contraction

Input :Access Tree GQ
1 Apply PC for each ρ(Ai), Ai ∈ Ak . Memoize C[], S[] and D[].

2 return Best-Subexp({},GQ)

3 Procedure Best-Subexp(L,GQ)
Input :Deltas, L; Access tree, GQ

4 if GQ is a path then return Best solution for {L ∪ GQ}

5 forall 0 ≤ j < i do
6 Δρ(B j ) ← estimated delta for the sequence ρ(Bj )

7 L′ = L ∪ Δρ(B j )

8 cost_g ← Best-Subexp(L′,GQ(Bj ))

9 Δρ(Bi ) ← estimated delta for the sequence ρ(Bi)

10 L′ = L ∪ Δρ(Bi )

11 cost_g ←
∑

G′
Q
∈split(GQ ) Best-Subexp(L

′,G′
Q
)

12 cost_g ←
∑

G′
Q
∈split-par(GQ ) Best-Subexp(L,G

′
Q
)

13 return Best cost_g

Figure 14: An instance of the Tree Contraction algorithm; (a) is an access

tree for the query Checkout(A1, A2, A3).

At a high level, TC breaks up the problem into two questions:

how do we decide which sub-expressions to share and how do we

best parenthesize each (sub-)expression? We already know how to

compute the solution for the latter using PC. Therefore, we begin with
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Figure 15: Access tree during the progress of C&R

applying PC for all ρ(Ai), Ai ∈ Ak . However, apart from the best

solution for the complete expression, we also return the following

information about each path ρ(Ai), all of which is computed by PC

during its execution. Let Δ1, . . . ,Δm be the sequence of deltas on

the path ρ(Ai) and i, j be indices such that 0 ≤ i ≤ j ≤ m. Then we

return: (i) the minimum cost to contract the sequence Δi, . . . ,Δj ,
denoted by C[i, j], (ii) the estimated size of the intermediate delta,

denoted by D[i, j], and (iii) the split marker, indicating how to best

split the the sequence, denoted by S[i, j]. We re-use these estimates

of intermediate delta sizes and partial contraction costs wherever the

corresponding sub-expressions are considered for sharing. To decide

which sub-expression to share, we simply enumerate all possibilities

for the sub-expression starting from the root of the access tree (this

is done in line 5). The rest of the problem is solved recursively

where L is the sequence of sub-expressions that are considered to

be shared. Finally, we also need to account for the possibility of not

sharing any sub-expression.

The time complexity of TC is O(m3) where m is the number of

deltas in the access tree.

A.3 Contract and Reduce (C&R)
Algorithm 3 describes the general form of C&R for all queries.

Specifically, it takes as input a query Q ∈ {I,U,Tt }, and its access

tree GQ , and outputs the appropriate result. We describe its behavior

with the help of the following example.

Algorithm 3: Contract and Reduce (C&R)

Data: Query Q ∈ {I,U,Tt } and access tree GQ
1 while GQ contains more than one delta do
2 Contract Phase:
3 P ← list of maximal continuous delta paths of length

> 2 in GQ
4 Contract all paths in P using PC and update GQ
5 if GQ becomes a line/star then
6 return R ← result using H1
7 Reduce Phase:
8 L ← list of line structures in GQ
9 Reduce each line in L based on Q, i.e., apply one of

T1/T3, and update GQ
10 S ← list of star structures in GQ
11 Reduce each star in S based on Q, i.e., apply one of

T2/T4/T5, and update GQ

/* At this point GQ contains one delta. */

12 return R ← Root(GQ) ⊕ Δ

Example 15. Consider the query I(A6, A8, A9, A12) with access
tree as in Fig. 15(a). In the first iteration, during the contract phase,
we compute the deltas: (1) Δc1 = Δ1 ⊕ Δ3 ⊕ Δ6, (2) Δc2 = Δ4 ⊕ Δ7,
and (3) Δc3 = Δ8 ⊕ Δ9 (Fig. 15(b)). In the reduce phase where we
reduce A6 and A12 arranged in a line (Fig. 15(c)). This reduction
puts A9 and Q(A6, A12) in a star, which is then reduced as in
Fig. 15(d)). In the next iteration, during the contract phase, we
compute Δc4 = Δ2 ⊕ Δs1 (Fig. 15(e))). In the reduce phase, we
reduce the star A8 and Q(A6, A9, A12) which leaves the access tree
with a single delta.

A.4 Multiset Delta Contraction
During the execution of C&R for t-threshold queries, we will encounter

expressions of the form Δx ⊕ Δy , where Δy is a multiset-based delta.

Here, we outline a linear time algorithm (shown in Algorithm 4)
that computes the contraction in a manner that helps us compute the

query result. Recall that p(Δ) is the number of datafiles in Ak
that are reduced by Δ and c is the multiplicity of a record.

Algorithm 4: Patch operation for multiset-based deltas

Data: Set-backed delta Δx , and multiset-based delta Δy
Result: Multiset delta Δ = Δx ⊕ Δy

1 Initialize Δ ← Δy, p ← p(Δ) ← p(Δy)
2 for r ∈ Δ+x do
3 if r ∈ Δ− then
4 Remove (r, c) from Δ−, Add (r, p − c) to Δ+

5 else
6 Add (r, p) to Δ+

7 for r ∈ Δ−x do
8 if r ∈ Δ+ then
9 Remove (r, c) from Δ+, Add (r, p − c) to Δ−

10 else
11 Add (r, p) to Δ−

12 return Δ

B. DATASET GENERATION
Lacking access to real-world versioned datasets with sufficient and

varied structure, we instead developed a synthetic data generator

to generate datasets with very different characteristics for a wide

variety of parameter values. This enables us to carefully study the

performance of our techniques in various settings. Formally, every

dataset is characterized by a 4-tuple, 〈T, |A|, |Δ |, #Δ〉, where the

meaning of each paramter is as follows.

• Structure of access tree (T): Since Algorithm 3 makes de-

cisions based on the presence of lines and stars, we control

their occurrence when selecting datasets. Figure 16 shows three

different types of access trees that we consider during evaluation:

line-shaped (l), star-shaped (s) and line-and-star (ls).
• Average datafile size (|A|): This controls the average number

of records in a datafile. Each record is a tuple consisting of a

random 64 byte string, integer and double values.

• Average delta size (|Δ |): This controls the average size of the

deltas in the dataset. We represent this in terms of percent size

compared to |A|.
• Number of deltas in access tree (#Δ): This parameter controls

the number of number of deltas in the access tree and hence the

overall deltas that are considered during execution.
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Parameter Explanation Values
k Query size 2, 4, 6, 8, 10

|A | Average datafile size 1 million(M), 2M, 3M, 4M, 5M

|Δ | Average delta size 1%, 2%, 3%, 4%, 5%

#Δ Number of deltas 10, 25, 50, 75, 100

T Shape of access tree Line (l), Star (s), Line-and-star (ls)

Table 2: Possible values of parameters characterizing a synthetic dataset

Figure 16: Access tree shapes; (a)

Line, (b) Star, (c) Line-and-star
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Figure 17: Effect of bitmap size

C. COMPARISONS WITH TEMPORAL IN-
DEXING [14]

In this section, we present further background on the temporal

indexing techniques by Buneman et al. [14], and discuss how we

reimplemented and compared against their approach.

Broadly speaking, their technique, referred to as BA henceforth,

focuses on storing multiple temporal versions of a hierarchical

dataset (e.g., a large XML document). At a high level, BA merges

all hierarchical elements across the versions into a single hierarchy

by identifying an element by its key and storing it only once, along

with the sequence of version timestamps (as intervals) where the

respective element appears. Answering a checkout query thus

requires scanning the entire archive, and using the intervals to decide

which elements belong to the answer.

We re-implemented the BA in-memory archiving algorithm in

our framework as faithfully as we could. We represent a dataset of

records as a one-level hierarchical document with all the records as

children of the root node. When merging two datasets into a single

archive, we identify the common records and only store them once.

Due to the nonlinear nature of “version ids” (unlike timestamps) in

our problem setting, we tried two different implementations to keep

the set of version ids for an element/record: (1) a sorted list or (2) a

bitmap. In the sorted list implementation, the version ids associated

with every record are stored in a sorted array and during retrieval,

we use binary search to decide if the record is present in the desired

version. In the bitmap implementation, a bitmap of size equal to

the number of versions in the archive is used with each record to

indicate the versions that the record is present in. We use the roaring

bitmap library [15] to store these bitmaps. During retrieval, a simple

scan through the archive can retrieve any version. We note that it is

not clear how to extend some of the optimizations in Buneman et

al., most notably “timestamp trees”, that depend on the linearity of

timestamps, to the nonlinear nature of version ids in a decentralized

versioning/data lake scenario.

D. EXPERIMENTS WITH BITMAP DELTAS
We have also built support for a filtered index to answer intersection

and union queries, and we show the results for an illustrative experi-

ment. Akin to a relational database, a filtered index in DEX is suited

to answer queries that always select from a finite “universal” set of

records. In this case, we can encode a set of records using a bitmap,

where the order of records is determined by their SHA1 value. The

index creation step creates a bitmap of size |K | for each materialized

datafile and two bitmaps for each delta in the storage graph. We

can then use the bitwise AND(∧), OR(∨) and NOT(¬) operations to

compute set intersection, union and difference. In this experiment,

we use a compressed bitmap library called roaring bitmaps [15] .

Fig. 17 shows the effect of index size on the intersect query. Here,

we measure the speedup vs query size for index size ranging from

500K-3M records. As expected, for small universal sets, we get

largely improved speedup ratios (up to 1200X). With large universe
sizes, there is however a penalty incurred when selecting the records

themselves given the bitmap information.
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