
ModelHub: Deep Learning Lifecycle Management

Hui Miao, Ang Li, Larry S. Davis, Amol Deshpande
Department of Computer Science, University of Maryland, College Park, MD 20742

{hui, angli, lsd, amol}@cs.umd.edu

Abstract—Deep learning has improved the state-of-the-art
results in many domains, leading to the development of several
systems for facilitating deep learning. Current systems, however,
mainly focus on model building and training phases, while the
issues of lifecycle management are largely ignored. Deep learning
modeling lifecycle contains a rich set of artifacts and frequently
conducted tasks; dealing with them is cumbersome and left to
the users. To address these issues in a comprehensive manner, we
demonstrate ModelHub, which includes a novel model versioning
system (dlv); a domain-specific language for searching through
model space (DQL); and a hosted service (ModelHub).

Video: https://youtu.be/4JVehm5Ohg4

I. Motivation and Background

Deep neural networks (DNN) have dramatically improved
the state-of-the-art results for many important fields in recent
years [1]. Learned using massive amounts of training data,
DNN models have superior generalization capabilities, and
the intermediate layers in many deep learning models have
been proven useful in providing effective semantic features
that can be used with other learning techniques. However,
there are many critical large-scale data management issues
in learning, storing, sharing, and using deep learning models,
which are largely ignored by researchers today, but are coming
to the forefront with the increased use of deep learning in a
variety of domains. Deep learning modeling lifecycle contains
a rich set of artifacts, e.g., learned parameters and training
logs, and frequently conducted tasks, e.g., to understand the
model behaviors and to try out new models. Dealing with such
artifacts and tasks is cumbersome and left to the users. To
address these issues in a comprehensive manner, we propose
and demonstrate ModelHub, which includes a novel model
versioning system (dlv); a provenance management system; a
domain-specific language for searching through model space
(DQL); and a hosted service (ModelHub) to store learned
models, explore existing models, and share models.

DNN Modeling Lifecycle and Challenges: Compared with
the traditional approach of feature engineering followed by
model learning [2], deep learning is an end-to-end learning
approach, i.e., the features are not given by a human but are
learned in an automated fashion from the input data. Moreover,
the features are complex and have a hierarchy along with the
network representation. This requires less domain expertise
and experience from the modeler, but understanding and ex-
plaining the learned models is difficult. Thus, when developing
new models, changing the learned model (its network structure
and hyper-parameters) becomes an empirical search task.

This work was supported in part by NSF under grants 1513972 and
1513443, and in part by the Office of Naval Research under grant
N000141612713 entitled ‘Visual Common Sense Reasoning for Multi-agent
Activity Prediction and Recognition.’

Create
/Update
Model

Reference
Models

Train
/Test

Model

Evaluate
Model

Data &
Labels

if accuracy is unsatisfactory, repeat

Serve
Model

Fig. 1: Deep Learning Modeling Lifecycle

In Fig. 1, we show a typical deep learning modeling
lifecycle. Given a prediction task, a modeler often starts from
well-known models that have been successful in similar task
domains; she then specifies input training data and output loss
functions, and repeatedly adjusts the DNN on operators and
connections like Lego bricks, tunes model hyper-parameters,
trains and evaluates the model, and repeats this loop until
prediction accuracy does not improve. Due to a lack of under-
standing about why models work, the adjustments and tuning
inside the loop are driven by heuristics, e.g., adjusting hyper-
parameters that appear to have a significant impact on the
learned weights, applying novel layers or tricks seen in recent
empirical studies, and so on. Thus, many similar models are
trained and compared, and a series of model variants need to be
explored and developed. Due to the expensive learning/training
phase, each iteration of the modeling loop takes a long period
of time and produces many (checkpointed) snapshots of the
model. The modeling lifecycle exposes several systems and
data management challenges, including: a) managing many
similar models and artifacts, and their versions, b) large
storage footprints of learned parameters, c) understanding and
comparing models, d) abstracting repetitive steps in adjusting
models, and e) sharing models with others.

Related Work & Contributions: There have been several
high-profile deep learning systems in recent years, but those
typically focus on training aspects (e.g., distributed training,
utilizing GPUs, etc.) [3], [4]. The data management and lifecy-
cle management challenges discussed above have been largely
ignored so far, but are becoming critical as the use of deep
learning permeates through a variety of application domains,
since those pose a high barrier to entry for many potential
users. In the database community, there has been increasing
work on developing general-purpose systems for supporting
machine learning, including pushing predictive models into
databases [5], accelerating learning in databases [2], [6], and
managing modeling lifecycles and serving predictive models
in advanced ways [7], [8], [9]. ModelHub is motivated by
similar principles; aside from a specific focus on deep learning
models, ModelHub also supports versioning as a first-class
construct [10] which differentiates it from that work.

II. ModelHub Overview

Here we briefly describe the key functionality of Model-
Hub, and refer to [11] for full technical details. ModelHub
consists of five key components (Fig. 2) that we discuss next.

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1395

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1395

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1395

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1381

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1381

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1381

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1381

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1381

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1393

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1393

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.192

1393

ModelHub Client

Hosted DLV
Repositories

Server
Model
Search

Model
Publish

Model Learning
Module

DQL Module

DQL Parser &
Optimizer

DLV Module

Command-line
& UI toolkit

caffe Wrapper

publish
reuse

manage versions
explore models
enumerate models

Modeler

Local DLV Repository

PAS: Parameter
Archival Store

git repo
facade ProvDB

Fig. 2: ModelHub System Architecture

(1) DLV is a novel versioning system (VCS), implemented
as a command-line tool (dlv), that serves as an interface to
interact with the rest of the components. Use of a specialized
VCS instead of a general-purpose one like git allows us to
better portray and query the internal structure of the artifacts
generated in a modeling lifecycle, e.g., network definitions,
training logs, binary weights, and relationships between mod-
els. When managing DNN models in the VCS repository, a
model version consists of a network definition, a collection of
weight parameters, extracted metadata (e.g., hyper-parameters,
accuracy and loss information during the training phase), and a
collections of files used together with the model instance (e.g.,
scripts, datasets). A set of model versions and the lineage of the
model versions are captured when the user runs the different
dlv commands that update the repository. dlv features a
novel parameter storage (PAS) that archives model versions
using deltas in a multi-resolution fashion, and an approximate
progressive query/inference evaluation algorithm [11].

(2) DQL is a model enumeration and hyper-parameter tuning
domain-specific language (DQL), that we propose to serve as
an abstraction layer, to help modelers focus on the creation
of the models instead of repetitive steps in the lifecycle. The
query facilities can be categorized into two types: a) model
exploration queries and b) model enumeration queries. Model
exploration queries interact with the models in a repository,
and the users use them to understand a particular model,
to query lineages of the models, and to compare several
models. For usability, similar to other VCS, we design it as
query templates via dlv sub-command with options and render
results in HTML front end when needed; examples include dlv
list to find models and lineages, dlv desc to understand
models via metadata and plots, dlv diff to compare models
side by side, and dlv eval to evaluate managed models.
Model enumeration queries are used to explore variations of
currently available models in a repository by changing network
structures or tuning hyper-parameters. DQL supports several
operations that need to be done in order to derive new models:
1) Select models from the repository to improve; 2) Slice
particular models to get reusable components; 3) Construct
new models by mutating the existing ones; 4) Try the new
models on different hyper-parameters and pick good ones to
save and work with. When enumerating models, dlv also
allows stopping exploration of bad models early.

(3) The model learning module interacts with external deep
learning tools that the modeler uses for training and testing.
In the demonstration, we implement a concrete model learning
module on top of caffe, which is a popular deep learning
training system for computer vision modelers [3].

(4) ProvDB is a standalone provenance management module

used by dlv to store provenance metadata and other infor-
mation discussed above. ProvDB is built on top of Neo4j,
and provides several visual interfaces to explore the stored
information. In particular, it allows a user to easily and visually
compare different models along several different dimensions.

(5) Finally, the ModelHub service is a hosted toolkit to support
publishing, discovering and reusing models, and serves similar
role for DNN models as github for software development.

III. Demonstration Plan

In the demonstration, we introduce the current version
of our ModelHub system and illustrate how it manages the
modeling lifecycle and DNN models. We prepare a collection
of development models for face recognition. The goal is to
train a DNN on a large face dataset (CASIA-WebFace), which
contains 494,414 face images from 10,575 subjects. The DNN
models have been created over a period of time, and were not
managed in ModelHub by default. Along with the models,
the experiment spreadsheets and setup scripts are shown as
they are. The conference attendees can use the ModelHub
system to walk through the DNN lifecycle via real models.
Interacting with dlv, the users are shown the full list of query
facilities it currently supports. We use dlv to demonstrate
how to manage models using dlv add and dlv commit and
the benefit of metadata management with versioning ability.
Furthermore, the managed models can be explored and com-
pared using dlv desc and dlv diff in an interactive HTML-
based GUI. After using dlv to manage and understand the
models, our demonstration includes enumerating new models
using DQL, and searching through network architectures and
hyper-parameter values. The conference attendees can also
interact with the system through ProvDB, and can use it
to explore the provenance and visually compare derivations
of different models. Finally, we show how to publish and
download models from ModelHub. Modified face recognition
models are published via dlv publish. Besides the face
dataset, we also prepare well known models and host them
beforehand in a ModelHub instance. The attendees are allowed
to discover and download models via dlv search and pull.

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.
[2] C. Zhang, A. Kumar, and C. Ré, “Materialization optimizations for

feature selection workloads,” in SIGMOD, 2014.
[3] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-

ding,” in ACM MM, 2014.
[4] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-

geneous systems,” in OSDI, 2016.
[5] X. Feng, A. Kumar, B. Recht, and C. Ré, “Towards a unified architecture

for in-RDBMS analytics,” in SIGMOD, 2012.
[6] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear

models over normalized data,” in SIGMOD, 2015.
[7] D. Crankshaw et al., “The missing piece in complex analytics: Low

latency, scalable model management and serving with Velox,” in CIDR,
2015.

[8] A. Kumar et al., “Model selection management systems: The next
frontier of advanced analytics,” SIGMOD Record, 2015.

[9] M. Vartak et al., “ModelDB: a system for machine learning model
management,” in SIGMOD HILDA Workshop, 2016.

[10] A. Bhardwaj et al., “Datahub: Collaborative data science & dataset
version management at scale,” in CIDR, 2015.

[11] H. Miao, A. Li, L. Davis, and A. Deshpande, “Towards unified data
and lifecycle management for deep learning,” in ICDE, 2017.

13961396139613821382138213821382139413941394

