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Abstract—Deep learning has improved state-of-the-art results
in many important fields, and has been the subject of much
research in recent years, leading to the development of several
systems for facilitating deep learning. Current systems, however,
mainly focus on model building and training phases, while
the issues of data management, model sharing, and lifecycle
management are largely ignored. Deep learning modeling lifecycle
generates a rich set of data artifacts, e.g., learned parameters and
training logs, and it comprises of several frequently conducted
tasks, e.g., to understand the model behaviors and to try out new
models. Dealing with such artifacts and tasks is cumbersome
and largely left to the users. This paper describes our vision and
implementation of a data and lifecycle management system for
deep learning. First, we generalize model exploration and model
enumeration queries from commonly conducted tasks by deep
learning modelers, and propose a high-level domain specific lan-
guage (DSL), inspired by SQL, to raise the abstraction level and
thereby accelerate the modeling process. To manage the variety
of data artifacts, especially the large amount of checkpointed
float parameters, we design a novel model versioning system
(dlv), and a read-optimized parameter archival storage system
(PAS) that minimizes storage footprint and accelerates query
workloads with minimal loss of accuracy. PAS archives versioned
models using deltas in a multi-resolution fashion by separately
storing the less significant bits, and features a novel progressive
query (inference) evaluation algorithm. Third, we develop efficient
algorithms for archiving versioned models using deltas under
co-retrieval constraints. We conduct extensive experiments over
several real datasets from computer vision domain to show the
efficiency of the proposed techniques.

I. Introduction

Deep learning models, also called deep neural networks
(DNN), have dramatically improved the state-of-the-art results
for many important reasoning and learning tasks including
speech recognition, object recognition, and natural language
processing in recent years [1]. Learned using massive amounts
of training data, DNN models have superior generalization
capabilities, and the intermediate layers in many deep learning
models have been proven useful in providing effective semantic
features that can be used with other learning techniques and
are applicable to other problems. However, there are many
critical large-scale data management issues in learning, storing,
sharing, and using deep learning models, which are largely
ignored by researchers today, but are coming to the forefront
with the increased use of deep learning in a variety of domains.
In this paper, we discuss some of those challenges in the con-
text of the modeling lifecycle, and propose a comprehensive
system to address them. Given the large scale of data involved
(both training data and the learned models themselves) and
the increasing need for high-level declarative abstractions, we
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Fig. 1. Deep Learning Modeling Lifecycle

argue that database researchers should play a much larger role
in this area. Although this paper primarily focuses on deep
neural networks, similar data management challenges are seen
in lifecycle management of others types of ML models like
logistic regression, matrix factorization, etc.

DNN Modeling Lifecycle and Challenges: Compared with
the traditional approach of feature engineering followed by
model training [2], deep learning is an end-to-end learning
approach, i.e., the features are not given by a human but
are learned in an automatic manner from the input data.
Moreover, the features are complex and have a hierarchy along
with the network representation. This requires less domain
expertise and experience from the modeler, but understanding
and explaining the learned models is difficult; why even well-
studied models work so well is still a mystery and under active
research. Thus, when developing new models, changing the
learned model (especially its network structure and hyperpa-
rameters) becomes an empirical search task.

In Fig. 1, we show a typical deep learning modeling
lifecycle (we present an overview of deep neural networks in
the next section). Given a prediction task, a modeler often
starts from well-known models that have been successful in
similar task domains; she then specifies input training data
and output loss functions, and repeatedly adjusts the DNN
on operators and connections like Lego bricks, tunes model
hyperparameters, trains and evaluates the model, and repeats
this loop until prediction accuracy does not improve. Due to a
lack of understanding about why models work, the adjustments
and tuning inside the loop are driven by heuristics, e.g.,
adjusting hyperparameters that appear to have a significant
impact on the learned weights, applying novel layers or tricks
seen in recent empirical studies, and so on. Thus, many
similar models are trained and compared, and a series of
model variants needs to be explored and developed. Due to
the expensive learning/training phase, each iteration of the
modeling loop takes a long period of time and produces many
(checkpointed) snapshots of the model. As noted above, this
is a common workflow across many other ML models as well.

Current systems (Caffe [3], Theano, Torch, TensorFlow [4],
etc.) mainly focus on model building and training phases, while
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the issues of data management, model sharing, and lifecycle
management are largely ignored. Modelers are required to
write external imperative scripts, edit configurations by hand
and manually maintain a manifest of model variations that
have been tried out; not only are these tasks irrelevant to the
modeling objective, but they are also challenging and nontrivial
due to the complexity of the model as well as large footprints
of the learned models. More specifically, the tasks and data
artifacts in the modeling lifecycle expose several systems and
data management challenges, which include:
• Understanding and Comparing Models: It is difficult to

keep track of the many models developed and/or understand
the differences amongst them. Differences among both the
metadata about the model (training sample, hyperparameters,
network structure, etc.), as well as the actual learned param-
eters, are of interest. It is common to see a modeler write all
configurations in a spreadsheet to keep track of temporary
folders of input, setup scripts, snapshots and logs, which is
not only a cumbersome but also an error-prone process.
• Repetitive Adjusting of Models: The development life-

cycle itself has time-consuming repetitive sub-steps, such as
adding a layer at different places to adjust a model, searching
through a set of hyperparameters for the different variations,
reusing learned weights to train models, etc., which currently
have to be performed manually.
• Model Versioning: Similar models are possibly trained and

run multiple times, reusing others’ weights as initialization
(finetuning) [5], [24]. Maintaining the different model ver-
sions generated over time and their relationships can help
with identifying errors and concept drifts, comparing models
over new inputs, and potentially reverting back to a previous
model. Even for a single learned model, storing the different
checkpointed snapshots can help with “warm-start” and can
provide important insights into the training processes.
• Parameter Archiving: The storage footprint of deep learn-

ing models tends to be very large. Recent top-ranked models
in the ImageNet task have billions of floating-point param-
eters and require hundreds of MBs to store one snapshot
during training. Due to resource constraints, the modeler has
to limit the number of snapshots, even drop all snapshots of
a model at the cost of retraining when needed.

In addition, although not a focus of this paper, sharing and
reusing models is not easy, especially because of the large
model sizes and specialized tools used for learning.

ModelHub: In this paper, we describe our ModelHub system
that attempts to address these challenges in a holistic fashion.
ModelHub is not meant to replace popular training-focused
DNN systems, but rather designed to be used with them to
accelerate modeling tasks and manage the rich set of lifecycle
artifacts. It consists of three key components: (a) a model ver-
sioning system (DLV) to store, query and aid in understanding
the models and their versions, (b) a model network adjustment
and hyperparameter tuning domain specific language (DQL)
to serve as an abstraction layer to help modelers focus on
the creation of the models, (c) a hosted deep learning model
sharing system (ModelHub) to exchange DLV repositories and
enable publishing, discovering and reusing models from others.

Some of the key features and innovative design highlights
of ModelHub are as follows. (a) We propose a git-like
VCS interface, familiar to most, to let the modeler manage

and explore the created models in a repository, and an SQL-
like model enumeration DSL to aid modelers in making and
examining multiple model adjustments easily. (b) Behind the
declarative constructs, ModelHub manages different artifacts
in a split back-end storage. Structured data, such as network
structure, training logs of a model, lineages of different model
versions, output results, are stored in a relational database;
while learned float-point parameters of a model are viewed as a
set of float matrices and managed in a read-optimized archival
storage (PAS). (c) Parameters dominate the storage footprint
and floats are well-known at being difficult to compress. We
study PAS implementation thoroughly under the context of
DNN query workload and advocate a segmented approach to
store the learned parameters, where the low-order bytes are
stored independently of the high-order bytes. We also develop
novel model evaluation schemes to use high order bytes
solely and progressively uncompress less-significant chunks if
needed to ensure the correctness of an inference query. (d)
Archiving versioned models using deltas exhibits a new type of
dataset versioning problem which not only features the familiar
storage-access trade-off but also model-level constraints, which
we capture and optimize for. (e) Finally, the VCS model
repository design extends naturally to a collaborative format
and to an online system that contains rich model lineages and
enables sharing, reusing, reproducing DNN models.

ModelHub is an end-to-end system where we introduce
new high-level abstractions suitable for automating deep learn-
ing workflows, and show how those abstractions can be imple-
mented efficiently to manage and optimize the different steps
in the workflow. We note that our high-level abstractions could
be supported over a different backend (e.g., where all the data
artifacts are simply written to a file system); similarly, our stor-
age backend, and the optimizations therein, are independent
of those abstractions to a large degree and could be useful for
any collection of multi-dimensional arrays (tensors). At the
same time, thinking about the two components simultaneously
allows us to better inform the design decisions that can be
made, and opens up new optimization opportunities.

Contributions: Our key research contributions are:
• We propose the first comprehensive DNN lifecycle man-
agement system, study its design requirements, and propose
declarative constructs (DLV and DQL) to provide high-level
abstractions.
• We develop PAS, a read-optimized archival storage system
for dealing with a large collection of versioned float matrices.
• We formulate a new dataset versioning problem with co-
usage constraints, analyze its complexity, and design efficient
algorithms for solving it.
• We develop a progressive, approximate query evaluation
scheme that avoids reading low-order bytes of the parameter
matrices unless necessary.
• We present a comprehensive evaluation of ModelHub that
shows the proposed techniques are useful for real-life mod-
els, and scale well on synthetic models.

Outline: In Section II, we provide background on related
topics in DNN modeling lifecycle. In Section III, we present an
overview of ModelHub, and discuss the declarative interfaces.
We describe the parameter archival store (PAS) in Section IV,
present an experimental evaluation in Section V, and closely
related work in Section VI.
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II. Background

To support our design decisions, we overview the artifacts
and common task practices in DNN modeling lifecycle.

Deep Neural Networks: A deep learning model, or a deep
neural network (DNN), consists of many layers having nonlin-
ear activation functions that are capable of representing com-
plex transformations between input data and desired output.
Let D denote a data domain and O denote a prediction label
domain (e.g., D may be a set of images; O may be the names
of the set of objects we wish to recognize, i.e, labels). As with
any prediction model, a DNN is a mapping function f : D→ O
that minimizes a loss function L, and is of the following form:

f0 = σ0(W0d+ b0) d ∈ D
fi = σi(Wifi−1 + bi) 0 < i ≤ n

L(fn, ld) ld ∈ O

d

f0

f1

f2

l̂d

Here i denotes the layer number, (Wi, bi) are learnable weights
and bias parameters in layer i, and σi is an activation function
that non-linearly transforms the result of the previous layer
(common activation functions include sigmoid, ReLU, etc.).
More formally, a layer, Li : (W,H, X) 7→ Y , is a function which
defines data transformations from tensor X to tensor Y . W are
the parameters which are learned from the data, and H are
the hyperparameters which are given beforehand. A layer is
non-parametric if W = ∅.

Given a learned model and an input d, applying f0, f1, ..., fn
in order gives us the prediction label for that input data.
In the training phase, the model parameters are learned by
minimizing L( fn, ld), typically done through iterative methods,
such as stochastic gradient descent.

Fig. 2 shows a classic convolutional DNN, LeNet, used
to assign digit labels, {0 · · · 9}, to handwritten images. A
cube represents an intermediate tensor, while the dotted lines
are unit transformations between tensors. In the computer
vision community, the layers defining the transformations are
considered building blocks of a DNN model, and are referred
to using conventional names such as full layer, convolution
layer, pool layer, normalization layer, etc. The chain is often
called the network architecture. The LeNet architecture has
two convolution layers, each followed by a pool layer, and
two full layers. Moreover, winning models in recent ILSVRC
(ImageNet Large Scale Vision Recognition Competitions) are
shown in Table I, with their architectures described by a
composition of common layers in regular expressions syntax
for illustrating the similarities (the activation functions and
detailed connections are omitted).

DNN models are learned from massive data based on some
architecture, and modern successful computer vision DNN ar-
chitectures consist of a large number of float weight parameters
(flops) shown in Table I, resulting in large storage footprints
(GBs) and long training times (often weeks). Furthermore, the
training process is often checkpointed and variations of models
need to be explored, leading to many model copies.

Modeling Data Artifacts: DNN modeling results in a mixture
of data artifacts, including structured datasets, float matrices,
and script files. Some key data artifacts include: (a) the
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Fig. 2. Anatomy of A DNN Model (LeNet)

Network Architecture (in regular expression) |W | (flops)

LeNet [7] (LconvLpool){2}Lip{2} 4.31 × 105

AlexNet [8] (LconvLpool){2}(Lconv{2}Lpool){2}Lip{3} 6 × 107

VGG [9] (Lconv{2}Lpool){2}(Lconv{4}Lpool){3}Lip{3} 1.96 × 1010

ResNet [10] (LconvLpool)(Lconv){150}LpoolLip 1.13 × 1010

TABLE I. Popular CNN Models for Object Recognition

values of the hyperparameters (e.g., learning rate, momentum)
used by the optimization algorithm; (b) learning measure-
ments (e.g., per-iteration objective loss values, accuracy scores)
collected in various logs; (c) trained snapshots which are
typically not deleted given the expensive training phase and
may be reused as initializations for training or fine-tuning later;
and (d) arbitrary files including hand-crafted scripts, result
spreadsheets, and other types of provenance information that
may be needed for exploring and analyzing models, and for
reproducing results [6].

Model Adjustment: In a modeling lifecycle for a prediction
task, the update-train-evaluate loop is repeated in daily work,
and many model variations are adjusted and trained. In general,
once data and loss are determined, model adjustment can be
done in two orthogonal steps: a) network architecture adjust-
ments where layers are dropped or added and layer function
templates are varied, and b) hyperparameter selections, which
affect the behavior of the optimization algorithms. There is
much work on search strategies to enumerate and explore both.

Model Sharing: Due to good generalizability, long training
times, and verbose hyperparameters required for large DNN
models, there is a need to share the trained models. Jia et al. [3]
built an online venue (Caffe Model Zoo) to share models.
Briefly, Model Zoo is part of a GitHub repository1 with a
markdown file edited collaboratively. To publish models, mod-
elers add an entry with links to download trained parameters
in caffe format. Apart from the caffe community, similar
initiatives are in place for other training systems.

III. ModelHub System Overview

We show the ModelHub architecture including the key
components and their interactions in Fig. 3. At a high level, the
ModelHub functionality is divided among a local component
and a remote component. The local functionality includes the
integration with popular DNN systems such as caffe, torch,
tensorflow, etc., on a local machine or a cluster. The remote
functionality includes sharing of models, and their versions,
among different groups of users. We primarily focus on the
local functionality in this paper.

1Caffe Model Zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo
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On the local system side, DLV is a version control system
(VCS) implemented as a command-line tool (dlv), that serves
as an interface to interact with the rest of the local and remote
components. Use of a specialized VCS instead of a general-
purpose VCS such as git or svn allows us to better portray
and query the internal structure of the artifacts generated in a
modeling lifecycle, such as network definitions, training logs,
binary weights, and relationships between models. The key
utilities of dlv are listed in Table III-A, grouped by their
purpose; we explain these in further detail in Sec. III-B. DQL is
a DSL we propose to assist modelers in deriving new models;
the DQL query parser and optimizer components in the figure
are used to support this language. The model learning module
interacts with external deep learning tools that the modeler
uses for training and testing. They are essentially wrappers on
specific DNN systems that extract and reproduce modeling
artifacts. Finally, the ModelHub service is a hosted toolkit
to support publishing, discovering and reusing models, and
serves similar role for DNN models as GitHub for software
development or DataHub for data science [11].

A. Data Model

ModelHub works with two data models: a conceptual DNN
model, and a data model for the versions in a DLV repository.

DNN Model: A DNN model can be understood in different
ways, as one can tell from the different model creation APIs in
popular deep learning systems. In the formulation mentioned
in Sec. I, if we view a function fi as a node and dependency
relationship ( fi, fi−1) as an edge, it becomes a directed acyclic
graph (DAG). Depending on the granularity of the function
in the DAG, either at the tensor arithmetic operator level
(add, multiply), or at a logical composition of those operators
(convolution layer, full layer), it forms different types of
DAGs. In ModelHub, we consider a DNN model node as
a composition of unit operators (layers), often adopted by
computer vision models. The main reason for this decision
is that we focus on productivity improvement in the lifecycle,
rather than implementation efficiencies of training and testing.

VCS Data Model: When managing DNN models in the VCS
repository, a model version represents the contents in a single
version. It consists of a network definition, a collection of
weights (each of which is a value assignment for the weight
parameters), a set of extracted metadata (such as hyperparam-
eter, accuracy and loss generated in the training phase), and
a collection of files used together with the model instance
(e.g., scripts, datasets). In addition, we enforce that a model
version must be associated with a human readable name for
better utility, which reflects the logical groups of a series of
improvement efforts over a DNN model in practice.

Type Command Description

model version
management

init Initialize a dlv repository.
add Add model files to be committed.
commit Commit the added files.
copy Scaffold model from an old one.
archive Archive models in the repository.

model exploration
list List models and related lineages.
desc Describe a particular model.
diff Compare multiple models.
eval Evaluate a model with given data.

model enumeration query Run DQL clause.

remote interaction
publish Publish a model to ModelHub.
search Search models in ModelHub.
pull Download from ModelHub.

TABLE II. A list of key dlv utilities.

In the implementation, model versions can be viewed as
a relation model version(name, id, N, W, M, F), where id
is part of the primary key of model versions and is auto-
generated to distinguish model versions with the same name.
In brief, N,W,M, F are the network definition, weight values,
extracted metadata and associated files respectively. The DAG,
N, is stored as two tables: Node(id, node, A), where A is a list
of attributes such as layer name, and Edge(from, to). W is
managed in our learned parameter storage (PAS, Sec. IV). M,
the metadata, captures the provenance information of training
and testing a particular model; it is extracted from training
logs by the wrapper module, and includes the hyperparameters
when training a model, the loss and accuracy measures at some
iterations, as well as dynamic parameters in the optimization
process, such as learning rate at some iterations. Finally, F
is file list marked to be associated with a model version,
including data files, scripts, initial configurations, and etc.
Besides a set of model versions, the lineage of the model
versions are captured using a separate parent(base, derived,
commit) relation. All of these relations are maintained/updated
in a relational backend when the modeler runs the different
dlv commands that update the repository. Managing the
provenance and metadata information, and supporting analysis
queries over that, is a challenging problem in itself [6].

B. Query Facilities

Once the DNN models and their relationships are managed
in DLV, the modeler can interact with them easily. The query
facilities we provide can be categorized into two types: a)
model exploration queries and b) model enumeration queries.

1) Model Exploration Queries: Model exploration queries
interact with the models in a repository, and are used to
understand a particular model, to query lineages of the models,
and to compare several models. For usability, we design it
as query templates via dlv sub-command, similar to other
VCS. In addition, we render results in HTML front end when
needed. For example, dlv list finds models and lineages;
dlv desc queries the extracted metadata from a model version,
such as the network definition, learnable parameters, execution
footprint and evaluation results across iterations; dlv diff to
compare models side by side via the metadata; and dlv eval
to run test phase of the managed models with given data points.
We refer the reader to [12] for more details.
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select m1
where m1.name like "alexnet_%" and

m1.creation_time > "2015-11-22" and
m1["conv[1,3,5]"].next has POOL("MAX")

Query 1. DQL select query to pick the models.

slice m2 from m1
where m1.name like "alexnet-origin%"
mutate m2.input = m1["conv1"] and

m2.output = m1["fc7"]

Query 2. DQL slice query to get a sub-network.

construct m2 from m1
where m1.name like "alexnet-avgv1%" and

m1["conv*($1)"].next has POOL("AVG")
mutate m1["conv*($1)"].insert = RELU("relu$1")

Query 3. DQL construct query to derive more models on existing ones.
evaluate m
from "query3"
with config = "path to config"
vary config.base_lr in [0.1, 0.01, 0.001] and

config.net["conv*"].lr auto and
config.input_data in ["path1", "path2"]

keep top(5, m["loss"], 100)

Query 4. DQL evaluate query to enumerate models with different network
architectures, search hyperparameters, and eliminate models.

2) Model Enumeration Queries: Model enumeration
queries, specified using our DQL domain specific language,
are used to explore variations of currently available models
in a repository by changing the network structures or tun-
ing hyperparameters. DQL queries are executed using “dlv
query”. At a high level, there are four key operations that
need to be performed, which we use to design DQL: (1)
Select models from the repository by filtering on metadata
and/or other properties like accuracy; (2) Slice one or more
models to get reusable components; (3) Construct new models
by modifying and stitching together those components; and
(4) Try the new network architectures on different sets of
hyperparameters and pick good ones to save and work with.
When enumerating models, we also want to stop exploration
of bad models early. However, designing a query language that
satisfies this rich set of requirements is challenging because: (a)
the data model is a mix of relational and graph data models
and (b) the enumeration includes hyperparameter tuning as
well as network structure mutations, which are very different
operations. We omit a thorough explanation of the language
due to space constraints, and instead show the key operators
and constructs along with a set of examples (Query 1∼4) to
show how requirements are met.

Key Operators: We adopt the standard SQL syntax to interact
with the repository. DQL views the repository as a single model
version table. A model version instance is a DAG, which
can be viewed as object types in modern SQL conventions.
In DQL, attributes can be referenced using attribute names
(e.g. m1.name, m1.creation_time, m2.input, m2.output).
While navigating the internal structures of the DAG, i.e., the
Node and Edge EDB, we provide a regexp style selector
operator on a model version to access individual DNN nodes;
e.g. m1["conv[1,3,5]"] in Query 1 filters the nodes in m1.
Once the selector operator returns a set of nodes, prev and
next attributes of the node allow 1-hop traversal in the DAG.
Note that POOL("MAX") is one of the standard built-in node
templates for condition clauses. Using SPJ operators with

object type attribute access and the selector operator, we allow
relational queries to be mixed with graph traversal conditions.

To retrieve reusable components in a DAG, and mutate it
to get new models, we provide slice, construct and mutate
operators. Slice originates in programming analysis research;
given a start and an end node, it returns a subgraph including
all paths from the start to the end and the connections which
are needed to produce the output. Construct can be found
in graph query languages such as SPARQL to create new
graphs. We allow construct to derive new DAGs by using
selected nodes to insert nodes by splitting an outgoing edge
or to delete an outgoing edge connecting to another node.
Mutate limits the places where insert and delete can occur. For
example, Query 2 and 3 generate reusable subgraphs and new
graphs. Query 2 slices a sub-network from matching models
between convolution layer ‘conv1’ and full layer ‘fc7’, while
Query 3 derives new models by appending a ReLU layer after
all convolution layers followed by an average pool. All queries
can be nested.

Finally, evaluate can be used to try out new models,
with potential for early out if expectations are not reached.
We separate the network enumeration component from the
hyperparameter turning component; while network enumera-
tion can be nested in the from clause, we introduce a with
operator to take an instance of a tuning config template, and
a vary operator to express the combination of activated multi-
dimensional hyperparameters and search strategies. auto is
keyword implemented using default search strategies (currently
grid search). To stop early and let the user control the stopping
logic, we introduce a keep operator to take a rule consisting
of stopping condition templates, such as top-k of the evaluated
models, or accuracy threshold. Query 4 evaluates the models
constructed and tries combinations of at least three different
hyperparameters, and keeps the top 5 models w.r.t. the loss
after 100 iterations.

C. ModelHub Implementation

On the local side, the current implementation of ModelHub
maintains the data in multiple back-ends and utilizes git to
manage the non-parameter files. Queries are decomposed and
sent to different backends and chained accordingly. As the
model repository is standalone, we host the repositories as a
whole in a ModelHub service. The modeler can use the dlv
publish to push the repository for archiving, collaborating or
sharing, and use dlv search and dlv pull to discover and
reuse remote models. We envision such a form of collaboration
can facilitate a learning environment, as all versions in the
lifecycle are accessible and understandable with ease.

IV. Parameter archival storage (PAS)

Modeling lifecycle for DNNs, and machine learning mod-
els in general, is centered around the learned parameters,
whose storage footprint can be very large. The goal of PAS is
to maintain a large number of learned models as compactly as
possible, without compromising the query performance. Before
introducing our design, we first discuss the queries of interest,
and some key properties of the model artifacts (IV-A). We
then describe different options to store a single float matrix,
and to construct deltas (differences) between two matrices
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(IV-B). We then formulate the optimal version graph storage
problem, discuss how it differs from the prior work, and
present algorithms for solving it (IV-C). Finally, we develop
a novel approximate model evaluation technique, suitable for
the segmented storage technique that PAS uses (IV-D).

A. Weight Parameters & Query Type of Interests

We illustrate the key weight parameter artifacts and the
relationships among them in Fig. 4, and also explain some
of the notations used in this section. At a high level, the
predecessor-successor relationships between all the developed
models is captured as a version graph. These relationships are
user-specified and conceptual in nature, and the interpretation
is left to the user (i.e., an edge vi → v j indicates that v j
was an updated version of the model that the user checked in
after vi, but the nature of this update is irrelevant for storage
purposes). A model version vi itself consists of a series of
snapshots, s1, ..., sn, which represent checkpoints during the
training process (most systems will take such snapshots due
to the long running times of the iterations). We refer the last
or the best checkpointed snapshot sn as the latest snapshot of
vi, and denote it by svi .

One snapshot, in turn, consists of intermediate data X and
trained parameters W (e.g., in Fig. 2, the model has 431080
parameters for W, and 19694 · b dimensions for X, where b is
the minibatch size). Since X is useful only if training needs to
be resumed, only W is stored in PAS. Outside of a few rare
exceptions, W can always be viewed as a collection of float
matrices, Rm×n,m ≥ 1, n ≥ 1, which encode the weights on the
edges from outputs of the neurons in one layer to the inputs
of the neurons in the next layer. Thus, we treat a float matrix
as a first class data type in PAS2.

The retrieval queries of interest are dictated by the oper-
ations that are done on these stored models, which include:
(a) testing a model, (b) reusing weights to fine-tune other
models, (c) comparing parameters of different models, (d)
comparing the results of different models on a dataset, and
(e) model exploration queries (Sec. III-B). Most of these
operations require execution of group retrieval queries, where
all the weight matrices in a specific snapshot need to be
retrieved. This is different from range queries seen in array
databases (e.g., SciDB), and also have unique characteristics
that influence the storage and retrieval algorithms:
• Similarity among Fine-tuned Models: Although non-

convexity of the training algorithm and differences in net-
work architectures across models lead to non-correlated
parameters, the widely-used fine-tuning practices (Sec. II)

2We do not make a distinction about the bias weight; the typical linear
transformation W′x + b is treated as W · (x, 1) = (W′, b)T · (x, 1).

generate model versions with similar parameters, resulting
in efficient delta encoding schemes.
• Co-usage constraints: Prior work on versioning and re-
trieval [13] has focused on retrieving a single artifact stored
in its entirety. However, we would like to store the different
matrices in a snapshot independently of each other, but we
must retrieve them together. These co-usage constraints make
the prior algorithms inapplicable as we discuss later.
• Low Precision Tolerance: DNNs are well-known for their
tolerance to using low-precision floating point numbers
(Sec. VI), both during training and evaluation. Further, many
types of queries (e.g., visualization and comparisons) do not
require retrieving the full-precision weights.
• Unbalanced Access Frequencies: Not all snapshots are used
frequently. The latest snapshots with the best testing accuracy
are used in most of the cases. The checkpointed snapshots
have limited usages, including debugging and comparisons.

B. Parameters As Segmented Float Matrices

Float Data Type Schemes: Although binary (1/-1) or ternary
(1/0/-1) matrices are sometimes used in DNNs, in general
PAS handles real number weights. Due to different usages of
snapshots, PAS offers a handful of float representations to let
the user trade-off storage efficiency with lossyness using dlv.
• Float Point: DNNs are typically trained with single pre-
cision (32 bit) floats. This scheme uses the standard IEEE
754 floating point encoding to store the weights with sign,
exponent, and mantissa bits. IEEE half-precision proposal
(16 bits) and tensorflow truncated 16bits [4] are supported
as well and can be used if desired.
• Fixed Point: Fixed point encoding has a global exponent
per matrix, and each float number uses k bits to represent
sign and mantissa. This scheme is lossy as tail positions
are dropped, and a maximum of 2k different values can be
expressed. The entropy of the matrix also drops considerably,
aiding in compression.
• Quantization: Similarly, PAS supports quantization using
k bits, k ≤ 8, where 2k possible values are allowed. The
quantization can be done in random manner or uniform
manner by analyzing the distribution, and a coding table is
used to maintain the integer codes stored in the matrices in
PAS. This is most useful for snapshots whose weights are
primarily used for fine-tuning or initialization.

The float point schemes present here are not new, and are
used in DNN systems in practice [14], [15], [16]. As a lifecycle
management tool, PAS lets experienced users select schemes
rather than deleting snapshots due to resource constraints. Our
evaluation shows storage/accuracy tradeoffs of these schemes.

Bytewise Segmentation for Float Matrices: High entropy of
float numbers makes them very hard to compress; compres-
sion ratios shown in related work for scientific float point
datasets, e.g., simulations, is very low. State of the art com-
pression schemes do not work well for DNN parameters either
(Sec. VI). By exploiting DNN low-precision tolerance, we
adopt bytewise decomposition from prior work [17], [18] and
extend it to our context to store the float matrices. The basic
idea is to separate the high-order and low-order mantissa bits,
and so a float matrix is stored in multiple chunks; the first
chunk consists of 8 high-order bits, and the rest are segmented
one byte per chunk. One major advantage is the high-order bits

578578578564564564564564564576576576



s1 
s2 

m1

m2

m3

v0

m4

(2,1)

(8,2)
(1,0.5)

(4,1)

(2,1)

(8,2)

m5(4,1)

(4,1)

(8,2)

(a) Matrix Storage Graph

s1 
s2 

m1

m2

m3

v0

m4

(2,1)

(8,2)
(1,0.5)

(4,1)
m5(4,1)

(b) Optimal Plan
without Constraints

s1 
s2 

m1

m2

m3

v0

m4

(2,1)

(8,2)

(2,1)

(8,2)

m5

(4,1)

(c) Optimal Plan with
Cr

ψi (s1) ≤ 3 ∧ Cr
ψi (s2) ≤ 6
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have low entropy, and standard compression schemes (e.g.,
zlib) are effective for them. Apart from its simplicity, the key
benefits of segmented approach are two-fold: (a) low-order
bytes can be offloaded to remote storage, (b) PAS queries can
read high-order bytes only, in exchange for tolerating small
errors. Comparison and exploration (dlv desc, dlv diff) can
easily tolerate such errors and, as we show in this paper, dlv
eval queries can also be made tolerant to these errors.

Delta Encoding across Snapshots: We observed that, due to
the non-convexity in training, even re-training the same model
with slightly different initializations results in very different
parameters. However, the parameters from checkpoint snap-
shots for the same or similar models tend to be close to each
other. Furthermore, across model versions, fine-tuned models
generated using fixed initializations from another model often
have similar parameters. The observations naturally suggest
use of delta encoding between checkpointed snapshots in
one model version and among latest snapshots across multiple
model versions; i.e., instead of storing all matrices in entirety,
we can store some in their entirety and others as differences
from those. Two possible delta functions (denoted 	) are arith-
metic subtraction and bitwise XOR3. We find the compression
footprints when applying the diff 	 in different directions are
similar. We study the delta operators on real models in Sec. V.

C. Optimal Parameter Archival Storage

Given the above background, we next address the question
of how to best store a collection of model versions, so that the
total storage footprint occupied by the large segmented float
matrices is minimized while the retrieval performance is not
compromised. This recreation/storage tradeoff sits at the core
of any version control system. In recent work [13], the authors
study six variants of this problem, and show the NP-hardness
of most of those variations. However, their techniques cannot
be directly applied in PAS, primarily because their approach is
not able to handle the group retrieval (co-usage) constraints.

We first introduce the necessary notation, discuss the
differences from prior work, and present the new techniques we
developed for PAS. In Fig. 4, a model version v ∈ V consists
of time-ordered checkpointed snapshots, S v = s1, ..., sn. Each
snapshot, si consists of a named list of float matrices Mv,i =
{mk} representing the learned parameters. All matrices in a
repository, M =

⋃
v∈V
⋃

si∈S v
Mv,i, are the parameter artifacts

to archive. Each matrix m ∈ M is either stored directly, or is
recovered through another matrix m′ ∈ M via a delta operator
	, i.e. m = m′ 	 d, where d is the delta computed using one of
the techniques discussed above. In the latter case, the matrix

3Delta functions for matrices with different dimensions are discussed in the
long version of the paper; techniques in Sec IV work with minor modifications.

d is stored instead of m. To unify the two cases, we introduce
a empty matrix ν0, and define ∀	∀m ∈ M,m 	 ν0 = m.

Definition 1 (Matrix Storage Graph): Given a repository
of model versions V , let ν0 be an empty matrix, and V =
M∪ {ν0} be the set of all parameter matrices. We denote by
E = {mi 	 m j} ∪ {mi 	 ν0} the available deltas between all
pairs of matrices. Abusing notation somewhat, we also treat E
as the set of all edges in a graph where V are the vertices.
Finally, let GV (V,E, cs, cr) denote the matrix storage graph of
V , where edge weights cs, cr : E 7→ R+ are storage cost and
recreation cost of an edge respectively.

Definition 2 (Matrix Storage Plan): Any connected sub-
graph of GV (V,E) is called a matrix storage plan for V , and
denoted by PV (VP,EP), where VP = V and EP ⊆ E.

Example 1: In Fig. 5(a), we show a matrix storage graph
for a repository with two snapshots, s1 = {m1,m2} and s2 =
{m3,m4,m5}. The weights associated with an edge e = (ν0,mi)
reflect the cost of materializing the matrix mi and retrieving it
directly. On the other hand, for an edge between two matrices,
e.g., e = (m2,m5), the weights denote the storage cost of the
corresponding delta and the recreation cost of applying that
delta. In Fig. 5(b) and 5(c), two matrix storage plans are shown.

For a matrix storage plan PV (VP,EP), PAS stores all
its edges and is able to recreate any matrix mi follow-
ing a path starting from ν0. The total storage cost of
PV , denoted as Cs(PV ), is simply the sum of edge stor-
age costs, i.e. Cs(PV ) =

∑
e∈EP

cs(e). Computation of the
average snapshot recreation cost is more involved and de-
pends on the retreival scheme used:
• Independent scheme recreates each matrix mi one by one
by following the shortest path (Υν0,mi ) to mi from ν0. In that
case, the recreation cost is simply computed by summing the
recreation costs for all the edges along the shortest path.
• Parallel scheme accesses all matrices of a snapshot in
parallel (using multiple threads); the longest shortest path
from ν0 defines the recreation cost for the snapshot.
• Reusable scheme considers caching deltas on the way, i.e.,
if paths from ν0 to two different matrices overlap, then the
shared computation is only done once. In that case, we need
to construct the lowest-cost Steiner tree (TPV ,si ) involving ν0
and the matrices in the snapshot. However, because multiple
large matrices need to be kept in memory simultaneously,
the memory consumption of this scheme can be large.

PAS can be configured to use any of these options during
the actual query execution. However, solving the storage opti-
mization problem with Reusable scheme is nearly impossible;
since the Steiner tree problem is NP-Hard, just computing
the cost of a solution becomes intractable making it hard to
even compare two different storage solutions. Hence, during
the storage optimization process, PAS can only support Inde-
pendent or Parallel schemes.

Retrieval Scheme Recreation Cr
ψ (PV , si) Solution of Prob.1

Independent (ψi)
∑

m j∈si

∑
ek∈Υν0 ,m j

cr(ek) Spanning tree
Parallel (ψp) maxm j∈si {

∑
ek∈Υν0 ,m j

cr(ek)} Spanning tree
Reusable (ψr)

∑
ek∈TPV ,si

cr(ek) Subgraph

TABLE III. Recreation Cost of a Snapshot si Cr(PV , si) in a plan PV
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In the example above, the edges are shown as being undi-
rected indicating that the deltas are symmetric. In general, we
allow for directed deltas to handle asymmetric delta functions,
and also for multiple directed edges between the same two
matrices. The latter can be used to capture different options for
storing the delta; e.g., we may have one edge corresponding to
a remote storage option, where the storage cost is lower and
the recreation cost is higher; whereas another edge (between
the same two matrices) may correspond to a local SSD storage
option, where the storage cost is the highest and the recreation
cost is the lowest. Our algorithms can thus automatically
choose the appropriate storage option for different deltas.

Similarly, PAS is able to make decisions at the level of
byte segments of float matrices, by treating them as separate
matrices that need to be retrieved together in some cases, and
not in other cases. This, combined with the ability to incorpo-
rate different storage options, is a powerful generalization that
allows PAS to make decisions at a very fine granularity.

Given this notation, we can now state the problem formally.
Since there are multiple optimization metrics, we assume that
constraints on the retrieval costs are provided and ask to
minimize the storage.

Problem 1 (Optimal Parameter Archival Storage): Given
a matrix storage graph GV (V,E, cs, cr), let θi be the snapshot
recreation cost budget for each si ∈ S . Under a retrieval
scheme ψ, find a matrix storage plan PV

∗ that minimizes the
total storage cost, while satisfying recreation constraints, i.e.:

minimizePV Cs(PV ); s.t. ∀si ∈ S ,Cr
ψ (PV , si) ≤ θi

Example 2: In Fig. 5(b), without any recreation con-
straints, we show the best storage plan, which is the mini-
mum spanning tree based on cs of the matrix storage graph,
Cs(PV ) = 19. Under independent scheme ψi, Cr

ψi (PV , s1) = 3
and Cr

ψi (PV , s2) = 7.5. In Fig. 5(c), after adding two con-
straints θ1 = 3 and θ2 = 6, we shows an optimal storage
plan PV

∗ satisfying all constraints. The storage cost increases,
Cs(PV

∗) = 24, while Cr
ψi (PV

∗, s1) = 3 and Cr
ψi (PV

∗, s2) = 6.

Although this problem variation might look similar to the
ones considered in recent work [13], none of the variations
studied there can handle the co-usage constraints (i.e., the
constraints on simultaneously retrieving a group of versioned
data artifacts). One way to enforce such constraints is to
treat the entire snapshot as a single data artifact that is
stored together; however, that may force us to use an overall
suboptimal solution because we would not be able to choose
the most appropriate delta at the level of individual matrices.
Another option would be to sub-divide the retrieval budget
for a snapshot into constraints on individual matrices in the
snapshot. As our experiments show, that can lead to signifi-
cantly higher storage utilization. Thus the formulation above
is a strict generalization of the formulations considered in that
prior work. The proofs of the following two theorems can be
found in the extended version of the paper.

Theorem 1: Optimal Parameter Archival Storage Problem
is NP-hard for all retrieval schemes in Table III.

Lemma 2: The optimal solution for Problem 1 is a span-
ning tree when retrieval scheme ψ is independent or parallel.

The above lemma is not true for the reusable scheme (ψr);

snapshot Steiner trees satisfying different recreation constraints
may share intermediate nodes resulting in a subgraph solution.

Constrained Spanning Tree Problem: In Problem 1, storage
cost minimization while ignoring the recreation constraints
leads to a minimum spanning tree (MST) of the matrix storage
graph; whereas the snapshot recreation constraints are best
satisfied by using shortest path trees (SPT). These problems are
often referred to as constrained spanning tree problems [19] or
shallow-light tree constructions [20], which have been studied
in areas other than dataset versioning, such as VLSI designs.
Khuller et al. [21] propose an algorithm called LAST to
construct such a “balanced” spanning tree in an undirected
graph G. LAST starts with a minimum spanning tree of the
provided graph, traverses it in a DFS manner, and adjusts
the tree by changing parents to ensure the path length in
constructed solution is within (1+ε) times of shortest path in
G, i.e. Cr(T, vi) ≤ (1 + ε)Cr(Υν0,vi , vi), while total storage cost
is within (1+ 2

ε
) times of MST. In our problem, the co-usage

constraints of matrices in each snapshot form hyperedges over
the matrix storage graph making the problem more difficult.

In the rest of the discussion, we adapt meta-heuristics for
constrained MST problems to develop two algorithms: the first
one (PAS-MT) is based on an iterative refinement scheme,
where we start from an MST and then adjust it to satisfy
constraints; the second one is a priority-based tree construction
algorithm (PAS-PT), which adds nodes one by one and encodes
heuristic in the priority function. Both algorithms aim to solve
the parallel and independent recreation schemes, and thus
can also find feasible solution for reusable scheme. Due to
large memory footprints of intermediate matrices, we leave
improving reusable scheme solutions for future work.

PAS-MT: The algorithm starts with T as the MST of GV (V,E),
and iteratively adjusts T to satisfy the broken snapshot recre-
ation constraints, U = {si|Cr(T, si) > θi}, by swapping one edge
at a time. We denote pi as the parent of vi, (pi, vi) ∈ T and
p0 = φ, and successors of vi in T as Di. A swap operation on
(pi, vi) to (vs, vi) ∈ E − T ∧ vs < Di changes parent of vi to vs.

Lemma 3: A swap operation on vi changes storage cost of
Cs(T ) by cs(pi, vi) − cs(vs, vi), and changes recreation costs of
vi and its successors Di by: Cr(T, vi) − Cr(T, vs) − cr(vs, vi).

The proof can be derived from definition of Cs and Cr by
inspection. When selecting edges in E−T , we choose the one
which has the largest marginal gain for unsatisfied constraints:

ψi : max
(vs ,vi)∈E−T∧vs<Di

{

∑
sk∈U
∑

v j∈sk∩Di
(Cr(T, vi) − Cr(T, vs) − cr(vs, vi))

cs(vs, vi) − cs(pi, vi)
}

(1)

ψp : max
(vs ,vi)∈E−T∧vs<Di

{

∑
sk∈U (Cr(T, vi) − Cr(T, vs) − cr(vs, vi))

cs(vs, vi) − cs(pi, vi)
} (2)

The actual formula used is somewhat more complex, and
handles non-positive denominators. Eq. 1 sums the gain of
recreation cost changes among all matrices in the same snap-
shot si (for the independent scheme), while Eq. 2 uses the max
change instead (for the parallel scheme).

The algorithm iteratively swaps edges and stops if all
recreation constraints are satisfied or no edge returns a positive
gain. A single step examines |E −T | edges and |U | unsatisfied
constraints, and there are at most |E| steps. Thus the complexity
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is bounded by O(|E|2|S |). More sophisticated scheme uses
Fibonacci heap to incrementally update the edge gains.

PAS-PT: This algorithm constructs a solution by “growing” a
tree starting with an empty tree. The algorithm examines the
edges in GV (V,E) in the increasing order by the storage cost
cs; a priority queue is used to maintain all the candidate edges
and is populated with all the edges from v0 in the beginning.
At any point, the edges in Q are the ones that connect a vertex
in T , to a vertex outside T . Using an edge ei j = (vi, v j) (s.t.,
vi ∈ VT∧v j ∈ V−VT ) popped from Q, the algorithm tries to add
v j to T with minimum storage increment cs(ei j). Before adding
v j, it examines whether the constraints of affected groups sa
(s.t., v j ∈ sa) are satisfied using actual and estimated recreation
costs for vertices {vk ∈ sa} in VT and V − VT respectively; if
vk ∈ VT , actual recreation cost Cr(T, vk) is used, otherwise the
lower bound of it, i.e. cr(ν0, vk) is used as an estimation.

Once an edge ei j is added to T , the inner edges I j
T =

{(vk, v j)|vk ∈ VT } of newly added v j are dequeued from Q,
while the outer edges O j

T = {(v j, vk) | vk ∈ V − VT } are
enqueued. If the storage cost of existing vertices in T can be
improved (i.e. Cs(T, vk) > cs(vk, v j)), and recreation cost is not
more (i.e. Cr(T, vk) ≥ Cr(T, v j) + cr(vk, v j)), then the parent pk
of vk in T is replaced to v j via the swap operation, decreasing
the storage but not increasing affected group recreation cost.

The algorithm stops if Q is empty and T is a span-
ning tree. In the case when Q is empty but VT ⊂ V,
an adjustment operation on T to increase storage cost and
satisfy the group recreation constraints is performed. For each
vu ∈ V − VT , we append it to ν0, then in each unsatisfied
group si that vu belongs to, optimally, we want to choose a
set of {vg} ⊆ si ∩ T to change their parents in T , such that
the decrement of storage cost is minimized while recreation
cost is satisfied. The optimal adjustment itself can be viewed
as a knapsack problem with extra non-cyclic constraint of T ,
which is NP-hard. Instead, we use the same heuristic in Eq. 1
to adjust vg ∈ si ∩ T one by one by swapping its parent pg to
vs until the group constraints cannot improved. Similarly, the
parallel scheme ψp uses Eq. 2 for the adjustment operation.
The complexity of this algorithm is O(|E|2|S |).

D. Model Evaluation Scheme in PAS

Model evaluation, i.e., applying a DNN forward on a data
point to get the prediction result, is a common task to explore,
debug and understand models. Given a PAS storage plan, a dlv
eval query requires uncompressing and applying deltas along
the path to the model. We develop a novel model evaluation
scheme utilizing the segmented design, that progressively
accesses the low-order segments only when necessary, and
guarantees no errors for arbitrary data points.

The basic intuition is that: when retrieving segmented
parameters, we know the minimum and maximum values of
the parameters (since higher order bytes are retrieved first). If
the prediction result is the same for the entire range of those
values, then we do not need to access the lower order bytes.
However, considering the high dimensions of parameters, non-
linearity of the DNN model, unknown full precision value
when issuing the query, it is not clear if this is feasible.

We define the problem formally, and illustrate the de-
terminism condition that we use to develop our algorithm.

Our technique is inspired from theoretical stability analysis
in numerical analysis. We make the formulation general to be
applicable to other prediction functions. The basic assumption
is that the prediction function returns a vector showing relative
strengths of the classification labels, then the dimension index
with the maximum value is used as the predicted label.

Problem 2 (Parameter Perturbation Error Determination):
Given a prediction function F (d,W) : Rm × Rn 7→ Rc, where
d is the data and W are the learned weights, the prediction
result cd is the dimension index with the highest value in the
output o ∈ Rc. When W value is uncertain, i.e., each wi ∈ W
in known to be in the range [wi,min,wi,max], determine whether
cd can be ascertained without error.

When W is uncertain, the output o is uncertain as well.
However, if we can bound the individual entries in o, Lemma 4
is an applicable necessary condition for determining error:

Lemma 4: Let oi ∈ o vary in range [oi,min, oi,max]. If ∃k
such that ∀i, ok,min > oi,max, then prediction result cd is k.

Next we illustrate a query procedure that, given data d,
evaluates a DNN with weight perturbations and determines
the output perturbation on the fly. Recall that DNN is a nested
function (Sec. II), we derive the output perturbations when
evaluating a model while preserving perturbations step by step:
xmin

0,k =
∑

j

min{W0,k, jd j} + min{b0,k}; xmax
0,k =

∑
j

max{W0,k, jd j} + max{b0,k}

Next, activation function σ0 is applied. Most of the common
activation functions are monotonic functions: R 7→ R, (e.g.
sigmoid, ReLu), while pool layer functions are min, max, avg
functions over several dimensions. It is easy to derive the per-
turbation of output of the activation function, [ f0,k,min, f0,k,max].
During the evaluation query, instead of 1-D actual output, we
carry 2-D perturbations, as the actual parameter value is not
available. Nonlinearity decreases or increases the perturbation
range. Now the output perturbation at fi can be calculated
similarly, except now both W and fi−1 are uncertain:

xmin
i,k =

∑
j

min{Wi,k, j fi−1, j}+min{bi,k}; xmax
i,k =

∑
j

max{Wi,k, j fi−1, j}+max{bi,k}

Applying these steps iteratively until last layer, we can then
apply Lemma 4, the condition of error determinism, to check
if the result is correct. If not, then lower order segments of the
float matrices are retrieved, and the evaluation is re-performed.

This progressive evaluation query techniques dramatically
improve the utility of PAS, as we further illustrate in our
experimental evaluation. Note that, other types of queries, e.g.,
matrix plots, activation plots, visualizations, etc., can often be
executed without retrieving the lower-order bytes either.

V. Evaluation Study

ModelHub is designed to work with a variety of deep learn-
ing backends; our current prototype interfaces with caffe [3]
through a wrapper that can extract caffe training logs, and
read and write parameters for training. We have also built a
custom layer in caffe to support progressive queries. The dlv
command-line suite is implemented as a Ruby gem, utilizing
git as internal VCS and sqlite3 and PAS as backends to
manage the set of heterogeneous artifacts in the local client.
PAS is built in C++ with gcc 5.4.0. All experiments are
conducted on a Ubuntu Linux 16.04 machine with an 8-
core 3.0GHz AMD FX-380 processor, 16GB memory, and
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for Float Representation Schemes
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Different Delta Schemes & Models

(c) Comparing PAS Archival Storage
Algorithms for SD

(d) Progressive Evaluation Query
Processing Using High-Order Bytes

Fig. 6. Evaluation Results for PAS

NVIDIA GTX 970 GPU. We use zlib for compression; unless
specifically mentioned, the compression level is set to 6. When
wrapping and modifying caffe, the code base version is rc3.

In this section, we present a comprehensive evaluation
with real-world and synthetic datasets aimed at examining
our design decisions, differences of configurations in PAS,
and performance of archiving and progressive query evaluation
techniques proposed in earlier sections.

A. Dataset Description

Real World Dataset: To study the performance of PAS design
decisions, we use a collection of shared caffe models published
in caffe repository or Model Zoo. In brief, LeNet-5 [7] is
a convolutional DNN with 431k parameters. The reference
model has 0.88% error rate on MNIST. AlexNet [8] is a
medium-sized model with 61 million parameters, while VGG-
16 [9] has 1.9 billion parameters. Both AlexNet and VGG-16
are tested on ILSVRC-2012 dataset. The downloaded models
have 43.1%, and 31.6% top-1 error rate respectively. Besides,
to study the delta performance on model repositories under
different workloads (i.e., retraining, fine-tuning): we use VGG-
16/19 and CNN-S/M/F [22], a set of similar models developed
by VGG authors to study model variations. They are similar
to VGG-16, and retrained from scratch; for fine-tuning, we
use VGG-Salient [23] a fine-tuning VGG model which only
changes last full layer.

Synthetic Datasets: Lacking sufficiently fine-grained real-
world repositories of models, to evaluate performance of
parameter archiving algorithms, we developed an automatic
modeler to enumerate models and hyperparameters to produce
a dlv repository. We generated a synthetic dataset (SD):
simulating a modeler who is enumerating models to solve
a face recognition task, and fine-tuning a trained VGG. SD
results in similar DNNs and relatively similar parameters
across the models. Based on real trained dataset SD, we vary
the delta ratios, group sizes, and number of models to derive a
collection of repositories (RD). The datasets are shared online4.

To elaborate, the automation is driven by a state machine
that applies modeling practices from the real world. The
modeler updates the VGG network architecture slightly and
changes VGG object recognition goal to a face prediction task
(prediction labels changed from 1000 to 100, so the last layer
is changed); various fine-tuning hyperparameter alternations
are applied by mimicking practice [24]. SD in total has 54
model versions, each of which has 10 snapshots. A snapshot
has 16 parametric layers and a total of 1.96 × 1010 floats.

4Dataset Details: http://www.cs.umd.edu/∼hui/code/modelhub

B. Evaluation Results

Float Representation & Accuracy: We show the effect of
different float encoding schemes on compression and accuracy
in Fig. 6(a); this is a tradeoff that the user often needs to
consider when configuring ModelHub to save a model. In
Fig. 6(a), for each scheme, we plot the average compression
ratio versus the average accuracy drop when applying PAS
float schemes on the three real-world models. Here, random
and uniform denote two standard quantization schemes. As we
can see, we can get very high compression ratios (a factor of
20 or so) without a significant loss in accuracy, which may be
acceptable in many scenarios.

Delta Encoding & Compression Ratio Gain: Next we
study the usefulness of delta encoding in real-world models
in the following scenarios: a) Similar: latest snapshots
across similar models (CNN-S/M/F, VGG-16); b) Fine-
tuning: fine-tuning models (VGG-16, VGG-Salient); and
c) Snapshots: snapshots for the same VGG models in SD
between iterations. In Fig. 6(b), for different delta schemes,
namely, storing original matrices (Materialize), arithmetic
subtraction (Delta-SUB), and bitwise XOR diff (Delta-XOR),
the comparison is shown (i.e., we show the results of
compressing the resulting matrices using zlib). The figure
shows the numbers under lossless compression scheme (float
32), which has the largest storage footprint.

As we can see, delta scheme is not always good, due to
the non-convexity and high entropy of parameters. For models
under similar architectures, storing materialized original pa-
rameters is often better than applying delta encoding. With
fine-tuning and nearby snapshots, the delta is always better,
and arithmetic subtraction is consistently better than bitwise
XOR. We saw similar results for many other models. These
findings are useful for PAS implementation decisions, where
we only perform delta between nearby snapshots in a single
model, or for the fine-tuning setting among different models.

Table IV shows the delta encoding results when using two
lossy schemes, fixed point conversion and normalization, for
fine-tuned VGG datasets, but without reducing the number
of bits used (i.e., we still use 32 bits to store the numbers).
Normalization refers to adding a sufficiently large number to
all the floats so that the radixes and the signs are aligned,
whereas fixed point conversion uses a single exponent for
all the numbers in a matrix. As we can see, for both of
these, delta encoding can result in sigificant gains. Introducing
additional lossiness, e.g., through using fewer bits, further
improves the performance, but at the expense of significantly
higher accuracy loss.
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Schemes Configuration Materialize Delta-SUB

Float Number Lossless 92.83% 86.39%
Representation Lossless, bytewise 83.85% 76.89%

Fix point 72.43% 57.15%
Fix point, bytewise 58.68% 49.34%

After Lossless 68.06% 47.69%
Normalization Lossless, bytewise 56.15% 36.60%

Fix point 69.11% 48.94%
Fix point, bytewise 55.36% 36.88%

TABLE IV. Delta Performance For Lossless & Lossy Schemes, 32-bits

Optimal Parameter Archival Storage: Fig. 6(c) shows the
results of comparing PAS-PT, PAS-MT and the baseline
LAST [21] for the optimal parameter archival problem. Using
dataset SDand RD, we derive nearby snapshot deltas as well
as model-wise deltas among the latest snapshots. To compare
with LAST clearly, we vary the recreation threshold using a
scalar α to mimic a full precision archiving problem instance
with different constraints, i.e., Cr(T, si) ≤ α · Cr(SPT, si). The
SPT for SD is 22.77Gb and the MST is 15.44Gb. In Fig. 6(c),
the left y-axis denotes the storage cost (Cs) while the right
y-axis is the recreation cost (Cr). As we can see, in most
cases, PAS-MT and PT find much better storage solutions that
are very close to the MST (the best possible) by exploiting
the recreation thresholds. In contrast, LAST, which cannot
handle group constraints, returns worse storage plans and
cannot utilize the recreation constraints fully. Between MT and
PT, since MT starts from the MST and adjusts it, when the
constraints are tight (i.e., α < 1.5), MT cannot alter it to very
different trees and the recreation constraints are underutilized;
however, PT can exploit the constraints when selecting edges
to grow the tree. On the other hand, when the threshold is loose
(α ∈ [1.5, 2]), MT’s edge swapping strategy is able to refine
MST extensively, while PT prunes edges early and cannot
find solutions close to MST. When the constraints continue
to loosen, both PAS algorithms find good plans, while LAST
can only do so at very late stages (α > 3). In practice, the best
option might be to execute both algorithms and pick the best
solution for a given setting.

Retrieval Performance: Next we show the retrieval perfor-
mance for PAS storage plans using the SD dataset. The main
query type of interest is snapshot retrieval, which would re-
trieve all segments of a snapshot or, for a partial retrieval query,
the high-order segments. In Table V, the average recreation
time of a snapshot for a moderate PAS storage plan (α = 1.6)
is compared with the two extreme cases, full materialization
(SPT), and best compression without recreation constraints
(MST). As we can see, PAS is not only able to find good
storage solutions which satisfy recreation constraints, but also
supports flexible query access schemes. Under partial access
of high order bytes, the query times for segmented snapshots
are better than uncompressing the fully materialized model.

Progressive Query Evaluation: We study the efficiency of
the progressive evaluation technique using perturbation error
determination scheme on real-world models (LeNet, AlexNet,
VGG16) and their corresponding datasets. The original pa-
rameters are 4-byte floats, which are archived in segments in
PAS. We modify caffe implementation of involved layers and
pass two additional blobs (min/max errors) between layers.
The perturbation error determination algorithm uses high order
segments, and answers eval query on the test dataset. The

Storage Plan Query Independent (s) Parallel (s)

Materialization Full 3.49 2.16

Min Storage Full 8.47 4.85

PAS (α = 1.6) Full 8.1 4.59
2 bytes 3.19 0.38
1 byte 1.60 0.18

TABLE V. Recreation Performance Comparison of Storage Plans

algorithm determines whether top-k (1 or 5) result needs lower
order bytes (i.e., matched index value range overlaps with k+1
index value range). The result is summarized in Fig. 6(d). The
y-axis shows the error rate. The x-axis shows the percentage of
data that needs to be retrieved (i.e., 2 bytes or 1 byte per float).
As one can see, the prediction errors requiring full precision
lower-order bytes are very small. The less high-order bytes
used, higher the chance of potential errors. The consistent
result of progressive query evaluation on real models supports
our design decision of segmented float storage.

VI. RelatedWork

Machine Learning Systems: There have been several high-
profile deep learning systems in recent years, but those typi-
cally focus on the training aspects (e.g., on distributed training,
how to utilize GPUs or allow symbolic formulas, etc.) [3], [4],
[25], [26], [27]. The data and lifecycle management challenges
discussed above have been largely ignored so far, but are be-
coming critical as the use of deep learning permeates through a
variety of application domains, since those pose a high barrier
to entry for many potential users. In the database community,
there has been increasing work on developing general-purpose
systems for supporting machine learning, including pushing
predictive models into databases [28], [29], accelerating tasks
using database optimizing methods [2], [30], and managing
modeling lifecycles and serving predictive models in advanced
ways [31], [32]. ModelHub is motivated by similar principles;
aside from a focus on DNNs, it also supports versioning as a
first-class construct [11] which differentiates it from that work.

DNN Manipulation Frameworks: There are several popular
model manipulation libraries and methods for major training
systems, including Keras [33] for Theano and Tensorflow, and
nngraph for Torch. Those usually target limited aspects of the
overall modeling lifecycle, and usually support a procedural
approach to create and manipulate models. This makes it
hard to reuse a collection of existing models with different
properties, to maintain lineages among models, or to cleanly
interleave the different steps of querying, mutation, and evalu-
ation. The difference between frameworks like Keras and DQL
is somewhat akin to the difference between MapReduce and
SQL; we believe that using a more structured and abstract
language like DQL makes it easier to interact with and explore
models. On the flip side, DQL relies on a data model that is
built on pre-defined layers instead of tensor operations, which
limits its ability to make fine-grained network adjustments,
such as changing layer behaviors. We note that dlv does not
preclude users from continuing to use Keras or similar tools
to construct models, and artifacts created by them are treated
the same as those created through DQL.

DNN Compression: There has been increasing interest on
compressing DNN models, motivated in part by the need
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to deploy them on devices with simple instruction sets, low
memory, and/or energy constraints [15], [34], [35]. However,
the goal of those works is to simplify the model in a lossy
manner with as little loss of accuracy as possible, which
makes that work orthogonal to the archival problem we face in
ModelHub; in fact, simplified models are likely to compress
much better, magnifying the gains of our approach as our
experimental results show. Further, these methods often require
heavy retraining or expensive computations (k-means, SVD,
etc.) to derive simpler models, which makes them too heavy-
weight in an interactive setting for which DLV is designed.
TensorFlow also uses compression during training to reduce
communication overhead, but does not consider the problem of
compressing models jointly for minimizing storage footprint.

DNNs with Low Precision Floats: Low precision floats have
been exploited in accelerating training and testing [14], [35],
[36]; those works present techniques and empirical results
when training and testing DNNs with limited precision. Mod-
elHub differs in its focus on parameter archiving, and answer-
ing lifecycle management queries.

Stability Analysis Results Stability analysis of DNNs, with
primary focus on statistical measures of stability, is a well-
studied concept [37], [38], [39]. ModelHub uses basic pertur-
bation analysis techniques and focuses on novel progressive
query answering in a segmented float storage.

VII. Conclusion and FutureWork

In this paper, we described some of the key data man-
agement challenges in learning, managing, and adjusting deep
learning models, and presented our ModelHub system that
attempts to address those challenges in a systematic fashion.
The goals of ModelHub are multi-fold: (a) to make it easy for
a user to explore the space of potential models by tweaking the
network architecture and/or the hyperparameter values, (b) to
minimize the burden in keeping track of the metadata including
the accuracy scores and the fine-grained results, and (c) to
compactly store a large number of models and constituent
snapshots without compromising on query or retrieval perfor-
mance. We presented several high-level abstractions, including
a command-line version management tool and a domain-
specific language, for addressing the first two goals. Anecdotal
experience with our early users suggests that both of those
are effective at simplifying the model exploration tasks. We
also developed a read-optimized parameter archival storage
for storing the learned weight parameters, and designed novel
algorithms for storage optimization and for progressive query
evaluation. Extensive experiments on real-world and synthetic
models verify the design decisions we made and demonstrate
the advantages of proposed techniques.
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