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ABSTRACT

Feature selection is one of the most important data mining research
topics with many applications. In practical problems, features often
have group structure to effect the outcomes. Thus, it is crucial to
automatically identify homogenous groups of features for high-
dimensional data analysis. Octagonal shrinkage and clustering
algorithm for regression (OSCAR) is an important sparse regres-
sion approach with automatic feature grouping and selection by
{1 norm and pairwise {o norm. However, due to over-complex
representation of the penalty (especially the pairwise {0 norm),
so far OSCAR has no solution path algorithm which is mostly use-
ful for tuning the model. To address this challenge, in this paper,
we propose a groups-keeping solution path algorithm to solve the
OSCAR model (OscarGKPath). Given a set of homogenous groups
of features and an accuracy bound ¢, OscarGKPath can fit the so-
lutions in an interval of regularization parameters while keeping
the feature groups. The entire solution path can be obtained by
combining multiple such intervals. We prove that all solutions in
the solution path produced by OscarGKPath can strictly satisfy the
given accuracy bound ¢. The experimental results on benchmark
datasets not only confirm the effectiveness of our OscarGKPath
algorithm, but also show the superiority of our OscarGKPath in
cross validation compared with the existing batch algorithm.
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1 INTRODUCTION

The high-dimensional data are increasingly available in many data
mining applications as the data collection technologies evolve. For
example, DNA microarray technology can produce a large number
of measurements [14, 29]. Medical imaging technologies (e.g., MRI,
CT, and Ultrasound) can produce high resolution 3-dimensional
and 4-dimensional images [15]. The high resolution images are
essentially high-dimensional data defined by the large number of
voxels. To efficiently and effectively analyze the high-dimensional
data, feature selection techniques have been introduced to identify
the significant features associated to response variables [2] and to
enhance the prediction tasks. Feature selection methods are parti-
cularly important and useful in bioinformatics and computational
medicine (also called as biomarker selection).

To conduct the feature selection in high-dimensional data analy-
sis, many sparse learning methods [8, 9, 19, 26, 30, 31] have been
proposed. These sparse learning methods use the sparsity-inducing
norms (e.g. to force the coefficients of non-important features to be
zero. As a result, the features which have non-zero coefficients can
be easily ‘selected’. In the high-dimensional data, the highly corre-
lated features widely exist [13, 15]. However, the sparse learning
methods tend to arbitrarily select only one of them as mentioned
in [6]. Thus, the estimation can be unstable, and the resulted model
is difficult to interpret [33]. Especially, in bioinformatics research,
some genes from the same family always work together to show the
biological function, thus it is incorrect to only select one of them
as biomarker. However, most existing feature selection methods
ignore the feature group structure. Although the group LASSO
model and its variants have been proposed, these methods require
the feature group information to be known in advance [33]. Thus,
it is crucial to design new feature selection with automatically
identifying homogenous groups of features.

To tackle this challenging problem, several sparse learning met-
hods have been proposed. For example, the elastic net [35] en-
courages f; to be close to f3j for highly correlated features i, j by a
{y-norm, where f;’s are the feature coefficients of the regression
model. The fused LASSO [27] directly enforces the successive fea-
ture coefficients to be similar by the regularizer |§; — f;_1], if the
features are ordered in some meaningful way. The method propo-
sed by Wu et al. [32] uses the {-norm to encourage the equality
of coefficients for the features with maximum absolute value. The
clustered LASSO [25] constraints all feature coefficients to be simi-
lar by the regularizer }}; . ; |f; — fj| (also called pairwise penalty).
Different to the above feature grouping which cannot clearly and
adaptively reveal the feature group structure, the OSCAR [6] (octa-
gonal shrinkage and clustering algorithm for regression) method



uses the pairwise {oo-norm to encourage the equality of coefficients
for highly correlated features. Among these methods, OSCAR can
adaptively capture the feature groups, and clearly reveal the feature
group structure by the equality of coefficients. In this paper, we
focus on OSCAR model due to the ability of automatic feature grou-
ping. The sparse learning based feature selection models usually
have parameters and tuning parameters is time-consuming and
could lead to sub-optimal results.

To address the parameter tuning issue and generate stable and
optimal results, the solution path algorithm can provide a com-
pact representation of all exact (or approximate) optimal solutions,
which is extremely useful for model selection [10]. Several solu-
tion path algorithms have been proposed for sparse learning. For
example, Rosset and Zhu [23] proposed a solution path algorithm
for LASSO. Zhu et al. [34] proposed a solution path algorithm for
{1-norm support vector machine. Park and Hastie [21] introduced a
solution path algorithm for £;-norm regularized generalized linear
models. Tibshirani and Taylor [28] presented the solution path algo-
rithm for the generalized LASSO, where LASSO and fused LASSO
are two special cases of the generalized LASSO. These solution path
algorithms were designed for the learning problems with £;-norm.
However, due to the difficulty in treating over-complex representa-
tion of the penalty (especially the pairwise {oo-norm) in OSCAR,
there is still no solution path algorithm for OSCAR model. More
importantly, we hope that the designed solution path algorithm
can efficiently handle the pairwise {s-norm. Note that Zhong and
Kwok [33] proposed a fast batch algorithm of OSCAR (FastOSCAR)
based on the accelerated proximal gradient method, which only
gives one solution for one execution, but cannot give a continuous
solution path for OSCAR.

In this paper, we propose a novel groups-keeping solution path
algorithm for OSCAR (OscarGKPath), which can significantly im-
prove the regularization parameters tuning of OSCAR model. Spe-
cifically, given a set of homogenous groups of features produced by
a batch algorithm (e.g. FastOSCAR) and an accuracy bound ¢, our
new OscarGKPath algorithm can fit the solutions in an interval of
regularization parameters while keeping the feature groups. The-
oretically, we prove that any solution in this interval can strictly
satisfy the given accuracy bound ¢. The entire solution path can
be obtained by combining multiple such intervals. We conduct
the experiments on seven benchmark datasets. The experimental
results confirm the effectiveness and efficiency of our OscarGKPath
method.

Notations. f; denote the j-th element of vector . A denotes the
amount of the change of each variable. sign(x) is a sign function
which returns 1 if x > 0, otherwise returns -1.

2 REVIEW OF OSCAR MODEL

In this section, we first introduce the formulation of OSCAR, and
then provide the optimality conditions of OSCAR correspondingly.

2.1 OSCAR
Given a training set S = {(x;, yi)}gzl with x; € R and y; € R. We

assume that y; is centered, i.e., 25:1 y; = 0, and each feature of
2 _
ij =
1. Because the response is centered, OSCAR considers a linear

the training set S is standardized, i.e., 25:1 xij = 0 and Zle x

regression model without the intercept. Thus, the formulation of
OSCAR is considered as follows:

‘ 1< 2
mn o ; (yi —xiTﬁ) (1)
st Bl +e ). max{IBl, [l} <t
j<k

where the ¢1-norm enforces the sparsity, and the pairwise £;-norm
encourages every coefficient pair |f;| and || to be equal which
can automatically group highly correlated features. c > 0ant > 0
are tuning constants. c¢ is controlling the relative weighting of the
norms and ¢ is controlling the magnitude. Specially, if c = 0, OSCAR
degenerates to LASSO. If ¢ = co, OSCAR clusters all features as a
group but without variable selection. Thus, selecting appropriate
values of ¢ and t plays an essential role for OSCAR.

The formulation (1) is a constrained optimization problem which
can be written in the penalized form (2) according to the subdiffe-
rential version of Karush-Kuhn-Tucker (KKT) conditions [24]:
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where A; > 0 and A2 > 0 are two regularization parameters. For
a pair of A1 and Ay, there exists a pair of t and ¢ such that (2) and
(1) share the same solution, and vice versa. As mentioned above,
selecting the values of A1 and A, also plays an essential role for
OSCAR. This paper will propose a novel group-keeping solution
path algorithm for (2) which greatly benefits the regularization
parameters tuning in solving OSCAR model.

2.2 Optimality Conditions of OSCAR Model

The formulation (2) has the pair {o-norm which make it nontrivial
to derive the optimality conditions of OSCAR. In this section, we
first derive an equivalent formulation of (2) which is based on the
feature groups and orders of the optimal solution, and then present
the optimality conditions of OSCAR.

We denote ff as an optimal solution of OSCAR. Let o(j) € {1,--- ,d}
denote the order of |f;| among {|B1],1Bz],- - ,|B4l} such that if
0(j1) < o(j2), we have: |Bj,| < |Bj,|. Based on the orders o(j), we
can define the feature group G4 as following:

Definition 2.1. Given the orders o(j) of | 3;|. Theset G, € {1, ,d}
is called a group of features if the following conditions are satisfied.

.. . . def
(1) Vji,j2 € G, and j1 # jo, we have |, = |B,] = 0.

(2) Ifje{1,2,---,d} and j ¢ Gy, we have that |§;| # 0.

In Definition 2.1, we denote 8, as the common value of |f;| for
the group Qg. Thus, we have a set of Qg, g =1,---,G, such that
GiUGU---UGs ={1,2,---,d},and 0 < 01 < 0 < --- < Og.
Based on the groups Gg.9=1,---,G, the formulation (2) can be
rewritten as (3) which is free of the ¢1-norm and the pair £o-norm:

1 1 2 G
mein 3 Z (yi - EITQ) + 9221 wg0q (3)

i=

1
s.t. 0<b1<br<---<6bg,



where x; = [Xj1 Xj2 -+ X;g] and Xjg = Zjegg sign(B)xij. wg =
Sjeg, ( +(00) - Diz).

According to the value of 8y, we can define an active set: A =
{g € {1,---,G} | 85 > 0}. Correspondingly, we define A =
{1,---,G} — A. Thus, the optimality conditions of (3) can be pre-
sented as following:

I
~Fig (i~ 0) +wg =0, VgeA (@)
i=1
0<92—|ﬁ| <.+ <blg-1<bg (5)
6 =0. ©)

3 OURNEW SOLUTION PATH ALGORITHM

In this section, we propose a groups-keeping solution path algo-
rithm of OSCAR (i.e., OscarGKPath) with respect to two regulariza-

Ady

Al denote the changes

tion parameters A; and Ay. Let AA = [

d
dz
AL = dAn, where An is a parameter to control the adjustment qua-
lities of A1 and A,. Thus, OscarGKPath actually tries to produce a
solution path of OSCAR with respect to the direction d on A; and
Ag.

Normally, solution path algorithms include two steps, i.e., initia-
lizing the solution for a fixed values of 11 and A3, and computing
the solution path based on the initial solution. As mentioned previ-
ously, FastOSCAR [33] is a fast batch algorithm of OSCAR based on
the accelerated proximal gradient method. As far as we know, so far
FastOSCAR is the fastest batch learning algorithm of OSCAR. Thus,
we use FastOSCAR to produce the initial solution and the initial
groups G to the optimization (3). In the following, we provide the
detailed descriptions for computing the solution path based on the
initial solution.

Let A0 represent the changes of the coefficients 6. To compute
the solution path, the first issue is which direction of Af (denoted
by &) is with respect to the direction d on A; and Az. The key
of computing the direction & is trying to hold all the solutions
satisfying the optimality conditions (4)-(6) during the adjustments
(see Fig. 1), given the feature groups. Note that the unchanged
feature groups may not be true for new values of 1; and 1. Thus,
the solutions on the direction ¢ could be approximate solutions.
We use an accuracy bound ¢ to control the quality of solutions.
After computing the direction £, the next issue is what maximum
adjustment of Ay (denoted by Ap™4%) is such that the optimality
conditions (4)-(6) will not be satisfied if An exceeds Ap™*. After
finding the maximum adjustment quantity Ap"™%*, we can update 0,
A1, A2, A, A and the orders of 6. Repeating this procedure until the
duality gap G(6, A1, A2) > ¢ (see Fig. 1). Finally, we should backtrack
the last piece of solution path to make sure the end solution to
satisfy the accuracy ¢, which can be easily implemented by binary
search. The above procedure is our OscarGKPath algorithm which
is summarized in Algorithm 1.

As mentioned above, three main steps of OscarGKPath are:

of A1 and A3, and given a direction d = [ ] to AA, we have

(1) computing the directions of Ag;
(2) computing the maximum adjustment of Az;

A Changein A Change in the orders of 6, Terminate

Optimality
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Figure 1: The fundamental principle of OscarGKPath is hol-
ding all the solutions satisfying the accuracy bound ¢ when
given a set of feature groups, and adjusting the solutions ba-
sed on the optimality conditions.

(3) and computing the duality gap G(0, 11, A2).

In the following, we provide the detailed descriptions for these
three steps respectively.

Algorithm 1 OscarGKPath

Input: The direction d, and the accuracy ¢, an interval [#, 7] of 5.
Output: Approximate solution path of OSCAR w.r.t. d on A; and
Az in an interval of [n, 77].
1: Compute the solution 0 and the groups G, for n = 5 based on
FastOSCAR. -
: repeat
Compute the directions of Af.
Compute the maximum adjustment of Ar.
Update 7, 6, A1, A2, A and the orders of 9.
Compute the duality gap G(0, A1, A2) according to Algorithm
1.
7: until 5 > 77 or G(0,A1,A2) > ¢
8: Backtrack the last piece of solution path to make sure the end
solution to satisfy the accuracy e.

AN

3.1 Compute the Directions of A0

As mentioned above, the principle during the adjustment of 1; and
Az is to keep the optimality conditions of OSCAR. According to the
optimality condition (4), it is easy to find 6 is fixed on the bound
0. Only 6.4 have the possibility to be adjusted when changing 14
and Ay. Thus, we have the following linear system:

]
D Figk ah0a +Wghy =0, Vge A, (7)
i=1
where wy = %Jegy (d1 + (o(j)~— 1)dy). Let W be the G x G diagonal
matrix with Wyg = wy, and X be a [ x G matrix whose i-th row is

equal to EIT We can represent the above linear system (7) as the
following in the matrix form:

ngﬂf*ﬂ A9ﬂ+WﬂﬂAﬂ =0. 3)
—_—
Han



Let £ 4 denote % (i.e., the direction of ABg w.r.t. Ap), the

linear system (8) can be rewritten as:

Hanéa=-Waaz. 9

Thus, we can get &4 by solving the linear system (9). Traditional
way for solving the linear system (9) is by the direct matrix inverse
of Hz#. As mentioned in [12, 20], the key matrix Hg# will
encounter singularities. For the robustness of OscarGKPath, we can
compute &4 based on the QR decomposition with column pivoting
[22] without directly computing the inverse of H#z #. Because
A@a = 0, actually we know the direction of A6.

3.2 Compute the Maximum Adjustment of Ay

After obtaining the linear relationships £ #, we need to compute the
maximum adjustment Ap"™** as mentioned previously. As shown
in Fig. 1, there are three main types of cases which should be
considered for the computation of Ap"4*.

(1) A certain coefficient 0, in A reaches 0. Thus we can com-
pute the maximal possible Ap?! before a certain 0y in A
moves to A, by the constraints 0y + EgAn > 0,VYg € Ain
the optimality conditions of OSCAR.

(2) A pair of feature groups swap their orders of 6. As menti-
oned in (5), the optimality conditions of OSCAR are based
on a given orders of 99. Thus, we can compute the maxi-
mal possible An° before a pair of adjacent groups G4 and
Gg+1 swap their orders, by the constraints 0y + £;An <
99+1 + §g+1A’7~

(3) n reaches 7, i.e., the termination condition is met. Then
the maximal adjustment quantity before the solution path
algorithm meets the termination condition is 17 — 7.

Thus, the smallest of three values {Ar]ﬂ, An°, 7y — 17} constitutes
the maximal adjustment quantity Ap™%*.

3.3 Check the Duality Gap

The optimization problem F(f) is a convex problem. Thus, we
can guarantee the solution f is a e-approximation solution with
F(ﬂ,/l],).z) - F(ﬁ*,/h,/lz) < ¢ by the duality gap G(ﬂ,/h,lz) =
F(B, A1, A2) — Fv(a,/h,lz) < ¢, where * is an optimal solution of
F(B,A1,A2), a is the dual variable, and f(a,h,/lz) is the dual of

F(B, A1, A2). This conclusion holds because F(f, A1, A2)—F(f*, A1, A2)

G(p, A1, A2) [7]. -
As discussed in [4, 33], the dual function F(a, A1, A2) can be
computed as:

T

— -1
F(a, A1, A2) = max 5@ - aly (10)
(24

s.t. max aTXﬁ <1,

S A+ Aa(0()-1)) 1 851=1

where X is an | X d matrix whose i-th row is equal to xiT. Further,
[33] proved that the optimal & of F(«) can be analytically computed
as:

1
r*(XTVf(B))

a = min{1,

VB, (11)

where Vf(f) = X — y. Assuming the indices of y are sorted by
lyil < ly2l < -+ < |ygl, we have:

> il
max ~@—————————.
jetzdy B 2+ (i - DA
The algorithm for computing the duality gap was originally
proposed by [33]. In a word, it can be computed according to (10)
based on the optimal a of F(a, A1,A2) (11) which is analytically
represented. Thus, the duality gap can be computed efficiently.

We also present them in Algorithm 2 to be consistent with the
formulation of (2).

r'(y) = (12)

Algorithm 2 Duality Gap

Input: Sor 6, A; and 1.
Output: The duality gap G(0, A1, A2).
1: Compute y = XT V() and sort y; in ascend order.
2: Compute r*(y).
3: Compute the optimal a of F(@) according to (11).
4 Compute the duality gap G(f,A1,42) = F(B,A1,42) —
F(a, A1, A2) according to (10).

4 ¢-APPROXIMATION ANALYSIS OF
OSCARGKPATH ALGORITHM

As shown in Algorithm 1, we check the duality gap only for several
single points of 5. How to guarantee that the whole solution path
produced by OscarGKPath is e-approximation is the focus of this
section. In this section, we will prove that any solution in the
solution path produced by OscarGKPath can strictly satisfy that
G(0, A1, A2) < e (Corollary 4.3). In addition, we provide a guideline
for choosing n and 77 (Theorem 4.5 and 4.6), which guide the choices
for the start and ending points of the interval [#, 77].

Before answering the question, we first give_a definition of pie-
cewise linearity [10] of the solution path as following:

Definition 4.1. Suppose 6(n) is returned by a solution path. The
solution 6(n) is called piecewise linear as a function of #, if existing
n=no<n <nz2<---<nm =1, and the corresponding vectors

E[l], _&'[2], e ,§[m], such that the solution 0(n) is given exactly or
approximately, by 0(ny.) + EI( = ny), Vi € [nie, gt ).

Based on Definition 4.1, it is easy to verify that 6(r) produced by
OscarGKPath is piecewise linear, where each interval [, 7g41]
corresponds the interval produced by one iteration of OscarGKPath.
Based on the piecewise linearity of OscarGKPath, we can prove
that all the solutions (), Vn € [nk,nrs1], strictly satisfy that
G(6(n), A1, A2) < € (Theorem 4.5), which means that any solution
in the solution path produced by OscarGKPath can strictly satisfy
that G(6(n), d1n, d2n) < & (Corollary 4.3).

THEOREM 4.2. For the interval [ny., ni.1] produced by one iteration
of OscarGKPath, we have that all the solutions 6(n), Vn € [Nk, Hga1],
strictly satisfy that G(0(n),d1n, dan) < €.

Proor. According to (11), we have that e = Vf(f) ifr*(XTVf(ﬁ)) <

. _ 1 s
1, otherwise a = FXTVFG) V£ (B). We first prove that the soluti

ons 0(n), Vn € [nx_1, Nk ], strictly satisfy that G(6(n), d1n,d2n) < €
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where f can be converted from 0, Eis the directions of Af which
also can be converted from £. Based on (13)-(14), we can denote
G(0(n), d1n, d2n) as G(O(n), d1n, d2n) = a(An)? + bAy + ¢, where

a = a+ap (15)
= bi+b (16)

c = c1+c (17)
Ap = n-m (18)

Thus, it is easy to verify that a > 0 or a = 0 and b > 0. Otherwise,
we can get G(f(n), d1n, da2n) < 0 for some n > n;, which contradicts
with the fact G(B(n), din, dan) > 0 for all n > 0. Thus, the maximum
of G(8(n), d1n., dan) for 11 € [ng, Miy1] is either G(O(n¢), dine, dane)
or G(0(n¢+1), dint+1, danr+1). This completes the proof for a(n) =

Vf(Bm)).

Ifa = V£(p), we have:

r (X TlVf A)
XTV () =~XT(Xﬂ(r7) -y) (19)
XTX(B(e) + Enn) - XTy
XTVf(Bne)) + XTXEAR.

Assuming r*(y(n)) achieves the maximum at the index jo, we
have:

Syl
SR G-
S XEVF(BGe) + XLXEAY)
SR -1

r(y(m) = (20)

def « -
= r*(y(ne) +ahy.

X(B(ge))-y+EAp
Py roy+aby * et

(X(B(e) =y + EAT y(r*(y(ne)) + @)
def a3(An)? + b3An +c3, (21)

Thus, we have a(n) =

we have:
—F (a(n), d1y. dan) (22)
(az + a3)(An)? + (bz + b3)An + ¢z + c3

(r*(y(ne)) + ahn)?
=r*(y(ne)
a

We can conclude that < 0. Otherwise, it is easy to ve-
rify that the duality gap is negative or infinite for some Ap > 0
because the singular point Ay = M. Further, we have that
r*(y(n;)) > 0 and @ > 0. We have that a; + a3 > 0 because
limy—co —f(a(r]), din,dan) = %. Further, ay + a3 should be
much larger than —a2F (a(ny.), dink» d2ni). Thus, —F (a(n), d17, d2n)
should not be monotonically increasing then decreasing for n > 0.

Similarly, we can conclude that a; > 0 or or a; = 0 and by >
0. Otherwise, we can get G(f(n),d1n, dz2n) < 0 for some 1 > n;,
which contradicts with the fact G(5(n), d1n, dan) > 0 for all n > 0.
Thus, F(6(n), d11n, d2n) should not be monotonically increasing then
decreasing for n > 0.

Thus, combining the analysis for —F(a(ry), dyn, dan) and F(0(n),
d1n,d2n) as mentioned above, we can conclude that G(68(n), d1n, dan)
should not be monotonically increasing then decreasing for > 0.
Thus, the maximum of G(0(n), d1n, d2n) for n € [n, Nr41] would
be at the start point or endpoint of the interval [ng, g41]- This
completes the proof. O

COROLLARY 4.3. For all solutions 6(n) produced by OscarGKPath,
we have that 0(n) satisfies that G(0(n),d1n, dan) < e.

Corollary 4.3 can be easily obtained based on Theorem 4.5. In the
following, we give the definition of the maximal of n (denoted by
Nmin) such that f(nmin) is a solution of the ordinary least squares.
We also give the the definition of the minimum of 7 (denoted by
Nmax) such that f(§max) = 0. It is intuitive that [fmin, fmax] is @
good choice for the interval [#, 7] in Algorithm 1.

Definition 4.4. Let f(0) = ()?T)?)_l)?Ty is the solution of (2)
with 7 = 0. By is the maximal of 5 in (2) such that F(B(fmin),
d1Mmin»> d2Mmin) = F(B(0),0,0). Let f(c0) = 0 is the solution of (2)
with 1 = 00. §mayx is the minimum of 5 in (2) such that F(B(max),
dl Nmax, dzﬂmax) = F(09 o, OO)

THEOREM 4.5. We define tmax as

180) + vl + (23)

tmax = min
v



d
o 2, max{1B0); + vjl. IBO)k + v}
1 j<k
s.t. xTv=0

Let B = B(0) + v. We have fyin = ||D’1XT(Xﬁ —Y)|lco, Where D is
a d x d diagonal matrix with Djj = dy + da(0(j) — 1).

Proor. According to the subdifferential version of KKT conditi-
ons [24], we have that XT(Xﬁ —y) + Dun = 0, where v € 9||||1.
Thus, we have § = ||[D7'XT(XB - y)lleo if f # 0. As mentio-
ned in [6], there exists a direct correspondence between ¢ and
n. Specifically, the larger t is, and the smaller . Thus, npyin =
||D_1XT(X(,B(0) + V) — Y)||co. This completes the proof. o

The problem (23) can be solved by the augmented Lagrangian
algorithm efficiently with the iteration complexity O(log(e™1)) [3],
where € is the accuracy of the solution.

THEOREM 4.6. Let Q denote the set of all possible orders for | = 0],
and let D denote the set of all possible D based on a given Q. We
have

Mmax =min [ID7' Xyl (24)
s.t. D e D%

ProOF. According to the subdifferential version of KKT condi-
tions [24], we have Dun — XTy = 0, where v € 9||f||;. Because
vj € [-1,1], we have that 7 = |[D7'XT y||eo. This completes the
proof. O

Essentially, (24) is a combinatorial optimization, which can not
be solved exactly in polynomial time. In practice, we can set the
orders of |§;| as the ones of the |X Ty| in ascending order, which
gives a good approximation of fmax.

5 EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup, and then
provide the experimental results and discussions.

5.1 Experimental Setup

5.1.1 Design of Experiments. The experiments include two parts.
The first part is to verify the effectiveness of OscarGKPath, and the
second part is to show the advantage of OscarGKPath for model
selection.

To verify the effectiveness of OscarGKPath, we count the num-
bers of the iterations (denoted as #lterations) of OscarGKPath and
the numbers of calling FastOSCAR (denoted as #FastOSCAR) for
producing the entire solution path. By counting the #FastOSCAR,
we want to check how many the calling of FastOSCAR are needed
for producing the entire solution path. By counting the #Iterations,
we empirically show that finite convergence of OscarGKPath. To
show the advantage of OscarGKPath for model selection, we com-
pare the running time, cross validation errors and testing errors
of our OscarGKPath and the batch algorithm (i.e., FastOSCAR) for
5-fold cross validation.

5.1.2  Implementation Details. We implement our proposed Os-
carGKPath in MATLAB. As mentioned previously, to the best of
our knowledge, the FastOSCAR algorithm [33] is the fastest ba-
tch learning algorithm for OSCAR. To compare the run-time at
the same platform, we implement the FastOSCAR algorithm in
MATLAB to compare the running time of cross validation with our
OscarGKPath.

The 5-fold cross validation is done on a two-step grid search
strategy [11]. The initial search is done on a 20 coarse grid linearly
spaced in the region {log,n| — 4 < log,n < 15}, followed by
a fine search on a 20 uniform grid linearly spaced by 0.1 in the
(logy 1) space. To compare the running time of FastOSCAR and
OscarGKPath and verify the effectiveness of OscarGKPath, we
do the experiments on three representative directions of d, i.e.,
[ 0?5 ], [ i ] and [ ; ] Thus, we fix d; = 1, and set d» = 0.5,
1 and 2 respectively. In the experiments, we set the duality gap
G(0(n),din,don) < € = 0.1 X F(B*, d1, d2).

5.1.3 Datasets. Table 1 summarizes the details of seven bench-
mark datasets used in our experiments, where the first and last two
datasets (i.e., YearPredictionMSD, USPS, SensIT Vehicle (combined)
and Protein datasets) are from the LIBSVM Data!, and the Indoor-
Loc Longitude, IndoorLoc Latitude and Slice Localization datasets
are from the UCI benchmark repository [5]. The Left Ventricle and
Right Ventricle dataset were collected from 3360 MRI images by
hospital and each image has 400 pixels. Both of the datasets are
encouraged to find the homogenous groups of features. The Left
and right Ventricle datasets are to predict the areas for left ventricle
and right ventricle respectively [16, 17]. Note that, the alphabets
in the (-) are the abbreviation of the name of the corresponding
dataset.

Table 1: The summary of datasets used in our experiments.

Dataset Sample size Attributes
YearPredictionMSD(YP) 51,630 90
USPS 7,291 256
Left Ventricle(LV) 3,360 400
Right Ventricle(RV) 3,360 400
IndoorLoc Longitude(InLo) 21,048 529
IndoorLoc Latitude(InLa) 21,048 529
Slice Localization(SL) 53,500 386
SensIT Vehicle Combined 78,823 100
Protein 17,766 357

5.2 Experimental Results and Discussions

Effectiveness of OscarGKPath: Table 2 presents the average
numbers of #lterations for OscarGKPath over 10 trials with different
values of da on the YearPredictionMSD, USPS, Left Ventricle, Right
Ventricle, IndoorLoc Longitude, IndoorLoc Latitude, Slice Locali-
zation, SensIT Vehicle Combined and Protein datasets. The results
show that OscarGKPath can fit the entire approximate solution path
of OSCAR within a finite number of iterations. Table 2 also presents

Uhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/



Table 2: Average results of OscarGKPath over 10 trials.

Dataset Size #Iterations #FastOSCAR
d, =0.5 do =1 do =2 ds =0.5 dy =1 do =2
10,000 2,628 2,742 1,484 8 7 6
- 20,000 3,063 2,497 1,694 8 8 7
YearPredictionMSD 30,000 4,012 4,285 2,266 8 8 8
40,000 3,789 5,128 1,891 8 8 9
1,500 2,032 2,536 1874 6 7 7
USPS 3,000 1,865 3,142 2,893 9 9 8
4,500 3,512 2,892 2,571 10 10 10
6,000 3,357 4,932 2,974 12 11 11
800 7,324 8,731 6,319 10 8 7
. 1,600 8,629 10,896 6,232 13 10 9
Left Ventricle 2,400 7,149 9,643 6,882 13 12 9
3,200 9,798 9,921 7,237 14 13 11
800 8,163 8,932 6,654 9 8 7
. . 1,600 8,676 11,324 6,134 11 10 8
Right Ventricle 2,400 9,564 9,251 7,234 12 12 10
3,200 11,941 10,453 8,951 13 12 11
4,200 903 954 502 23 19 12
. 8,400 615 891 499 21 18 12
IndoorLoc Longitude 12,600 469 604 439 24 18 15
16,800 558 753 695 26 21 11
4,200 7,124 6,212 7,290 6 5 5
. 8,400 6,161 7,404 6,260 6 6 5
IndoorLoc Latitude 12,600 7,908 6,348 4,767 5 5 5
16,800 5,837 5,210 4,980 5 5 5
10,000 9,073 8,738 9,346 8 8 7
Slice Localization 20,000 7,330 5,328 7,207 9 8 8
30,000 4,442 7,620 6,804 8 9 9
40,000 6,220 9,483 7,896 10 10 9
5,000 1844 2,321 2,435 5 6 6
. . 10,000 1,667 2,073 2,656 5 5 6
SensIT Vehicle Combined 15,000 1,430 2,001 2,092 5 5 5
20,000 910 1,844 2,012 4 5 5
3,000 793 937 587 5 4 3
Protein 6,000 765 898 485 6 5 4
9,000 988 715 689 6 5 4
12,000 567 815 743 6 6 5

#FastOSCAR for OSCAR over 10 trials with different values of dy
on different datasets. The results empirically show that only the
limited calling of FastOSCAR can produce the entire solution path.
Based on the results of #Iterations and #FastOSCAR, we verify that
OscarGKPath is an effective algorithm to fit the entire approximate
solution path of OSCAR.

Advantages of OscarGKPath: Fig. 2 plots the running time
of OscarGKPath and FastOSCAR in 5-fold cross validation on the
YearPredictionMSD, USPS, Left Ventricle, IndoorLoc Longitude,
IndoorLoc Latitude, Slice Localization, SensIT Vehicle Combined
and Protein datasets with different values of d». The results de-
monstrate that the cross validation based on our OscarGKPath is
generally much faster than the one based on FastOSCAR. Because

our OscarGKPath only runs five times for the 5-fold cross valida-
tion, however, FastOSCAR has to run 400 x 5 times for the 5-fold
cross validation.

Fig. 3 illustrates the cross validation errors and testing errors of
OscarGKPath and FastOSCAR for 5-fold cross validation over 10
trials with notched box plot, where the mean squared error (MSE)
is used as the performance criterion. From the results, we can find
that OscarGKPath performs better than or equally to FastOSCAR on
the cross validation errors. This is because that our OscarGKPath
fits the entire approximate solution path with a given accuracy
bound ¢ which guarantees that the cross validation error of our
OscarGKPath is not worse than the one of FastOSCAR with the
same accuracy bound ¢. The results of Fig. 3 also confirm the
generalization of our OscarGKPath on the testing sets.
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Figure 2: Average running time (in seconds) of OscarGKPath and FastOSCAR with 5-fold cross validation over 10 trials.

In addition to showing the advantage of OscarGKPath for model
selection, we also validate the advantage of OSCAR for automatic
feature grouping. Facebook Comment Volume dataset from the UCI
benchmark repository [5] is originally with 54 features. We select 6
most important features by LASSO and duplicate these features 20
times with noise from N(0, 0.16). Fig. 3 presents the absolute coef-
ficients of OSCAR and LASSO on the revised Facebook Comment
Volume dataset. The results show that LASSO arbitrarily selects
several (maybe zero) of them from a group. However, OSCAR can
group the features automatically, and its solution is closer to the
ground truth.

6 CONCLUSION

OSCAR is an effective feature selection approach which can auto-
matically group homogenous features in feature selection process.
In this paper, we proposed a novel groups-keeping solution path
algorithm of OSCAR (OscarGKPath), which can effectively handle
the pairwise {e-norm in OSCAR, and produce an approximate
solution path. More importantly, we theoretically prove that all
solutions from OscarGKPath can strictly satisfy a given accuracy

bound e. OscarGKPath can greatly benefit the regularization para-
meters tuning of OSCAR and generate stable and optimal results.
The experimental results on a variety of datasets not only confirm
the effectiveness of our OscarGKPath, but also show the superiority
of our OscarGKPath in cross validation compared with the existing
batch algorithm. In the further, we plan to extend the OscarGKPath
algorithm to the general structured sparse learning method with
the {s-norm [1, 18].
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