
Groups-Keeping Solution Path Algorithm for Sparse Regression
with Automatic Feature Grouping

Bin Gu
Computer Science and Engineering
University of Texas at Arlington

Texas, 76019, USA
jsgubin@gmail.com

Guodong Liu
Computer Science and Engineering
University of Texas at Arlington

Texas, 76019, USA
mealsd@gmail.com

Heng Huang∗

Computer Science and Engineering
University of Texas at Arlington

Texas, 76019, USA
heng@uta.edu

ABSTRACT

Feature selection is one of the most important data mining research

topics with many applications. In practical problems, features o�en

have group structure to e�ect the outcomes. �us, it is crucial to

automatically identify homogenous groups of features for high-

dimensional data analysis. Octagonal shrinkage and clustering

algorithm for regression (OSCAR) is an important sparse regres-

sion approach with automatic feature grouping and selection by

`1 norm and pairwise `∞ norm. However, due to over-complex

representation of the penalty (especially the pairwise `∞ norm),

so far OSCAR has no solution path algorithm which is mostly use-

ful for tuning the model. To address this challenge, in this paper,

we propose a groups-keeping solution path algorithm to solve the

OSCAR model (OscarGKPath). Given a set of homogenous groups

of features and an accuracy bound ε , OscarGKPath can �t the so-

lutions in an interval of regularization parameters while keeping

the feature groups. �e entire solution path can be obtained by

combining multiple such intervals. We prove that all solutions in

the solution path produced by OscarGKPath can strictly satisfy the

given accuracy bound ε . �e experimental results on benchmark

datasets not only con�rm the e�ectiveness of our OscarGKPath

algorithm, but also show the superiority of our OscarGKPath in

cross validation compared with the existing batch algorithm.
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1 INTRODUCTION

�e high-dimensional data are increasingly available in many data

mining applications as the data collection technologies evolve. For

example, DNA microarray technology can produce a large number

of measurements [14, 29]. Medical imaging technologies (e.g., MRI,

CT, and Ultrasound) can produce high resolution 3-dimensional

and 4-dimensional images [15]. �e high resolution images are

essentially high-dimensional data de�ned by the large number of

voxels. To e�ciently and e�ectively analyze the high-dimensional

data, feature selection techniques have been introduced to identify

the signi�cant features associated to response variables [2] and to

enhance the prediction tasks. Feature selection methods are parti-

cularly important and useful in bioinformatics and computational

medicine (also called as biomarker selection).

To conduct the feature selection in high-dimensional data analy-

sis, many sparse learning methods [8, 9, 19, 26, 30, 31] have been

proposed. �ese sparse learning methods use the sparsity-inducing

norms (e.g. to force the coe�cients of non-important features to be

zero. As a result, the features which have non-zero coe�cients can

be easily ‘selected’. In the high-dimensional data, the highly corre-

lated features widely exist [13, 15]. However, the sparse learning

methods tend to arbitrarily select only one of them as mentioned

in [6]. �us, the estimation can be unstable, and the resulted model

is di�cult to interpret [33]. Especially, in bioinformatics research,

some genes from the same family always work together to show the

biological function, thus it is incorrect to only select one of them

as biomarker. However, most existing feature selection methods

ignore the feature group structure. Although the group LASSO

model and its variants have been proposed, these methods require

the feature group information to be known in advance [33]. �us,

it is crucial to design new feature selection with automatically

identifying homogenous groups of features.

To tackle this challenging problem, several sparse learning met-

hods have been proposed. For example, the elastic net [35] en-

courages βi to be close to βj for highly correlated features i , j by a

`2-norm, where βi ’s are the feature coe�cients of the regression

model. �e fused LASSO [27] directly enforces the successive fea-

ture coe�cients to be similar by the regularizer |βi − βi−1 |, if the

features are ordered in some meaningful way. �e method propo-

sed by Wu et al. [32] uses the `∞-norm to encourage the equality

of coe�cients for the features with maximum absolute value. �e

clustered LASSO [25] constraints all feature coe�cients to be simi-

lar by the regularizer
∑
i<j |βi − βj | (also called pairwise penalty).

Di�erent to the above feature grouping which cannot clearly and

adaptively reveal the feature group structure, the OSCAR [6] (octa-

gonal shrinkage and clustering algorithm for regression) method



uses the pairwise `∞-norm to encourage the equality of coe�cients

for highly correlated features. Among these methods, OSCAR can

adaptively capture the feature groups, and clearly reveal the feature

group structure by the equality of coe�cients. In this paper, we

focus on OSCAR model due to the ability of automatic feature grou-

ping. �e sparse learning based feature selection models usually

have parameters and tuning parameters is time-consuming and

could lead to sub-optimal results.

To address the parameter tuning issue and generate stable and

optimal results, the solution path algorithm can provide a com-

pact representation of all exact (or approximate) optimal solutions,

which is extremely useful for model selection [10]. Several solu-

tion path algorithms have been proposed for sparse learning. For

example, Rosset and Zhu [23] proposed a solution path algorithm

for LASSO. Zhu et al. [34] proposed a solution path algorithm for

`1-norm support vector machine. Park and Hastie [21] introduced a

solution path algorithm for `1-norm regularized generalized linear

models. Tibshirani and Taylor [28] presented the solution path algo-

rithm for the generalized LASSO, where LASSO and fused LASSO

are two special cases of the generalized LASSO. �ese solution path

algorithms were designed for the learning problems with `1-norm.

However, due to the di�culty in treating over-complex representa-

tion of the penalty (especially the pairwise `∞-norm) in OSCAR,

there is still no solution path algorithm for OSCAR model. More

importantly, we hope that the designed solution path algorithm

can e�ciently handle the pairwise `∞-norm. Note that Zhong and

Kwok [33] proposed a fast batch algorithm of OSCAR (FastOSCAR)

based on the accelerated proximal gradient method, which only

gives one solution for one execution, but cannot give a continuous

solution path for OSCAR.

In this paper, we propose a novel groups-keeping solution path

algorithm for OSCAR (OscarGKPath), which can signi�cantly im-

prove the regularization parameters tuning of OSCAR model. Spe-

ci�cally, given a set of homogenous groups of features produced by

a batch algorithm (e.g. FastOSCAR) and an accuracy bound ε , our

new OscarGKPath algorithm can �t the solutions in an interval of

regularization parameters while keeping the feature groups. �e-

oretically, we prove that any solution in this interval can strictly

satisfy the given accuracy bound ε . �e entire solution path can

be obtained by combining multiple such intervals. We conduct

the experiments on seven benchmark datasets. �e experimental

results con�rm the e�ectiveness and e�ciency of our OscarGKPath

method.

Notations. βj denote the j-th element of vector β . ∆ denotes the

amount of the change of each variable. sign(x) is a sign function

which returns 1 if x > 0, otherwise returns -1.

2 REVIEW OF OSCAR MODEL

In this section, we �rst introduce the formulation of OSCAR, and

then provide the optimality conditions of OSCAR correspondingly.

2.1 OSCAR

Given a training set S = {(xi ,yi )}
l
i=1 with xi ∈ R

d and yi ∈ R. We

assume that yi is centered, i.e.,
∑l
i=1 yi = 0, and each feature of

the training set S is standardized, i.e.,
∑l
i=1 xi j = 0 and

∑l
i=1 x

2
i j =

1. Because the response is centered, OSCAR considers a linear

regression model without the intercept. �us, the formulation of

OSCAR is considered as follows:

min
β

1

2

l∑
i=1

(
yi − xTi β

)2
(1)

s .t . ‖β ‖1 + c
∑
j<k

max{|βj |, |βk |} ≤ t ,

where the `1-norm enforces the sparsity, and the pairwise `1-norm

encourages every coe�cient pair |βj | and |βk | to be equal which

can automatically group highly correlated features. c ≥ 0 an t > 0

are tuning constants. c is controlling the relative weighting of the

norms and t is controlling the magnitude. Specially, if c = 0, OSCAR

degenerates to LASSO. If c = ∞, OSCAR clusters all features as a

group but without variable selection. �us, selecting appropriate

values of c and t plays an essential role for OSCAR.

�e formulation (1) is a constrained optimization problem which

can be wri�en in the penalized form (2) according to the subdi�e-

rential version of Karush-Kuhn-Tucker (KKT) conditions [24]:

F (β, λ1, λ2) = min
β

1

2

l∑
i=1

(
yi − xTi β

)2
(2)

+λ1‖β ‖1 + λ2

∑
i<j

max{|βi |, |βj |} ,

where λ1 ≥ 0 and λ2 ≥ 0 are two regularization parameters. For

a pair of λ1 and λ2, there exists a pair of t and c such that (2) and

(1) share the same solution, and vice versa. As mentioned above,

selecting the values of λ1 and λ2 also plays an essential role for

OSCAR. �is paper will propose a novel group-keeping solution

path algorithm for (2) which greatly bene�ts the regularization

parameters tuning in solving OSCAR model.

2.2 Optimality Conditions of OSCAR Model

�e formulation (2) has the pair `∞-norm which make it nontrivial

to derive the optimality conditions of OSCAR. In this section, we

�rst derive an equivalent formulation of (2) which is based on the

feature groups and orders of the optimal solution, and then present

the optimality conditions of OSCAR.

We denote β as an optimal solution of OSCAR. Leto(j) ∈ {1, · · · ,d}

denote the order of |βj | among {|β1 |, |β2 |, · · · , |βd |} such that if

o(j1) < o(j2), we have: |βj1 | ≤ |βj2 |. Based on the orders o(j), we

can de�ne the feature group Gд as following:

De�nition 2.1. Given the orderso(j) of |βj |. �e setGд ⊆ {1, · · · ,d}

is called a group of features if the following conditions are satis�ed.

(1) ∀j1, j2 ∈ Gд , and j1 , j2, we have |βj1 | = |βj2 |
def
= θд .

(2) If j ∈ {1, 2, · · · ,d} and j < Gд , we have that |βj | , θд .

In De�nition 2.1, we denote θд as the common value of |βj | for

the group Gд . �us, we have a set of Gд , д = 1, · · · ,G, such that

G1 ∪ G2 ∪ · · · ∪ GG = {1, 2, · · · ,d}, and 0 ≤ θ1 < θ2 < · · · < θG .

Based on the groups Gд , д = 1, · · · ,G, the formulation (2) can be

rewri�en as (3) which is free of the `1-norm and the pair `∞-norm:

min
θ

1

2

l∑
i=1

(
yi − x̃Ti θ

)2
+

G∑
д=1

wдθд (3)

s .t . 0 ≤ θ1 < θ2 < · · · < θG ,





Let ξA denote
∆θA
∆η (i.e., the direction of ∆θA w.r.t. ∆η), the

linear system (8) can be rewri�en as:

HAAξA = −W̃AA . (9)

�us, we can get ξA by solving the linear system (9). Traditional

way for solving the linear system (9) is by the direct matrix inverse

of HAA . As mentioned in [12, 20], the key matrix HAA will

encounter singularities. For the robustness of OscarGKPath, we can

compute ξA based on theQR decomposition with column pivoting

[22] without directly computing the inverse of HAA . Because

∆θ
A
= 0, actually we know the direction of ∆θ .

3.2 Compute the Maximum Adjustment of ∆η

A�er obtaining the linear relationships ξA , we need to compute the

maximum adjustment ∆ηmax as mentioned previously. As shown

in Fig. 1, there are three main types of cases which should be

considered for the computation of ∆ηmax .

(1) A certain coe�cient θд in A reaches 0. �us we can com-

pute the maximal possible ∆ηA before a certain θд in A

moves to A, by the constraints θд + ξд∆η > 0, ∀д ∈ A in

the optimality conditions of OSCAR.

(2) A pair of feature groups swap their orders of θд . As menti-

oned in (5), the optimality conditions of OSCAR are based

on a given orders of θд . �us, we can compute the maxi-

mal possible ∆ηo before a pair of adjacent groups Gд and

Gд+1 swap their orders, by the constraints θд + ξд∆η <

θд+1 + ξд+1∆η.

(3) η reaches η, i.e., the termination condition is met. �en

the maximal adjustment quantity before the solution path

algorithm meets the termination condition is η − η.

�us, the smallest of three values
{
∆ηA ,∆ηo ,η − η

}
constitutes

the maximal adjustment quantity ∆ηmax .

3.3 Check the Duality Gap

�e optimization problem F (β) is a convex problem. �us, we

can guarantee the solution β is a ε-approximation solution with

F (β , λ1, λ2) − F (β∗, λ1, λ2) ≤ ε by the duality gap G(β , λ1, λ2) =

F (β , λ1, λ2) − F̃ (α , λ1, λ2) ≤ ε , where β∗ is an optimal solution of

F (β , λ1, λ2), α is the dual variable, and F̃ (α , λ1, λ2) is the dual of

F (β , λ1, λ2). �is conclusion holds because F (β , λ1, λ2)−F (β
∗, λ1, λ2) ≤

G(β , λ1, λ2) [7].

As discussed in [4, 33], the dual function F̃ (α , λ1, λ2) can be

computed as:

F̃ (α , λ1, λ2) = max
α

−1

2
αT α − αTy (10)

s .t . max∑d
j=1(λ1+λ2(o(j)−1)) |βj |=1

αTXβ ≤ 1 ,

where X is an l × d matrix whose i-th row is equal to xTi . Further,

[33] proved that the optimal α of F̃ (α) can be analytically computed

as:

α = min{1,
1

r∗(XT ∇f (β))
}∇f (β) , (11)

where ∇f (β) = Xβ − y. Assuming the indices of γ are sorted by

|γ1 | ≤ |γ2 | ≤ · · · ≤ |γd |, we have:

r∗(γ ) = max
j ∈{1,2, · · · ,d }

∑j
i=1 |γj |∑j

i=1 λ1 + (i − 1)λ2
. (12)

�e algorithm for computing the duality gap was originally

proposed by [33]. In a word, it can be computed according to (10)

based on the optimal α of F̃ (α , λ1, λ2) (11) which is analytically

represented. �us, the duality gap can be computed e�ciently.

We also present them in Algorithm 2 to be consistent with the

formulation of (2).

Algorithm 2 Duality Gap

Input: β or θ , λ1 and λ2.

Output: �e duality gap G(θ , λ1, λ2).

1: Compute γ = XT ∇f (β) and sort γi in ascend order.

2: Compute r∗(γ ).

3: Compute the optimal α of F̃ (α) according to (11).

4: Compute the duality gap G(β , λ1, λ2) = F (β , λ1, λ2) −

F̃ (α , λ1, λ2) according to (10).

4 ε-APPROXIMATION ANALYSIS OF
OSCARGKPATH ALGORITHM

As shown in Algorithm 1, we check the duality gap only for several

single points of η. How to guarantee that the whole solution path

produced by OscarGKPath is ε-approximation is the focus of this

section. In this section, we will prove that any solution in the

solution path produced by OscarGKPath can strictly satisfy that

G(θ , λ1, λ2) ≤ ε (Corollary 4.3). In addition, we provide a guideline

for choosing η and η (�eorem 4.5 and 4.6), which guide the choices

for the start and ending points of the interval [η,η].

Before answering the question, we �rst give a de�nition of pie-

cewise linearity [10] of the solution path as following:

De�nition 4.1. Suppose θ (η) is returned by a solution path. �e

solution θ (η) is called piecewise linear as a function of η, if existing

η = η0 < η1 < η2 < · · · < ηm = η, and the corresponding vectors

ξ [1], ξ [2], · · · , ξ [m], such that the solution θ (η) is given exactly or

approximately, by θ (ηk ) + ξ
[k ](η − ηk ), ∀η ∈ [ηk ,ηk+1].

Based on De�nition 4.1, it is easy to verify that θ (η) produced by

OscarGKPath is piecewise linear, where each interval [ηk ,ηk+1]

corresponds the interval produced by one iteration of OscarGKPath.

Based on the piecewise linearity of OscarGKPath, we can prove

that all the solutions β(η), ∀η ∈ [ηk ,ηk+1], strictly satisfy that

G(θ (η), λ1, λ2) ≤ ε (�eorem 4.5), which means that any solution

in the solution path produced by OscarGKPath can strictly satisfy

that G(θ (η),d1η,d2η) ≤ ε (Corollary 4.3).

Theorem 4.2. For the interval [ηk ,ηk+1] produced by one iteration

of OscarGKPath, we have that all the solutions θ (η), ∀η ∈ [ηk ,ηk+1],

strictly satisfy that G(θ (η),d1η,d2η) ≤ ε .

Proof. According to (11), we have thatα = ∇f (β) if r∗(XT ∇f (β)) <

1, otherwise α = 1
r ∗(XT ∇f (β ))

∇f (β). We �rst prove that the soluti-

ons θ (η), ∀η ∈ [ηk−1,ηk ], strictly satisfy that G(θ (η),d1η,d2η) ≤ ε



if α(η) = ∇f (β(η)).

F (θ (η),d1η,d2η) (13)

=

1

2
‖X̃θ (η) − y‖2 +

G∑
д=1

wдθд(η)

=

1

2
‖X̃ (θ (ηk ) + ξ∆η) − y‖2

+

G∑
д=1

w̃д(ηk + ∆η)(θд(ηk ) + ξд∆η)

= F (θ (ηt ))︸    ︷︷    ︸
c1

+
©­«
ξT ξ +

G∑
д=1

w̃дξд
ª®¬︸                 ︷︷                 ︸

a1

(∆η)2 +

©­«
G∑
д=1

w̃д(ηk ξд + θд(ηk )) − 2ξT (X̃θ (ηk ) − y)
ª®¬︸                                                     ︷︷                                                     ︸

b1

∆η

−F̃ (α(η),d1η,d2η) (14)

=

1

2
α (β(η))T α (β(η)) + α(η)Ty

=

1

2

(
X (β(ηt ) + ξ̃∆η) − y

)T (
X (β(ηt ) + ξ̃∆η) − y

)
+

(
X (β(ηt ) + ξ̃∆η) − y

)T
y

= F̃ (α(ηt ))︸    ︷︷    ︸
c2

+

1

2

(
Xξ̃

)T (
Xξ̃

)
︸            ︷︷            ︸

a2

(∆η)2

+

(
(Xβ(ηt ) − yT )Xξ̃ + Xξ̃Ty

)
︸                               ︷︷                               ︸

b2

∆η

where β can be converted from θ , ξ̃ is the directions of ∆β which

also can be converted from ξ . Based on (13)-(14), we can denote

G(θ (η),d1η,d2η) as G(θ (η),d1η,d2η) = a(∆η)2 + b∆η + c , where

a = a1 + a2 (15)

b = b1 + b2 (16)

c = c1 + c2 (17)

∆η = η − ηt (18)

�us, it is easy to verify that a > 0 or a = 0 and b ≥ 0. Otherwise,

we can getG(β(η),d1η,d2η) < 0 for some η > ηt , which contradicts

with the factG(β(η),d1η,d2η) ≥ 0 for all η ≥ 0. �us, the maximum

of G(θ (η),d1η,d2η) for η ∈ [ηk ,ηk+1] is either G(θ (ηt ),d1ηt ,d2ηt )

or G(θ (ηt+1),d1ηt+1,d2ηt+1). �is completes the proof for α(η) =

∇f (β(η)).

If α = 1
r ∗(XT ∇f (β ))

∇f (β), we have:

XT ∇f (β(η)) = XT (Xβ(η) − y) (19)

= XTX (β(ηt ) + ξ̃∆η) − XTy

= XT ∇f (β(ηt )) + X
TXξ̃∆η .

Assuming r∗(γ (η)) achieves the maximum at the index j0, we

have:

r∗(γ (η)) =

∑j0
i=1 |γj (η)|∑j0

i=1 λ1 + (i − 1)λ2
(20)

=

∑j0
i=1 |X

T
∗i∇f (β(ηt )) + X

T
∗iXξ̃∆η |∑j0

i=1 λ1 + (i − 1)λ2

def
= r∗(γ (ηt )) + ã∆η .

�us, we have α(η) =
X (β (ηt ))−y+ξ̃∆η

r ∗(γ (ηt ))+ã∆η
. Let

(X (β(ηt )) − y + ξ̃∆η)Ty(r∗(γ (ηt )) + ã∆η)

def
= a3(∆η)

2
+ b3∆η + c3 , (21)

we have:

−F̃ (α(η),d1η,d2η) (22)

=

(a2 + a3)(∆η)
2
+ (b2 + b3)∆η + c2 + c3

(r∗(γ (ηt )) + ã∆η)
2

We can conclude that
−r ∗(γ (ηt ))

ã
< 0. Otherwise, it is easy to ve-

rify that the duality gap is negative or in�nite for some ∆η > 0

because the singular point ∆η =
−r ∗(γ (ηt ))

ã
. Further, we have that

r∗(γ (ηt )) > 0 and ã > 0. We have that a2 + a3 > 0 because

limη→∞ −F̃ (α(η),d1η,d2η) =
a2+a3
ã2

. Further, a2 + a3 should be

much larger than−ã2F̃ (α(ηk ),d1ηk ,d2ηk ). �us,−F̃ (α(η),d1η,d2η)

should not be monotonically increasing then decreasing for η > 0.

Similarly, we can conclude that a1 > 0 or or a1 = 0 and b1 ≥

0. Otherwise, we can get G(β(η),d1η,d2η) < 0 for some η > ηt ,

which contradicts with the fact G(β(η),d1η,d2η) ≥ 0 for all η ≥ 0.

�us, F (θ (η),d1η,d2η) should not be monotonically increasing then

decreasing for η > 0.

�us, combining the analysis for −F̃ (α(η),d1η,d2η) and F (θ (η),

d1η,d2η) asmentioned above, we can conclude thatG(θ (η),d1η,d2η)

should not be monotonically increasing then decreasing for η > 0.

�us, the maximum of G(θ (η),d1η,d2η) for η ∈ [ηk ,ηk+1] would

be at the start point or endpoint of the interval [ηk ,ηk+1]. �is

completes the proof. �

Corollary 4.3. For all solutions θ (η) produced by OscarGKPath,

we have that θ (η) satis�es that G(θ (η),d1η,d2η) ≤ ε .

Corollary 4.3 can be easily obtained based on�eorem 4.5. In the

following, we give the de�nition of the maximal of η (denoted by

ηmin) such that β(ηmin) is a solution of the ordinary least squares.

We also give the the de�nition of the minimum of η (denoted by

ηmax) such that β(ηmax) = 0. It is intuitive that [ηmin,ηmax] is a

good choice for the interval [η,η] in Algorithm 1.

De�nition 4.4. Let β(0) = (X̃T X̃ )−1X̃Ty is the solution of (2)

with η = 0. ηmin is the maximal of η in (2) such that F (β(ηmin),

d1ηmin,d2ηmin) = F (β(0), 0, 0). Let β(∞) = 0 is the solution of (2)

with η = ∞. ηmax is the minimum of η in (2) such that F (β(ηmax),

d1ηmax,d2ηmax) = F (0,∞,∞).

Theorem 4.5. We de�ne tmax as

tmax = min
υ

‖β(0) + υ‖1 + (23)



d2

d1

∑
j<k

max{|β(0)j + υj |, |β(0)k + υk |}

s .t . XTυ = 0

Let β = β(0) + υ. We have ηmin = ‖D−1XT (Xβ − y)‖∞, where D is

a d × d diagonal matrix with D j j = d1 + d2(o(j) − 1).

Proof. According to the subdi�erential version of KKT conditi-

ons [24], we have that XT (Xβ − y) + Dvη = 0, where v ∈ ∂‖β ‖1.

�us, we have η = ‖D−1XT (Xβ − y)‖∞ if β , 0. As mentio-

ned in [6], there exists a direct correspondence between t and

η. Speci�cally, the larger t is, and the smaller η. �us, ηmin =

‖D−1XT (X (β(0) + υ) − y)‖∞. �is completes the proof. �

�e problem (23) can be solved by the augmented Lagrangian

algorithm e�ciently with the iteration complexity O(log(ϵ−1)) [3],

where ϵ is the accuracy of the solution.

Theorem 4.6. Let Ω denote the set of all possible orders for |β = 0|,

and let DΩ denote the set of all possible D based on a given Ω. We

have

ηmax = min ‖D−1XTy‖∞ (24)

s .t . D ∈ DΩ

Proof. According to the subdi�erential version of KKT condi-

tions [24], we have Dvη − XTy = 0, where v ∈ ∂‖β ‖1. Because

vj ∈ [−1, 1], we have that η = ‖D−1XTy‖∞. �is completes the

proof. �

Essentially, (24) is a combinatorial optimization, which can not

be solved exactly in polynomial time. In practice, we can set the

orders of |βj | as the ones of the |XTy | in ascending order, which

gives a good approximation of ηmax.

5 EXPERIMENTAL RESULTS

In this section, we �rst describe the experimental setup, and then

provide the experimental results and discussions.

5.1 Experimental Setup

5.1.1 Design of Experiments. �e experiments include two parts.

�e �rst part is to verify the e�ectiveness of OscarGKPath, and the

second part is to show the advantage of OscarGKPath for model

selection.

To verify the e�ectiveness of OscarGKPath, we count the num-

bers of the iterations (denoted as #Iterations) of OscarGKPath and

the numbers of calling FastOSCAR (denoted as #FastOSCAR) for

producing the entire solution path. By counting the #FastOSCAR,

we want to check how many the calling of FastOSCAR are needed

for producing the entire solution path. By counting the #Iterations,

we empirically show that �nite convergence of OscarGKPath. To

show the advantage of OscarGKPath for model selection, we com-

pare the running time, cross validation errors and testing errors

of our OscarGKPath and the batch algorithm (i.e., FastOSCAR) for

5-fold cross validation.

5.1.2 Implementation Details. We implement our proposed Os-

carGKPath in MATLAB. As mentioned previously, to the best of

our knowledge, the FastOSCAR algorithm [33] is the fastest ba-

tch learning algorithm for OSCAR. To compare the run-time at

the same platform, we implement the FastOSCAR algorithm in

MATLAB to compare the running time of cross validation with our

OscarGKPath.

�e 5-fold cross validation is done on a two-step grid search

strategy [11]. �e initial search is done on a 20 coarse grid linearly

spaced in the region {log2 η | − 4 ≤ log2 η ≤ 15}, followed by

a �ne search on a 20 uniform grid linearly spaced by 0.1 in the

(log2 η) space. To compare the running time of FastOSCAR and

OscarGKPath and verify the e�ectiveness of OscarGKPath, we

do the experiments on three representative directions of d , i.e.,[
1

0.5

]
,

[
1

1

]
and

[
1

2

]
. �us, we �x d1 = 1, and set d2 = 0.5,

1 and 2 respectively. In the experiments, we set the duality gap

G(θ (η),d1η,d2η) ≤ ε = 0.1 × F (β∗,d1,d2).

5.1.3 Datasets. Table 1 summarizes the details of seven bench-

mark datasets used in our experiments, where the �rst and last two

datasets (i.e., YearPredictionMSD, USPS, SensIT Vehicle (combined)

and Protein datasets) are from the LIBSVM Data1, and the Indoor-

Loc Longitude, IndoorLoc Latitude and Slice Localization datasets

are from the UCI benchmark repository [5]. �e Le� Ventricle and

Right Ventricle dataset were collected from 3360 MRI images by

hospital and each image has 400 pixels. Both of the datasets are

encouraged to �nd the homogenous groups of features. �e Le�

and right Ventricle datasets are to predict the areas for le� ventricle

and right ventricle respectively [16, 17]. Note that, the alphabets

in the (·) are the abbreviation of the name of the corresponding

dataset.

Table 1: �e summary of datasets used in our experiments.

Dataset Sample size A�ributes

YearPredictionMSD(YP) 51,630 90

USPS 7,291 256

Le� Ventricle(LV) 3,360 400

Right Ventricle(RV) 3,360 400

IndoorLoc Longitude(InLo) 21,048 529

IndoorLoc Latitude(InLa) 21,048 529

Slice Localization(SL) 53,500 386

SensIT Vehicle Combined 78,823 100

Protein 17,766 357

5.2 Experimental Results and Discussions

E�ectiveness of OscarGKPath: Table 2 presents the average

numbers of #Iterations for OscarGKPath over 10 trials with di�erent

values of d2 on the YearPredictionMSD, USPS, Le� Ventricle, Right

Ventricle, IndoorLoc Longitude, IndoorLoc Latitude, Slice Locali-

zation, SensIT Vehicle Combined and Protein datasets. �e results

show that OscarGKPath can �t the entire approximate solution path

of OSCAR within a �nite number of iterations. Table 2 also presents

1h�ps://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/



Table 2: Average results of OscarGKPath over 10 trials.

Dataset Size
#Iterations #FastOSCAR

d2 = 0.5 d2 = 1 d2 = 2 d2 = 0.5 d2 = 1 d2 = 2

YearPredictionMSD

10,000 2,628 2,742 1,484 8 7 6

20,000 3,063 2,497 1,694 8 8 7

30,000 4,012 4,285 2,266 8 8 8

40,000 3,789 5,128 1,891 8 8 9

USPS

1,500 2,032 2,536 1,874 6 7 7

3,000 1,865 3,142 2,893 9 9 8

4,500 3,512 2,892 2,571 10 10 10

6,000 3,357 4,932 2,974 12 11 11

Le� Ventricle

800 7,324 8,731 6,319 10 8 7

1,600 8,629 10,896 6,232 13 10 9

2,400 7,149 9,643 6,882 13 12 9

3,200 9,798 9,921 7,237 14 13 11

Right Ventricle

800 8,163 8,932 6,654 9 8 7

1,600 8,676 11,324 6,134 11 10 8

2,400 9,564 9,251 7,234 12 12 10

3,200 11,941 10,453 8,951 13 12 11

IndoorLoc Longitude

4,200 903 954 502 23 19 12

8,400 615 891 499 21 18 12

12,600 469 604 439 24 18 15

16,800 558 753 695 26 21 11

IndoorLoc Latitude

4,200 7,124 6,212 7,290 6 5 5

8,400 6,161 7,404 6,260 6 6 5

12,600 7,908 6,348 4,767 5 5 5

16,800 5,837 5,210 4,980 5 5 5

Slice Localization

10,000 9,073 8,738 9,346 8 8 7

20,000 7,330 5,328 7,207 9 8 8

30,000 4,442 7,620 6,804 8 9 9

40,000 6,220 9,483 7,896 10 10 9

SensIT Vehicle Combined

5,000 1,844 2,321 2,435 5 6 6

10,000 1,667 2,073 2,656 5 5 6

15,000 1,430 2,001 2,092 5 5 5

20,000 910 1,844 2,012 4 5 5

Protein

3,000 793 937 587 5 4 3

6,000 765 898 485 6 5 4

9,000 988 715 689 6 5 4

12,000 567 815 743 6 6 5

#FastOSCAR for OSCAR over 10 trials with di�erent values of d2
on di�erent datasets. �e results empirically show that only the

limited calling of FastOSCAR can produce the entire solution path.

Based on the results of #Iterations and #FastOSCAR, we verify that

OscarGKPath is an e�ective algorithm to �t the entire approximate

solution path of OSCAR.

Advantages of OscarGKPath: Fig. 2 plots the running time

of OscarGKPath and FastOSCAR in 5-fold cross validation on the

YearPredictionMSD, USPS, Le� Ventricle, IndoorLoc Longitude,

IndoorLoc Latitude, Slice Localization, SensIT Vehicle Combined

and Protein datasets with di�erent values of d2. �e results de-

monstrate that the cross validation based on our OscarGKPath is

generally much faster than the one based on FastOSCAR. Because

our OscarGKPath only runs �ve times for the 5-fold cross valida-

tion, however, FastOSCAR has to run 400 × 5 times for the 5-fold

cross validation.

Fig. 3 illustrates the cross validation errors and testing errors of

OscarGKPath and FastOSCAR for 5-fold cross validation over 10

trials with notched box plot, where the mean squared error (MSE)

is used as the performance criterion. From the results, we can �nd

that OscarGKPath performs be�er than or equally to FastOSCAR on

the cross validation errors. �is is because that our OscarGKPath

�ts the entire approximate solution path with a given accuracy

bound ε which guarantees that the cross validation error of our

OscarGKPath is not worse than the one of FastOSCAR with the

same accuracy bound ε . �e results of Fig. 3 also con�rm the

generalization of our OscarGKPath on the testing sets.
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(a) YearPredictionMSD dataset
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(c) Le� Ventricle dataset
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(d) Right Ventricle dataset
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(e) IndoorLoc Longitude dataset
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(f) IndoorLoc Latitude dataset
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(g) Slice Localization dataset
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(h) SensIT Vehicle Combined dataset
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Figure 2: Average running time (in seconds) of OscarGKPath and FastOSCAR with 5-fold cross validation over 10 trials.

In addition to showing the advantage of OscarGKPath for model

selection, we also validate the advantage of OSCAR for automatic

feature grouping. Facebook Comment Volume dataset from the UCI

benchmark repository [5] is originally with 54 features. We select 6

most important features by LASSO and duplicate these features 20

times with noise from N (0, 0.16). Fig. 3 presents the absolute coef-

�cients of OSCAR and LASSO on the revised Facebook Comment

Volume dataset. �e results show that LASSO arbitrarily selects

several (maybe zero) of them from a group. However, OSCAR can

group the features automatically, and its solution is closer to the

ground truth.

6 CONCLUSION

OSCAR is an e�ective feature selection approach which can auto-

matically group homogenous features in feature selection process.

In this paper, we proposed a novel groups-keeping solution path

algorithm of OSCAR (OscarGKPath), which can e�ectively handle

the pairwise `∞-norm in OSCAR, and produce an approximate

solution path. More importantly, we theoretically prove that all

solutions from OscarGKPath can strictly satisfy a given accuracy

bound ε . OscarGKPath can greatly bene�t the regularization para-

meters tuning of OSCAR and generate stable and optimal results.

�e experimental results on a variety of datasets not only con�rm

the e�ectiveness of our OscarGKPath, but also show the superiority

of our OscarGKPath in cross validation compared with the existing

batch algorithm. In the further, we plan to extend the OscarGKPath

algorithm to the general structured sparse learning method with

the `∞-norm [1, 18].
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