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Abstract

The low-rank matrix recovery is an important ma-
chine learning research topic with various scientific
applications. Most existing low-rank matrix recov-
ery methods relax the rank minimization problem
via the trace norm minimization. However, such
a relaxation makes the solution seriously deviate
from the original one. Meanwhile, most matrix
recovery methods minimize the squared prediction
errors on the observed entries, which is sensitive to
outliers. In this paper, we propose a new robust ma-
trix recovery model to address the above two chal-
lenges. The joint capped trace norm and capped
£1-norm are used to tightly approximate the rank
minimization and enhance the robustness to out-
liers. The evaluation experiments are performed on
both synthetic data and real world applications in
collaborative filtering and social network link pre-
diction. All empirical results show our new method
outperforms the existing matrix recovery methods.

1 Introduction

As a challenging machine learning problem, matrix recov-
ery is to impute the missing entries of the given data ma-
trix, and has many scientific applications [Srebro er al., 2004;
Rennie and Srebro, 2005; Abernethy et al., 2009], such as
friendship prediction in social network, rating value estima-
tion in recommendation system and collaborative filtering,
link prediction in protein-protein interaction network. As
one emerging technique of compressive sensing, the prob-
lem of matrix recovery has been extensively studied on both
theory and algorithms [Candés and Recht, 2009; Candes
and Tao, 2009; Recht et al., 2010; Mazumder et al., 2009;
Cai et al., 2008; Rennie and Srebro, 2005; Nie et al., 2012;
2015].

Most existing matrix recovery methods assume that the
values in the data matrix are correlated and the rank of the
data matrix is low. The missing entries can be recovered us-
ing the observed entries by minimizing the rank of the data
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matrix, which is an NP hard problem. Instead of solving this
NP hard problem, the researchers minimize the trace norm
(the sum of the singular values of the data matrix) as the con-
vex relaxation of the rank function. Many recent research has
been focusing on solving such trace norm minimization prob-
lem [Toh and Yun, 2010; Ji and Ye, 2009; Liu et al., 2009;
Ma et al., 2009; Mazumder et al., 2009]. Meanwhile, in-
stead of strictly keeping the values of the observed entries,
the recent research work relaxed it to minimize the prediction
errors (using squared error function) on the observed entries.
Although the trace norm minimization based matrix recov-
ery objective is a convex problem with global solution, the
relaxation makes the final solution seriously deviate from the
original one. It is desired to solve a better approximation of
the rank minimization problem.

In this paper, we propose a novel matrix recovery model
using the joint capped norms, which have been recently stud-
ied in machine learning community [Zhang, 2008; 2010;
Sun et al., 2013]. First, we use the capped trace norm to
approximate the rank minimization problem. Because the
capped trace norm only minimizes several smallest eigen val-
ues, our new objective can approximate the rank minimiza-
tion better than the trace norm. Moreover, to improve the ro-
bustness of matrix recovery method, we introduce the capped
¢1-norm error function for the prediction errors on the ob-
served entries. Thus, our new objective minimizes the joint
capped trace norm and capped ¢;-norm. Our objective is
more robust and effective than the standard matrix recovery
methods. Although our objective function is not a convex
problem, we derive a new efficient optimization algorithm
with rigorous convergence analysis. We evaluate our new
method using both synthetic and real world data sets. The
benchmark data sets from collaborative filtering and social
network link prediction applications are utilized in our val-
idations. All empirical results show our new robust matrix
recovery method outperforms the standard missing value pre-
diction approaches. In summary, we highlight the main con-
tributions of this paper as follows:

1. We propose a novel objective function for the robust ma-
trix recovery task using the joint capped trace norm and
capped /1 -norm.

2. Optimizing the objective function is a non-trivial prob-
lem, thus we derive a new optimization algorithm to



solve the proposed objective with rigorous convergence
analysis.
3. Our proposed new capped norm optimization algorithm

is general and can be applied to solve other capped norm
based problems.

2 Robust Matrix Recovery via Joint Capped
Norms

2.1 Definitions of Capped ¢/1-Norm and Capped
Trace Norm

The ¢;-norm of a matrix X can be defined as || X||; =
>i;lzi;l and the trace norm is defined as [|X||, =
>, 0i(X), where 0;(X) is the i-th singular value of X.
Based on these definitions, the capped ¢;-norm of a matrix

X is defined as:
Z min(|z;;|, e €))

[Xlle: =
and the capped trace norm is defined as:
Z min(o; (X 2)

The capped trace norm is a better approximation to rank min-
imization than the trace norm. When the largest singular val-
ues have large changes, the rank of the matrix could keep the
same value but the trace norm will definitely change largely.
Because the capped trace norm only minimizes small singu-
lar values, the capped trace norm won’t have large change or
even stays at the same value.

1Xlle: =

2.2 Proposed Robust Matrix Recovery Model

Denote Xq = {z4(i,5) €Q}, and | Xol% =
> (i,7)€Q xfj Suppose in a matrix 7' the observed values are
To = {t;; |(,7) € Q}, the matrix recovery task is to predict
the unobserved values in the matrix 7". This task is usually ad-
dressed by solving a rank minimization problem as follows:

min [ Xo — To||% + ~rank(X) 3)

To make the problem easier to solve, in practice, the rank is
relaxed to the trace norm and then we solve the following
relaxed problem:

H;}nllXQ—TQva+7||X||* @

However, the relaxation makes the solution deviate seriously
from the original one. Moreover, the applied squared error is
sensitive to outliers.

In this paper, we use the joint capped norms to address
these disadvantages in Eq. (4). First, we replace the squared
F-norm loss function by the capped ¢;-norm. As can be seen
in Eq. (1), the capped ¢;-norm can be used as a robust loss
function since the function value is bounded to € no matter
how the input value deviated from zero. In practice, out-
liers usually make the input values largely deviate from zero,
thus the bounded property in the capped norm will make it
very robust to outliers. Second, we replace the trace norm

by capped trace norm. As can be seen in Eq. (2), the capped
trace norm is a better approximation to the rank function than
trace norm does, and the large singular values have less effect
in the learning.

Based on the above analysis, we propose to solve the fol-
lowing problem for robust matrix recovery task:

min [ Xo — Toll o ok (5)

which can be written as !

Ir%n Z min(|z;; — t5],€1) + ’}/Zmin(Ui(X),&fg)
(,7)€EQ i
(6)

This problem looks very difficult to solve, however, inspired
by the reweighted method [Nie et al., 2010; 2014; 20171, we
will propose a very simple algorithm to solve it, and prove its
convergence in the next section.

3 A New Algorithm to Solve Joint Capped
Norm Optimization

3.1 Proposed Algorithm

The proposed algorithm to solve problem (6) is described in
Alg. 1. Note that the problem (8) in the iteration can be easily
solved and has closed form solution. The algorithm is derived
from sub-gradient analysis. If the algorithm converges, the
converged solution will make zero belongs to the sub-gradient
of the problem (6). Therefore, the key problem is to prove the
algorithm indeed converges.

Algorithm 1 Algorithm to solve the problem (6).

Initialize X.
while not converge do
1. For each (i, j) € 2, update the (i, j)-th element of S

by
1
ST i — tij] <e
o= 2wty Jwij —tij . 7
% { [ , ’ otherwise M
2. Compute the SVD of X = UXVT. Without

loss of generality, suppose the singular values o; are
sorted from the smallest one to the largest one, and
there are % singular values smaller than €2. Compute

D= %Zle o; tuul
3. Update X by the optimal solution to the problem

mln g sij(zij —

(i,5)€Q2

ti;)? +yTr(XTDX).  (8)

end while

'In practice, to make the problem derivable, || and o are re-

placed by v/x2 + £ and /o2 + ¢, respectively. It can be seen when
€ — 0, it approximates the original problem.




3.2 Proof of Convergence

Before proving the convergence of the algorithm, we prepare
the following lemmas.

Lemma 1 ([Marshall et al., 2009], pages: 340) For  any
two hermitian matrices A, B € R"™ ™, suppose the eigen-
values \;(A) are sorted with same order, then we have the
following inequality:

Z/\ An—it1(B) < tr(AB) gzn: \i(B)

Lemma 2 Given two matrices X and X, the SVD of X and
Xare X = USVT and X = USVT, respectively. With-
out loss of generality, suppose the singular values o;, &;
are sorted from the smallest one to the largest one respec-
tively, and there are k singular values o;, k singular values

o; smaller than o respectively, then we have:

S min(6;(X), e2) — (Z o tuul XXT)
‘ =t ©
< > min(o;(X),e2) — %Tr( o; uiu;erXT)

i i=1
Proof: Since there are k singular values &; smaller than e-, it
can be easily verified that for any k and k (k > kork < l;:),
we have 1 (5, — ) < YO8, (65 — &2
to

), which is equal

Z&i —kes < G; — ke (10

Starting from (o;

02 —20:6;+62>0

_ 1
:>O'Z—§O'l 101-2_2
k k 1
i— _

1 k
5; (11)

Sum over Eq. (10) and Eq. (11) in two sides, we have

k
Z&i—/%sz—%zagl&f < %Zai—/@ (12)

Zm

According to Lemma 1, we have

k
1 T 5T
§TTZU wul XXT) =

=1

5Tr(Uz WyTos?oT)

k
> o;'67 (13)

i=1

l\.’)\)—l

which is equal to

k
—iTT ZO’ U; uTXXT

1=1

k
Zz 57 (14)
=1

Sum over Eq. (13) and Eq. (14) in two sides, we have

ZUZ (n—k 52—*T7" ZO’ U; U TXXT)

= i=1

k
Z & (15)

l\.')\)—l

Note that

k
1 1, T T
iTr(; o; uwu; XX

fTr(UZ Wwrus2u’) = Z o;  (16)

According to Eq. (15) and Eq. (16), we arrive at

- k -~
i+ (n—k)eo — 2Tr(Y o7 fuul XXT) <

M=
Q

i=1 i=1 (17
k k
> 0i+ (n—k)ex — §Tr(Y o7 tuju] XXT)
i=1 i=1
which is equal to Eq. (9). ]
ﬁ7 le|] < &4

Lemma 3 Given s = { , we have the

0, otherwise
following inequality:

min(|é|, 1) — s < min(le|, ;) — se?. (18)

Proof: If |¢| < ¢, then s = & [e| ', According to Lemma 2

(in the case that X and X are scalar), we have min(|é| &) —
Lle|™' & < min(le|,e1) — 1 |e| " €2, thus Eq. (18) holds.
If |e] > &1, then s = 0. Obviously, min(|é],e1) < &1 =
min(|e| ,e1) in this case, thus Eq. (18) also holds. Therefore,
Eq. (18) holds in any cases. ]
Now we are ready to prove the following theorem, which
is the main result of this paper.

Theorem 1 Algorithm 1 will decrease the objective value of
problem (6) in each iteration until it converges.

Proof: Suppose the updated X is X in step 3 of Algorithm
1. Denote the SVD of X and Xare X = UXVT and X =
UxvT, respectlvely Without loss of generality, suppose the
singular values o;, 7; are sorted from the smallest one to the

largest one respectively, and there are k singular values o, k
singular values &; smaller than e, respectively.

Since X is the optimal solution to Eq. (8), we have

Z Sij(iij — tij)z + %TT(DXXT)
(1,7)€Q (19)
< 3 sij(wiy —tiy)® + 3Tr(DXXT)

(i,5)eQ



According to the definition of D in step 2 of Algorithm 1,
Eq.(19) can be written as

> sij(@i — 1) + 3Tr(Y o7 i XXT)
(1,7)€Q i=1
k
< Y siglay —ty)? + 37X o luu] XXT)
(i,5)€Q i=1
(20)
According to the definition of s;; in step 1 of Algorithm 1,
and according to Lemma 3, we have

> min(|Z; —tigl,e1) — D2

sij(Fij — tij)”

Gee (i7)ee
< Y min(lzig —tijl,e1) = X siglwig —ti;)?
(.)€ (i,1)€Q

(21)
According to Lemma 2, we have

k ~ ~
v min(64(X),e2) — 3T7(Y 07 tujul XXT)
i =1

1=

k
< 7y >_min(oy(X),e2) — %Tr(;zlofluiu?XXT)
(22)

Sum over Eq. (20-22) in two sides, we arrive at

( Z)f min(|Zs; — tij| ,€1) + v 2 min(5i(X), e2)
1,7)€EQ i
<% min(loy — tyl,e1) + 7 X min(o,(X), )
(4,4)EQ i

Since the objective value of problem (6) has a lower bound
0, the Algorithm 1 will converge, and in each iteration the
objective value of problem (6) will decreased before the con-
vergence. U

It can be checked that when the algorithm converges, the
solution will satisfy the KKT conditions (derivative is zero).
In the experiments we observed that the derived algorithm is
very fast to converge, usually within 5-10 iterations.

4 Experiments

We evaluate our method on the following data sets: The Jester
Jokes data sets [Goldberg et al., 20011, Wikipedia [Leskovec
et al., 2009] and Epinions [Massa and Avesani, 2006] data
sets” and Sweetrs data set®>. There are 7 compared matrix re-
covery methods in total: SVD, SVT [Cai et al., 2008], RRMC
[Huang et al., 2013], ALM [Lin et al., 2010], GROUSE
[Balzano et al., 20101, OPTSPACE [Keshavan and Oh, 2009]
and our method. In our experiments, all the parameters are
selected via 5-fold cross validation to guarantee their best per-
formance. Normalized root mean square error (nRMSE) and
normalized mean absolute error (nMAE) are used as evalua-
tion metrics.

vmean(|Xi; — T;;]?)

nRMSE = (23)
tmaa: - tmz’n
X — T
nMAE = me?““ i il) (24)

"http://eigentaste.berkeley.edu/dataset/
*http://snap.stanford.edu/data/
3http://sweetrs.org

4.1 Experiments on Real World Data Sets

Jester Jokes Rating Prediction

Firstly, we present experiment results on Jester Jokes data
sets. To make this problem easy to evaluate, we select a part
of the most active users from the original data. The sizes of
matrix for these three data sets are 10000 x 100, 13109 x 140
and 13449 x 140. In the experiments, we assume 5%, 10%,
15% and 20% ratings of each matrix are known respectively.
In each case, training data are selected randomly, and the
whole procedure is repeated for 5 times randomly to compute
the average performance.

The results of matrix recovery task on Jester jokes data are
shown in Table 1. In real life, users are very likely to read
just some of the jokes and to rate even fewer. From Table 1,
obviously our method could make use of sparse training data,
and outperforms other methods in all different cases.

In reference to our objective function, there are three pa-
rameters to tune, €1, €2 and . Fig. 1 shows the relation-
ship between €1, 5 and v with performance evaluation metric
nMAE. In the experiment, we fix two parameters and change
another one. Fig. 1a shows that in this occasion, €; plays a
insignificant role when there are few outliers. Fig. 1b shows
that €5 is the most important parameter in this model, for it
determines the rank of the matrix indirectly. In our experi-
ments, we input a hypothetical rank value, and the value of
the €5 is selected based on the singular values of the matrix in
the first 5 iterations. After that, £5 is fixed to be a constant. In
this way, our model can learn a proper value of €5 automati-
cally in different situations. It is also very interesting to find
out through Fig. 1c that the value of v also doesn’t matter too
much on the performance of the model in Jester Jokes data
sets.

Social Network Linking Prediction

In this section, we show the results of matrix recovery algo-
rithms in predicting social network linking data, Wikipedia
and Epinions. In this experiment, in order to alleviate the
data skewness and keep the computation manageable, we se-
lect top 2,000 highest degree users from each data set. In
these experiments, we assume 10% entries of each matrix are
known, and the other 90% information are used as testing
data.

From Table 2, we can observe that our cRMC method out-
performs others in terms of nRMSE and nMAE on both of
the two social network trust matrix. Then, we can make use
of the prediction matrix to make recommendations. A better
recommendation always means better user experience, and it
may lead to much profit for these internet enterprises.

Sweetrs Rating Prediction

In this section, we present experiment results on Sweetrs data
set. In this data set, the size of the matrix is 390 x 47, and
we let 10% ratings as training data. Table 2 shows the results
of our experiment on Sweetrs data. In the experiment, ALM
breaks down during training, hence we ignore this method. In
this table, we can find out that the performance of our method
is better than the other ones in this case.
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Figure 2: Rating prediction performance on noisy data sets. Jokes Datasetl: (a) and (b), Jokes Dataset2: (c) and (d), Jokes
Dataset3: (e) and (f), Sweetrs: (g) and (h).

4.2 Robustness Evaluation on Synthetic Noise vicious ratings on purpose. If a method can’t deal with these
Data noisy ratings properly, a terrible model will be generated and

it may lead to unexpected loss.
In real life, it usually happens that some users click the wrong
ratings by accident or there are even some users who make

To evaluate the robustness of our method and prove its
strong ability to deal with outliers, we perform experiments



5% 10% 15% 20%
Method nRMSE nMAE | nRMSE nMAE | nRMSE nMAE | nRMSE nMAE
SVD 0.2354 0.1813 | 0.2261 0.1750| 0.2213 0.1720| 0.2186 0.1693
SVT 0.2328 0.1918 | 0.2253 0.1848 | 0.2201 0.1799 | 0.2163 0.1764
DI RRMC 0.2296 0.1889 | 0.2228 0.1820| 0.2180 0.1773| 0.2142 0.1736
ALM 0.2387 0.1945 | 0.2351 0.1878 | 0.2360 0.1855| 0.2400 0.1861
GROUSE | 0.2643 0.2223 | 0.2626 0.2213| 0.2613 0.2199 | 0.2614 0.2190
OPTSPACE | 0.2405 0.1861 | 0.2287 0.1765| 0.2207 0.1715| 0.2178 0.1683
cRMC 0.2293 0.1804 | 0.2212 0.1737 | 0.2161 0.1699 | 0.2126 0.1672
SVD 0.2297 0.1658 | 0.2059 0.1525| 0.2091 0.1506 | 0.2012 0.1492
SVT 0.2153 0.1720 | 0.2080 0.1653 | 0.2032 0.1605| 0.2001 0.1573
RRMC 0.2106 0.1664 | 0.2047 0.1604 | 0.2008 0.1563 | 0.1979 0.1534
D2 ALM 0.2137 0.1610 | 0.2110 0.1592| 0.2098 0.1584 | 0.2091 0.1578
GROUSE | 0.2731 0.2282| 0.2719 0.2263 | 0.2671 0.2211 | 0.2661 0.2204
OPTSPACE | 0.2126 0.1590 | 0.2057 0.1535| 0.2020 0.1506| 0.2000 0.1495
cRMC 0.2097 0.1584 | 0.2022 0.1513| 0.1987 0.1486 | 0.1962 0.1466
SVD 0.2135 0.1573 | 0.2069 0.1531 | 0.2037 0.1511| 0.2019 0.1497
SVT 0.2155 0.1730 | 0.2078 0.1655| 0.2033 0.1609 | 0.2002 0.1577
RRMC 0.2104 0.1661 | 0.2042 0.1599 | 0.2005 0.1560 | 0.1979 0.1534
D3 ALM 0.2146 0.1614 | 0.2113 0.1593 | 0.2100 0.1585| 0.2094 0.1581
GROUSE | 0.2721 0.2278 | 0.2725 0.2269 | 0.2698 0.2254 | 0.2716 0.2232
OPTSPACE | 0.2120 0.1589 | 0.2057 0.1542 | 0.2026 0.1517 | 0.2006 0.1499
cRMC 0.2091 0.1551 | 0.2021 0.1512| 0.1987 0.1485| 0.1964 0.1468

Table 1: Matrix recovery performance on Jester Jokes rating prediction

Wikipedia Epinions Sweetrs

Method nRMSE nMAE | nRMSE nMAE | nRMSE nMAE
SVD 0.2726  0.0834 | 0.3575 0.1349 | 0.2309 0.1851
SVT 0.2548 0.0781 | 0.3519 0.1343 | 0.2303 0.1872
RRMC 0.2432 0.0873 | 0.3471 0.1535 | 0.2247 0.1838

ALM 0.2733  0.0844 | 0.3698  0.1402 - -
GROUSE 0.2587 0.0868 | 0.3523 0.1383 | 0.3100 0.2448
OPTSPACE | 0.2457 0.0753 | 0.3393 0.1350 | 0.2310 0.1870
cRMC 0.2386  0.0697 | 0.3336 0.1206 | 0.2215 0.1778

Table 2: Matrix recovery performance on Wikipedia, Epinions and Sweetrs.

on Jokes and Sweetrs data sets. We impose noise to the ob-
served data from 0% to 5% each time, and all these noises
are set to be the largest or the lowest value randomly. In the
experiments, we assume 10% of the ratings are known.

In the experiment, bad ratings are treated as outliers. It is
obvious that our objective function explicitly take the unclean
training data into consideration, and the value of ¢; is used to
leave out the outliers. In this way, we protect the matrix’s
original low-rank structure from being distorted.

From Fig. 2, we can see that when the noise increases, the
prediction accuracy of all methods tend to degenerate slightly
and outliers distort the low-rank structure of the original ma-
trix. It is easy to observe our method outperforms other meth-
ods consistently, while the percentage of the noise increases
from 0% to 5%. It is well proved from these experiments
that our method can deal with outliers properly, and keep the
correct low-rank structure of a matrix.

5 Conclusions

In this paper, we proposed a new robust matrix recovery
method using joint capped trace norm and capped ¢;-norm.
Our capped trace norm can approximate the rank minimiza-
tion problem tighter than the trace norm to achieve better
matrix recovery results. The capped ¢;-norm based error
function enhances the robustness of the proposed objective.
Both capped trace norm and capped ¢ -norm are non-smooth
non-convex. To solve this difficult optimization problem, we
proposed a new optimization algorithm with rigorous conver-
gence analysis. The evaluation experiments were performed
on both synthetic and real world applications (collaborative
filtering and social network link prediction) data. All em-
pirical results demonstrate the effectiveness of the proposed
robust matrix recovery model.
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