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Abstract. Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder. As the prodromal stage of AD, Mild Cognitive Impairment
(MCI) maintains a good chance of converting to AD. How to efficaciously
detect this conversion from MCI to AD is significant in AD diagnosis.
Different from standard classification problems where the distributions of
classes are independent, the AD outcomes are usually interrelated (their
distributions have certain overlaps). Most of existing methods failed to
examine the interrelations among different classes, such as AD, MCI
conversion and MCI non-conversion. In this paper, we proposed a novel
self-learned low-rank structured learning model to automatically uncover
the interrelations among classes and utilized such interrelated structures
to enhance classification. We conducted experiments on the ADNI cohort
data. Empirical results demonstrated advantages of our model.

1 Introduction

Alzheimer’s Disease (AD) usually progresses along a temporal continuum, ini-
tially from a preclinical stage, subsequently to mild cognitive impairment (MCI)
and ultimately deteriorating to AD [19]. As the transitional step between normal
aging and dementia, MCI has attracted high attention since it provides promis-
ing opportunities for early detection of AD. MCI is recognized as a clinical state
of individuals who are memory impaired but functioning well otherwise, which
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does not meet the clinical criteria for dementia [13]. According to [11], MCI pa-
tients preserve a conversion-to-AD rate of approximately 15% per year, thus it
is of great importance to distinguish MCI patients with high potential of AD
conversion from those not years before dementia.

Recent advances in neuroimaging have offered a helping hand for explor-
ing associations between brain structure and behavior, which have provided ef-
fective features for early detection of AD[7,8]. In the past few years, several
machine learning techniques have been applied to predict MCI conversion by
means of neuroimaging data [12]. Researches utilized various classification mod-
els to identify MCI converters from other classes, e.g., health control samples
and MCI non-converters by adopting neuroimaging data only in baseline time,
which indicated a promising approach of “forecasting” stage changes of MCI pa-
tients several years before the conversion happens. As successful early detection
of MCI conversion can boost therapeutic intervention of AD to a large extent,
studies on this topic have attracted high attention in recent time.

However, most existing models hold a simple and common assumption that
the neuroimaging data is drawn from an unimodal distribution [11,12,18,17,16],
which is not applicable for all occasions. In AD research, since MCI converters
and AD eventually evolve to AD with certain common biological mechanism, it
is reasonable to assume that these subjects share similar distribution patterns,
but their distributions are distinct from that of health control samples. That is
to say, the brain data may come from multimodal distribution, e.g., mixture of
Gaussian. Thus, it is natural to assume latent group structure exists among dif-
ferent classes. Discovery of such subspace structure can enhance MCI conversion
prediction and improve image biomarker discovery.

The most straightforward way to discover such groupwise interrelations is to
cluster different data into groups before classification. However, since the clus-
tering step is detached with the classification model, the learned interrelation
structures are not associated to the prediction results. Such separated steps usu-
ally lead to suboptimal result. Here, we propose a novel structured low-rank
learning model to simultaneously uncover the interrelations among different di-
agnostic stages and employ such interrelated structures to enhance the prediction
of MCI conversion. We adopt Schatten p-norm to identify the shared low-rank
subspace. Our new model is applied to the ADNI cohort for MCI conversion
prediction. All empirical results show that the proposed classification model is
capable of predicting MCI conversion with better performance.

2 Self-Learned Low-Rank Structured Classification
Model

Multi-class classification problem with ¢ classes can be seen as a multi-task
learning problem with c tasks, where each task is to classify one class from all
others via the one-vs-rest technique. Suppose these ¢ tasks come from g groups,
where tasks in each group are mutually related. We introduce and optimize a
group index matrix set Q@ = {Q1, Q2, ... @4} to discover this group structure.
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Each Q; is a diagonal matrix with @; € {0,1}°*¢ showing the assignment of
tasks to the i-th group. For the (k, k)-th element of @Q;, (Q;)xx = 1 means the
k-th task belongs to the i-th group while (Q;)xr = 0 means not. To avoid overlap
of groups, we have Y 7_ Q; =1I.

Since each group of tasks share correlative dependence, we reasonably assume
the latent subspace of each group maintains a low-rank structure.Schatten-p
norm [10] can be used as a low-rank regularization for uncovering common sub-
spaces shared by tasks.

For a matrix A € R¥*"_ suppose o; is its i-th singular value, then the rank
of A can be written as rank(A) = ng'{d’"} o?, where 0° = 0. The definition

of p-th power Schatten p-norm (0 < p < 00) is:

min{d,n}

JAIG, = Tr((AT %) = > of.

i=1

The well-known trace norm (a.k.a. nuclear norm) is a special case of Schatten
p-norm with p = 1: [|A]|, = | 4|5, = Tr((ATA)z) = L™ o,

Obviously, when 0 < p < 1, Schatten p-norm makes a better approximation
of rank(A) thus a more strict low-rank constraint than trace norm. The more
closer p is to 0, the more strict low-rank constraint the regularization term ||A||gp
imposes.

According to the above analysis, we can formulate our novel self-learned
structured low-rank classification model as follows:

g
. k
min LY;X,W,b)+7 ) (IWQi%)", 1)
Wb, Qul{_, €{0.1}%, 32 Q=1 =1

In Problem (1), we use a general classification loss £(Y; X, W, b), which can
be any loss function, e.g., logistic regression, hinge loss, etc. W € R%*¢ is the
weight matrix for classification, b € R®*! is the bias, and Y € R®*¢ is the label
matrix. Moreover, we add a power parameter k to the Schatten p-norm regular-
ization term for robustness of Problem (1), whose influence will be elaborately
discussed in Section 4.

When 0 < p < 1, it is apparent that the new objective is non-convex thus
difficult for optimization. In the next section, we adopt an efficient re-weighted
optimization algorithm.

3 Optimization Algorithm

Here, we first introduce a re-weighted algorithm to solve a general problem with
(1) being a special case, and then discuss the detailed optimization of (1).
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3.1 Optimization Algorithm for A General Problem

Lemma 1. Let g;(x) denote a general function over x, where x can be a scalar,
vector or matriz, C denotes the constraints on x, then we can claim:
When § — 0, The optimization problem

min f(z +ZTT (o] (2)gi(2))%),

s equivalent to

mlnf )+ ZT’F gl (2)gi(x)D;), where D;= g(ng(x)gZ(x) + 5[)%2

Proof: When (5 — 0, it’s apparent that the optimization problem
mlnf +ZTT gl (2)gs(x) +61)%), (2)

will reduce to

miy f(z +ZT7“ g/ (x)gi(x))%) . 3)

So with a fairly small parameter ¢, we turn the non-smooth Problem (3) to
the smooth Problem (2).
The Lagrangian function of Problem (2) is:

+ZTr (9] (2)gi(x) +61)%) = M (=),

where I (z) equals 0 if z € C' and oo otherwise [4]. Take derivative w.r.t. z and
set it to zero. Based on the chain rule [2], we have:

Tr (2597 (2)g:(x) + 1) g7 (2)00i(x) e ()

/ = 4
B + f(x) — o 0. (4

According to the Karush-Kuhn-Tucker conditions [4], if we can find a solution
x that satisfies Eq. (4), then we usually find a local/global optimal solution to
Problem (2). We can derive the z as follows.

If D; = 5(g7 (2)gi(2) + 5[)1)2;2 is a given constant, Eq. (4) can be reduced to

Fla)+ Z Tr (2Diggix)8gi(x)) a[g:i z)

=0. (5)
Based on the chain rule [2], the optimal solution z* of Eq. (5) is also an
optimal solution to the following problem:

mmf )+ Z Tr(gf (x)gi(z)D;) . (6)

Based on this observation, we can first guess a solution x, next calculate
D; based on the current solution x, and then update the current solution x by
the optimal solution of Problem (6) on the basis of the calculated D;. We can
iteratively perform this procedure until it converges. O
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3.2 Optimization of Problem (1)

It is obvious that Problem (1) can be optimized via Lemma 1. Noticing that
QiQiT = @;, our objective becomes:

)
min LOIX,W.b)+ 7Y Tr(WQiWTD:), (p
W,b,Qi\lee{O,l}C“,Zg: Qi=I i=1

=1

where D; is defined as:
kp _ p=2
Dy = - (IWQill5 ) (WQ:W™ + 1), (8)

with ¢ being a fairly small parameter close to zero.
We can solve Problem (7) by means of the alternating optimization method.
The first step is fixing W and solving @, then Problem (7) becomes:

g

Qi|?:1€{0»1}cx Z i=1

min 2:: r(WTD;W)Qy), ©)

Let A; = WTD;W, then the solution of each Q; is evident as follows:

1, i =argmin A;(l,1)
J(LD) = J 10
Qi {0, otherwise (10)
The second step is fixing @ and solving W, b, then Problem (7) becomes:
Y; X, W,b) Tr(WQ:;W'D,
min £ W,b) + 7; r(WQWTD,). (11)

Problem (11) can be solved according to the choice of the classification loss
L(Y;X,W,b).

Here, we take an example to illustrate the optimization steps of Problem (11)
when we adopt hinge loss for £(Y; X, W,b). Problem (11) can be written as:

g
min CZZh” (1 —yi; (W) X; + bj)) + % W%+ 7> _ Tr(WQW'Dy). (12)
=1 j=1 1=1

1 (wlx. ) <1
where H € R"*¢ is a slack variable defined as: h;; = { .’ yi (Wj Xi +.bj ) <

0, otherwise
Taking derivative of (12) w.r.t. b and set it to zero, then we get: Z hijyi; = 0.

which indicates that b can be updated according to the support Vectors
Take derivative of Problem (12) w.r.t. w; and set it to zero, then we have:

g n
w; = C(I+ 27(_; Qi(4.4)D;)) ;hijyzjxi-
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Algorithm 1 Algorithm to solve problem (7).
Input:
Imaging feature data X € R%*™, label matrix Y € R"*¢, parameter p, k, -y, group
number g.
Output:
Weight matrix W € R**¢ and g different group matrices Qil?_, € R°*° which groups
the c classes into g subspaces.
Initialize W by the optimal solution to the ridge regression problem.
Initialize @) randomly.
while not converge do
1. Update D according to the definition in Eq. (8)
2. Update @ according to the solution in Eq. (10)
3. Update W and b by solving Problem (11). The solution differs w.r.t. the choice
of loss function L(Y; X, W, b).
end while

We can iteratively update D, @, W and b with the alternating steps men-
tioned above and the algorithm of Problem (7) is summarized in Algorithm 1.

Convergence and time analysis: Our algorithm as a whole employs the
alternating optimization method to update variables, whose convergence has
already been proved in [3]. Our model usually converges in 15 iterations. In
our experiments on the ADNI data, the runtime for five-fold cross validation is
around 3 seconds.

4 Discussion of Parameters

We introduced several hyper-parameters to make our model more general and
adaptive to various circumstances. Here, we analyze the functionality of each
parameter in detail.

In Problem (1), the parameter p is the norm parameter for the low-rank regu-
larization term. It adjusts the stringency of the low-rank penalty. As is analyzed
in previous section, Schatten p-norm makes a more strict low-rank constraint
than trace norm when 0 < p < 1. The closer p is to 0, the more rigorous low-rank
constraint the regularization term || M ||gp imposes. But empirically we don’t set
p to a too small value since it makes the model contain too many local-minima
thus is sensitive to noise and outliers.

The parameter k in Problem (1) is proposed to guarantee the robustness
of our model. When p is small, the number of local solutions becomes more
thus lead the model to be more sensitive to outliers. Under this condition, a
larger k value will render the model more robust to outliers. According to our
pre-experiments, we usually set k value in the range of [2, 3].

Parameter 7 is use to balance the role of the low-rank penalty, which can be
adjusted to accommodate different cases. v can be set to any positive value.

In the experiments, we did not spend too much time tuning the parameters.
On the contrary, in order to fairly compare all methods, we simply set each
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parameter to a reasonable value, which is discussed in the next section. While
these parameters introduced significant challenges in optimizing our objective,
they make our model more flexible and adapt to different situations.

5 Experimental Results

5.1 Experimental Settings

In the classification experiment, we employed hinge loss in Problem (1). We
compared with the following methods: Support Vector Machine with ¢;-norm
loss (L1SVM) as baseline, k-Nearest Neighbors algorithm (KNN), Least Square
SVM (LSSVM) [15] and SVM with with ¢3-norm loss (L2SVM). To apply SVM
model to the multi-class classification problem, we adopted 1-vs-all mechanism.
Besides, we compared with one state-of-art method conducting structured multi-
task learning via trace norm regularization (TMTL) [9]. In TMTL model, we
also used hinge loss to conduct classification. It is notable that TMTL makes a
special case of our model (1) with p =1 and k = 1.

In our experiments, we exploited the LIBSVM toolbox [6] to implement both
L1SVM and L2SVM. All participating data were normalized to the range of [0, 1]
and randomly divided using 5-fold cross validation. We excavated the classifica-
tion result in each fold and recorded the average in these 5 times repetition.

The evaluation of different methods was based on the percentage of correctly
classified samples, i.e., classification accuracy. For KNN, we set k¥ = 1. For all
other methods using the hinge loss, we tuned the C' parameter in the range of
{1073,1072,...,10%} on training and validation data and recorded the perfor-
mance on testing data using the best parameter w.r.t. each method.

Our model consists of several other parameters such as p, v, k and §. In
our pre-experiments, we use cross-validation to find a reasonable range for each
parameter. We found the performance of our model relatively stable within the
reasonable range of parameters (data not shown). Indeed, we can further improve
the performance with fine-tuning the parameters. Instead, we simply fix p = 0.25,
v =1,k =3andd = 1072 in the experiments. Unless specified otherwise, we set
the number of groups as g = 2. These parameters were determined according to
the theoretical reasonable range discussed in Section 4 and empirical convention.

5.2 Description of ADNI Data

Data used in this paper was obtained from the ADNI database (adni.loni.
usc.edu). One goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD. For up-to-date informa-
tion, we refer interested readers to visit www.adni-info.org. We downloaded
baseline 1.5 T MRI scans and demographic information for 818 ADNI-1 par-
ticipants. For each baseline MRI scan, FreeSurfer [14] was employed for brain
segmentation and cortical parcellation, and extracted 90 thickness and volume
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measures, which were pre-adjusted by intracranial volume (ICV) using the re-
gression weights derived from the healthy control (HC) participants. Besides,
we performed voxel-based morphometry (VBM) [14] on the MRI data, and ex-
tracted mean gray matter (GM) density measures for 90 target regions of inter-
est (ROIs). All participants with no missing MRI measurements and diagnostic
status were involved in this study. We have 516 sample subjects in our study,
including 105 AD samples, and 237 MCI samples and 174 health control (HC)
samples. Among the 237 MCI samples, 9 of them become HC in M36, 95 become
AD in M36 while the rest 133 remain as MCI along this three-year continuum.

5.3 Performance Comparison on ADNI Cohort

We labeled the ADNI data according to a three-year clinical observation to
five different classes, which are are: 1. health control (HC), 2. MCI(baseline)-
HC(M36), 3. MCI(baseline)-MCI(M36), 4. MCI(baseline)-AD(M36) and 5. AD.
Classification experiments were performed only on the baseline neuroimaging
data so as to compare the “forecasting” ability of different methods. Our goal
is to classify these different classes using baseline data, i.e., detect MCI stage
changes three years before the clinical diagnosis, which will make a contribution
to therapeutic intervention of AD in the most effective stage. The comparison
results are summarized in Table 1.

From Table 1, we found that our new method performs better than the coun-
terparts in classifying the different classes using merely baseline data. Besides,
we get two other interesting observations: 1) SVM methods outperforms KNN
on the ADNI data; 2) LISVM and L2SVM perform equal or better than LSSVM.
The reason may go as follows: For KNN, it is a method focused more on the
local data structure, while SVM model is meant to effectively find the separat-
ing hyperplanes, which is more suitable for classification. The unilateral loss is
more interpretable and robust than bilateral loss for classification, thus we no-
tice that LISVM and L2SVM perform equal or better than LSSVM method. As
for our proposed method, we utilized the unilateral hinge loss to be adaptive for
classification and also automatically discovered the groupwise structure among
different classes, which strengthened the classification performance. To compare
our method with TMTL, even though both methods attempted to detect the
groupwise structure among different tasks, our model is more general and robust.
The use of Schatten p-norm and the power parameter £ make our model better
approximate the low-rank structure of the latent subspaces thus perform better.

It is also worth mentioning that in this classification, we only use neuroimag-
ing data but not cognitive test information as previous papers do, e.g., [12]. In
[12], the classification accuracy is over 70% by adding the cognitive test informa-
tion to prediction. However, cognitive assessment is a direct diagnostic criterion
of MCI and AD [1]. Predicting MCI with cognitive scores is like classifying with
label information, which will definitely boost the performance. But using the
cognitive test scores as features, the classification is no longer “forecasing” but
just a classification of existing information.
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Table 1. Classification accuracy (%) comparison using “FreeSurfer” and “VBM” data

KNN L1ISVM LSSVM L2SVM TMTL OURS
VBM  |33.21£8.00|43.66+1.73|44.144+5.64|44.15+5.61|42.55+3.37|44.79+4.46
FreeSurfer|37.77+£3.74|45.7843.71|44.234+3.60(45.02+4.97|44.83+£4.79|48.48+3.25

o
Class 1D

Ciass

Group ID Group 1D Group 1D

(@g=2  (b)g=2 (©) g=3 ) g=3

Fig. 1. Tllustration of the detected group structure among different classes in our
method ((a) and (c¢)) and TMTL ((b) and (d)) in the VBM analysis. We set the
number of groups to be 2 and 3, respectively. White blocks denote that a class be-
longs to a certain group while black block denote otherwise. The five classes are:
1. health control (HC), 2. MCI(baseline)-HC(M36), 3. MCI(baseline)-MCI(M36), 4.
MCI(baseline)-AD(M36) and 5. AD.

Moreover, we present the detected group structure from TMTL and our
method on VBM analysis in Fig. 1. It seems that TMTL fails to detect the
appropriate group structure among the five classes, but put them all together
in one group. On the contrary, our method successfully finds the intrinsic group
information among different classes. Fig. 1 shows an interesting phenomenon that
no matter what group number g we set, our model always groups the five classes
into two clusters. This illustrates that our model is able to find the intrinsic group
structure regardless of g settings. Also, according to the detected structure, we
know that even though three different types of MCI patients i.e., class 2, 3 and
4, end up with 3 different stages in month 36, they adopt a similar pattern in
the baseline. As a subdivision, MCI-AD shows a potential similarity with AD
while the other two types of MCI obtain patterns like HC. Such detected group
information may help with the diagnosis of MCI and AD.

5.4 Discussion on Top Ranked Features

In this section, let’s take an insight into the results. We use heat maps and brain
maps to intuitively indicate the degree of influence imposed by each imaging
feature, such that important features in classification can be determined.
Shown in Fig. 2 and Fig. 3 are the heat maps of sorted neuroimaging feature
weights and corresponding brain maps. The figures demonstrate the capture of
a small set of features that are predominant for classification. Among the se-
lected features, we found LHippoCampus and LPostCentral on the top, whose
impact on AD have already been proved in the previous papers [5,20]. These
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Fig. 4. Objective function value of Eq. (1) with different k and p parameters in each
iteration on the FreeSurfer data.

We use the results on FreeSurfer as an example. The convergence plots are
shown in Fig. 4. We notice that the number of iterations need before convergence
is fairly stable with respect to the settings of p and k parameters. No matter
what p and k values are, our model usually converges within 15 iterations.

6 Conclusions

In this paper, we proposed a novel low-rank structured classification model to
predict MCI conversion using neuroimaging data in the baseline time. Our model
simultaneously uncovered the interrelation structures existing in different classes
and employed such structure to enhance the classification model. Moreover, we
utilized Schatten p-norm to extract the common low-rank subspace shared by
different patient classes. We conducted experiments on ADNI cohort. Empiri-
cal results validated the effectiveness of our model by demonstrating improved
classification performance compared with competing methods.
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