Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Local Centroids Structured Non-Negative Matrix Factorization

Hongchang Gao,' Feiping Nie,>!* Heng Huan'*
! Department of Computer Science and Engineering, University of Texas at Arlington, Texas, USA
2School of Computer Science, OPTIMAL, Northwestern Polytechnical University, Xian 710072, Shaanxi, P. R. China
{hongchanggao, feipingnie} @ gmail.com, heng @uta.edu

Abstract

Non-negative Matrix Factorization (NMF) has attracted much
attention and been widely used in real-world applications.
As a clustering method, it fails to handle the case where
data points lie in a complicated geometry structure. Existing
methods adopt single global centroid for each cluster, fail-
ing to capture the manifold structure. In this paper, we pro-
pose a novel local centroids structured NMF to address this
drawback. Instead of using single centroid for each cluster,
we introduce multiple local centroids for individual cluster
such that the manifold structure can be captured by the lo-
cal centroids. Such a novel NMF method can improve the
clustering performance effectively. Furthermore, a novel bi-
partite graph is incorporated to obtain the clustering indicator
directly without any post process. Experiments on both toy
datasets and real-world datasets have verified the effective-
ness of the proposed method.

Introduction

Non-negative Matrix Factorization (NMF) has attracted ex-
tensive attention during the past two decades. It is to factor-
ize a non-negative matrix into two non-negative factor matri-
ces. Such a non-negativity property makes it easy to interpret
for real-world data mining applications, compared with the
general matrix factorization method, such as SVD and QR
whose elements can be both positive and negative.

The seminal works (Lee and Seung 1999; 2001) give a
parts-based-representation explanation about the factor ma-
trices and propose how to compute them efficiently, which
facilitates the development of NMF. Furthermore, the rela-
tionship between NMF and K -means, spectral clustering is
disclosed in (Ding, He, and Simon 2005) where NMF is
proved to be a clustering method. To improve its cluster-
ing performance, (Ding et al. 2006) proposed the orthogo-
nal NMF where the indicator matrix has the orthogonal con-
straint. Such a constraint makes the indicator matrix unique
and be easily interpreted in a clustering view (Ding et al.
2006). Then, NMF is widely used for clustering problems.
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To address different problems, numerous variants have
been proposed in the past ten years. For instance, semi-
NMF and convex-NMF are proposed in (Ding, Li, and Jor-
dan 2010). Semi-NMF relaxes the non-negative constraint
of data matrix and basis matrix, while convex-NMF restricts
the basis is a convex combination of the data points. Tri-
Factorization is proposed in (Ding et al. 2006) to factor-
ize a non-negative data matrix into three non-negative fac-
tor matrices. This model performs clustering on both row
space and column space simultaneously, which makes it
suitable for document analysis. To tackle noises and outliers
existing in data matrix, {5 ;-norm NMF and capped norm
NMF are proposed to solve different applications (Kong,
Ding, and Huang 2011; Gao et al. 2015; Huang et al. 2014;
Wang, Nie, and Huang 2015). With these models, NMF has
been widely used for many data mining applications, such as
face recognition (Gao et al. 2015), text and document mining
(Ding, Li, and Peng 2006), human action analysis (Wang,
Nie, and Huang 2016) and so on.

As a clustering method, the two factor matrices of NMF
correspond to the clustering centroid and indicator respec-
tively. The clustering result is indicated by the maximal
element of each indicator vector, which means the corre-
sponding centroid can be viewed as the representative of that
cluster. Almost all the existing NMF methods use only one
centroid to represent each cluster. Such a centroid can be
viewed as a global representative and it depicts its cluster
very coarsely due to losing a lot of local manifold structure.
Data points in real-world applications usually lie in a com-
plicated geometry structure, the global centroid is easy to
fail in depicting its cluster. Therefore, how to capture the
complicated local manifold structure is important to NMF.

In this paper, we propose a novel local centroids struc-
tured NMF to handle data points lying in a complicated ge-
ometry structure. The novelty lies in three aspects. First,
instead of using single centroid for each cluster, we intro-
duce multiple local centroids for individual cluster such that
the manifold structure can be captured by the local cen-
troids. Second, although there exists multiple local centroids
in each cluster, we do not employ all of them to represent
each data point. To preserve the local manifold informa-
tion, we only adopt the nearby centroids to represent each
data point. Third, since each data point is encoded by a few
nearby centroids, the clustering indicator cannot be obtained



directly. Our method employs a bipartite graph and enforces
it with exact ¢ (c is the number of clusters) connected com-
ponents to get the clustering indicator directly. Extensive ex-
periments have been performed to verify the correctness and
effectiveness of our novel method.

Related Work

In this section, we will review the related work and give the
motivation of our method.

Non-negative Matrix Factorization

The classic NMF (Lee and Seung 1999; 2001) is to factorize
X into two factor matrices as follows:

min_[|X — FGT|[%
F>0,G>0

ey

where X € RYX"™ is a non-negative data matrix, F' € Rdxk
and G € R"**_ As a clustering method (Ding, He, and Si-
mon 2005), k is set as the number of clusters. Therefore,
each column of F corresponds to a cluster centroid, and each
row of G is the clustering indicator of each sample. The fi-
nal clustering result is indicated by the index of maximal
element in each row of G.

Graph Regularized NMF

Actually, data points in real applications usually lie in a
low dimensional manifold rather than distribute uniformly
in the high dimensional ambient space, which means that
data points have complicated relationships, i.e. the similar-
ity should be measured via geometry structure or manifold,
not the standard Euclidean distance. If the method can cap-
ture the local manifold structure, the similarity between data
points can be properly measured such that the clustering re-
sults are enhanced. Graph regularized NMF (GNMF) pro-
posed in (Cai et al. 2011) tackles the local manifold infor-
mation by incorporating a nearest neighbor graph into NMF
as follows:

I|X — FGT||% + \Tr(GTLG) ,

min
F>0,G>0

@

where L € R™*"™ is Laplacian matrix defined as L =
D —W.W € R" ™ is the affinity matrix of data points,
and D € R"™*" is a diagonal matrix defined as D;; =
Z?zl W;;. With the graph regularization, two close data
points in the original space are enforced to be close in the
low dimensional space which is spanned by columns of F'.
In other words, GNMF preserves the local manifold infor-
mation during factorization so that the clustering perfor-
mance will be improved.

However, data points in real applications usually lie in a
complicated geometry structure, such as two crescent shapes
in Figure 1, which is difficult to existing NMF methods. In
Figure 2, we show the clustering result of NMF and GNMF
running on this toy data set. Both NMF and GNMF fail to
cluster these data points correctly. Although GNMF incor-
porates local manifold information and achieves better re-
sult, yet it still fails to find the correct clustering result.

Why do these methods fail? From Figure 2, we can find
the centroids found by NMF and GNMF are not proper to
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represent its own group. Thus, some data points near to the
opposite centroid are mis-clustered. In more details, there is
only one centroid to represent each cluster globally. Such a
global centroid can only represent a cluster very coarsely so
that the local manifold structure cannot be captured. That
is the reason of GNMF’s failure. GNMF only incorporates
local manifold information into the new representation GG
but not the centroid F'. In this paper, we will propose a novel
NMF method to address this difficult problem so that data
points in Figure 1 can be grouped correctly.

Figure 1: A toy dataset with complicated geometry structure.

(a) Clustering result of NMF  (b) Clustering result of GNMF

Figure 2: Clustering result of NMF and GNMF

Local Centroids Structured Non-negative
Matrix Factorization

In this section, we will propose our novel non-negative ma-
trix factorization, that is Local Centroids Structured Non-
negative Matrix Factorization.

Given a non-negative dataset X = [x1,22, - ,2,] €
R4xn" whose distribution may have a complicated geometry
structure, and assume it has c clusters. Existing NMF meth-
ods fail to tackle such a dataset since their centroids cannot
capture the local manifold structure. Instead of employing
single centroid for each cluster, we introduce multiple local
centroids for individual cluster such that the manifold struc-
ture can be captured by the local centroids. A direct imple-
mentation is as follows:

F20,G>0 3)
where F' € RP* and G € R"**. Here, k is a hyper-
parameter, and we set kK = mc where m > 1 is an integer
so that each cluster will have multiple centroids. This is the
difference between Eq. (3) and Eq. (1) whose k£ = ¢. With

1X - FGT||%



multiple centroids, the new basis F' will have more power-
ful ability to catpure the manifold information than existing
NMF methods. Moreover, existing methods usually incorpo-
rate manifold information by the regularization term, which
is not enough to capture it. Here, we incorporate manifold
information into the cost function, which is the first work to
do so as far as we know.

However, there are two weaknesses in this model. First,
although the basis F' incorporates the local manifold struc-
ture, yet the new representation G ignores the local manifold
information. As a result, the clustering result is suboptimal.
Second, due to the multiple centroids, we cannot directly
get the clustering indicator from G like existing methods.
We have to perform K -means on G to get the final discrete
clustering indicator. However, K -means is sensitive with ini-
tialization, and it is a non-convex problem so that it may
converge to a local suboptimal solution. To address these
problems, we propose the following model:

min || X — FGT||% + AR(G)
F>0,G>0 (4)
st||Gillo <s,i=1,2,---,n

where A > 0, G, is the i-th row of G, ||.||o denotes ;-
norm and s > 0 is a hyper-parameter. R(G) is the regu-
larization with respect to GG to obtain the clustering result
directly, which will be defined later.

Here, to incorporate the local manifold information into
new representation G, we restrict ||G;.||o < s which means
each data point is represented by at most s centroids. Intu-
itively, for a data point locating in a complicated geometry
structure, if using all of centroids in this geometry structure
to represent it, it may be disturbed by some far away cen-
troids, destroying the local manifold structure. On the other
hand, the nearby centroids have most of manifold informa-
tion so that a data point can be represented by only a few
nearby centroids.

When adopting multiple local centroids, the largest ele-
ment in each row of G cannot indicate the final clustering
result as the conventional NMF method. To obtain the clus-
tering indicator directly, we construct a bipartite graph with
the affinity matrix S as follows:

K

0 G
5= [ G 0
where S € R HE)*(n+k) [deally, data points from a cer-
tain cluster will be represented by only the centroids from
the same cluster. Therefore, they will constitute a connected
components in this graph. By enforcing the bipartite graph
with exact ¢ connected components, then we can directly
obtain the clustering indicator based on the graph partition.
We show an illustration of bipartite graph in Figure 3. Data
points in each group are represented by their own centroids,
thus each group is a connected component.
Furthermore, to enforce a graph with exact ¢ connected
components, we need the following theorem (Mohar et al.
1991).

Theorem 1. The number of connected components in the
graph is equal to the multiplicity c of the eigenvalue 0 of its
Laplacian matrix Lg.

&)
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Figure 3: An illustration of bipartite graph constructed on
data points and centroids.

Here, the Laplacian matrix is defined as Lg = D — S
where D is a diagonal matrix with diagonal elements D; ; =
2_; Sij. Theorem 1 indicates that rank(Ls) should be (n +
k) — ¢ to ensure ¢ connected components existing in our
bipartite graph.

Following the proof in (Nie, Wang, and Huang 2014),
rank(Lg) (n + k) — ¢ is equivalent to enforce
> 10i(Ls) = 0 where 0;(Lg) is the i-th smallest eigen-
value of Laplacian matrix Lg, and furthermore,

Sooils) = i, TP ESP) . ©

Then, to directly obtain the final clustering result, we have
our final model as follows:

: T2 T
Fzg%r%QPHX FG*||% 4+ XTr(P* LgP)

st.PTP=1Gillo<si=12"--,n

where A > 0 is a hyper-parameter. With the second term in
the objective function, the bipartite graph is enforced to have
c connected components. As a result, we can directly obtain
the clustering indicator according to the bipartite graph’s
partition .

In a summary, our proposed method adopts multiple lo-
cal centroids to capture the local manifold structure. At the
same time, each data point is restricted to be represented by
only a few nearby centroids to preserve the local manifold
information. Furthermore, a bipartite graph is constructed
to be enforced with exact ¢ connected components, thus our
method can obtain the clustering result directly from the par-
tition of this graph.

In the next section, we will propose an efficient algorithm
to solve this non-convex problem.

)

Optimization Algorithm
The problem defined in Eq. (7) is a non-convex problem.
Here, we adopt the alternating algorithm to solve it effi-
ciently.
Update P When fixing F' and GG, we have the following
problem with respect to P:

min  Tr(PTLgP)
PeR(ntk)xe (8)
st.PTP=1.



The optimal solution is the eigenvectors corresponding to
the c smallest eigenvalues of Lg.
Update F' When fixing P and GG, we have
: X _F T2
min I G |F )
which can be solved by multiplicative method (Lee and Se-
ung 2001) as follows:

(XG)ij

b= Fipara),

(10)

Algorithm 1 Algorithm to solve Eq. (15)

Input: F' € R¥>F* 2 ¢ R a e R1>* o> 0,19 >0,
s>0
Qutput: g
repeat
Step 1: compute the gradient

V, =2(aa” — FTx + FTFg)
Step 2: projected gradient descent
g =max(g —n*V,0)

Step 3: solve £y-norm constraint

ot = {5

until Converges

g(1) is the largest s value of g
otherwise

Update G When fixing P and F', we have

min || X — FGT||% + 2ATr(PT LsP)
G=0 (11)
stl|Gillo < s,i=1,2,--+ ,n

To solve Eq. (11), we need the following lemma, which is
proved in (Von Luxburg 2007).
Lemma 1. Given an affinity matrix W € R"*"™ and a diag-
onal matrix D defined as D; ; = > _; Wi, for its Laplacian
matrix L € R™*™ defined as L = D — W and a matrix
P € R"*€, we have

Tr(PTLP) = %TT(WQ) :

where QQ;; = |pt — p’
According to Lemma 1, we have

(12)

2, and p' is the i-th row of matrix P.

Tr(PTLgP) = %TT(SQ)

1 0
5 g G ][ 3 &2
1] Gen 6o
= QTT({ GTQu G Qs }) (1
= STr(GT (@ + Qi)
= %TT(GTA)
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where A = Qng + Q12. Therefore, Eq. (11) can be reformu-
lated as follows,

min || X — FGT||% 4 2aTr(GT A)
¢ (14)
$t.G>0,||Gillo <s,i=1,2,--+,n

where @ = \/2 is a large number to ensure there exists ¢
connected components. It can be further decoupled to solve
each column g; of GT separately as follows,

min ||z; — Fg;||3 + 2ca;g;
g (15)
st.9i 2 0,|[gillo <5,

where z; is the i-th corresponding column of X, a; is the
i-th row of A. This problem can be solved by projected gra-
dient descent method as shown in Algorithm 1. Finally, the
optimization algorithm to solve Eq. (7) is summarized in Al-
gorithm 2.

Algorithm 2 Algorithm to solve Eq. (7)
Initialize F' and G by K-means.

repeat
Update P by solving Eq. (8):
in Tr(PTLgP
g TP s P)

Update F' by Eq. (10):
(XG)ij
(FGTG)y;

Update G: solve each row of G by Algorithm 1.
until Converges

Fij — Fij

Initialization Since Eq. (7) is a non-convex problem, it
is important to give it a good initialization. Following (Gao
et al. 2015), K-means is taken to initialize it. Specifically,
one can perform K-means on data points to get k clusters
where £ = mc so that there should be multiple local cen-
troids. F' can be initialized with these centroids, and G can
be initialized by the similarity between each data point and
the nearest s centroids.

Determination of A\ The stop criterion is that there are
exact ¢ connected components. Therefore, it is important to
tune the parameter A. Here, we use the method proposed in
(Nie, Wang, and Huang 2014) where )\ can be automatically
adjusted to obtain exact ¢ connected components. More de-
tails can be found in the corresponding literature.

Complexity Analysis When updating P, the complexity
is dominated by eigenvalue decomposition which is O((n +
k)3). The complexity of updating F is O(ndk), and it is also
O(ndk) for updating G. Compared with conventional NMF
whose complexity is O(ndc), the increased computation is
mainly due to updating P.

Experiment

In this section, we will verify the correctness and effective-
ness of our proposed method on both toy dataset and real
world datasets.



Toy Dataset

Here, we run our proposed method on the complicated toy
dataset as shown in Figure 1 where the first 201 data points
belong to group 1, and the rest belong to group 2. In our ex-
periment, we use K -means to initialize ' and G, and k is set
as 10. Thus, this toy dataset is clustered into 10 groups by K-
means, just as shown in Figure 4. These centroids are used
to initialize F. Additionally, the parameter s in Eq. (7) is
set as 2, which means each data point is represented by only
two nearest centroids, just as shown in Figure 5. G is then
initialized with the similarity between data points and their
two nearest centroids. Apparently, there exists some connec-
tions between these two groups. After running our proposed
method with the above initialization, it can be clustered per-
fectly.

To verify the result, we show the image of GG' in Fig-
ure 6. Note that GG denotes the similarity matrix between
data points. In Figure 6(a), there exist non-zero connections
between the first 201 data points and the remained 201 data
points. In Figure 6(b), there is no connection between two
groups which means that our method can cluster this com-
plicated toy dataset correctly.

Figure 4: 10 clusters obtained by K-means, and asteroids
denote centroids.

Figure 5: Each data point is represented by its two nearest
centroids.

Real World Dataset

To further verify the effectiveness of our proposed method,
we evaluate it on four real world benchmark datasets.

Data Description The details about four benchmark
dataset are described as follows.
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(b) GGT of our method

(a) The initialized GGT

Figure 6: Comparison of the similarity matrix GGT ob-
tained by initialization and our proposed method.

Table 1: Description of Benchmark Datasets

Dataset | #Instance #Dimensionality  #Classes
ORL 400 644 40
UMIST 575 644 20
PIE 680 1024 68
COIL20 1440 1024 20

e ORL (Samaria and Harter 1994) is a face recognition
benchmark dataset. It consits of 40 subjects, and each sub-
ject has 10 images taken under various conditions. The
task is to cluster images from the same subject together.
Here, each image is scaled to 28 x 23.

o UMIST (Graham and Allinson 1998) is also a face recog-
nition benchmark dataset. There are 20 different subjects.
Each subject is taken images from different views, obtain-
ing 575 images totally. Each image in our experiment is
rescaled to 28 x 23.

e PIE (Sim, Baker, and Bsat 2002) is another face recogni-
tion benchmark dataset, which contains 68 subjects. Each
subject is taken 42 images under different conditions.
Here, we randomly select 10 images for each subject, and
each images is rescaled to 32 x 32.

e COIL20 (Nene et al. 1996) is an object recognition bench-
mark dataset. There are totally 20 objects, and each object
has 72 images. Each image is resized to 32 x 32 in our ex-
periment.

In our experiment, each data point is normalized to have an
unit length. We summarize these datasets in Table 1.
Experiment Setup To evaluate the performance of our
proposed method, we compare it with five state-of-the-art
methods as follows. With in line mode this is typeset as

o NMF (Lee and Seung 2001) is defined in Eq. (1). In our
experiment, we set k as the number of classes.

e Orthogonal NMF (ONMF) (Ding et al. 2006) is defined

as min || X — FGT||%, where F € Rk G €
F,G>0,GTG=1I

R"**_ Theoretically, ONMF has better clustering perfor-
mance than conventional NMF. We also set k£ as the num-
ber of classes.



Table 2: Clustering Result on Benchmark Datasets

Dataset Metric K-Means NMF ONMF {5 1-NMF GNMF Our
ORL ACC 0.6885 0.6693 0.7140 0.6935 0.7275 0.7608
NMI 0.8337 0.8131 0.8404 0.8228 0.8504 0.8891
UMIST ACC 0.4670 0.4402 0.4798 0.4485 0.6546 0.6708
NMI 0.5982 0.5654 0.6048 0.5745 0.7520 0.8020
PIE ACC 0.3000 0.4059 0.3544 0.4191 0.3544 0.4583
NMI 0.5860 0.6670 0.6388 0.6810 0.6401 0.6428
COIL20 ACC 0.6327 0.5256 0.6344 0.6353 0.7530 0.7783
NMI 0.7365 0.6601 0.7244 0.7198 0.8750 0.8995

e /5 1-norm based robust NMF ({5 ;-NMF) (Kong, Ding,

and Huang 2011) is defined as min || X — FGT||2 1,
F>0,G>0

where F € R4F G € R7¥F Here, k is set as the number
of classes. This method is robust to noises and outliers
theoretically.

e Graph regularized NMF (GNMF) (Cai et al. 2011) is de-
fined in Eq. (2). k is also set as the number of classes in
our experiment.

Other than these NMF methods, we also compare it with
K-means. For all the above NMF methods except GNMF,
the clustering result is directly indicated by the largest ele-
ment in each row of G. GNMF needs K -means as the post-
processing step to get clustering indicator since its G has no
clear structure. We run all the methods for 10 times and re-
port the average clustering accuracy (ACC) and normalized
mutual information (NMI) in Table 2.

Here, we set the number of centroids & in our method
around 80%-90% of the number of data points in each clus-
ter, and each data point is restricted to be represented by
3-5 nearby centroids. This setting is consistent with our in-
tuition and verified by our experiment on the toy dataset.
Only with a lot of local centroids can a complicated geom-
etry structure be characterized correctly. Furthermore, for a
data point lying a complicated structure, only nearby cen-
troids can provide its manifold information and the far away
centroids provide considerably few information. Therefore,
the setting of our method is reasonable and further verified
by Table 2. From Table 2, we can find that our method and
GNMF have better performance than the others due to in-
corporating manifold information, and our method is better
than GNMF due to the multiple local centroids.

To further verify the performance of our method, we plot
GGT of different methods running on the ORL dataset in
Figure 7. Apparently, our method has much clearer block
diagonal structure than others which means our method has
better clustering result.

Conclusion

In this paper, we propose a novel local centroids structured
non-negative matrix factorization. This method can success-
fully handle the dataset with a complicated geometry struc-
ture. Specifically, our method use multiple local centroids
to capture the local manifold structure. At the same time,
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the new representation preserves local manifold information
by enforcing each data point to be represented by only a
few nearby centroids. Furthermore, a novel bipartite graph
is adopted to ensure there exist exact ¢ connected compo-
nents so that our method can get clustering result directly.
The experimental results on both toy dataset and real world
datasets have shown the success of our proposed method.

|

(a) GGT of K-means

B =

(¢) GGT of ONMF

B |

() GGT of GNMF

(b) GGT of NMF

(d) GG” of £2,,-NMF

(f) GGT of our method

Figure 7: Comparison of the similarity matrix GG ob-
tained by different methods running on the ORL dataset.
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