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ABSTRACT

In the DENSEST k-SUBGRAPH (DkS) problem, given an undirected
graph G and an integer k, the goal is to find a subgraph of G on
k vertices that contains maximum number of edges. Even though
Bhaskara et al.’s state-of-the-art algorithm for the problem achieves
only O(n!/4+¢) approximation ratio, previous attempts at proving
hardness of approximation, including those under average case
assumptions, fail to achieve a polynomial ratio; the best ratios
ruled out under any worst case assumption and any average case
assumption are only any constant (Raghavendra and Steurer) and
20(og? n) (Alon et al.) respectively.

In this work, we show, assuming the exponential time hypothesis
(ETH), that there is no polynomial-time algorithm that approxi-
mates DkS to within n!/(°8108 ™" factor of the optimum, where
¢ > 0 is a universal constant independent of n. In addition, our
result has perfect completeness, meaning that we prove that it is
ETH-hard to even distinguish between the case in which G contains
a k-clique and the case in which every induced k-subgraph of G
has density at most 1/n~1/1°8108 ) ip polynomial time.

Moreover, if we make a stronger assumption that there is some
constant ¢ > 0 such that no subexponential-time algorithm can
distinguish between a satisfiable 3SAT formula and one which is
only (1 — ¢)-satisfiable (also known as Gap-ETH), then the ratio
above can be improved to n/ ") for any function f whose limit is
zero as n goes to infinity (i.e. f € o(1)).
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1 INTRODUCTION

In the DENSEST k-SUBGRAPH (DkS) problem, we are given an undi-
rected graph G on n vertices and a positive integer k < n. The goal
is to find a set S of k vertices such that the induced subgraph on
S has maximum number of edges. Since the size of S is fixed, the
problem can be equivalently stated as finding a k-subgraph (i.e.
subgraph on k vertices) with maximum density where density! of
the subgraph induced on S is |E(S)|/ (lgl) and E(S) denotes the set
of all edges among the vertices in S.

DENSEST k-SUBGRAPH, a natural generalization of k-CLIQUE [32],
was first formulated and studied by Kortsarz and Peleg [34] in the
early 90s. Since then, it has been the subject of intense study in the
context of approximation algorithm and hardness of approxima-
tion [3, 8, 10, 13-15, 22, 24-27, 33, 41, 46]. Despite this, its approx-
imability still remains wide open and is considered by some to be
an important open question in approximation algorithms [13-15].

On the approximation algorithm front, Kortsarz and Peleg [34],
in the same work that introduced the problem, gave a polynomial-
time O(n-3%8%)-approximation algorithm for DkS. Feige, Kortsarz
and Peleg [24] later provided an O(n!/3~%)-approximation for the
problem for some constant § ~ 1/60. This approximation ratio
was the best known for almost a decade until Bhaskara et al. [13]
invented a log-density based approach which yielded an O(nt/4+¢)-
approximation for any constant ¢ > 0. This remains the state-of-
the-art approximation algorithm for DKS.

While the above algorithms demonstrate the main progresses
of approximations of DkS in general case over the years, many
special cases have also been studied. Most relevant to our work is
the case where the optimal k-subgraph has high density, in which
better approximations are known [10, 26, 37, 47]. The first and
most representative algorithm of this kind is that of Feige and
Seltser [26], which provides the following guarantee: when the
input graph contains a k-clique, the algorithm can find an (1 — ¢)-
dense k-subgraph in n®(1°8 /%) time. We will refer to this problem
of finding densest k-subgraph when the input graph is promised to
have a k-clique DENSEST k-SUBGRAPH with perfect completeness.

Although many algorithms have been devised for DS, relatively
little is known regarding its hardness of approximation. While it
is commonly believed that the problem is hard to approximate to

!t is worth noting that sometimes density is defined as |E(S)|/|S|. For DkS, both
definitions of density result in the same objective since |S| = k is fixed. However, our
notion is more convenient to deal with as it always lies in [0, 1].
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within some polynomial ratio [3, 14], not even a constant factor NP-
hardness of approximation is known. To circumvent this, Feige [22]
came up with a hypothesis that a random 3SAT formula is hard to
refute in polynomial time and proved that, assuming this hypothesis,
DKS is hard to approximate to within some constant factor.

Alon et al. [3] later used a similar conjecture regarding random
k-AND to rule out polynomial-time algorithms for DkS with any
constant approximation ratio. Moreover, they proved hardnesses of
approximation of DkS under the following Planted Clique Hypothe-
sis [31, 35]: there is no polynomial-time algorithm that can distin-
guish between a typical Erd6s-Rényi random graph G(n, 1/2) and
one in which a clique of size polynomial in n (e.g. n!/3) is planted.
Assuming this hypothesis, Alon et al. proved that no polynomial-
time algorithm approximates DkS to within any constant factor.
They also showed that, when the hypothesis is strengthened to
rule out not only polynomial-time but also super-polynomial time
algorithms for the Planted Clique problem, their inapproximability
guarantee for DkS can be improved. In particular, if no nO(Wlogn)._
time algorithm solves the Planted Clique problem, then 2000g™ n)_
approximation for DkS cannot be achieved in polynomial time.

There are also several inapproximability results of DkS based
on worst-case assumptions. Khot [33] showed, assuming NP ¢
BPTIME(2"") for some constant ¢ > 0, that no polynomial-time
algorithm can approximate DkS to within (1 + §) factor where
d > 0 is a constant depending only on ¢; the proof is based on a
construction of a “quasi-random” PCP, which is then used in place
of a random 3SAT in a reduction similar to that from [22].

While no inapproximability of DS is known under the Unique
Games Conjecture, Raghavendra and Steurer [41] showed that a
strengthened version of it, in which the constraint graph is required
to satisfy a “small-set expansion” property, implies that DS is hard
to approximate to within any constant ratio.

Recently, Braverman et al. [15], showed, under the exponential
time hypothesis (ETH), which will be stated shortly, that, for some
constant £ > 0, no n®1°8"_time algorithm can approximate DENs-
EST k-SUBGRAPH with perfect completeness to within (1 + ¢) factor.
It is worth noting here that their result matches almost exactly with
the previously mentioned Feige-Seltser algorithm [26].

Since none of these inapproximability results achieve a polyno-
mial ratio, there have been efforts to prove better lower bounds
for more restricted classes of algorithms. For example, Bhaskara
et al. [14] provided polynomial ratio lower bounds against strong
SDP relaxations of DkS. Specifically, for the Sum-of-Squares hierar-
chy, they showed integrality gaps of n2/%3~¢ Q(e)
and n1~9() Jevels of the hierarchy respectively. (See also [18, 36] in
which 2/53 in the exponent was improved to 1/14.) Unfortunately,
it is unlikely that these lower bounds can be translated to inapprox-
imability results and the question of whether any polynomial-time
algorithm can achieve subpolynomial approximation ratio for DkS
remains an intriguing open question.

and n® against n

1.1 Our Results

In this work, we rule out, under the exponential time hypothesis
(i.e. no subexponential time algorithm can solve 3SAT; see Hypoth-
esis 2.1), polynomial-time approximation algorithms for DkS (even
with perfect completeness) with slightly subpolynomial ratio:
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THEOREM 1.1. There is a constant ¢ > 0 such that, assuming ETH,
no polynomial-time algorithm can, given a graph G on n vertices and
a positive integer k < n, distinguish between the following two cases:

o There exist k vertices of G that induce a k-clique.
o Every k-subgraph of G has density at most n~1/(oglogn)®

If we assume a stronger assumption that it takes exponential
time to even distinguish between a satisfiable 3SAT formula and
one which is only (1 — ¢)-satisfiable for some constant ¢ > 0 (aka
Gap-ETH; see Hypothesis 2.2), the ratio can be improved to nf ("
for any f € o(1):

THEOREM 1.2. For every function f € o(1), assuming Gap-ETH,
no polynomial-time algorithm can, given a graph G on n vertices and
a positive integer k < n, distinguish between the following two cases:

o There exist k vertices of G that induce a k-clique.
e Every k-subgraph of G has density at most n~f ("),

We remark that, for DkS with perfect completeness, the afore-
mentioned Feige-Seltser algorithm achieves an n-approximation
in time n9(/¢) for every ¢ > 0 [26]. Hence, the ratios in our theo-
rems cannot be improved to some fixed polynomial and the ratio
in Theorem 1.2 is tight in this sense.

Comparison to Previous Results. In terms of inapproximabil-
ity ratios, the ratios ruled out in this work are almost polynomial
and provides a vast improvement over previous results. Prior to
our result, the best known ratio ruled out under any worst case
assumption is only any constant [41] and the best ratio ruled out

under any average case assumption is only 20(og? n) [3]. In addi-
tion, our results also have perfect completeness, which was only
achieved in [15] under ETH and in [3] under the Planted Clique
Hypothesis but not in [22, 33, 41].

Regarding the assumptions our results are based upon, the aver-
age case assumptions used in [3, 22] are incomparable to ours. The
assumption NP ¢ BPTIME(2"") used in [33] is also incomparable
to ours since, while not stated explicitly, ETH and Gap-ETH by
default focus only on deterministic algorithms and our reductions
are also deterministic. The strengthened Unique Games Conjecture
used in [41] is again incomparable to ours as it is a statement that a
specific problem is NP-hard. Finally, although Braverman et al.’s re-
sult [15] also relies on ETH, its relation to our results is more subtle.
Specifically, their reduction time is only 290Ym) where m is the num-
ber of clauses, meaning that they only need to assume that 3SAT

¢ DTIME(ZG)(W)) to rule out a constant ratio polynomial-time ap-
proximation for DkS. However, as we will see in Theorem 3.1, even
to achieve a constant gap, our reduction time is 29(’"3/4). Hence, if
3SAT somehow ends up in DTIME(2€(""))\DTIME(28(V™), their
result will still hold whereas ours will not even imply constant ratio
inapproximability for DkS.

Implications of Our Results. One of the reasons that DkS
has received significant attention in the approximation algorithm
community is due to its connections to many other problems. Most
relevant to our work are the problems to which there are reductions
from DKS that preserve approximation ratios to within some polyno-
mial?. These problems include DENSEST AT-MosT-k-SUBGRAPH [5],

2These are problems whose O(p)-approximation gives an O(p€)-approximation for
DKS for some constant c.
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SMALLEST m-EDGE SUBGRAPH [17], STEINER k-FOREST [28] and Qua-
DRATIC KNAPSACK [40]. For brevity, we do not define these problems
here. We refer interested readers to cited sources for their defini-
tions and reductions from DKS to respective problems. We also note
that this list is by no means exhaustive and there are indeed numer-
ous other problems with similar known connections to DkS. Our
results also imply hardness of approximation results with similar
ratios to DkS for such problems:

COROLLARY 1.3. For some constant ¢ > 0, assuming ETH, there is
no polynomial-time n'/ 10816 M° _gpproximation algorithm for DENs-
EST AT-MOST-k-SUBGRAPH, SMALLEST m-EDGE SUBGRAPH, STEINER
k-FOREST, QUADRATIC KNAPSACK. Moreover, for any function f €
o(1), there is no polynomial-time nf (") -approximation algorithm for
any of these problems, unless Gap-ETH is false.

2 PRELIMINARIES AND NOTATIONS

We use exp(x) and log(x) to denote e* and log,(x) respectively.
polylog n is used as a shorthand for O(log® n) for some absolute
constant c. For any set S, Z(S) := {T | T C S} denotes the power
set of S. For any non-negative integer t < |S|, we use (f) ={T €
P(S) | |IT| = t} to denote the collection of all subsets of S of size ¢.

Throughout this work, we only concern with simple unweighted
undirected graphs. Recall that the density of a graph G = (V,E)
on N > 2 vertices is |E|/(I¥). We say that a graph is a-dense if its
density is @. Moreover, for every t € N, we view each element of
V¢ as a t-size ordered multiset of V. (L,R) € V! x V* is said to be
a labelled copy of a t-biclique (or K; +) in G if, for every u € L and
v € R,u # v and (u, v) € E. The number of labelled copies of K¢ ;
in G is the number of all such (L, R)’s.

2.1 Exponential Time Hypotheses

One of our results is based on the exponential time hypothesis
(ETH), a conjecture proposed by Impagliazzo and Paturi [29] which
asserts that 3SAT cannot be solved in subexponential time:

HypoTsesis 2.1 (ETH [29]). No 2°0™)-time algorithm can decide
whether any 3SAT formula with m clauses® is satisfiable.

Another hypothesis used in this work is Gap-ETH, a strength-
ened version of the ETH, which essentially states that even approx-
imating 3SAT to some constant ratio takes exponential time:

HypoTHESIS 2.2 (GAP-ETH [21, 38]). There exists a constant & > 0
such that no 2°0™ -time algorithm can, given a 3SAT formula ¢ with
m clauses®, distinguish between the case where @ is satisfiable and the
case where val(¢) < 1 — ¢. Here val(¢) denote the maximum fraction
of clauses of ¢ satisfied by any assignment.

2.2 Nearly-Linear Size PCPs and
Subexponential Time Reductions

The celebrated PCP Theorem [6, 7], which lies at the heart of virtu-
ally all known NP-hardness of approximation results, can be viewed

3In its original form, the running time lower bound is exponential in the number of
variables not the number of clauses; however, thanks to the sparsification lemma of
Impagliazzo et al. [30], both versions are equivalent.
4 As noted by Dinur [21], a subsampling argument can be used to make the number
of clauses linear in the number of variables, meaning that the conjecture remains the
same even when m denotes the number of variables.
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as a polynomial-time reduction from 3SAT to a gap version of 3SAT,
as stated below. While this perspective is a rather narrow viewpoint
of the theorem that leaves out the fascinating relations between
parameters of PCPs, it will be the most convenient for our purpose.

THEOREM 2.3 (PCP THEOREM [6, 7]). For some constant ¢ > 0,
there exists a polynomial-time reduction that takes a 3SAT formula ¢
and produces a 35AT formula ¢ such that

o (Completeness) if ¢ is satisfiable, then ¢ is satisfiable, and,
o (Soundness) if ¢ is unsatisfiable, then val(¢) < 1 — .

Following the first proofs of the PCP Theorem, considerable
efforts have been made to improve the trade-offs between the pa-
rameters in the theorem. One such direction is to try to reduce
the size of the PCP, which, in the above formulation, translates to
reducing the size of ¢ relative to ¢. On this front, it is known that
the size of ¢ can be made nearly-linear in the size of ¢ [12, 20, 39].
For our purpose, we will use Dinur’s PCP Theorem [20], which has
a blow-up of only polylogarithmic in the size of ¢:

THEOREM 2.4 (DINUR’s PCP THEOREM [20]). For some constant
e,d > 0, there exists a polynomial-time reduction that takes a 3SAT
formula ¢ with m clauses and produces another 3SAT formula ¢ with
m’ = O(m polylog m) clauses such that

o (Completeness) if ¢ is satisfiable, then ¢ is satisfiable, and,
o (Soundness) if ¢ is unsatisfiable, then val(¢) < 1 — ¢, and,
e (Bounded Degree) each variable of ¢ appears in < d clauses.

Note that Dinur’s PCP, combined with ETH, implies a lower
bound of 2¢(m/polylogm) oy the running time of algorithms that
solve the gap version of 3SAT, which is only a factor of O(polylog m)
in the exponent off from Gap-ETH. Putting it differently, Gap-ETH
is closely related to the question of whether a linear size PCP, one
where the size blow-up is only constant instead of polylogarithmic,
exists; its existence would mean that Gap-ETH is implied by ETH.

Under the exponential time hypothesis, nearly-linear size PCPs
allow us to start with an instance ¢ of the gap version of 3SAT and
reduce, in subexponential time, to another problem. As long as the
time spent in the reduction is 20(m/polylog m) e arrive at a lower
bound for the problem. Arguably, Aaronson et al. [1] popularized
this method, under the name birthday repetition, by using such a
reduction of size 22(V™) to prove ETH-hardness for free games and
dense CSPs. Without going into any detail now, let us mention that
the name birthday repetition comes from the use of the birthday
paradox in their proof and, since its publication, their work has
inspired many inapproximability results [9, 15, 16, 19, 38, 43, 45].
Our result too is inspired by this line of work and, as we will see
soon, part of our proof also contains a birthday-type paradox.

3 THE REDUCTION AND PROOFS OF THE
MAIN THEOREMS

The reduction from the gap version of 3SAT to DkS is simple. Given
a3SAT formula ¢ on n variables x1, . . ., x, and aninteger 1 < £ < n,
we construct a graph® Gy,e = (Vg ¢, Eg, ¢) as follows:

5For interested readers, we note that our graph is not the same as the FGLSS graph [23]
of the PCP in which the verifier reads £ random variables and accepts if no clause is
violated; while this graph has the same vertex set as ours, the edges are different since
we check that no clause between the two vertices is violated, which is not checked in
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o Its vertex set Vs , contains all partial assignments to ¢ vari-
ables, i.e., each vertex is {(xj;, b;,), ..., (xi,, bi,)} where
Xiys. .. Xi, are £ distinct variables and b;,, . . ., b;, € {0,1}
are the bits assigned to them.
We connect two vertices {(x;,, bi,), ..., (xi,, bi,)} and
{(xi;, bi; )y, (xir[, bi/[)} by an edge iff the two partial as-
signments are consistent (i.e. no variable is assigned 0 in
one vertex and 1 in another), and, every clause in ¢ all of
whose variables are from x;,, . .. SXigs Xits ooy Xy is satis-
fied by the partial assignment induced by the two vertices.
Clearly, if val(¢) = 1, the (}) vertices corresponding to a satisfy-
ing assignment induce a clique. Our main technical contribution is
proving that, when val(§) < 1 — ¢, every (})-subgraph is sparse:

THEOREM 3.1. For any d,e > 0, there exists § > 0 such that,
for any 3SAT formula ¢ on n variables such that val(¢) < 1 —¢
and each variable appears in at most d clauses and for any integer

€ € [n34/8,n/2], any (7)-subgraph of Gy ¢ has density < 2=t n’,

We remark that there is nothing special about 3SAT; we can start
with any boolean CSP and end up with a similar result, albeit the
soundness deteriorates as the arity of the CSP grows. However, it is
crucial that the variables are boolean; in fact, Braverman et al. [15]
considered a graph similar to ours for 2CSPs but they were unable
to achieve subconstant soundness since their variables were not
boolean®. In particular, there is a non-boolean 2CSP with low value
which results in the graph having a biclique of size larger than (})
(see Appendix A), i.e., one cannot get an inapproximability ratio
more than two starting from a non-boolean CSP.

Once we have Theorem 3.1, the inapproximability results of
DkS (Theorem 1.1 and 1.2) can be easily proved by applying the
theorem with appropriate choices of £. We defer these proofs to
Subsection 3.2. For now, let us turn our attention to the proof
of Theorem 3.1. To prove the theorem, we resort to the following
lemma due to Alon [2], which states that every dense graph contains
many labelled copies of bicliques:

LEmMA 3.2 ([2, LEMMA 2.1]). Any a-dense graph G on N > 2
vertices has at least (z)c/z)t2 N?? labelled copies of Ky ¢ for allt € N.

Equipped with Lemma 3.2, our proof strategy is to bound the
number of labelled copies of K,; in Gy, ¢ where ¢ is to be chosen
later. To argue this, we will need some additional notations:

e First, let Ay = {(x1,0), (x1,1), ..., (xn,0), (xn, 1)} be the
set of all single-variable partial assignments. Observe that
V¢,g C (A;’), ie., eachu € V¢’{> is a subset 0fA¢ of size £.
Let A : (un»)t — P(Agy) be a “flattening” function that,
oninputT € (V¢’[)t, outputs the set of all single-variable
partial assignments that appear in at least one vertex in T.
In other words, when each vertex u is viewed as a subset
of Ay, we can write A(T) simply as Uy et u-

Let Krr = {(L.R) € (Vg o) x (Vg o) | YuelL, Vo e
R,u # vA(u,v) € Ey ¢} denote the set of all labelled copies
of Ky, in Gy, ¢ and, for each A,B C Ag, let K¢, (A, B) :=

the FGLSS graph. It is possible to modify our proof to make it work for this FGLSS
graph. However, the soundness guarantee for the FGLSS graph is worse.

© Any satisfiable boolean 2CSP is solvable in polynomial time so one cannot start with
a boolean 2CSP either.
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{(L,R) € Kt,+ | A(L) = A, A(R) = B} denote the set of all
(L,R) € K¢, + with A(L) = A and A(R) = B.
The number of labelled copies of K;,; in G, ; can be written as

[Keel= Y. 1Kei(AB).
ABCAy

®

To bound | K}, ¢ |, we will prove the following bound on |K;, (A, B)|.

LEMMA 3.3. Let ¢,n,{,d and ¢ be as in Theorem 3.1. There exists
A > 0 depending only on d and ¢ such that, for any t € N and any

. 2t
ABS Ag 1Ky (AB) < (2701 ()

Before we prove the above lemma, let us see how Lemma 3.2
and Lemma 3.3 imply Theorem 3.1.

PRrROOF OF THEOREM 3.1. Assume w.lo.g. that A < 1. Pick § =
A2/8 and t = (4/A)(n?/£?). From Lemma 3.3 and (1), we have

2t 2
15, el < 247 (z—MZ/n(Z)) < @Iy (;)

where the second inequality comes from our choice of ¢; note that
t is chosen so that the 24" factor is consumed by 274 from
Lemma 3.3. Finally, consider any (';)—subgraph of Gy, ¢. By the

above bound, it contains at most (2-A¢* /1)t . (;)Zt labelled copies

of Ky, ;. Thus, from Lemma 3.2 and from ¢ > n3/4/5, its density is

at most 2 - 274/ (nt) = 5. 9=26¢%/n? < 2788/ a5 desired. o

We now move on to the proof of Lemma 3.3.

Proor or LEMMA 3.3. First, notice that if (x, b) appears in A and
(x, =b) appears in B for some variable x and bit b, then K} (A, B) =
0; this is because, for any L with A(L) = A and R with A(R) =
B, there exist u € L and v € R that contain (x,b) and (x, =b)
respectively, meaning that there is no edge between u and v and,
thus, (L, R) ¢ K¢, (A, B). Hence, from now on, we can assume that, if
(x, b) appears in one of A, B, then the other does not contain (x, =b).
Observe that this implies that, for each variable x, its assignments
can appear in A and B at most two times’ in total. This in turn
implies that |A| + |B| < 2n.

Let us now argue that |Xy, (A, B)| < (?)Zt; while this is not
the bound we are looking for yet, it will serve as a basis for our
argument later. For every (L, R) € K, +(A, B), observe that, since

A(L) = Aand A(R) = B, we have L € (‘?)t and R € (?)t This
implies that K; (A, B) C (’?)t X (?)t. Hence,

t t
(%1 (A.B)| < ('A') ('B') .

el e @

"This is where we use the fact that the variables are boolean. For non-boolean CSPs,
each variable x can appear more than two times in one of A or B alone, which can
indeed be problematic (see Appendix A).
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Moreover, (‘?l) (‘?l) can be further bounded as

-1
(I?I)(|§|) _ ﬁ l_[(|A| — (Bl - 1)

i=0
-1 2
1 Al + |B
(From AM-GM Inequality) < W (% _ i)
=0

(From from |A| + |B| < 2n) <

®

2
n
!
Combining (2) and (3) indeed yields | %, (A, B)| < (7)*.

Inequality (2) is very crude; we include all elements of (?) and

— o~

(?) as candidates for vertices in L and R respectively. However,
as we will see soon, only tiny fraction of elements of (’2), (lg) can
actually appear in L, R when (L, R) € K, (A, B). To argue this, let
us categorize the variables into three groups:
o x is terrible iff its assignments appear at most once in total
in Aand B (i.e. [{(x,0), (x, 1)} NA|+|{(x, 0), (x, 1)} NB| < 1).
o x is good iff, for some b € {0,1}, (x,b) € AN B. Note that
this implies that (x, =b) ¢ AU B.
o x is bad iff either {(x,0), (x,1)} € Aor {(x,0),(x,1)} C B.
The next and last step of the proof is where birthday-type para-
doxes come in. Before we continue, let us briefly demonstrate the
ideas behind this step by considering the following extreme cases:
e If all variables are terrible, then |A| + |B| < n and (3) can
be immediately tightened.
If all variables are bad, assume w.l.o.g. that, for at least
half of variables x’s, {(x,0),(x,1)} C A. Consider a ran-
dom element u of (‘?) Since u is a set of random ¢ distinct
elements of A, there will, in expectation, be Q(£?/n) vari-
ables x’s with (x, 0), (x, 1) € u. However, the presence of
such x’s means that u is not a valid vertex. Moreover, it
is not hard to turn this into the following probabilistic
statement: with probability at most 279(¢*/n) y contains
at most one of (x,0), (x, 1) for every variable x. In other
words, only 2-Q(¢%/n) fraction of elements of (‘2‘) are valid
vertices, which yields the desired bound on |K;, ;(A, B)|.
If all variables are good, then A = B is simply an assignment
to all the variables. Since val(¢) < 1—¢, at least em clauses
are unsatisfied by this assignment. As we will argue below,
every element of (?) that contains two variables from some
unsatisfied clause cannot be in L for any (L, R) € K¢, (A, B).
This means that there are ©,(m) > Q,(n) prohibited pairs
of variables that cannot appear together. Again, similar
to the previous case, it is not hard to argue that only
27Q.a(¢*/n) fraction of elements of (’2) can be candidates
for vertices of L.
To turn this intuition into a bound on |%}, (A, B)|, we need the
following inequality. Its proof is straightforward and is deferred to
Subsection 3.1.

PrOPOSITION 3.4. Let U be any set and P C ((2]) be any set of
pairs of elements of U such that each element of U appears in at most
q pairs. For any positive integer 2 < r < |U|, the probability that a
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random element of(lrj) does not contain both elements of any pair in

[P|r? )

4q|U?
We are now ready to formalize the above intuition and finish
the proof of Lemma 3.3. For the sake of convenience, denote the
sets of good, bad and terrible variables by Xg, X}, and X; respec-
tively. Moreover, let f := ¢/(100d) and pick A = min{-log(1 —
B/2), B/64, ¢/(384d)}. To refine the bound on the size of K} (A, B),

consider the following three cases:
(1) |X¢| > Pn. Since each x € X; contributes at most one to
|A|+|B|, |A|+|B| < (1-/2)(2n). Hence, we can improve (3)

2
to (I?\)(I?I) < ((l—ﬁ[/Z)n) . Thus, |%¢, (A, B)| is bounded
above by

2t 2t 2t
[0 <lommm Q) <)

where the last inequality comes from A < —log(1 — f/2)
and £ > £2/n.

P is at most exp (—

@

~

|Xp| > pn. Since each x € X, appears either in A or B,
one of A and B must contain assignments to at least (f/2)n
variables in Xj. Assume w.l.o.g. that A satisfies this prop-
erty. Let le be the set of all x € X}, whose assignments

appear in A. Note that |X£| > (B/2)n.

Observe that an element u € (?) is not a valid vertex
if it contains both (x, 0) and (x, 1) for some x € Xi. We
invoke Proposition 3.4 with U = A, P = {{(x,0), (x, 1)} |
x € Xﬁ }.q = 1 and r = ¢, which implies that a random

element of (’2) does not contain any prohibited pairs in P

(B/2)nt? )

4(2n)?
which is at most 27240/ because 1 < pB/64. In other
words, at most 2-2AC%n fraction of elements of (’2) are

valid vertices. This gives us the following upper bound on
|%e, (A, B):

oo () 2y

|X¢| < pnand |X}| < Bn. In this case, [X4| > (1 - 2f)n.
Let S denote the set of clauses whose variables all lie in
Xg. Since each variable appears in at most d clauses, |S| >
m—(2fn)d > (1—¢/2)m where the second inequality comes
from our choice of § and from m > n/3.

Consider the partial assignment f : X; — {0,1} in-
duced by A and B, i.e., f(x) = b iff (x,b) € A, B. Since
val(¢) < 1 — ¢, the number of clauses in S satisfied by f
is at most (1 — £)m. Hence, at least em/2 clauses in S are
unsatisfied by f. Denote the set of such clauses by SynsaT-

Fix a clause C € SynsaT and let x, y be two different
variables in C. We claim that x, y cannot appear together
in any vertex of L for any (L, R) € K}, +(A, B). Suppose for
the sake of contradiction that (x, f(x)) and (y, f(y)) both
appear in u € L for some (L,R) € K; (A, B). Let z € X
be another variable? in C. Since (z, f(z)) € B, some vertex

. s Ixz 16
with probability at most exp ~qap | Sexp (—

3

=

8If C contains two variables, let z = x. Note that we can assume w.lo.g. that C

contains at least two variables.
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v € R contains (z, f(z)). Thus, there is no edge between u
and v in Gy, ¢, which contradicts with (L, R) € K ;.

We can now appeal to Proposition 3.4 with U = A,
q = 2d,r = { and P be the prohibited pairs described above.

This implies that with probability at most exp (—%) <

el? A :
exp (—m), a random element of ( t’) contains no pro-

2
hibited pair from P. In other words, at most exp (—%)

fraction of elements of (?) can be candidates for each ele-
ment of L for (L, R) € K3, +(A, B). This gives the following
sharpened upper bound on |K} (A, B)|:

el?

(e (52527 (I?I))t , (|1;|)’ 2 fprcsin, (;))zt |

Since we picked A < €/(384d), |}, ¢ (A, B)| is once again
2t
bounded above by (2‘”2/" (2))

2t
In all three cases, we have | K} (A, B)| < (2‘“2/” (;)) , complet-
ing the proof of Lemma 3.3. O

3.1 Proof of Proposition 3.4

PROOF OF PROPOSITION 3.4. We first construct P” C P such that
each element of U appears in at most one pair in P’ as follows. Start
out by marking every pair in P as active and, as long as there are
active pairs left, include one in P’ and mark every pair that shares
an element of U with this pair as inactive. Since each element of U
appears in at most g pairs in P, we mark at most 2q pairs as inactive
per each inclusion. This implies that |P’| > |P|/(2q).

Suppose that P’ = {{a1,b1},...,{a|p|,b|p:|}}. Let u be a ran-

dom element of (lr]) Foreachi=1,...,|P’|, we have
Ul-2
(I 2 ) r? r2
P i, b =1- == <1-——K -—— .
r[{al l} ¢— u] (‘Ul) 2|U|2 exp( 2|U|2)
r

If u does not contain both elements of any pairs in P, it does not
contain both elements of any pairs in P’. The probability of the
latter can be written as

[P’ [P’

i-1
Pr /\{ai,bi} Zu|= l_[Pr {aj,bi} L u /\{aj,bj} < ul.
i=1 i=1 j=1

In addition, since ay, by, ..
to see that Pr [{ai,bi} ¢ u‘ /\;;i{aj, bj} ¢ u] < Prl{a;, b;i} € ul.

Hence, we can upper bound Pr [A P/l{ai, bi} & u] by

|
i=1
o

.. a|pr|, bpr| are distinct, it is not hard

[P’

[ Pritai bi} ¢ wl <
i=1

|P|r?
P 4q|U?

2 P
(exp (__2|U|2)) < ex]

completing the proof of Proposition 3.4.

3.2 Proofs of Inapproximability Results of DkS
In this subsection, we prove Theorem 1.1 and 1.2. The proof of
Theorem 1.1 is simply by combining Dinur’s PCP Theorem and
Theorem 3.1 with £ = m/polylog m, as stated below.
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ProoF oF THEOREM 1.1. For any 3SAT formula ¢ with m clauses,
use Theorem 2.4 to produce ¢ with m’ = O(m polylog m) clauses
such that each variable appears in at most d clauses. Let { be a
constant such that m’ = O(m logg m) and let £ = m/log? m. Let us
consider the graph Gy , with k = (?) where n is the number of
variables of ¢. Let N be the number of vertices of Gy . Observe
that N = 2(7) < n? < (m")00) = 20(¢logm’) = o(m),

If ¢ is satisfiable, ¢ is also satisfiable and it is obvious that
G¢’g contains an induced k-clique. Otherwise, If ¢ is unsatisfiable,
val(¢) < 1— e From Theorem 3.1, any k-subgraph of G ¢ has den-
sity at most 27C/n") < g=Qm/log ™ m) _ N—(1/(loglog N)**%),

which is at most N~/10g10g N when m is sufficiently large.

Hence, if there is a polynomial-time algorithm that can distinguish
between the two cases in Theorem 1.1 when ¢ = 3¢ + 9, then there
also exists an algorithm that solves 3SAT in time 2"(’"), contradict-
ing with ETH. o

The proof of Theorem 1.2 is even simpler since, under Gap-ETH,
we have the gap version of 3SAT to begin with. Hence, we can
directly apply Theorem 3.1 without going through Dinur’s PCP:

PRrROOF OF THEOREM 1.2. Let ¢ be any 3SAT formula with m clauses
such that each variable appears in O(1) clauses’. Let £ = m</f(m)
and consider the graph Gy ¢ with k = (7) where n is the number

of variables of ¢. The number of vertices N of Gy ¢ is 2[(?) <
9t (%)" < 20(Llog(m/0) — H0(m3/F(m)log(1/f(m)) — 30(m) where

the last inequality follows from f € o(1).

The completeness is again obvious. For the soundness, if val(¢) <
1—e¢, from Theorem 3.1, any k-subgraph of G ¢ has density at most
2-Q¢* /%) < Z’Q(mf(mws) < N’Q(f(m)m), which is at most!?
N~fN) when m is sufficiently large. Hence, if there is a polynomial-
time algorithm that can distinguish between the two cases in The-
orem 1.2, then there also exists an algorithm that solves the gap
version of 3SAT in time 2°(™), contradicting with Gap-ETH. O

4 CONCLUSION AND OPEN QUESTIONS

In this work, we provide a subexponential time reduction from the
gap version of 3SAT to DS and prove that it establishes an almost-
polynomial ratio hardness of approximation of the latter under ETH
and Gap-ETH. Even with our results, however, approximability of
DKS still remains wide open. Namely, it is still not known whether
it is NP-hard to approximate DS to within some constant factor,
and, no polynomial ratio hardness of approximation is yet known.

Although our results appear to almost resolve the second ques-
tion, it still seems out of reach with our current knowledge of
hardness of approximation. In particular, to achieve a polynomial
ratio hardness for DkS, it is plausible that one has to prove a long-
standing conjecture called the sliding scale conjecture (SSC) [11]. In
short, SSC essentially states that LABEL COVER, a problem used as
starting points of almost all NP-hardness of approximation results,
is NP-hard to approximate to within some polynomial ratio. Note
here that polynomial ratio hardness for LABEL COVER is not even

“We can assume w.Lo.g. that each variable appears in at most O(1) clauses [38, p.21].
10 Assume w.l.o.g. that f is decreasing; otherwise take f’(m) = sup f(m’) instead.
m'>m
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known under stronger assumptions such as ETH or Gap-ETH; we
refer the readers to [21] for more detailed discussions on the topic.

Apart from the approximability of DkS, our results also prompt
the following question: since previous techniques, such as Feige’s
Random 3SAT Hypothesis [22], Khot’s Quasi-Random PCP [33],
the Small Set Expansion Conjecture [41] and the Planted Clique
Hypothesis [31, 35], that were successful in showing inapproxima-
bility of DS also gave rise to hardnesses of approximation of many
problems that are not known to be APX-hard such as SPARSEST CuT
and MIN BISECTION [4, 42], is it possible to modify our construction
to prove inapproximability for these problems as well?

A A COUNTEREXAMPLE TO OBTAINING A
SUBCONSTANT SOUNDNESS FROM
NON-BOOLEAN CSPS

Here we sketch an example due to Rubinstein [44] of a non-boolean
2CSP ¢ with low value for which the graph G ¢ contains a large
biclique. For a non-boolean 2CSP, we define the graph G ¢ similar
to that of a 3SAT formula except that now the vertices contains all
{(xi;, 04,), . . ., (xi,, 01,)} for all distinct variables x;,, ..., x;, and

all 0y, ..., 04, € X where X is the alphabet of the CSP.
Consider any non-boolean 2CSP instance ¢ on variables x1, . . ., xn
such that there is no constraint between X := {x1, ..., xn/z} and

X2 = {Xn/241> - - - » Xn } and each variable appears in < d constraints.
Let L the set of all vertices u such that every variable in u belongs
to X; and no constraint is contained in u. Define R similarly for
Xs. Clearly, (L, R) forms a biclique and it is not hard to see that
IL|,|R| = |2|€("/27(€d+1)€). Since |%| > 3, this value is > (}) for all
< m. Hence, for such ¢, G ¢ contains a biclique of size (?)

Finally, note that there are several ways to define constraints
within X7 and X3 so that val(¢) is bounded away from one. For
instance, we can make each side a random 2-XOR formula, which
results in val(¢) < 1/2 + O(1/Vd) w.h.p. Thus, if we start from a
non-boolean CSP, the largest gap we can hope to get is only two.

Note that the instance above is rather extreme as it consists of
two disconnected components. Hence, it is still possible that, if the
starting CSP has more specific properties (e.g. expanding constraint
graph), then one can arrive at a gap of more than two.
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