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ABSTRACT

In the D������ k�S������� (DkS) problem, given an undirected

graph G and an integer k , the goal is to �nd a subgraph of G on

k vertices that contains maximum number of edges. Even though

Bhaskara et al.’s state-of-the-art algorithm for the problem achieves

only O(n1/4+ε ) approximation ratio, previous attempts at proving

hardness of approximation, including those under average case

assumptions, fail to achieve a polynomial ratio; the best ratios

ruled out under any worst case assumption and any average case

assumption are only any constant (Raghavendra and Steurer) and

2O (log2/3 n) (Alon et al.) respectively.

In this work, we show, assuming the exponential time hypothesis

(ETH), that there is no polynomial-time algorithm that approxi-

mates DkS to within n1/(log logn)
c

factor of the optimum, where

c > 0 is a universal constant independent of n. In addition, our

result has perfect completeness, meaning that we prove that it is

ETH-hard to even distinguish between the case in whichG contains

a k-clique and the case in which every induced k-subgraph of G

has density at most 1/n−1/(log logn)
c

in polynomial time.

Moreover, if we make a stronger assumption that there is some

constant ε > 0 such that no subexponential-time algorithm can

distinguish between a satis�able 3SAT formula and one which is

only (1 − ε)-satis�able (also known as Gap-ETH), then the ratio

above can be improved to nf (n) for any function f whose limit is

zero as n goes to in�nity (i.e. f ∈ o(1)).
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1 INTRODUCTION

In the D������ k�S������� (DkS) problem, we are given an undi-

rected graph G on n vertices and a positive integer k 6 n. The goal

is to �nd a set S of k vertices such that the induced subgraph on

S has maximum number of edges. Since the size of S is �xed, the

problem can be equivalently stated as �nding a k-subgraph (i.e.

subgraph on k vertices) with maximum density where density1 of

the subgraph induced on S is |E(S)|/
( |S |
2

)

and E(S) denotes the set

of all edges among the vertices in S .

D������ k�S�������, a natural generalization of k�C���� [32],

was �rst formulated and studied by Kortsarz and Peleg [34] in the

early 90s. Since then, it has been the subject of intense study in the

context of approximation algorithm and hardness of approxima-

tion [3, 8, 10, 13–15, 22, 24–27, 33, 41, 46]. Despite this, its approx-

imability still remains wide open and is considered by some to be

an important open question in approximation algorithms [13–15].

On the approximation algorithm front, Kortsarz and Peleg [34],

in the same work that introduced the problem, gave a polynomial-

time Õ(n0.3885)-approximation algorithm for DkS. Feige, Kortsarz

and Peleg [24] later provided an O(n1/3−δ )-approximation for the

problem for some constant δ ≈ 1/60. This approximation ratio

was the best known for almost a decade until Bhaskara et al. [13]

invented a log-density based approach which yielded anO(n1/4+ε )-

approximation for any constant ε > 0. This remains the state-of-

the-art approximation algorithm for DkS.

While the above algorithms demonstrate the main progresses

of approximations of DkS in general case over the years, many

special cases have also been studied. Most relevant to our work is

the case where the optimal k-subgraph has high density, in which

better approximations are known [10, 26, 37, 47]. The �rst and

most representative algorithm of this kind is that of Feige and

Seltser [26], which provides the following guarantee: when the

input graph contains a k-clique, the algorithm can �nd an (1 − ε)-

dense k-subgraph in nO (logn/ε ) time. We will refer to this problem

of �nding densest k-subgraph when the input graph is promised to

have a k-clique D������ k�S������� with perfect completeness.

Although many algorithms have been devised for DkS, relatively

little is known regarding its hardness of approximation. While it

is commonly believed that the problem is hard to approximate to

1It is worth noting that sometimes density is de�ned as |E(S ) |/ |S |. For DkS, both
de�nitions of density result in the same objective since |S | = k is �xed. However, our
notion is more convenient to deal with as it always lies in [0, 1].
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within some polynomial ratio [3, 14], not even a constant factor NP-

hardness of approximation is known. To circumvent this, Feige [22]

came up with a hypothesis that a random 3SAT formula is hard to

refute in polynomial time and proved that, assuming this hypothesis,

DkS is hard to approximate to within some constant factor.

Alon et al. [3] later used a similar conjecture regarding random

k-AND to rule out polynomial-time algorithms for DkS with any

constant approximation ratio. Moreover, they proved hardnesses of

approximation of DkS under the following Planted Clique Hypothe-

sis [31, 35]: there is no polynomial-time algorithm that can distin-

guish between a typical Erdős-Rényi random graph G(n, 1/2) and

one in which a clique of size polynomial in n (e.g. n1/3) is planted.

Assuming this hypothesis, Alon et al. proved that no polynomial-

time algorithm approximates DkS to within any constant factor.

They also showed that, when the hypothesis is strengthened to

rule out not only polynomial-time but also super-polynomial time

algorithms for the Planted Clique problem, their inapproximability

guarantee for DkS can be improved. In particular, if no nO (
√
logn)-

time algorithm solves the Planted Clique problem, then 2O (log2/3 n)-

approximation for DkS cannot be achieved in polynomial time.

There are also several inapproximability results of DkS based

on worst-case assumptions. Khot [33] showed, assuming NP *

BPTIME(2n
ε

) for some constant ε > 0, that no polynomial-time

algorithm can approximate DkS to within (1 + δ ) factor where

δ > 0 is a constant depending only on ε ; the proof is based on a

construction of a “quasi-random” PCP, which is then used in place

of a random 3SAT in a reduction similar to that from [22].

While no inapproximability of DkS is known under the Unique

Games Conjecture, Raghavendra and Steurer [41] showed that a

strengthened version of it, in which the constraint graph is required

to satisfy a “small-set expansion” property, implies that DkS is hard

to approximate to within any constant ratio.

Recently, Braverman et al. [15], showed, under the exponential

time hypothesis (ETH), which will be stated shortly, that, for some

constant ε > 0, no nÕ (logn)-time algorithm can approximate D����

��� k�S������� with perfect completeness to within (1 + ε) factor.

It is worth noting here that their result matches almost exactly with

the previously mentioned Feige-Seltser algorithm [26].

Since none of these inapproximability results achieve a polyno-

mial ratio, there have been e�orts to prove better lower bounds

for more restricted classes of algorithms. For example, Bhaskara

et al. [14] provided polynomial ratio lower bounds against strong

SDP relaxations of DkS. Speci�cally, for the Sum-of-Squares hierar-

chy, they showed integrality gaps of n2/53−ε and nε against nΩ(ε )

and n1−O (ε ) levels of the hierarchy respectively. (See also [18, 36] in

which 2/53 in the exponent was improved to 1/14.) Unfortunately,

it is unlikely that these lower bounds can be translated to inapprox-

imability results and the question of whether any polynomial-time

algorithm can achieve subpolynomial approximation ratio for DkS

remains an intriguing open question.

1.1 Our Results

In this work, we rule out, under the exponential time hypothesis

(i.e. no subexponential time algorithm can solve 3SAT; see Hypoth-

esis 2.1), polynomial-time approximation algorithms for DkS (even

with perfect completeness) with slightly subpolynomial ratio:

T������ 1.1. There is a constant c > 0 such that, assuming ETH,

no polynomial-time algorithm can, given a graphG on n vertices and

a positive integer k 6 n, distinguish between the following two cases:

• There exist k vertices of G that induce a k-clique.

• Every k-subgraph of G has density at most n−1/(log logn)
c

.

If we assume a stronger assumption that it takes exponential

time to even distinguish between a satis�able 3SAT formula and

one which is only (1 − ε)-satis�able for some constant ε > 0 (aka

Gap-ETH; see Hypothesis 2.2), the ratio can be improved to nf (n)

for any f ∈ o(1):

T������ 1.2. For every function f ∈ o(1), assuming Gap-ETH,

no polynomial-time algorithm can, given a graphG on n vertices and

a positive integer k 6 n, distinguish between the following two cases:

• There exist k vertices of G that induce a k-clique.

• Every k-subgraph of G has density at most n−f (n).

We remark that, for DkS with perfect completeness, the afore-

mentioned Feige-Seltser algorithm achieves an nε -approximation

in time nO (1/ε ) for every ε > 0 [26]. Hence, the ratios in our theo-

rems cannot be improved to some �xed polynomial and the ratio

in Theorem 1.2 is tight in this sense.

Comparison to Previous Results. In terms of inapproximabil-

ity ratios, the ratios ruled out in this work are almost polynomial

and provides a vast improvement over previous results. Prior to

our result, the best known ratio ruled out under any worst case

assumption is only any constant [41] and the best ratio ruled out

under any average case assumption is only 2O (log2/3 n) [3]. In addi-

tion, our results also have perfect completeness, which was only

achieved in [15] under ETH and in [3] under the Planted Clique

Hypothesis but not in [22, 33, 41].

Regarding the assumptions our results are based upon, the aver-

age case assumptions used in [3, 22] are incomparable to ours. The

assumption NP * BPTIME(2n
ε

) used in [33] is also incomparable

to ours since, while not stated explicitly, ETH and Gap-ETH by

default focus only on deterministic algorithms and our reductions

are also deterministic. The strengthened Unique Games Conjecture

used in [41] is again incomparable to ours as it is a statement that a

speci�c problem is NP-hard. Finally, although Braverman et al.’s re-

sult [15] also relies on ETH, its relation to our results is more subtle.

Speci�cally, their reduction time is only 2Θ̃(
√
m) wherem is the num-

ber of clauses, meaning that they only need to assume that 3SAT

< DTIME(2Θ̃(
√
m)) to rule out a constant ratio polynomial-time ap-

proximation for DkS. However, as we will see in Theorem 3.1, even

to achieve a constant gap, our reduction time is 2Ω̃(m
3/4). Hence, if

3SAT somehow ends up in DTIME(2Θ̃(m
3/4))\DTIME(2Θ̃(

√
m)), their

result will still hold whereas ours will not even imply constant ratio

inapproximability for DkS.

Implications of Our Results. One of the reasons that DkS

has received signi�cant attention in the approximation algorithm

community is due to its connections to many other problems. Most

relevant to our work are the problems to which there are reductions

fromDkS that preserve approximation ratios towithin some polyno-

mial2. These problems include D������ A��M����k�S������� [5],

2These are problems whose O (ρ)-approximation gives anO (ρc )-approximation for
DkS for some constant c .
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S�������m�E��� S������� [17], S������ k�F����� [28] and���

������K������� [40]. For brevity, we do not de�ne these problems

here. We refer interested readers to cited sources for their de�ni-

tions and reductions from DkS to respective problems. We also note

that this list is by no means exhaustive and there are indeed numer-

ous other problems with similar known connections to DkS. Our

results also imply hardness of approximation results with similar

ratios to DkS for such problems:

C�������� 1.3. For some constant c > 0, assuming ETH, there is

no polynomial-time n1/(log logn)
c

-approximation algorithm forD����

��� A��M����k�S�������, S�������m�E��� S�������, S������

k�F�����, �������� K�������. Moreover, for any function f 2
o(1), there is no polynomial-time nf (n)-approximation algorithm for

any of these problems, unless Gap-ETH is false.

2 PRELIMINARIES AND NOTATIONS

We use exp(x) and log(x) to denote ex and log2(x) respectively.

polylogn is used as a shorthand for O(logc n) for some absolute

constant c . For any set S , P(S) := {T | T ✓ S} denotes the power

set of S . For any non-negative integer t 6 |S |, we use
(S
t

)

:= {T 2
P(S) | |T | = t} to denote the collection of all subsets of S of size t .

Throughout this work, we only concern with simple unweighted

undirected graphs. Recall that the density of a graph G = (V ,E)

on N > 2 vertices is |E |/
(N
2

)

. We say that a graph is α-dense if its

density is α . Moreover, for every t 2 N, we view each element of

V t as a t-size ordered multiset of V . (L,R) 2 V t ⇥V t is said to be

a labelled copy of a t-biclique (or Kt,t ) in G if, for every u 2 L and

v 2 R, u , v and (u,v) 2 E. The number of labelled copies of Kt,t
in G is the number of all such (L,R)’s.

2.1 Exponential Time Hypotheses

One of our results is based on the exponential time hypothesis

(ETH), a conjecture proposed by Impagliazzo and Paturi [29] which

asserts that 3SAT cannot be solved in subexponential time:

H��������� 2.1 (ETH [29]). No 2o(m)-time algorithm can decide

whether any 3SAT formula withm clauses3 is satis�able.

Another hypothesis used in this work is Gap-ETH, a strength-

ened version of the ETH, which essentially states that even approx-

imating 3SAT to some constant ratio takes exponential time:

H��������� 2.2 (G���ETH [21, 38]). There exists a constant ε > 0

such that no 2o(m)-time algorithm can, given a 3SAT formula ϕ with

m clauses4, distinguish between the case where ϕ is satis�able and the

case where val(ϕ) 6 1 − ε . Here val(ϕ) denote the maximum fraction

of clauses of ϕ satis�ed by any assignment.

2.2 Nearly-Linear Size PCPs and

Subexponential Time Reductions

The celebrated PCP Theorem [6, 7], which lies at the heart of virtu-

ally all known NP-hardness of approximation results, can be viewed

3In its original form, the running time lower bound is exponential in the number of
variables not the number of clauses; however, thanks to the sparsi�cation lemma of
Impagliazzo et al. [30], both versions are equivalent.
4As noted by Dinur [21], a subsampling argument can be used to make the number
of clauses linear in the number of variables, meaning that the conjecture remains the
same even whenm denotes the number of variables.

as a polynomial-time reduction from 3SAT to a gap version of 3SAT,

as stated below. While this perspective is a rather narrow viewpoint

of the theorem that leaves out the fascinating relations between

parameters of PCPs, it will be the most convenient for our purpose.

T������ 2.3 (PCP T������ [6, 7]). For some constant ε > 0,

there exists a polynomial-time reduction that takes a 3SAT formula φ

and produces a 3SAT formula ϕ such that

• (Completeness) if φ is satis�able, then ϕ is satis�able, and,

• (Soundness) if φ is unsatis�able, then val(ϕ) 6 1 − ε .

Following the �rst proofs of the PCP Theorem, considerable

e�orts have been made to improve the trade-o�s between the pa-

rameters in the theorem. One such direction is to try to reduce

the size of the PCP, which, in the above formulation, translates to

reducing the size of ϕ relative to φ. On this front, it is known that

the size of ϕ can be made nearly-linear in the size of φ [12, 20, 39].

For our purpose, we will use Dinur’s PCP Theorem [20], which has

a blow-up of only polylogarithmic in the size of ϕ:

T������ 2.4 (D����’� PCP T������ [20]). For some constant

ε,d > 0, there exists a polynomial-time reduction that takes a 3SAT

formula φ withm clauses and produces another 3SAT formula ϕ with

m0
= O(m polylogm) clauses such that

• (Completeness) if φ is satis�able, then ϕ is satis�able, and,

• (Soundness) if φ is unsatis�able, then val(ϕ) 6 1 − ε , and,

• (Bounded Degree) each variable of ϕ appears in 6 d clauses.

Note that Dinur’s PCP, combined with ETH, implies a lower

bound of 2Ω(m/polylogm) on the running time of algorithms that

solve the gap version of 3SAT, which is only a factor ofO(polylogm)

in the exponent o� from Gap-ETH. Putting it di�erently, Gap-ETH

is closely related to the question of whether a linear size PCP, one

where the size blow-up is only constant instead of polylogarithmic,

exists; its existence would mean that Gap-ETH is implied by ETH.

Under the exponential time hypothesis, nearly-linear size PCPs

allow us to start with an instance ϕ of the gap version of 3SAT and

reduce, in subexponential time, to another problem. As long as the

time spent in the reduction is 2o(m/polylogm), we arrive at a lower

bound for the problem. Arguably, Aaronson et al. [1] popularized

this method, under the name birthday repetition, by using such a

reduction of size 2Ω̃(
p
m) to prove ETH-hardness for free games and

dense CSPs. Without going into any detail now, let us mention that

the name birthday repetition comes from the use of the birthday

paradox in their proof and, since its publication, their work has

inspired many inapproximability results [9, 15, 16, 19, 38, 43, 45].

Our result too is inspired by this line of work and, as we will see

soon, part of our proof also contains a birthday-type paradox.

3 THE REDUCTION AND PROOFS OF THE

MAIN THEOREMS

The reduction from the gap version of 3SAT to DkS is simple. Given

a 3SAT formulaϕ onn variables x1, . . . ,xn and an integer 1 6 ` 6 n,

we construct a graph5 Gϕ, ` = (Vϕ, ` ,Eϕ, `) as follows:

5For interested readers, we note that our graph is not the same as the FGLSS graph [23]
of the PCP in which the veri�er reads ` random variables and accepts if no clause is
violated; while this graph has the same vertex set as ours, the edges are di�erent since
we check that no clause between the two vertices is violated, which is not checked in
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• Its vertex setVϕ, ` contains all partial assignments to ` vari-

ables, i.e., each vertex is {(xi1 ,bi1 ), . . . , (xi` ,bi` )} where

xi1 , . . . ,xi` are ` distinct variables and bi1 , . . . ,bi` 2 {0, 1}
are the bits assigned to them.

• We connect two vertices {(xi1 ,bi1 ), . . . , (xi` ,bi` )} and
{(xi01 ,bi01 ), . . . , (xi0` ,bi0` )} by an edge i� the two partial as-

signments are consistent (i.e. no variable is assigned 0 in

one vertex and 1 in another), and, every clause in ϕ all of

whose variables are from xi1 , . . . ,xi` ,xi01
, . . . ,xi0

`
is satis-

�ed by the partial assignment induced by the two vertices.

Clearly, if val(ϕ) = 1, the
(n
`

)

vertices corresponding to a satisfy-

ing assignment induce a clique. Our main technical contribution is

proving that, when val(ϕ) 6 1 − ε , every
(n
`

)

-subgraph is sparse:

T������ 3.1. For any d, ε > 0, there exists δ > 0 such that,

for any 3SAT formula ϕ on n variables such that val(ϕ) 6 1 − ε

and each variable appears in at most d clauses and for any integer

` 2 [n3/4/δ ,n/2], any
(n
`

)

-subgraph ofGϕ, ` has density 6 2−δ `
4/n3

.

We remark that there is nothing special about 3SAT; we can start

with any boolean CSP and end up with a similar result, albeit the

soundness deteriorates as the arity of the CSP grows. However, it is

crucial that the variables are boolean; in fact, Braverman et al. [15]

considered a graph similar to ours for 2CSPs but they were unable

to achieve subconstant soundness since their variables were not

boolean6. In particular, there is a non-boolean 2CSP with low value

which results in the graph having a biclique of size larger than
(n
`

)

(see Appendix A), i.e., one cannot get an inapproximability ratio

more than two starting from a non-boolean CSP.

Once we have Theorem 3.1, the inapproximability results of

DkS (Theorem 1.1 and 1.2) can be easily proved by applying the

theorem with appropriate choices of `. We defer these proofs to

Subsection 3.2. For now, let us turn our attention to the proof

of Theorem 3.1. To prove the theorem, we resort to the following

lemma due to Alon [2], which states that every dense graph contains

many labelled copies of bicliques:

L���� 3.2 ([2, L���� 2.1]). Any α-dense graph G on N > 2

vertices has at least (α/2)t 2N 2t labelled copies of Kt,t for all t 2 N.

Equipped with Lemma 3.2, our proof strategy is to bound the

number of labelled copies of Kt,t in Gϕ, ` where t is to be chosen

later. To argue this, we will need some additional notations:

• First, let Aϕ := {(x1, 0), (x1, 1), . . . , (xn , 0), (xn , 1)} be the
set of all single-variable partial assignments. Observe that

Vϕ, ` ✓
(Aϕ
`

)

, i.e., each u 2 Vϕ, ` is a subset of Aϕ of size `.

• Let A : (Vϕ, `)t ! P(Aϕ ) be a “�attening” function that,

on input T 2 (Vϕ, `)t , outputs the set of all single-variable
partial assignments that appear in at least one vertex in T .

In other words, when each vertex u is viewed as a subset

of Aϕ , we can write A(T ) simply as
–

u 2T u.

• Let Kt,t := {(L,R) 2 (Vϕ, `)t ⇥ (Vϕ, `)t | ∀u 2 L, ∀v 2

R,u , v^(u,v) 2 Eϕ, `} denote the set of all labelled copies
of Kt,t in Gϕ, ` and, for each A,B ✓ Aϕ , let Kt,t (A,B) :=

the FGLSS graph. It is possible to modify our proof to make it work for this FGLSS
graph. However, the soundness guarantee for the FGLSS graph is worse.
6Any satis�able boolean 2CSP is solvable in polynomial time so one cannot start with
a boolean 2CSP either.

{(L,R) 2 Kt,t | A(L) = A,A(R) = B} denote the set of all
(L,R) 2 Kt,t with A(L) = A and A(R) = B.

The number of labelled copies of Kt,t in Gϕ, ` can be written as

|Kt,t | =
’

A,B✓Aϕ

|Kt,t (A,B)|. (1)

To bound |Kt,t |, we will prove the following bound on |Kt,t (A,B)|.

L���� 3.3. Let ϕ,n, `,d and ε be as in Theorem 3.1. There exists

λ > 0 depending only on d and ε such that, for any t 2 N and any

A,B ✓ Aϕ , |Kt,t (A,B)| 6
⇣

2−λ`
2/n (n

`

)

⌘2t
.

Before we prove the above lemma, let us see how Lemma 3.2

and Lemma 3.3 imply Theorem 3.1.

P���� �� T������ 3.1. Assume w.l.o.g. that λ 6 1. Pick δ =

λ2/8 and t = (4/λ)(n2/`2). From Lemma 3.3 and (1), we have

|Kt,t | 6 24n ·
✓

2−λ`
2/n

✓

n

`

◆◆2t

6 (2−λ`2/n )t ·
✓

n

`

◆2t

where the second inequality comes from our choice of t ; note that

t is chosen so that the 24n factor is consumed by 2−λ`
2/n from

Lemma 3.3. Finally, consider any
(n
`

)

-subgraph of Gϕ, ` . By the

above bound, it contains at most (2−λ`2/n )t ·
(n
`

)2t
labelled copies

of Kt,t . Thus, from Lemma 3.2 and from ` > n3/4/δ , its density is

at most 2 · 2−λ`2/(nt ) = 2 · 2−2δ `4/n3
6 2−δ `

4/n3
as desired. ⇤

We now move on to the proof of Lemma 3.3.

P���� �� L���� 3.3. First, notice that if (x ,b) appears inA and

(x ,¬b) appears in B for some variable x and bit b, thenKt,t (A,B) =
;; this is because, for any L with A(L) = A and R with A(R) =
B, there exist u 2 L and v 2 R that contain (x ,b) and (x ,¬b)
respectively, meaning that there is no edge between u and v and,

thus, (L,R) < Kt,t (A,B). Hence, fromnowon, we can assume that, if

(x ,b) appears in one ofA,B, then the other does not contain (x ,¬b).
Observe that this implies that, for each variable x , its assignments

can appear in A and B at most two times7 in total. This in turn

implies that |A| + |B | 6 2n.

Let us now argue that |Kt,t (A,B)| 6
(n
`

)2t
; while this is not

the bound we are looking for yet, it will serve as a basis for our

argument later. For every (L,R) 2 Kt,t (A,B), observe that, since
A(L) = A and A(R) = B, we have L 2

(A
`

)t
and R 2

(B
`

)t
. This

implies that Kt,t (A,B) ✓
(A
`

)t
⇥
(B
`

)t
. Hence,

|Kt,t (A,B)| 6
✓

|A|
`

◆t ✓|B |
`

◆t

. (2)

7This is where we use the fact that the variables are boolean. For non-boolean CSPs,
each variable x can appear more than two times in one of A or B alone, which can
indeed be problematic (see Appendix A).
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Moreover,
( |A |
`

) ( |B |
`

)

can be further bounded as

✓

|A|
`

◆ ✓

|B |
`

◆

=

1

(`!)2
`−1
÷

i=0

(|A| − i)(|B | − i)

(From AM-GM Inequality) 6 1

(`!)2
`−1
÷

i=0

✓

|A| + |B |
2

− i

◆2

(From from |A| + |B | 6 2n) 6
✓

n

`

◆2

(3)

Combining (2) and (3) indeed yields |Kt,t (A,B)| 6
(n
`

)2t
.

Inequality (2) is very crude; we include all elements of
(A
`

)

and
(B
`

)

as candidates for vertices in L and R respectively. However,

as we will see soon, only tiny fraction of elements of
(A
`

)

,
(B
`

)

can

actually appear in L,R when (L,R) ∈ Kt,t (A,B). To argue this, let
us categorize the variables into three groups:

• x is terrible i� its assignments appear at most once in total

inA and B (i.e. |{(x , 0), (x , 1)}∩A|+ |{(x , 0), (x , 1)}∩B | 6 1).

• x is good i�, for some b ∈ {0, 1}, (x ,b) ∈ A ∩ B. Note that

this implies that (x ,¬b) < A ∪ B.

• x is bad i� either {(x , 0), (x , 1)} ⊆ A or {(x , 0), (x , 1)} ⊆ B.

The next and last step of the proof is where birthday-type para-

doxes come in. Before we continue, let us brie�y demonstrate the

ideas behind this step by considering the following extreme cases:

• If all variables are terrible, then |A| + |B | 6 n and (3) can

be immediately tightened.

• If all variables are bad, assume w.l.o.g. that, for at least

half of variables x ’s, {(x , 0), (x , 1)} ⊆ A. Consider a ran-

dom element u of
(A
`

)

. Since u is a set of random ` distinct

elements of A, there will, in expectation, be Ω(`2/n) vari-
ables x ’s with (x , 0), (x , 1) ∈ u. However, the presence of

such x ’s means that u is not a valid vertex. Moreover, it

is not hard to turn this into the following probabilistic

statement: with probability at most 2−Ω(`
2/n), u contains

at most one of (x , 0), (x , 1) for every variable x . In other

words, only 2−Ω(`
2/n) fraction of elements of

(A
`

)

are valid

vertices, which yields the desired bound on |Kt,t (A,B)|.
• If all variables are good, thenA = B is simply an assignment

to all the variables. Since val(ϕ) 6 1− ε , at least εm clauses

are unsatis�ed by this assignment. As we will argue below,

every element of
(A
`

)

that contains two variables from some

unsatis�ed clause cannot be in L for any (L,R) ∈ Kt,t (A,B).
This means that there are Θε (m) > Ωε (n) prohibited pairs

of variables that cannot appear together. Again, similar

to the previous case, it is not hard to argue that only

2−Ωε,d (`2/n) fraction of elements of
(A
`

)

can be candidates

for vertices of L.

To turn this intuition into a bound on |Kt,t (A,B)|, we need the

following inequality. Its proof is straightforward and is deferred to

Subsection 3.1.

P���������� 3.4. Let U be any set and P ⊆
(U
2

)

be any set of

pairs of elements ofU such that each element ofU appears in at most

q pairs. For any positive integer 2 6 r 6 |U |, the probability that a

random element of
(U
r

)

does not contain both elements of any pair in

P is at most exp
⇣

−
|P |r 2
4q |U |2

⌘

.

We are now ready to formalize the above intuition and �nish

the proof of Lemma 3.3. For the sake of convenience, denote the

sets of good, bad and terrible variables by Xд ,Xb and Xt respec-

tively. Moreover, let β := ε/(100d) and pick λ = min{− log(1 −

β/2), β/64, ε/(384d)}. To re�ne the bound on the size ofKt,t (A,B),
consider the following three cases:

(1) |Xt | > βn. Since each x ∈ Xt contributes at most one to

|A|+ |B |, |A|+ |B | 6 (1−β/2)(2n). Hence, we can improve (3)

to
( |A |
`

) ( |B |
`

)

6
((1−β/2)n

`

)2
. Thus, |Kt,t (A,B)| is bounded

above by
✓

(1 − β/2)n
`

◆2t

6

✓

(1 − β/2)`
✓

n

`

◆◆2t

6

✓

2−λ`
2/n

✓

n

`

◆◆2t

where the last inequality comes from λ 6 − log(1 − β/2)
and ` > `2/n.

(2) |Xb | > βn. Since each x ∈ Xb appears either in A or B,

one ofA and B must contain assignments to at least (β/2)n
variables in Xb . Assume w.l.o.g. that A satis�es this prop-

erty. Let XL
b
be the set of all x ∈ Xb whose assignments

appear in A. Note that |XL
b
| > (β/2)n.

Observe that an element u ∈
(A
`

)

is not a valid vertex

if it contains both (x , 0) and (x , 1) for some x ∈ XL
b
. We

invoke Proposition 3.4 with U = A, P = {{(x , 0), (x , 1)} |
x ∈ XL

b
},q = 1 and r = `, which implies that a random

element of
(A
`

)

does not contain any prohibited pairs in P

with probability atmost exp

✓

−
|X L

b
|`2

4 |A |2

◆

6 exp
⇣

−
(β/2)n`2
4(2n)2

⌘

,

which is at most 2−2λ`
2/n because λ 6 β/64. In other

words, at most 2−2λ`
2/n fraction of elements of

(A
`

)

are

valid vertices. This gives us the following upper bound on

|Kt,t (A,B)|:
✓

2−2λ`
2/n ·

✓

|A|
`

◆◆t

·
✓

|B |
`

◆t (3)
6

✓

2−λ`
2/n

✓

n

`

◆◆2t

(3) |Xt | < βn and |Xb | < βn. In this case, |Xд | > (1 − 2β)n.
Let S denote the set of clauses whose variables all lie in

Xд . Since each variable appears in at most d clauses, |S | >
m−(2βn)d > (1−ε/2)mwhere the second inequality comes

from our choice of β and fromm > n/3.
Consider the partial assignment f : Xд → {0, 1} in-

duced by A and B, i.e., f (x) = b i� (x ,b) ∈ A,B. Since

val(ϕ) 6 1 − ε , the number of clauses in S satis�ed by f

is at most (1 − ε)m. Hence, at least εm/2 clauses in S are

unsatis�ed by f . Denote the set of such clauses by SUNSAT.

Fix a clause C ∈ SUNSAT and let x ,y be two di�erent

variables in C . We claim that x ,y cannot appear together

in any vertex of L for any (L,R) ∈ Kt,t (A,B). Suppose for
the sake of contradiction that (x , f (x)) and (y, f (y)) both
appear in u ∈ L for some (L,R) ∈ Kt,t (A,B). Let z ∈ Xд
be another variable8 in C . Since (z, f (z)) ∈ B, some vertex

8If C contains two variables, let z = x . Note that we can assume w.l.o.g. that C
contains at least two variables.
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v 2 R contains (z, f (z)). Thus, there is no edge between u

and v in Gϕ, ` , which contradicts with (L,R) 2 Kt,t .

We can now appeal to Proposition 3.4 with U = A,

q = 2d , r = ` and P be the prohibited pairs described above.

This implies that with probability at most exp
⇣
− |P |`2
8d |A |2

⌘
6

exp
⇣
− ε`2

192dn

⌘
, a random element of

(A
`

)
contains no pro-

hibited pair from P . In other words, at most exp
⇣
− ε`2

192dn

⌘

fraction of elements of
(A
`

)
can be candidates for each ele-

ment of L for (L,R) 2 Kt,t (A,B). This gives the following
sharpened upper bound on |Kt,t (A,B)|:

✓
exp

✓
−

ε`2

192dn

◆
·
✓
|A|
`

◆◆t
·
✓
|B |
`

◆t (3)
6

✓
2−ε`

2/(384dn) ·
✓
n

`

◆◆2t
.

Since we picked λ 6 ε/(384d), |Kt,t (A,B)| is once again
bounded above by

⇣
2−λ`

2/n (n
`

) ⌘2t
.

In all three cases, we have |Kt,t (A,B)| 6
⇣
2−λ`

2/n (n
`

) ⌘2t
, complet-

ing the proof of Lemma 3.3. ⇤

3.1 Proof of Proposition 3.4

P���� �� P���������� 3.4. We �rst construct P 0 ✓ P such that

each element ofU appears in at most one pair in P 0 as follows. Start

out by marking every pair in P as active and, as long as there are

active pairs left, include one in P 0 and mark every pair that shares

an element of U with this pair as inactive. Since each element ofU

appears in at most q pairs in P , we mark at most 2q pairs as inactive

per each inclusion. This implies that |P 0 | > |P |/(2q).
Suppose that P 0 = {{a1,b1}, . . . , {a |P 0 | ,b |P 0 |}}. Let u be a ran-

dom element of
(U
r

)
. For each i = 1, . . . , |P 0 |, we have

Pr[{ai ,bi } * u] = 1 −

( |U |−2
r−2

)

( |U |
r

) 6 1 −
r2

2|U |2
6 exp

✓
−

r2

2|U |2

◆
.

If u does not contain both elements of any pairs in P , it does not

contain both elements of any pairs in P 0. The probability of the

latter can be written as

Pr

266664

|P 0 |€

i=1

{ai ,bi } * u

377775
=

|P 0 |÷

i=1

Pr

266664
{ai ,bi } * u

//////

i−1€

j=1

{aj ,bj } * u

377775
.

In addition, since a1,b1, . . . ,a |P 0 | ,b |P 0 | are distinct, it is not hard

to see that Pr
h
{ai ,bi } * u

///
”i−1
j=1{aj ,bj } * u

i
6 Pr[{ai ,bi } * u].

Hence, we can upper bound Pr
h” |P 0 |

i=1 {ai ,bi } * u
i
by

|P 0 |÷

i=1

Pr[{ai ,bi } * u] 6
✓
exp

✓
−

r2

2|U |2

◆◆ |P 0 |
6 exp

✓
−

|P |r2
4q |U |2

◆
,

completing the proof of Proposition 3.4. ⇤

3.2 Proofs of Inapproximability Results of DkS

In this subsection, we prove Theorem 1.1 and 1.2. The proof of

Theorem 1.1 is simply by combining Dinur’s PCP Theorem and

Theorem 3.1 with ` =m/polylogm, as stated below.

P���� �� T������ 1.1. For any 3SAT formulaφ withm clauses,

use Theorem 2.4 to produce ϕ withm0
= O(m polylogm) clauses

such that each variable appears in at most d clauses. Let ζ be a

constant such thatm0
= O(m logζ m) and let ` =m/log2m. Let us

consider the graph Gϕ, ` with k =
(n
`

)
where n is the number of

variables of ϕ. Let N be the number of vertices of Gϕ, ` . Observe

that N = 2`
(n
`

)
6 n2` 6 (m0)O (`)

= 2O (` logm0)
= 2o(m).

If φ is satis�able, ϕ is also satis�able and it is obvious that

Gϕ, ` contains an induced k-clique. Otherwise, If φ is unsatis�able,

val(ϕ) 6 1 − ε . From Theorem 3.1, any k-subgraph ofGϕ, ` has den-

sity at most 2−Ω(`
4/n3)

6 2−Ω(m/log3ζ +8m)
= N−Ω(1/(log logN )3ζ +8),

which is at most N−1/(log logN )3ζ +9 when m is su�ciently large.

Hence, if there is a polynomial-time algorithm that can distinguish

between the two cases in Theorem 1.1 when c = 3ζ + 9, then there

also exists an algorithm that solves 3SAT in time 2o(m), contradict-
ing with ETH. ⇤

The proof of Theorem 1.2 is even simpler since, under Gap-ETH,

we have the gap version of 3SAT to begin with. Hence, we can

directly apply Theorem 3.1 without going through Dinur’s PCP:

P���� �� T������ 1.2. Letϕ be any 3SAT formulawithm clauses

such that each variable appears in O(1) clauses9. Let ` =m 5
p
f (m)

and consider the graph Gϕ, ` with k =
(n
`

)
where n is the number

of variables of ϕ. The number of vertices N of Gϕ, ` is 2`
(n
`

)
6

2`
⇣
en
`

⌘`
6 2O (` log(m/`))

= 2O (m 5
p
f (m) log(1/f (m)))

= 2o(m) where

the last inequality follows from f 2 o(1).
The completeness is again obvious. For the soundness, if val(ϕ) 6

1−ε , from Theorem 3.1, any k-subgraph ofGϕ, ` has density at most

2−Ω(`
4/n3)

6 2−Ω(mf (m)4/5)
6 N−Ω(f (m)4/5), which is at most10

N−f (N ) whenm is su�ciently large. Hence, if there is a polynomial-

time algorithm that can distinguish between the two cases in The-

orem 1.2, then there also exists an algorithm that solves the gap

version of 3SAT in time 2o(m), contradicting with Gap-ETH. ⇤

4 CONCLUSION AND OPEN QUESTIONS

In this work, we provide a subexponential time reduction from the

gap version of 3SAT to DkS and prove that it establishes an almost-

polynomial ratio hardness of approximation of the latter under ETH

and Gap-ETH. Even with our results, however, approximability of

DkS still remains wide open. Namely, it is still not known whether

it is NP-hard to approximate DkS to within some constant factor,

and, no polynomial ratio hardness of approximation is yet known.

Although our results appear to almost resolve the second ques-

tion, it still seems out of reach with our current knowledge of

hardness of approximation. In particular, to achieve a polynomial

ratio hardness for DkS, it is plausible that one has to prove a long-

standing conjecture called the sliding scale conjecture (SSC) [11]. In

short, SSC essentially states that L���� C����, a problem used as

starting points of almost all NP-hardness of approximation results,

is NP-hard to approximate to within some polynomial ratio. Note

here that polynomial ratio hardness for L���� C���� is not even

9We can assume w.l.o.g. that each variable appears in at mostO (1) clauses [38, p.21].
10Assume w.l.o.g. that f is decreasing; otherwise take f 0(m) = sup

m0>m
f (m0) instead.
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known under stronger assumptions such as ETH or Gap-ETH; we

refer the readers to [21] for more detailed discussions on the topic.

Apart from the approximability of DkS, our results also prompt

the following question: since previous techniques, such as Feige’s

Random 3SAT Hypothesis [22], Khot’s Quasi-Random PCP [33],

the Small Set Expansion Conjecture [41] and the Planted Clique

Hypothesis [31, 35], that were successful in showing inapproxima-

bility of DkS also gave rise to hardnesses of approximation of many

problems that are not known to be APX-hard such as S������� C��

and M�� B�������� [4, 42], is it possible to modify our construction

to prove inapproximability for these problems as well?

A A COUNTEREXAMPLE TO OBTAINING A

SUBCONSTANT SOUNDNESS FROM

NON-BOOLEAN CSPS

Here we sketch an example due to Rubinstein [44] of a non-boolean

2CSP ϕ with low value for which the graph Gϕ, ` contains a large

biclique. For a non-boolean 2CSP, we de�ne the graphGϕ, ` similar

to that of a 3SAT formula except that now the vertices contains all

{(xi1 ,σi1 ), . . . , (xi` ,σi` )} for all distinct variables xi1 , . . . ,xi` and

all σi1 , . . . ,σi` 2 Σ where Σ is the alphabet of the CSP.

Consider any non-boolean 2CSP instanceϕ on variablesx1, . . . ,xn
such that there is no constraint between X1 := {x1, . . . ,xn/2} and
X2 = {xn/2+1, . . . ,xn } and each variable appears in 6 d constraints.

Let L the set of all vertices u such that every variable in u belongs

to X1 and no constraint is contained in u. De�ne R similarly for

X2. Clearly, (L,R) forms a biclique and it is not hard to see that

|L|, |R | > |Σ|`
(n/2−(d+1)`

`

)

. Since |Σ| > 3, this value is >
(n
`

)

for all

` 6 n
6(d+2) . Hence, for such `, Gϕ, ` contains a biclique of size

(n
`

)

.

Finally, note that there are several ways to de�ne constraints

within X1 and X2 so that val(ϕ) is bounded away from one. For

instance, we can make each side a random 2-XOR formula, which

results in val(ϕ) 6 1/2 +O(1/
√

d) w.h.p. Thus, if we start from a

non-boolean CSP, the largest gap we can hope to get is only two.

Note that the instance above is rather extreme as it consists of

two disconnected components. Hence, it is still possible that, if the

starting CSP has more speci�c properties (e.g. expanding constraint

graph), then one can arrive at a gap of more than two.
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