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Abstract

In recent years, researchers proposed several algorithms
that compute metric quantities of real-world complex
networks, and that are very efficient in practice, al-
though there is no worst-case guarantee.

In this work, we propose an axiomatic framework
to analyze the performances of these algorithms, by
proving that they are efficient on the class of graphs
satisfying certain properties. Furthermore, we prove
that these properties are verified asymptotically almost
surely by several probabilistic models that generate
power law random graphs, such as the Configuration
Model, the Chung-Lu model, and the Norros-Reittu
model. Thus, our results imply average-case analyses
in these models.

For example, in our framework, existing algorithms
can compute the diameter and the radius of a graph in
subquadratic time, and sometimes even in time n1+o(1).
Moreover, in some regimes, it is possible to compute the
k most central vertices according to closeness centrality
in subquadratic time, and to design a distance oracle
with sublinear query time and subquadratic space oc-
cupancy.

In the worst case, it is impossible to obtain compa-
rable results for any of these problems, unless widely-
believed conjectures are false.

1 Introduction.

We study problems motivated by network analysis, such
as computing the diameter of a graph, the radius, the
closeness centrality, and so on. All these problems admit
polynomial-time algorithms, based on computing the
distance between all pairs of vertices. These algorithms,
however, do not terminate in reasonable time if the
input is a real-world graph with millions of nodes and
edges. Such worst-case inefficiency is probably due
to complexity-theoretic bottlenecks: indeed, a faster
algorithm for any of these problems would falsify widely
believed conjectures [42, 36, 1, 7, 12, 2].
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In practice, these problems are solved via heuristics
and algorithms that do not offer any performance guar-
antee, apart from empirical evidence. These algorithms
are widely deployed, and they are implemented in ma-
jor graph libraries, like Sagemath [41], Webgraph [8],
NetworKit [40], and SNAP [30].

In this work, we develop a theoretical framework in
which these algorithms can be evaluated and compared.
Our framework is axiomatic in the sense that we define
some properties, we experimentally show that these
properties hold in most real-world graphs, and we
perform a worst-case analysis on the class of graphs
satisfying these properties. The purpose of this analysis
is threefold: we validate the efficiency of the algorithms
considered, we highlight the properties of the input
graphs that are exploited, and we perform a comparison
that does not depend on the specific dataset used for the
evaluation. A further confirmation of the validity of this
approach comes from the results obtained, that are very
similar to existing empirical results.

Furthermore, we show that the properties are veri-
fied on some models of random graphs, asymptotically
almost surely (a.a.s.), that is, with probability that
tends to 1 as the number of nodes n goes to infinity: as a
consequence, all results can be turned into average-case
analyses on these models, with no modification. This
modular approach to average-case complexity analysis
has two advantages: since our properties are verified by
different models, we can prove results in all these mod-
els with a single worst-case analysis. Furthermore, we
clearly highlight which properties of random graphs we
are using: this way, we can experimentally validate the
choice of the probabilistic model, by showing that these
properties are reflected by real-world graphs.

In the past, most average-case analyses were per-
formed on the Erdös-Renyi model, which is defined by
fixing the number n of nodes, and connecting each pair
of nodes with probability p [26, 37, 46, 32]. However
many algorithms that work well in practice have poor
average-case running time on this model.1 Indeed, these

1The poor performances of some of these algorithms in the
Erdös-Renyi model were empirically shown in [22], and they can
be proved with a simple adaptation of the analysis in this paper.



algorithms are efficient if there are some nodes with very
high degree, and such nodes are not present in Erdös-
Renyi graphs. Conversely, most real-world graphs con-
tain such nodes, because their degree distribution is
power law [6], that is, the number of vertices with de-
gree d is close to n

dβ for some β > 1. For this reason, we
only consider models that generate power law random
graphs. Our framework encompasses almost all values of
β, and many of these models: the Configuration Model
[9], and Rank-1 Inhomogeneous Random Graph models
([45], Chapter 3), such as the Chung-Lu [20] and the
Norros-Reittu model [35].

Our approach is based on four properties: one
simply says that the degree distribution is power law,
and the other three study the behavior of τ s (n

x), which
is defined as the smallest integer ℓ such that the number
of vertices at distance ℓ from s is at least nx. The first
of these properties describes the typical and extremal
behavior of τ s (n

x), where s ranges over all vertices in
the graph. The next two properties link the distance
between two vertices s and t with τ s (n

x) + τ t (n
y):

informally, dist(s, t) is close to τ s (n
x) + τ t

(

n1−x
)

.
We prove that these properties are verified in the
aforementioned graph models.

The definition of these properties is one of the main
technical contributions of this work: they do not only
validate our approach, but they also provide a very sim-
ple way of proving other metric properties of random
graphs, and their use naturally extends to other appli-
cations. Indeed, the proof of our probabilistic analysis is
very simple, when one assumes these properties. On the
other hand, the proof of the properties is very techni-
cal, and it uses different techniques in the regimes β > 2,
and 1 < β < 2. In the regime β > 2, the main technical
tool used is branching processes: it is well-known that
the size of neighborhoods of a given vertex in a random
graph resembles a branching process [35, 25, 10, 45, 44],
but this tool was almost always used either as an in-
tuition [25, 45, 44] (and different techniques were used
in the actual proof), or it was applied only for specific
models, such as the Norros-Reittu model [35]. Con-
versely, in this work, we provide a quantitative result,
from which we deduce the proof of the properties. In
the regime β < 2, the branching process approximation
does not hold anymore (indeed, the distribution of the
branching process is not even defined). For this reason,
in the past, very few results were obtained in this case
[43]. In this work, we overcome this difficulty through a
different technique: we prove that the graph contains a
very dense “core” made by the nodes with highest de-
gree, and the distance between two nodes s, t is almost
always the length of a shortest path from s to the core,
and from the core to t. This technique lets us compute

the exact value of the diameter, and it lets us prove
that the asymptotics found in [43] for the Configuration
Model also hold in other models.

Assuming the four properties, we can easily prove
consequences on the main metric properties of the
graphs G = (V,E) under consideration: we start by
estimating the eccentricity of a given vertex s, which
is defined as ecc(s) = maxt∈V dist(s, t). From this re-
sult, we can estimate the diameter D = maxs∈V ecc(s).
Similarly, we can estimate the farness f(s) of s, that
is,
∑

t∈V dist(s, t), the closeness centrality of s, which
is defined as 1

f(s) , and the average distance between

two nodes. By specializing these results to the random
graph models considered, we retrieve known asymp-
totics for these quantities, and we prove some new
asymptotics in the regime 1 < β < 2.

After proving these results, we turn our attention
to the analysis of many heuristics and algorithms, by
proving all the results in Table 1 (a plot of the results is
available in Figure 1).2 For approximation algorithms,
we usually know the running time and we analyze the
error; conversely, for exact algorithms, we bound the
running time. All algorithms analyzed are exactly the
algorithms published in the original papers, apart from
the SumSH and the SumS, where we need a small
variation to make the analysis work.

In many regimes, our results improve corresponding
worst-case bounds: indeed, under reasonable complex-
ity assumptions, for any ε > 0, there is no algorithm
that computes a 3

2 − ε-approximation of the diameter
or the radius in O

(

n2−ε
)

[36, 12, 2], the complexity of

computing the most closeness central vertex is Ω
(

n2−ε
)

[2], and there are hardness results on the possible trade-
offs between space needed and query time in distance
oracles [42, 39]. The difference is very significant, both
from a theoretical and from a practical point of view:
for instance, we can compute the diameter and the ra-
dius of a graph in linear time, in many regimes. This
means that, on standard real-world graphs with mil-
lions of nodes, the heuristic are millions of times faster
than the standard quadratic algorithms. It is also worth
mentioning that our results strongly depend on the ex-
ponent β: in particular, there are two phase transitions
corresponding to β = 2 and β = 3. This is due to the
fact that, if 1 < β < 2, the average degree is unbounded,
if 2 < β < 3, the average degree is finite, but the vari-

2Some of the results contain a value o(1): this value comes from
the four properties, which depend on a parameter ε. In random
graphs, this notation is formally correct: indeed, we can let ε tend
to 0, since the properties are satisfied a.a.s. for each ε. In real-
world graphs, we experimentally show that these properties are
verified for small values of ε, and with abuse of notation we write
o(1) to denote a function bounded by cε, for some constant c.



Table 1: a summary of the results of our probabilistic analyses. The value of the constant C is
2 distavg(n)

D−distavg(n)
, where

D is the diameter of the graph, distavg (n) is the average distance. The values marked with (∗) are proved using
further characteristics of the probabilistic models.

Parameter Algorithm Running time
β > 3 2 < β < 3 1 < β < 2,

Diameter BFS from nγ Θ(n1+γ) Θ(n1+γ) Θ(mnγ )

(lower bound) random nodes εrel =
1−γ+o(1)

2+C
εrel =

1−γ+o(1)
2

εabs =
⌊

2(β−1)
2−β

⌋

−
⌊

(γ+1)(β−1)
2−β

⌋

Diameter 2-Sweep [31] Θ(n) Θ(n) Θ(m)

(lower bound) εrel = o(1) εrel = o(1) εabs ≤
{

1 D even

2 D odd

Diameter RW [36] Θ(n
3
2 logn) Θ(n

3
2 logn) Θ(m

√
n logn)

(lower bound) εrel = o(1) εrel = o(1) εabs ≤
{

1 D even

2 D odd

All eccentricities SumSH [13] n1+o(1) n1+o(1) ≤ mn
1−

2−β
β−1

(⌊

β−1
2−β

− 3
2

⌋

− 1
2

)

(lower bound) εabs = 0 εabs = 0 εabs = 0

Diameter iFub [22] ≤ n
1+
(

1
2
− 1

β−1

)

C+o(1)
n1+o(1) ≤ mn

1− 2−β
β−1

⌊

β−1
2−β

− 1
2

⌋

+o(1)

Diameter SumS [13, 14] ≤ n

1+ C

C+
β−1
β−3 (∗) n1+o(1) ≤ mn

1−
2−β
β−1

(⌊

β−1
2−β

− 3
2

⌋

− 1
2

)

Radius SumS [13, 14] n1+o(1) n1+o(1) ≤ mn
1− 2−β

β−1

(⌊

β−1
2−β

− 3
2

⌋

− 1
2

)

Top-k closeness BCM [7] n
2− 1

β−1 (∗) n2−o(1) m1+o(1)

Distance oracle AIY [4] n1−o(1) ≤ nf(β) (*) ≤ n
1
2
+o(1)

(query time) (no closed form)

(space needed) n2−o(1) ≤ n1+f(β) (*) ≤ n
3
2
+o(1)

ance is unbounded, while if β > 3 also the variance is
finite. Furthermore, all the results with β > 3 can be
easily generalized to any degree distribution with finite
variance, but the results become more cumbersome and
dependent on specific characteristics of the distribution,
such as the maximum degree of a vertex (for this rea-
son, we focus on the power law case). Conversely, in the
case β < 3, our results strongly depend on the degree
distribution to be power law, because random graphs
generated with different degree distributions can have
very different behaviors. The only open cases are β = 2
and β = 3, which are left for future work (note that, if
β ≤ 1, the degree distribution is not well defined).

Approximating the diameter. We confirm the
empirical results in [31], proving that the 2-Sweep
heuristic is significantly better than the basic sampling
algorithm, which returns the maximum eccentricity of a
random set of vertices. Furthermore, we show that the
SumSH is even better than the 2-Sweep, confirming
the experimental results in [13, 14]. Finally, we ana-
lyze the well-known RW algorithm, which provides a
guaranteed 3

2 -approximation of the diameter in time
Θ(m

√
n). In our framework, it does not improve the

2-Sweep algorithm (which is much faster): this might
theoretically explain why many graph libraries imple-
ment (variations of) the 2-Sweep heuristic, but not the
RW algorithm (for instance, Sagemath [41], Webgraph

[8], NetworKit [40]).
Computing the diameter. The aforementioned

heuristics can be turned into exact algorithms, that
always provide the correct result, but that can be
inefficient in the worst case. We analyze two of these
algorithms, proving that, for small values of β, both
the iFub and the SumS algorithm are very efficient; for
big values of β, the SumS algorithm is usually better,
because it is always subquadratic. These results explain
the surprisingly small running time on most graphs, and
the reason why the SumS algorithm is usually faster on
“hard” instances, as observed in [13, 14]. It is interesting
to note that all the running times for β > 3 depend on
the same constant C, which we prove to be close to
2 distavg(n)

D−distavg(n)
, where D is the diameter and distavg (n) is

the average distance of two nodes in the input graph.
Intuitively, if this ratio is small, it means that there are
“few far vertices”, and the algorithms are quite efficient
because they only need to analyze these vertices (the
only exception is the sampling algorithm, which is not
able to find these vertices, and hence achieves better
performances when C is large). For 2 < β < 3, a
very similar argument applies, but in this case C = 0,
because D = O(logn) and distavg (n) = O(log logn).

Other algorithms. Our framework lets us also
analyze algorithms for computing other quantities. For
example, the SumS algorithm is also able to compute
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Figure 1: plot of the running time and relative errors of the heuristics and algorithms considered. The constant
C was set to 3, and the o(1) were ignored.

the radius: in this case, in all regimes, the running
time is almost linear, confirming the results in [14],
where it is shown that the algorithm needed at most
10 BFSes on all inputs but one, and in the last input it
needed 18 BFSes. The other two algorithms analyzed
are the BCM algorithm, to compute the k most central
vertices according to closeness centrality [15], and the
distance oracle AIY in [4]. In the first case, we show
significant improvements with respect to the worst-case
in the regime 1 < β < 2 and β > 3, and we show
that the algorithm is not efficient if 2 < β < 3: this
is the only result in this paper which is not reflected
in practice. The problem is that our analysis relies
on the fact that distavg (n) = Θ(log logn) tends to
infinity, but the experiments were performed on graphs
where n < 10 000 000, and consequently log log(n) < 4.
The last probabilistic analysis confirms the efficiency of
AIY: we show that, if β < 3, the expected time needed
to compute the distance between two random nodes is
sublinear, and the space occupied is subquadratic.

Finally, as a side result of our analysis, we compute
for the first time the diameter of random graph in the
regime 1 < β < 2.

1.1 Related Work. This work combines results in
several research fields: the analysis of random graphs,
axiomatic approaches in the study of social networks,
the design of heuristics and algorithms that are effi-
cient on real-world graphs, the average and worst-case
analysis of algorithms. Since it is impossible to provide
a comprehensive account of the state-of-the-art in all
these areas, here we just point the reader to the most
recent and comprehensive surveys.

There are several works that study metric proper-
ties of random graphs: most of these results are summa-
rized in [45, 44]. In the regime β > 2, we take inspiration
from the proofs in [25] for the Configuration Model, and
in [35, 10] for Inhomogeneous Random Graphs. In this

setting, we give a formal statements that links neigh-
borhood sizes with branching processes (Theorem B.2):
although it was used very often as a heuristic argument
[45, 44], or used in specific settings [35], as far as we
know, it was never formalized in this general setting.
Furthermore, in the regime 1 < β < 2, we use new tech-
niques to prove the four properties, and as a result we
obtain new asymptotics for the diameter. As far as we
know, the only work that addresses the latter case is
[43], which only computes the typical distance between
two nodes.

Furthermore, our work relies on several works that
outline the main properties of complex networks, and
that develop models that satisfy such properties: for
example, the choice of the power law degree distribution
is validated by extensive empirical work (see [34] for a
survey).

Despite this large amount of research on models of
real-world graphs, few works have tried to address the
problem of evaluating heuristics and algorithms on real-
istic models. For example, several works have addressed
the efficiency of computing shortest paths in road net-
works [27, 38, 24, 23]. In [3], the authors provide an
explanation of their efficiency, based on the concept of
highway dimension. Another example is the algorithm
in [8], which is used to compress a web graph: in [19], the
authors prove that in most existing models no algorithm
can achieve good compression ratio, and they provide a
new model where the algorithm in [8] works well. Also
in [29], the authors develop an axiomatic framework,
but they study triangle density, and not distances (that
is, they assume that the input graph contains many tri-
angles, a characteristic that is shared by most real-world
graphs). That paper sets forth the research agenda of
defining worst-case conditions on graphs generalizing all
the popular generative models: it discusses the main
advantages and disadvantages of the approach, and it
leaves as an open problem to find algorithms that are



more efficient on the class of triangle-dense graphs. An-
other related work is [17], where the authors develop
an axiomatic approach that is similar to ours: assum-
ing only that the degree distribution is power law, they
manage to analyze some algorithms, and to prove that
their analysis improves the worst-case analysis. Our
work is orthogonal to their work: indeed, they only as-
sume the degree distribution to be power law, using
a variation of our Property 2.4. Their properties are
weaker than ours, since they only assume a variation of
our Property 2.4: for this reason, they manage to ana-
lyze algorithms that compute local properties, such as
patterns in subgraphs, but not the global metric prop-
erties considered in this paper (indeed, graphs with the
same degree distribution can have very different metric
properties). An approach that is more similar to ours is
provided in [16]: among other results, it is proved that
it is possible to compute a shortest path between two
nodes s, t in sublinear time, in the models considered in
this paper. The running-time is O(n

1
2+ε) if β > 3, and

O(n
4−β
2 ) if 2 < β < 3 (while, in the worst-case, this

task can be performed in O(n)).
Finally, some works have tried to explain and mo-

tivate the efficiency of some heuristics and algorithms
for diameter and radius computation. A first attempt
uses the Gromov hyperbolicity of the input graph [28]:
for example, the 2-Sweep heuristic provides good ap-
proximations of the diameter of hyperbolic graphs [18].
However, this approach cannot be applied to some al-
gorithms, like the iFub, and when it can be applied,
the theoretical guarantees are still far from the empir-
ical results, because real-world graphs are usually not
hyperbolic according to Gromov’s definition [11].

1.2 Structure of the Paper. In Section 2, we state
the four properties considered; in Section 3, we define
the models considered and we sketch the proof that
they satisfy the four properties. In Section 4 we
experimentally show that they are satisfied by real-
world graphs. Then, in Section 5, we prove some
consequences of the axioms, that are extensively used
throughout the paper, such as asymptotics for the
diameter, the average distance, etc. In Sections 6 to 11,
we perform the probabilistic analysis for diameter and
radius algorithms (for the other two algorithms, BCM
and AIY, we refer to Appendices C and D). Section 12
concludes the paper.

2 The Four Properties.

In this section, we define the four properties used in our
framework. Let us start with some definitions.

Definition 2.1. Given a graph G = (V,E), if s ∈ V ,

let Γℓ(s) be the set of vertices at distance exactly ℓ from
s, let γℓ(s) = |Γℓ(s)|, let N ℓ(s) be the set of vertices at
distance at most ℓ from s, and let nℓ(s) = |N ℓ(s)|. We
define τ s (k) = min{ℓ ∈ N : γℓ(s) > k}, and T (d → k)
as the average number of steps for a node of degree d
to obtain a neighborhood of k nodes. More formally,
T (d → k) is the average τ s (k) over all vertices s of
degree d (note that, since the diameter is O(log n),
T (d → nx) is defined for each x < 1).

Our properties depend on a parameter ε: for in-
stance, the first property bounds the number of vertices
such that τ s (n

x) ≥ (1 + ε)T (d → nx). Intuitively, one
can think of ε as a constant which is smaller than any
other constant appearing in the proofs, but bigger than
1
n , or any other infinitesimal function of n. Indeed, in
random graphs, we prove that if we fix ε, δ > 0, we can
find nε,δ such that the properties hold for each n > nε,δ,
with probability at least 1− δ. In real-world graphs, we
experimentally show that the four properties are verified
with good approximation for ε = 0.2. In our analyses,
the time bounds are of the form nc+O(ε), and the con-
stants in the O are quite small. Since, in our dataset,
n0.2 is between 6 and 19, we can safely consider nc+O(ε)

close to nc.
The first property analyzes the typical and extremal

values of τ s (n
x), where s is any vertex.

Property 2.1. There exists a constant c such that:

• for each vertex s with degree d > nε, τ s (n
x) ≤

(1 + ε) (T (d → nx) + 1);

• the number of vertices verifying τ s (n
x) ≥ (1 +

ε) (T (d → nx) + α) is O (ncα−x);

• the number of vertices verifying τ s (n
x) ≥ (1 −

ε) (T (1 → nx) + α) is Ω (ncα−x).

In random graphs, the values of T (d → nx) depend
on the exponent β (see Table 2). In many of our
analyses, we do not use the actual values of T (d → nx),
but we use the following properties:

• T (d → nx+ε) ≤ T (d → nx) (1 +O(ε));

• ∑∞
d=1 |{v ∈ V : deg(v) = d}|T (d → nx) = (1 +

o(1))nT (1 → nx);

• T (1 → nx) + T
(

1 → n1−x
)

− 1 = (1 +
o(1)) distavg (n), where distavg (n) is a func-
tion not depending on x (this function is very close
to the average distance, as we prove in Section 5).

The next two properties relate the distance between
two vertices s, t with the values of τ s (n

x), τ t (n
y),



Table 2: the values of T (d → nx), distavg (n) and c, depending on the value of β.

Regime T (d → nx) distavg (n) c

1 < β < 2 1 if d ≥ nx, 2 otherwise 3 n− 2−β
β−1 (1+o(1))

2 < β < 3 (1 + o(1)) log 1
β−2

lognx

log d if nx < n
1

β−1 (2 + o(1)) log 1
β−2

logn η(1) + o(1)

(1 + o(1)) log 1
β−2

lognx

log d +O(1) if nx > n
1

β−1

β > 3 (1 + o(1)) logM1(µ)
nx

d (1 + o(1)) logM1(µ) n η(1) + o(1)

where x, y are two reals between 0 and 1. The idea
behind these two properties is to apply the “birthday
paradox”, assuming that Γτs(n

x)(s) and Γτ t(n
y)(t) are

random sets of nx and ny vertices. In this idealized
setting, if x + y > 1, there is a vertex that is common
to both, and dist(s, t) ≤ τ s (n

x)+ τ t (n
y); conversely, if

x+ y < 1, dist(s, t) is likely to be bigger than τ s (n
x)+

τ t (n
y). Let us start with the simplest property, which

deals with the case x+ y > 1.

Property 2.2. Let us fix two real numbers 0 < x, y <
1 such that x+ y > 1+ ε. For each pair of vertices s, t,
dist(s, t) < τ s (n

x) + τ t (n
y).

The next property is a sort of converse: the main
idea is that, if the product of the size of two neigh-
borhoods is smaller than n, then the two neighbor-
hoods are usually not connected. The simplest way
to formalize this is to state that, for each pair of ver-
tices s, t, dist(s, t) ≥ τ s (n

x) + τ t (n
y). However, there

are two problems with this statement: first, in random
graphs, if we fix s and t, dist(s, t) ≥ τ s (n

x) + τ t (n
y)

a.a.s., not w.h.p., and hence there might be o(n) ver-
tices t such that dist(s, t) < τ s (n

x) + τ t (n
y) (for ex-

ample, if s and t are neighbors, they do not verify
dist(s, t) ≥ τ s (n

x)+τ t (n
y)). To solve this, our theorem

bounds the number of vertices t verifying dist(s, t) ≥
τ s (n

x) + τ t (n
y). The second problem is more subtle:

for example, if s has degree 1, and its only neighbor has

degree n
1
2 , τ s

(

n
1
4

)

= τ s

(

n
1
2

)

= 2, and the previous

statement cannot hold for x = 1
4 . However, this problem

does not occur if x ≥ y: the intuitive idea is that we can
“ignore” vertices with degree bigger than nx. Indeed,
if a shortest path from s to t passes through a vertex v
with degree bigger than nx, then τ s (n

x) ≤ dist(s, v)+1,
τ t (n

y) ≤ dist(t, v)+1, and hence dist(s, t) = dist(s, v)+
dist(v, t) ≥ τ s (n

x) + τ t (n
y)− 2.

Property 2.3. Let s be any vertex, let 0 < z ≤ y <
x < 1, let x + y ≥ 1 + ε, and let α, ω be integers. If
Tα,ω,z is the set of vertices t such that τ t (n

z) is between

α and ω, there are at most |Tα,ω,z|n
x+y+ε

n vertices t ∈ T
such that dist(s, t) < τ s (n

x) + τ t (n
y)− 2.

Finally, in some analyses, we also need to use the
fact that the degree distribution is power law. To this
purpose, we add a further property (in random graphs,
this result is well-known [45, 44]).

Property 2.4. The number of vertices with degree
bigger than d is Θ

(

n
dmax(1,β−1)

)

.

Although the definition of the four properties is
quite complicated, the intuition is natural. Indeed,
Properties 2.2 and 2.3 simply say in a formal way
that dist(s, t) ≈ τ s (n

x) + τ t

(

n1−x
)

, and this is the
property which is used in all the probabilistic analysis.
As far as we know, in the context of the analysis of
real-world graphs, this property was never stated or
formalized: we believe that it can give further insight
in the field of the analysis of real-world graphs. A
further confirmation of the importance of this property
is that the algorithms considered are not very efficient
on graphs where this property is not satisfied, such as
road networks [13, 14, 7].

Conversely, Properties 2.1 and 2.4 are more spe-
cific, and they are specifically suited to the analysis of
the real-world networks and the random graphs under
consideration. They were chosen because they are sat-
isfied by the graphs under consideration, but one might
be interested in using variations of these properties on
different kinds of networks, since the proofs usually do
not depend on the specific values of the parameters con-
sidered.

3 Validity of the Properties in Random

Graphs: Overview.

In order to transform the axiomatic worst-case analyses
into average-case analyses on random graphs, we use the
following theorem.

Theorem 3.1. For each fixed ε > 0, Properties 2.1
to 2.4 are verified in the random graphs defined in all
the models considered, a.a.s..

In other words, for each ε, δ > 0, there exists nε,δ

such that the probability that a random graph with
n > nε,δ nodes does not verify the four properties is
at most 1− δ.



In this section, we sketch the proof of this theorem,
while we provide the complete proof in Appendix B.

3.1 The Models The models considered are the
Configuration Model (CM) and Rank-1 Inhomogeneous
Random Graphs (IRG), such as the Norros-Reittu
model and the Chung-Lu model. All these models fix a
set V of n vertices, and they assign a weight ρv to each
vertex v ∈ V (we choose the weights ρv according to a
power law distribution with exponent β). Then, we cre-
ate edges in a way that the degree of v is close to ρv: in
the CM, this is done by associating to v ρv half-edges,
and pairing these half-edges at random, while in IRG,
an edge between vertices v and w exists with probability
close to ρvρw

M , where M =
∑

v∈V ρv.
Furthermore, we need to consider only the giant

component of the graph considered, and, differently
from other works, we do not assume the graph generated
through the CM to be simple (anyway, multiple edges
and self-loops have no effect on distances). For more
details of the models considered, and for some additional
technical assumptions used to avoid pathological cases,
we refer to Appendix A.

3.2 Properties 2.2 to 2.4. It is quite easy to prove
that Property 2.4 holds: indeed, it is enough to show
that the degree of a vertex v is close to its weight ρv, and
this can be done through a Chernoff-type probability
bound.

Then, we need to prove that Properties 2.2
and 2.3 hold: these two properties bound dist(s, t) with
τ s (n

x) + τ t (n
y). Let us assume that γℓ(s) = nx, and

γℓ′(t) = ny: if all vertices are in Γℓ(s) with the same
probability, Γℓ(s) will be a random subset of the set of
vertices, and the probability that a vertex in Γℓ(s) is

also in Γℓ′(t) is close to γℓ′(t)
n = 1

n1−y . Hence, the prob-
ability that dist(s, t) ≥ ℓ+ ℓ′ is related to the probabil-

ity that Γℓ(s) does not intersect Γℓ′(t), which is close

to
(

1− 1
n1−y

)nx

≈ e−nx+y−1

. For x+ y > 1, this means
that dist(s, t) ≤ ℓ+ℓ′ w.h.p., and this is very close to the
statement of Property 2.2. For x+y < 1, Γℓ(s) does not

intersect Γℓ′(t) with probability e−nx+y−1 ≈ 1−nx+y−1,
and hence dist(s, t) ≤ ℓ + ℓ′ with probability close to
nx+y−1. The proof that Property 2.3 holds is then con-
cluded by applying concentration inequalities, exploit-
ing the fact that T is “enough random”.

3.3 Property 2.1, β > 2. The proof that Prop-
erty 2.1 holds is much more complicated: in the proof,
we have to distinguish between the case β < 2 and
β > 2. In the case β > 2, we use two different tech-
niques.

1. When γℓ(s) = |Γℓ(s)| is small (say, smaller than
nε), we show that the behavior of γℓ(s) is well ap-
proximated by a µ-distributed branching process,
where µ is the residual distribution of λ (the defini-
tion of residual distribution depends on the model,
and it is provided in Definition A.1). Furthermore,
if s and t are two different vertices, and if γℓ(s)
and γℓ′(t) are small, the behavior of Γℓ(s) and the

behavior of Γℓ′(t) are “almost” independent.

2. When γℓ(s) is large, the branching process approxi-
mation and the independence do not hold anymore.
We need a different technique: since γℓ(s) > nε, a
Chernoff-type probability bound gives guarantees
of the form e−nε

, which is bigger than any poly-
nomial in n. This way, we can prove very precise
bounds on the size of γℓ+1(s) given the size of γℓ(s),
and through a union bound we can show that these
bounds hold for any vertex s.

The second technique was already used in some
works [20, 35, 25]; however, the formalization of the con-
nection between neighborhood expansion and branch-
ing processes is original (Theorem B.2), it formalizes
existing intuitive explanations [45, 44], and it gener-
alizes proofs that were performed in restricted classes
of models [35, 10]. Let us provide some more details:
we define a branching process δℓ(s) coupled with γℓ(s)
(that is, γℓ(s) and δℓ(s) are defined on the same prob-
ability space, and the probability that they are equal
is high). Then, we analyze the size of δℓ(s): if the
first moment M1(µ) of the distribution µ of the branch-
ing process is finite (or, equivalently, if M2(λ) is fi-
nite), it is well known [5] that the expected size of
δℓ(s) is δ1(s)M1(µ)

ℓ−1 = deg(s)M1(µ)
ℓ−1; if λ is a

power law distribution with 2 < β < 3, the typical

size of δℓ(s) is close to δ1(s)(
1

β−2 )
ℓ−1

= deg(s)(
1

β−2 )
ℓ−1

.
Hence, heuristically, we can estimate τ s (n

x), by setting
deg(s)M1(µ)

ℓ−1 = nx if M1(µ) is finite and strictly big-

ger than 1, and deg(s)(
1

β−2 )
ℓ−1

= nx if µ is power law
with exponent 1 < β < 2. Solving with respect to ℓ, we
obtain the values in Table 2.

Through a more refined analysis, we can use the
branching process approximation to estimate the devia-
tions from these value: first, we remove from the branch-
ing process all branches that have a finite number of de-
scendants, since they have little impact on the total size
of the branching process (if the whole branching process
is finite, it means that the starting vertex is not in the
giant component, and we can ignore it). It is proved in
[5, 1.D.12] that we obtain another branching process,
with distribution η that depends only on µ, and such
that η(0) = 0, so that all branches are infinite. Then,



we prove that the “worst” that can happen is that δℓ(s)
is 1 for a long time, and then it grows normally: this
means that P (τ s (n

x) > T (deg(s) → nx) + k) ≈ η(1)k,
and, since the growths of different vertices are almost
independent, we obtain that the number of vertices ver-
ifying τ s (n

x) > T (deg(s) → nx) + k is approximately
nη(1)k.

Summarizing, we sketched the proof that the values
appearing in Table 2 are correct, and that Property 2.1
holds, at least when x is small. For big values of
x, the branching process approximation does not hold
anymore: however, as soon as γℓ(s) is large enough,
we can prove directly that γℓ+1(s) ≈ γℓ(s)M1(µ) if

M1(µ) is finite, and γℓ+1(s) ≈ γℓ(s)
1

β−2 if λ is power
law with exponent 2 < β < 3, w.h.p.. This way, we can
prove results on τ s (n

x) by proving the same results for
τ s (n

y) for some small y, and extending the result to
τ s (n

x) using this argument. This concludes the proof
that the values appearing in Table 2 are correct, and
that Property 2.1 holds.

3.4 Property 2.1, β < 2. In this case, the branch-
ing process approximation does not hold: indeed, the
residual distribution µ cannot be even defined! We use
a completely different technique. First, we consider the
N vertices with highest weight, where N is a big con-
stant: using order statistics, we can prove that each of
these vertices has weight Θ(M), where M =

∑

v∈V ρv.
From this, we can prove that each vertex with degree
at least nε is connected to each of these N vertices, and
these N vertices have degree Θ(n). This is enough to
characterize the size of neighbors of any vertex v with
degree bigger than nε: there are deg(v) vertices at dis-
tance 1 and Θ(n) vertices at distance 2.

Let us now consider the neighborhood growth of
other vertices: given a vertex v, the probability that it
is not connected to any vertex w with weight smaller
than nε is approximately

∏

ρw<nε

(

1− ρvρw

M

)

≈ 1 −
ρv

M

∑

ρw<nε ρw ≈ 1 − n

n
1

β−1
(it is possible to prove that

M ≈ n
1

β−1 ). As a consequence, the probability that
a vertex v is connected to another vertex with weight

w < nε is quite small, being approximately n− 2−β
β−1 = c.

Let us consider three cases separately.

1. If v is connected to a vertex w with degree at least
nε, we deduce results on neighbors of v from results
on neighbors of w.

2. If v is not connected to a vertex w with degree at
least nε, the following cases might occur:

(a) if v is not connected to a vertex with weight
smaller than nε, we can ignore it, because it
is not in the giant component;

(b) the last case is that v is connected to another
vertex w with weight smaller than nε, which
occurs with probability c; in this case, we
iterate our argument with w, until we hit a
vertex with degree at least nε.

In particular, the probability that Item 2b occurs ℓ
times before hitting a vertex with degree at least nε

is approximately cℓ: this means that the number of
vertices whose neighbors reach size nx after ℓ steps is
at most ncℓ+O(1). Through a more thorough analysis of
the constant O(1), we obtain the results in Table 2,
proving upper bounds for Property 2.1. For lower
bounds, surprisingly, we only have to consider vertices
with degree 1 and 2: in particular, the probability that
a vertex with degree 1 is linked to another vertex of
degree 2 turns out to be approximately c. For this
reason, there are at least ncℓ vertices of degree 1 that are
starting points of a path of length ℓ, which terminates
in a vertex with larger degree. This concludes the proof
that Property 2.1 holds.

4 Validity of the Properties in Real-World

Graphs.

In this section, we experimentally show that the first
three properties hold in real-world graphs, with good
approximation (we do not perform experiments on
the fourth property, because it is well known that
the degree distribution of many real-world graphs is
power law [6, 33]). To this purpose, we consider a
dataset made by 18 real-world networks of different
kinds (social networks, citation networks, technologi-
cal networks, and so on), taken from the well-known
datasets SNAP (snap.stanford.edu/) and KONECT
(http://konect.uni-koblenz.de/networks/). Then,
for each of the properties, we compute the quantities
considered, on all graphs in the dataset, and we show
that the actual behavior reflects the predictions.

We start with Property 2.1: to verify the first claim,
we consider all vertices with degree at least n0.2, which
is between 6 and 19 in our inputs. For each of these

vertices, we compute τ s

(

n
1
2

)

− T
(

deg(s) → n
1
2

)

(in

this paper, we show the results for x = 1
2 , but very

similar results hold for all values of x). The results
obtained are represented in Table 3.

The table shows that in all the graphs consid-
ered, the first statement of Property 2.1 is verified with
good approximation: almost all vertices with degree

at least n0.2 verify τ s

(

n
1
2

)

−
⌈

T
(

deg(s) → n
1
2

)⌉

≤
2; the percentage of vertices verifying τ s

(

n
1
2

)

−
⌈

T
(

deg(s) → n
1
2

)⌉

= 2 is always below 0.5%,



Network n0.2 Vert. k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 k = 4
p2p-Gnutella09 6.1 2811 0.00% 61.37% 38.63% 0.00% 0.00% 0.00% 0.00%
oregon1-010526 6.5 640 0.00% 58.75% 41.25% 0.00% 0.00% 0.00% 0.00%
ego-gplus 7.5 348 0.00% 2.87% 97.13% 0.00% 0.00% 0.00% 0.00%
oregon2-010526 6.5 1113 0.00% 55.17% 44.83% 0.00% 0.00% 0.00% 0.00%
ca-HepTh 6.1 1987 2.21% 48.97% 43.48% 4.98% 0.25% 0.00% 0.10%
ca-CondMat 7.3 6519 0.00% 45.25% 51.20% 3.27% 0.23% 0.05% 0.00%
ca-HepPh 6.5 4644 0.00% 46.32% 50.39% 2.84% 0.45% 0.00% 0.00%
email-Enron 8.0 6354 0.00% 69.00% 30.33% 0.66% 0.02% 0.00% 0.00%
loc-brightkite 8.9 9929 0.00% 69.45% 29.94% 0.42% 0.18% 0.00% 0.00%
email-EuAll 11.8 2654 0.00% 59.08% 40.66% 0.23% 0.00% 0.00% 0.04%
ca-AstroPh 7.1 9812 0.00% 58.55% 41.10% 0.18% 0.16% 0.00% 0.00%
gowalla-edges 11.5 33263 0.00% 65.69% 34.07% 0.23% 0.01% 0.00% 0.00%
munmun-twitter 13.6 6670 0.00% 70.57% 29.43% 0.00% 0.00% 0.00% 0.00%
com-dblp 12.6 33363 1.65% 63.03% 32.41% 2.57% 0.32% 0.01% 0.00%
com-lj.all.cmty 12.5 5258 0.51% 65.96% 32.98% 0.53% 0.02% 0.00% 0.00%
enron 9.7 7792 0.00% 77.71% 21.79% 0.37% 0.13% 0.00% 0.00%
com-youtube 16.3 46471 0.00% 79.01% 20.32% 0.45% 0.15% 0.04% 0.02%
wiki-Talk 18.9 27536 0.00% 62.63% 37.37% 0.00% 0.00% 0.00% 0.00%

Table 3: the percentage of vertices with degree at least n0.2 that verify τ s

(

n
1
2

)

−
⌈

T
(

d → n
1
2

)⌉

= k (the other

values of k are 0, for each graph in the dataset).
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Figure 2: the percentage of vertices verifying τ s

(

n
1
2

)

− T
(

deg(s) → n
1
2

)

≥ k, in all the graphs in our dataset.

and the percentage of vertices verifying τ s

(

n
1
2

)

−
⌈

T
(

deg(s) → n
1
2

)⌉

= 1 is always below 5%.

For the other two points of Property 2.1,

for each vertex s, we have computed τ s

(

n
1
2

)

−
T
(

deg(s) → n
1
2

)

. We want to prove that the number

of vertices that verify τ s

(

n
1
2

)

− T
(

deg(s) → n
1
2

)

≥ k

is close to nck, for some constant c smaller than 1. For

this reason, we have plotted the fraction of vertices ver-
ifying this inequality in logarithmic scale, in Figure 2.

This plot confirms the last two points of Prop-
erty 2.1: indeed, in logarithmic scale, the number of

vertices satisfying τ s

(

n
1
2

)

− T
(

deg(s) → n
1
2

)

≥ k de-

creases almost linearly with k, when k > 0.
Then, let us validate Property 2.2, which says

that, whenever x + y > 1 + ε, for each pair
of vertices s, t, dist(s, t) < τ s (n

x) + τ t (n
y):
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Figure 3: the values of τ s (n
x) + τ t (n

y)− dist(s, t) for 10 000 pairs of vertices in each graph.

we have tested this condition with (x, y) =
(0.3, 0.9), (0.4, 0.8), (0.5, 0.7), (0.6, 0.6). For each graph
G = (V,E) in the dataset, and for each of the aforemen-
tioned pairs (x, y), we have chosen a set T ⊆ V made by
10 000 random vertices (or the whole V if |V | < 10 000),
and for each i we have plotted the percentages of pairs
(s, t) ∈ T 2 such that τ s (n

x) + τ t (n
y) − dist(s, t) = i.

The plots are shown in Figure 3.
From the figure, it is clear that τ s (n

x) + τ t (n
y)

is almost always at least dist(s, t), as predicted by
Property 2.2. However, in some cases, dist(s, t) =
τ s (n

x) + τ t (n
y): we think that this is due to the fact

that, in our random graph models, the guarantee is
O
(

e−nε)

, and for ε = 0.2, this value is not very small

(for instance, if n = 10 000, e−nε

= 0.012). However,
this value tends to 0 when n tends to infinity, and this
is reflected in practice: indeed, the fit is better when
the number of nodes is larger. Overall, we conclude
that Property 2.2 is valid with good approximation on
the networks in the dataset, and we conjecture that the
correspondance is even stronger for bigger values of n.

Finally, we need to validate Property 2.3, which
says that, given a vertex s, for “many” sets of vertices
T , |{t ∈ T : τ s (n

x) + τ t (n
y) < dist(s, t) + 2}| ≤

|T |n1−x−y+ε. Hence, we have chosen a random vertex
s and a random set T made by 10 000 vertices, and for
each t ∈ T , we have computed zt = min{x + y : x >
y, τ s (n

x) + τ t (n
y) < dist(s, t) + 2}. If the number Nz

of vertices t such that zt < z is at most |W |n−1+z+ε,
then we can guarantee that the theorem holds for each
x and y. Solving with respect to z, we want that Nz ≤
|T |n−1+z+ε, that is, log Nz

|T | ≤ (−1+ z+ ε) logn, that is,

z ≥ 1− ε+
log Nz

|T |

logn . Hence, Figure 4 shows the values of

the function 1 +
log Nz

|T |

logn , for each graph in our dataset.
Furthermore, since Property 2.3 also deals with sets T
defined depending on τ t (n

x), we have also repeated the
experiment on sets T containing only vertices t verifying

0 ≤ τ t

(

n
1
2

)

< D
6 ,

D
6 ≤ τ t

(

n
1
2

)

< D
3 , τ t

(

n
1
2

)

> D
3 ,

where D is the diameter of the graph.
From the plot, it is clear the claim is verified even

with ε = 0, by all but one case. Also the latter case is
verified with a very small value of ε.

For the validation of Property 2.4, we rely on
extensive studies that show that the degree distribution
of many real-world graphs is power law (for more
information, we refer to [33] and the references therein).

5 Technical Preliminaries on Diameter,

Eccentricity, Closeness Centrality, and

Average Distance.

In this section, we prove some basic metric properties
in the graphs satisfying our four properties. By special-
izing these results to random graphs, we obtain a new
proof of known asymptotics, and we prove new asymp-
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totics in the case 1 < β < 2. In all the following lemmas,
with abuse of notation, we write O(ε) even if ε is a con-
stant, in order to indicate a function bounded by cε for
some constant c.

Lemma 5.1. All vertices s with degree d verify

τ s (n
x) ≤

⌊

(1 +O(ε))
(

T (d → nx) + logn
− log c + x

)⌋

.

Moreover, for each δ > 0, there are Ω
(

nδ
)

vertices s with degree 1 verifying τ s (n
x) ≥

⌈

(1− ε− δ)
(

T (1 → nx) + logn
− log c − 1 + x

)⌉

.

Proof. By Property 2.1 applied with α =
(1 + ε) logn

− log c + x, there are O (ncα−x) =

O
(

nc(1+ε) log n
− log c

)

≤ O (n−ε) < 1 vertices s

such that τ s (n
x) ≥ (1 + ε) (T (d → nx) + α) =

(1 + ε)
(

T (d → nx) + (1 + ε) logn
− log c + x

)

. By observing

that τ s (n
x) is an integer, we obtain the first claim.

For the other inequality, let us apply Prop-
erty 2.1 with α = (1 − δ) logn

− log c − 1 + x: there are

Ω
(

ncα+1−x
)

= Ω
(

nc(1−δ) log n
− log c

)

= Ω
(

nδ
)

vertices

s such that τ s (n
x) ≥ (1 − ε) (T (1 → nx) + α) =

(1− ε)
(

T (1 → nx) + (1− δ) logn
− log c − 1 + x

)

≥ (1− ε−
δ)
(

T (1 → nx) + logn
− log c − 1 + x

)

. By observing that

τ s (n
x) is an integer, the second claim is proved.

By combining the previous lemma with Proper-
ties 2.2 and 2.3, we can estimate the eccentricity of each
vertex.

Theorem 5.1. For each vertex s and for each x be-
tween 0 and 1,

ecc(s) ≤ τ s (n
x)+

⌊

(1 +O(ε))

(

T
(

1 → n1−x
)

+
logn

− log c
− x

)⌋

.

Furthermore, for each s and for each x ≥ 1
2 :

ecc(s) ≥ τ s (n
x)+

⌈

(1 +O(ε))

(

T
(

1 → n1−x
)

+
logn

− log c
− x

)⌉

− 2.

Proof. By Property 2.2, for each vertex t, dist(s, t) ≤
τ s (n

x) + τ t

(

n1−x+ε
)

− 1. By Lemma 5.1, for each t,

τ t

(

n1−x+ε
)

≤
⌊

(1 +O(ε))

(

T
(

deg(t) → n1−x+ε
)

+
logn

− log c
+ 1− x+ ε

)⌋

,



and consequently ecc(s) = maxt∈V dist(s, t) ≤ τ s (n
x)+

⌊

(1 +O(ε))
(

T
(

1 → n1−x+ε
)

+ logn
− log c + 1− x+ ε

)⌋

−
1 =

⌊

(1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

.

For the other inequality, if x ≥ 1
2 , let y = 1 −

x − ε < x, and let T be the set of vertices t such that

τ t (n
y) ≥

⌈

(1− 3ε)
(

T (1 → ny) + logn
− log c − 1 + y

)⌉

(by Lemma 5.1, |T | ≥ n2ε). By Property 2.3,
there is at least a vertex t ∈ T verifying
dist(s, t) ≥ τ s (n

x) + τ t (n
y) − 2 ≥ τ s (n

x) +
⌈

(1− 3ε)
(

T (1 → ny) + logn
− log c − 1 + y

)

− 2
⌉

. The sec-

ond claim follows.

Thanks to this lemma, we can compute the diame-
ter of a graph as the maximum eccentricity.

Theorem 5.2. For each x, the diameter of our graph

is D =
⌊

(1 +O(ε))
(

distavg (n) +
2 logn
− log c

)⌋

.

Proof. By combining the upper bounds in The-
orem 5.1 and Lemma 5.1, we can prove that

D ≤
⌊

(1 +O(ε))
(

T (1 → nx) + logn
− log c + x

)⌋

+
⌊

(1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

.

If we choose x such that (1 +

O(ε))
(

T (1 → nx) + log n
− log c + x

)

= i −
ε, we obtain that D ≤ i − 1 +
⌊

(1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

≤
⌊

i+ (1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x− 1

)⌋

≤
⌊

(1 +O(ε))
(

distavg (n) +
2 logn
− log c

)⌋

.

Let us combine the lower bounds in The-
orem 5.1 and Lemma 5.1: we obtain that
D ≥

⌈

(1−O(ε))
(

T (1 → nx) + logn
− log c + x− 1

)⌉

+
⌈

(1−O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x− 1

)⌉

− 1. For

all but a constant number of values of x, this value

is equal to
⌊

(1−O(ε))
(

T (1 → nx) + logn
− log c + x

)⌋

+
⌊

(1−O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

− 1. Fur-

thermore, if (1 − O(ε))
(

T (1 → nx) + logn
− log c + x

)

=

i + ε for some integer i, this value is
⌊

i+ (1−O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

− 1 ≥
⌊

(1−O(ε))
(

distavg (n) +
2 logn
− log c

)⌋

. A similar argu-

ment can be applied if the second term is i + ε: hence,
it only remains to prove that we can find a value of
x between 1

2 and 1 such that one of the two parts is
close to an integer. This is true because T (1 → nx)+ x
is continuous and increasing with respect to x, and
T
(

1 → n1−x
)

− x is continuous and decreasing. Since

the incease and the decrease are at least 1
2 , the sum of

the two is at least 1.

Given Theorem 3.1, and given the values in Table 2,
Theorem 5.2 gives diameter bounds for power law
graphs generated through the models considered (since
the four properties hold for each ε, we can safely let ε
tend to 0, and transform O(ε) into o(1)). As far as we
know, the bound for 1 < β < 2 is new, while the other
bounds are already known [25, 10].

Corollary 5.1. If λ is a power law degree distribution
with exponent β, the diameter of a random graph with
degree distribution λ is:

• if 1 < β < 2, D =
⌊

3 + β−2
β−1

⌋

;

• if 2 < β < 3, D = (1 + o(1))
(

2
− log η(1)

)

logn;

• if β > 3,

D = (1 + o(1))

(

2

− log η(1)
+

1

logM1(µ)

)

logn.

All the previous results deal with “extremal” prop-
erties of the distance distribution. Instead, the next
results deal with properties that hold on average. Let
us start by estimating the farness of a node s, that is,
∑

t∈V dist(s, t).

Theorem 5.3. For each vertex s and for each 0 < x <
1, the farness f(s) of s verifies

f(s) ≤ n(1 +O(ε))(τ s (n
x)− T (1 → nx)

+ distavg (n))− deg(s).

Proof. By Property 2.2, for each vertex t, dist(s, t) ≤
τ s (n

x) + τ t

(

n1−x+ε
)

− 1, and hence

∑

t∈V

dist(s, t)

≤ n (τ s (n
x)− 1) +

+∞
∑

d=1

∑

deg(t)=d

τ t

(

n1−x+ε
)

= n (τ s (n
x)− 1) +

+∞
∑

d=1

|{t ∈ V : deg(t) = d}|·

T
(

d → n1−x+ε
)

− n

≤ n (τ s (n
x)− 1) + n(1 + o(1))T

(

1 → n1−x+ε
)

+ nT
(

1 → nx−ε
)

− nT
(

1 → nx−ε
)

≤ n(1 +O(ε)) (τ s (n
x)− T (1 → nx) + distavg (n)) .

We need to subtract deg(s) from this result. To this
purpose, we observe that in the first estimate, all



neighbors of s with degree at most n1−x were given a
distance τ s (n

x)+τ t

(

n1−x+ε
)

−1 = τ s (n
x)+2−1 ≥ 2,

and consequently the other estimates remain correct if
we subtract the number of neighbors of s with degree at
most n1−x, or equivalently if we subtract deg(s) and we
sum the number of neighbors of s with degree at least
n1−x. Since |E| ≤ n1+ε by Property 2.4, the number of
vertices with degree at least n1−x is at most nx+ε, and
the latter contribution is negligible.

Theorem 5.4. For each vertex s and for each 1
2 ≤ x <

1,

f(s) ≥ n(1−O(ε))·
(τ s (n

x)− T (1 → nx) + distavg (n)− 1) .

Proof. Let s be any vertex, and let us apply Prop-
erty 2.3 with T = V : there are at mostO

(

n1−ε
)

vertices

t ∈ V such that dist(s, t) < τ s (n
x) + τ t

(

n1−x−2ε
)

− 2.

Let T ′ := {t ∈ V : dist(s, t) ≥ τ s (n
x) + τ t

(

n1−x−2ε
)

−
2}.

f(s) =
∑

t∈V

dist(s, t)

≥
∑

t∈V ′

τ s (n
x) + τ t

(

n1−x−2ε
)

− 2

= n(1− o(1)) (τ s (n
x)− 2)

+
∑

t∈V

τ t

(

n1−x−2ε
)

− τ t

(

n1−x−2ε
)

= n(1−O(ε))(τ s (n
x)− T (1 → nx) + distavg (n)

− 1)−
+∞
∑

i=1

|V − V ′|O(log n)

= n(1−O(ε))(τ s (n
x)− T (1 → nx)

+ distavg (n)− 1).

By computing the inverse of the farness, we can
compute the closeness centrality of a vertex.

Corollary 5.2. For each x such that 1
2 ≤ x <

1, the closeness centrality of a vertex s veri-

fies 1−O(ε)
n(τs(nx)−T (1→nx)+distavg(n))−deg(s) ≤ c(s) ≤

1+O(ε)
n(τs(nx)−T (1→nx)+distavg(n)−1) .

Corollary 5.3. The average distance between two
vertices is between (1 − O(ε)) distavg (n) − 1 and (1 +
O(ε)) distavg (n).

Proof. The average distance is the sum of the far-
ness of all vertices, divided by n(n − 1). By
the two previous theorems, for each x ≥ 1

2 ,
n(1 + O(ε)) (τ s (n

x)− T (1 → nx) + distavg (n)− 1) ≤
f(s) ≤ n(1+O(ε)) (τ s (n

x)− T (1 → nx) + distavg (n)).

Let us compute
∑

s∈V τ s (n
x) =

∑+∞
d=1

∑

deg(s)=d τ s (n
x) =

∑∞
d=1 |{s : deg(s) =

d}|T (d → nx) = (1 + o(1))T (1 → nx). Combining this
estimate with the previous equation, we obtain:

(1−O(ε)) distavg (n)− 1 ≤ 1

n(n− 1)

∑

s∈V

f(s)

≤ (1 +O(ε)) distavg (n) .

Again, assuming Theorem 3.1, and given the values
in Table 2, we have proved the following asymptotics
for the average distance in random graphs.

Corollary 5.4. If λ is a power law degree distribution
with exponent β, the average distance in a random graph
with degree distribution λ is:

• if 1 < β < 2, 2− o(1) ≤ distavg ≤ 3 + o(1);

• if 2 < β < 3, distavg = (2 + o(1))
(

log 1
β−1

logn
)

;

• if β > 3, distavg = (1 + o(1)) logn
logM1(µ)

.

6 Bounding the Diameter Through Sampling.

The first algorithm we analyze is very simple: it
lower bounds the diameter of a graph by performing
k BFSes from random nodes s1, . . . , sk, and returning
maxi=1,...,k ecc(si). Clearly, the running time is O(mk):
we want to analyze the error of this method on graphs
that satisfy our assumptions. The main idea behind
this analysis is that ecc(s) is strongly correlated with
τ s (n

x), and the number of vertices verifying τ s (n
x) >

α decreases exponentially with respect to α. This means
that the number of vertices with high eccentricity is very
small, and it is difficult to find them by sampling: this
means that the error should be quite big.

More formally, by Theorem 5.1, the eccentric-
ity of a vertex s verifies ecc(s) ≤ τ s (n

x) +
⌊

(1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

, and conse-

quently the output is at most maxi=1,...,k τ si (n
x) +

⌊

(1 +O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

. We want

to estimate maxi=1,...,k τ si (n
x) through Property 2.1:

the number of vertices s verifying τ s (n
x) ≥ (1 +

O(ε)) (T (1 → nx) + α) is at most ncα−x, and conse-
quently a random set of k vertices does not contain

any such vertex, a.a.s., if k ≤ n1−ε

ncα−x ≪ n
ncα−x . Solv-

ing the first inequality with respect to α, we obtain
α ≥ x+ ε log n+log k

− log c .

We conclude that, a.a.s., if α = x + ε log n+log k
− log c ,

we do not perform any BFS from a vertex s such
that τ s (n

x) ≥ (1 + ε) (T (1 → nx) + α) = (1 +



O(ε))
(

T (1 → nx) + γ logn
− log c + x

)

. This means that, for

a suitable choice of x, the output is smaller than:

max
s∈X

τ s (n
x)

+

⌊

(1 +O(ε))

(

T
(

1 → n1−x
)

+
logn

− log c
− x

)⌋

≤
⌊

(1 +O(ε))

(

T (1 → nx) +
γ logn

− log c
+ x

)⌋

+

⌊

(1 +O(ε))

(

T
(

1 → n1−x
)

+
logn

− log c
− x

)⌋

≤
⌊

(1 +O(ε))

(

distavg (n) +
(1 + γ) logn

− log c
− 1

)⌋

.

By replacing the values in Table 2, we obtain the
desired results. In order to obtain a lower bound on the
error, it is enough to perform similar computations after
replacing ε with −ε.

7 The 2-Sweep Heuristic.

The 2-Sweep heuristic [31] finds a lower bound on the
diameter, by performing a BFS from a vertex s, finding
a vertex t that maximizes the distance from s, and
returning the eccentricity of t (since only 2 BFSes are
performed, the running time is linear in the input size).
Following the intuitive proof, let us show that τ t (n

x)
is high, and consequently the eccentricity of t, which
depends on τ t (n

x), is high as well.

Lemma 7.1. For each vertex s, let t be
a vertex maximizing the distance from
s. Then, for each x ≥ 1

2 , τ t

(

n1−x
)

≥
⌈

(1−O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − 1− x

)⌉

.

Proof. By Property 2.2 and Theorem 5.1, τ s (n
x+ε) +

⌈

(1−O(ε))
(

T
(

1 → n1−x−2ε
)

+ logn
− log c − 2− x

)⌉

≤
ecc(s) = dist(s, t) ≤ τ s (n

x+ε) + τ t

(

n1−x
)

− 1.

From this inequality, we obtain that τ t

(

n1−x
)

≥
⌈

(1−O(ε))
(

T
(

1 → n1−x
)

+ logn
− log c − 1− x

)⌉

.

By Theorems 5.1 and 5.2, if t is the vertex maxi-
mizing the distance from s:

ecc(t) ≥ τ t

(

n
1
2

)

+

⌈

(1 −O(ε))

(

T
(

1 → n
1
2

)

+
logn

− log c
− 1

2

)⌉

− 2

≥
⌈

(1−O(ε))

(

T
(

1 → n
1
2

)

+
logn

− log c
− 3

2

)⌉

+

⌈

(1 −O(ε))

(

T
(

1 → n
1
2

)

+
logn

− log c
− 5

2

)⌉

≥ 2

⌊

(1−O(ε))

(

T
(

1 → n
1
2

)

+
logn

− log c
− 1

2

)⌋

− 1

≥ 2

⌊

(1−O(ε))
D

2

⌋

− 1

(in this analysis, we used that T
(

1 → n
1
2

)

+ logn
− log c is

not an integer, and that ε is small enough).
We conclude that the output of the 2-Sweep

heuristic is 2
⌊

(1−O(ε))D2
⌋

− 1, proving the results in
Table 1.

8 The RW Algorithm.

The RW algorithm [36] is a randomized algorithm that
computes a 3

2 -approximation of the diameter of a graph,
in time Θ(m

√
n logn). The algorithm works as follows:

we choose k = Θ(
√
n logn) vertices s1, . . . , sk, and we

perform a BFS from each of these vertices. Then, we
compute the vertex t maximizing mini=1,...,k dist(si, t),
and we let t1, . . . , tk be the k vertices closest to t.
Then, if there exist i, j such that si = tj , we return
the maximum eccentricity among the sis and the tjs,
otherwise the algorithm fails, and we can decide to run
it again (anyway, the probability that it fails are small).

For the worst-case analysis of this algorithm, we
refer to [36]: in this work, we analyze its performances in
our framework. The running time is still Θ(m

√
n logn),

since the algorithm requires Θ(
√
n logn) BFSes from

the vertices si, tj, but the approximation factor can be
better than the worst-case. Intuitively, this algorithm
is quite similar to the 2-Sweep heuristic (if k was 1,
the algorithm would be the 2-Sweep heuristic), and we
conjecture that also its behavior should be similar.

For a formal proof, let v be any vertex: since the

vertices si are random, P

(

∀i, si ∈ Nτv(n
x)(v)

)

≥
(

1− nx

n

)

√
n logn

= en
x− 1

2
+o(1)

, and similarly

P

(

∀i, si /∈ Nτv(n
x)−1(v)

)

≤
(

1− O(nx log n)
n

)

√
n logn

=

en
x− 1

2
+o(1)

(because there are at most nxτ v (n
x) =

O(nx logn) vertices in Nτv(n
x)−1(v)). This means

that mini=1,...,k dist(si, v) ≤ τ v

(

n
1+ε
2

)

w.h.p.,



and mini=1,...,k dist(si, v) ≥ τ v

(

n
1−ε
2

)

− 1 a.a.s..

Hence, if v is one of the vertices maximizing

τ v

(

n
1
2

)

, mini=1,...,k dist(si, v) ≥ τ v

(

n
1−ε
2

)

− 1 ≥
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 1

2

)⌉

− 1 a.a.s., by

Lemma 5.1.
This means that the vertex t maximiz-

ing mini=1,...,k dist(si, t) verifies τ t

(

n
1+ε
2

)

≥
mini=1,...,k dist(si, t) ≥ mini=1,...,k dist(si, v) ≥
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 1

2

)⌉

.

This means that ecc(t) ≥ τ t

(

n
1
2

)

+
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 1

2

)⌉

− 2 ≥
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 1

2

)⌉

− 1 +
⌈

(1−O(ε))
(

T
(

1 → n
1
2−ε
)

+ logn
− log c − 1

2

)⌉

− 2 =

2
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 1

2

)⌉

− 3, and

this value is exactly the same value we obtained for the
2-Sweep heuristic.

Note that this analysis only uses the vertex t, and a
more refined analysis could (in principle) obtain better
bounds.

9 The SumSweep Heuristic.

The SumS heuristic [13, 14] provides a lower bound
on the eccentricity of all vertices, by performing some
BFSes from vertices t1, . . . , tk, and defining L(v) =
maxi=1,...,k dist(v, ti) ≤ ecc(v) for each vertex v. The
vertices ti are chosen as follows: we start from a
random vertex s1, then we choose t1 as the vertex
maximizing dist(s1, t1). Then, we choose again s2 as
a random vertex, and we choose t2 as the vertex in
V −{t1}maximizing dist(s1, t2)+dist(s2, t2). In general,
after 2i BFSes are performed, we choose a random
vertex si+1, we perform a BFS from si+1, and we
choose ti+1 as the vertex in V −{t1, . . . , ti} maximizing
∑i+1

j=1 dist(sj , ti+1).
3

The idea behind the analysis of the 2-Sweep heuris-
tic and the RW algorithm is to exploit the existence of
few vertices t with big values of τ t (n

x): both algorithms
find a single vertex t such that τ t (n

x) is high, and they
lower bound the diameter with the eccentricity of this
vertex, which is peripheral. Instead, the SumS heuristic
highlights all vertices ti having big values of τ t (n

x), and
it performs a BFS from each of these vertices. Then, for
each vertex v, if t is the vertex farthest from v, τ t (n

x) is

3Actually, in the original SumS heuristic, there is no distinction
between the vertices si and ti: we simply choose ti+1 as the vertex
maximizing

∑i
j=1 dist(tj , ti+1). However, for our analyses, we

need to use this variation.

big, and this means that t = ti for some small i. Conse-
quently, if we lower bound ecc(s) ≥ maxi=1,...,k ecc(ti),
the lower bounds obtained are tight after few steps. Let
us formalize this intuition: first, we need to prove that
the vertices t with high value of τ t

(

n1−x
)

are chosen
soon by this procedure.

Lemma 9.1. Let S be a random set of vertices, let
τS (ny) = 1

|S|
∑

s∈S τ s (n
y), and let t be any ver-

tex in the graph. Then,
∑

s∈S dist(s,t)

|S| ≤ τ t (n
x) +

τS

(

n1−x+ε
)

− 1. Furthermore, if |S| > n3ε, x ≥ 1
2 ,

∑

s∈S dist(s,t)

|S| ≥ (1− o(1))
(

τ t (n
x) + τS

(

n1−x−2ε
)

− 1
)

,

w.h.p..

Proof. For the upper bound, by Property 2.2,
∑

s∈S dist(s, t) ≤ ∑

s∈S τ t (n
x) + τ s

(

n1−x+ε
)

− 1 =

|S|
(

τ t (n
x) + τS

(

n1−x+ε
)

− 1
)

.
For the lower bound, by Property 2.3, for each

vertex t, the number of vertices s ∈ V verifying
dist(s, t) < τ t (n

x) + τ s

(

n1−x−2ε
)

− 2 is at most
n1−ε. Let S′ ⊆ S be the set of vertices verifying
dist(s, t) ≥ τ t (n

x) + τ s

(

n1−x−2ε
)

− 2: since S is ran-
dom, the probability that a vertex s ∈ S does not
belong to S′ is at least n−ε. From this bound, we
want to prove that |S′| ≥ (1 − O(n−ε))|S|, using Ho-
effding’s inequality. For each s ∈ S, let Xs = 1 if
dist(s, t) ≥ τ t (n

x) + τ s

(

n1−x−2ε
)

− 2, 0 otherwise:
clearly, |S′| =∑s∈S Xs, the variables Xs are indepen-
dent, and P(Xs = 1) ≥ 1−n−ε. By Hoeffding’s inequal-

ity, P
(
∑

s∈S Xs < E
[
∑

s∈S Xs

]

− λ
)

≤ e−
λ2

|S| . Since

E
[
∑

s∈S Xs

]

≥ |S|(1 − n−ε), if we choose λ = |S|n−ε,

we obtain that P (|S′| < (1− 2n−ε)|S|) ≤ e−|S|n−2ε

. We
proved that, w.h.p., |S′| ≥ |S|(1 − O(n−ε)). As a con-
sequence:

∑

s∈S

dist(s, t)

≥
∑

s∈S′

dist(s, t)

≥
∑

s∈S′

τ t (n
x) + τ s

(

n1−x−2ε
)

− 2

≥ |S′|
(

τ t (n
x) + τS

(

n1−x−2ε
)

− 2
)

−
∑

s∈S−S′

O(logn)

≥ |S′|
(

τ t (n
x) + τS

(

n1−x−2ε
)

− 2
)

−O
(

n−ε|S| logn
)

≥ (1− o (1)) |S|
(

τ t (n
x) + τS

(

n1−x−2ε
)

− 2
)

.

By Lemma 7.1, if t maximizes dist(u, t) for some
u ∈ V , then for each y ≥ 1

2 , τ t

(

n1−y−2ε
)

≥
⌈

(1 −O(ε))
(

T
(

1 → n1−y
)

+ logn
− log c − 1− y

)⌉

.

If we choose x = y = 1
2 , the previous



lemma proves that, if a vertex v is chosen be-

fore t in this procedure, then τ v

(

n
1
2+3ε

)

+

τS

(

n
1
2−2ε

)

− 1 ≥
∑

s∈S dist(s,v)

|S| ≥
∑

s∈S dist(s,t)

|S| ≥
(1− o (1))

(

τ t

(

n
1
2

)

+ τS

(

n
1
2−2ε

)

− 2
)

.

Rearranging this inequality, we obtain

τ v

(

n
1
2+3ε

)

≥ (1 − o(1))
(

τ t

(

n
1
2

)

− 1
)

≥
⌈

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 5

2

)⌉

=
⌊

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 3

2

)⌋

.

If we apply Property 2.1 with the value

of α verifying (1 + ε)
⌊

T
(

1 → n
1
2+3ε

)

+ α
⌋

=
⌊

(1−O(ε))
(

T
(

1 → n
1
2

)

+ logn
− log c − 3

2

)⌋

, we

obtain that the number of vertices v sat-
isfying the latter equation is O(ncα−x) =

nc

⌊

(1−O(ε))
(

T
(

1→n
1
2

)

+ log n
− log c

− 3
2

)⌋

−T
(

1→n
1
2
+3ε
)

− 1
2 .

If β > 2, this value is simply O(ε), while if 1 < β < 2,

this value is n1− 2−β
β−1 (⌊ β−1

2−β
− 3

2⌋− 1
2 ), if ε is small enough.

We conclude that, after n3ε +O(ncα−x) BFSes, we
have performed a BFS from all vertices t that maximize
dist(u, t) for some u ∈ V : this means that the lower
bounds on all eccentricities are tight.

10 The iFub Algorithm.

The iFub algorithm is an exact algorithm to compute
the diameter of a graph. Its worst-case running time is
O(mn), but it performs much better in practice [22]. It
works as follows: it performs a BFS from a vertex v, and
it uses the fact that, if D = dist(s, t), either dist(s, v) ≥
D
2 , or dist(v, t) ≥ D

2 . Hence, after the first BFS from
v, the iFub algorithm computes the eccentricity of all
the other vertices, in decreasing order of distance from
v. During this process, it keeps track of the maximum
eccentricity found DL, which is a lower bound on the
diameter. As soon as we are processing a vertex s such
that dist(v, s) ≤ DL

2 , we know that, for each pair (s, t)

of unprocessed vertices, dist(s, t) ≤ 2DL

2 = DL: this
means that we have processed at least one of the vertices
in a diametral pair, and DL = D. The running time is

O
(

mND
2
(v)
)

, where ND
2
(v) is the number of vertices

at distance at least D
2 from v (indeed, the algorithm

performs a BFS from each of these vertices).
For our analysis, we only need to estimate ND

2
(v).

Intuitively, the diameter is the sum of two contributions:
one is distavg (n), which is close to the average distance
between two nodes, and the other is twice the maximum
deviation from this value, that is, 2 log n

− log c . Hence,

ND
2
(v) is the number of vertices at distance

distavg(n)
2 +

logn
− log c from v: if the second term is dominant (for

instance, if 2 < β < 3), we are considering only
vertices with very big deviations, and the time is much
smaller than n. Conversely, if the deviation is smaller

than
distavg(n)

2 , we expect this number to be O(n) (for
instance, if β > 3 and η(1) is small).

Let us formalize this intuition. By Theorem 5.2,
D
2 ≥ 1

2

⌊

(1 +O(ε))
(

distavg (n) +
2 logn
− log c

)⌋

. In order to

estimate ND
2
(v), we use the fact that if x + y ≥ 1 + ε,

dist(v, w) ≤ τ v (n
x) + τw (ny) − 1, and consequently,

if dist(v, w) ≥ D
2 , then τw (ny) ≥

⌈

D
2 + 1− τ v (n

x)
⌉

≥
⌊

1
2 (1 +O(ε))

(

distavg (n) +
2 log n
− log c

)⌋

+ 1− τ v (n
x).

Let us apply Property 2.1 with α
such that (1 + ε) (T (d → ny) + α) =
⌊

1
2 (1 +O(ε))

(

distavg (n) +
2 log n
− log c

)⌋

+ 1 − τ v (n
x):

we obtain that ND
2
(v) ≤ ncα−y = n1− log c

log n
(α−y). Let us

estimate:

α− y

≤ (1 +O(ε))

(⌊

1

2
(1 +O(ε))

(

distavg (n) +
2 logn

− log c

)⌋

+ 1− τ v (n
x)− T (d → ny)

)

≤ (1 +O(ε))

(⌊

1

2

(

distavg (n) +
2 logn

− log c

)⌋

− distavg (n) + T
(

1 → nmax(1−ε, 1
β−1 )

)

)

.

For β > 3, the number of BFSs is

n
(1+O(ε))− log c

log n

(

1
2 distavg(n)−T

(

1→n
1

β−1

))

=

n
(1+O(ε))− log η(1)

log n ( 1
2− 1

β−1 )
log n

log M1(µ) =

n(
1
2− 1

β−1+O(ε))− log η(1)
log M1(µ) . Hence, the running time

is O
(

mND
2
(v)
)

= n
1+( 1

2− 1
β−1+O(ε))− log η(1)

log M1(µ) .

For 2 < β < 3, the computation is similar, but
M1(µ) is infinite: the running time is n1+O(ε).

Finally, for 1 < β < 2, if v is the maximum degree

vertex, this value is at most n1−(1+O(ε)) 2−β
β−1⌊ 3

2+
β−1
2−β

−2⌋ =

n1+O(ε)− 2−β
β−1⌊ β−1

2−β
− 1

2⌋. The running-time is

mn1− 2−β
β−1⌊ β−1

2−β
− 1

2⌋+O(ε) = n2− 2−β
β−1⌊ β−1

2−β
− 1

2⌋+O(ε).

11 The Exact SumSweep Algorithm.

The SumS algorithm [13, 14] is based on keeping lower
bounds L(v) and upper bounds U(v) on the eccentricity
of each vertex v. In particular, assume that we have
performed BFSes from vertices s1, . . . , sk: we can set an
upper (resp., lower) bound U(v) = mini=1,...,k(ecc(si)+
dist(si, v)) (resp., L(v) = maxi=1,...,k(dist(vi, s))) on the
eccentricity of v. Furthermore the algorithm keeps a
lower bound DL (resp., an upper bound RU ) on the



diameter (resp., radius), defined as the maximum (resp.,
minimum) eccentricity of a processed vertex si. As soon
as DL ≥ minv∈V U(v), we can safely output DL as
the diameter; similarly, as soon as RU ≤ minv∈V L(v),
we know that RU is the exact radius. It remains to
define how the vertices s1, . . . , sk are chosen: we start
by performing a SumSH, and after that we alternatively
maximize L and minimize U (obviously, we never choose
the same vertex twice). Actually, in order to perform
the analysis in the case β > 3, we also need to perform a
BFS from a vertex maximizing the degree every k steps,
for some constant k (differently from the original SumS
algorithm).

The analysis for the radius computation is very
simple: after the initial SumSH, all lower bounds are
tight w.h.p., and consequently it is enough to perform a
further BFS from a vertex minimizing L to obtain the
final value of RU . Then, the running time is the same as
the running time of the SumSH. For the diameter, the
analysis is more complicated, because we have to check
when all upper bounds are below the diameter, and the
upper bounds are not tight, in general.

Intuitively, if β < 3, the radius is very close to half
the diameter, and the first BFS is performed from a
radial vertex s: consequently, after the first BFS, the
upper bound of a vertex v becomes ecc(s)+dist(s, v) ≤
D if dist(s, v) ≤ D − ecc(s) = D − R ≈ R = ecc(s).
This means that, after this BFS, we have to perform
a BFS from each vertex whose distance from s is
approximately the eccentricity of s, and there are not
many such vertices, as shown by Lemma 7.1. Hence,
we obtain that, in this regime, the running time of
the ExactSumS algorithm is the same as the running
time of the initial SumSH. Conversely, if β > 3, a
BFS from a vertex s sets upper bounds smaller than
D to all vertices closer to s than D − ecc(s), and the
number of such vertices is close to M1(µ)

D−ecc(s). Since
D−ecc(s) is usuallyO(log n), a BFS sets correct bounds
to M1(µ)

O(logn) = nO(1) vertices: hence, we expect the
number of BFSes needed to be subquadratic.

11.1 The Case 1 < β < 3. As we said be-
fore, the first BFS is performed from a radial ver-
tex s: by Theorem 5.1, if s is a vertex max-
imizing τ s (n

x), ecc(s) ≤ ecc(s) ≤ τ s (n
x) +

⌊

(1 + ε)
(

T
(

1 → n1−x
)

+ logn
− log c − x

)⌋

. Let x := 1− ε,

if 1 < β < 2, x := 1
β−1 − ε if 2 < β < 3: this value is at

most
⌊

(1 + 2ε)
(

2 + logn
− log c

)⌋

. As a consequence, after

the first BFS, the algorithm sets upper bounds smaller

than D to any vertex closer to s than

D − ecc(s) ≥
⌊

(1−O(ε))

(

distavg (n) +
2 logn

− log c

)⌋

−
⌊

(1 + 2ε)

(

2 +
logn

− log c

)⌋

≥ (1 −O(ε))

(⌊

2 logn

− log c

⌋

−
⌊

logn

− log c

⌋

+ 1

)

.

This means that we only have to analyze vertices
v such that D − ecc(s) ≤ dist(s, v) ≤ τ s (n

x) +
τ v

(

n1−x+ε
)

− 1, that is:

τ v

(

n1−x+ε
)

≥ D − ecc(s)− τ s (n
x) + 1

≥ (1−O(ε))

(⌊

2 logn

− log c

⌋

−
⌊

logn

− log c

⌋

+ 1

)

.

Let us apply Property 2.1 with α such
that (1 + ε)

(

T
(

1 → n1−x+ε
)

+ α
)

= (1 −
O(ε))

(⌊

2 logn
− log c

⌋

−
⌊

logn
− log c

⌋

+ 1
)

: we obtain that

the number of vertices v that do not receive bounds
smaller than D is at most

ncα−1+x−ε

= nc(1−O(ε))(⌊ 2 log n
− log c⌋−⌊ log n

− log c⌋+1)−T(1→n1−x+ε)−1+x−ε

= ncα−1+x−ε

= nc(1−O(ε))(⌊ 2 log n
− log c⌋−⌊ log n

− log c⌋)−T(1→n1−x+ε)−1,

which is smaller than the number of iteration of the
SumSH. Hence, the total running time is bounded by
the time needed to perform the initial SumSH.

11.2 The Case β > 3. In the case β > 3, the
previous argument does not work, because distavg (n)
can be small. We need a different technique: we prove
that, for each vertex v and for some x, either τ v (n

x) is
quite large, or there is a vertex s with high degree that is
“not far” from s. After O(k) steps, we have performed
a BFS from the k vertices with highest degree, and
consequently all vertices which are quite close to one of
these vertices have bounds smaller than D: this means
that there are few vertices with upper bound bigger then
D. Then, since every O(1) steps, the number of vertices
with upper bound bigger than D decreases by 1, after
few more BFSes, all upper bounds are smaller than or
equal to D.

More formally, let s1, . . . , sk be all the vertices with

degree bigger than nx: by Property 2.4, k = n1±O(ε)

nx(β−1) ,

and after at most n1+O(ε)

nx(β−1) BFSes (apart from the initial
SumSH), we have performed a BFS from each of these
vertices.



We start by estimating ecc(si), because,
after the BFS from si, for each vertex v,
U(v) ≤ dist(v, si) + ecc(si). By Theorem 5.1, ecc(si) ≤
τ si (n

x) +
⌊

(1 + ε)
(

T
(

1 → n1−x
)

+ log n
− log c − x

)⌋

≤
1 + (1 + ε)

(

(1 − x) logn
logM1(µ)

+ logn
− log c

)

≤
(1 + 2ε)

(

(1− x) logn
logM1(µ)

+ logn
− log c

)

. Hence, af-

ter the BFS from vertex si, the upper bound of
any vertex v is smaller than dist(v, si) + (1 +

2ε)
(

(1− x) logn
logM1(µ)

+ logn
− log c

)

, which is smaller than D

if dist(v, si) ≤ D−(1+2ε)
(

(1− x) logn
logM1(µ)

+ log n
− log c

)

=

(1 + 4ε)
(

x logn
logM1(µ)

+ log n
− log c

)

by Theorem 5.2.

Now, we want to compute the number of vertices

that are at distance at least (1+4ε)
(

x log n
logM1(µ)

+ logn
− log c

)

from each si. To estimate this quantity, we use the
following lemma, which does not follow directly from
the four properties (for a proof, see Appendix B.7).

Lemma 11.1. Assume that β > 2, and let T be the set
of vertices with degree at least nx. Then, dist(s, T ) :=
mint∈T dist(s, t) ≤ τ s

(

nx(β−2)+ε
)

+ 1 w.h.p..

In other words, this lemma says that, for each ver-
tex v, mini=1,...,k dist(v, si) ≤ τ v

(

nx(β−2)+ε
)

: hence,
after a BFS from each vertex si has been per-
formed, the upper bound of v is at most D if

τ v

(

nx(β−2)+ε
)

≤ (1+4ε)
(

x logn
logM1(µ)

+ logn
− log c

)

. We con-

clude that, after n1+ε−x(β−1) BFSes, only vertices ver-

ifying τ v

(

nx(β−2)+ε
)

> (1 + 4ε)
(

x log n
logM1(µ)

+ logn
− log c

)

have upper bounds bigger than D.
By Property 2.1, the number of vertices

that verify the latter inequality is at most

O
(

nc
(1−O(ε))

(

x log n

log M1(µ)
+ log n

− log c
− x(β−2) log n

log M1(µ)

)
)

=

n
1−− log c

log n

(

log n
− log c

− x(β−3) log n

log M1(µ)

)

+O(ε)
= n

x(β−3)(− log c)
log M1(µ)

+O(ε)
.

Hence, by performing O
(

n
x(β−3)(− log c)

log M1(µ)
+O(ε)

)

more

BFSes, the algorithm terminates.
We conclude that the total number of BFSes

is at most max
(

n
x(β−3)(− log c)

log M1(µ) +O(ε)
, n1−x(β−1)

)

: if

we substitute x = 1
β−1+(β−3) − log c

log M1(µ)

, we obtain

n

1

1+
β−1
β−3

log M1(µ)
log c

+O(ε)

. Then, the running time is at most

n
1+ 1

1+
β−1
β−3

log M1(µ)
log c

+O(ε)

.

12 Conclusions and Open Problems.

In this paper, we have developed an axiomatic frame-
work to evaluate heuristics and algorithms that compute
metric properties of real-world graphs. The analyses

performed in this framework motivate the empirical re-
sults obtained by previous works, they let us compare
the different algorithms, and they provide more insight
into their behavior. Furthermore, these results can be
turned into average-case analyses in realistic models of
random graphs.

This work leaves several open problems. First of all,
it would be useful to improve the analysis with respect
to the parameter ε, by computing the exact constants
instead of simply writing O(ε).

Furthermore, in some cases, if we ignore ε, we
have exactly computed the constants appearing in the
exponent. However, in other cases, we just proved upper
bounds: it would be interesting to understand if these
bounds are tight. We conjecture that the bounds for
the algorithms to compute the diameter are tight, or
almost tight, but the bounds for other algorithms might
be improved (for example, to perform the analysis of the
AIY algorithm, we used estimates that are probably not
optimal).

Finally, it could be interesting to generalize these
results to other models: for instance, a possible general-
ization is to include all Inhomogeneous Random Graphs
[10] (while in this paper we only considered only Rank-1
Inhomogeneous Random Graphs). We conjecture that
also these graphs satisfy the four properties, because
the known asymptotics for diameter and average dis-
tance are very similar to the asymptotics obtained in
this paper.

Another possible generalization is to consider di-
rected graphs: most of the algorithms we analyze in
this paper can be generalized to the directed case, and
the four properties can be generalized, as well. However,
in the literature, there are no well-established models of
power law random directed graphs: for this reason, it
would be interesting to develop natural generalizations
of the models considered, and prove that these general-
izations satisfy the (generalized) properties.
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A The Model.

We assume the reader to be familiar with the basic notions of graph theory (see, for example, [21]), and we
assume that all the graphs we consider are undirected and unweighted. Furthermore, we say that an event E
holds asymptotically almost surely or a.a.s. if, when n tends to infinity, P(E) = 1 − o(1); it holds with high
probability or w.h.p. if P(E) = 1− o

(

n−k
)

for each k ∈ N.
In this paper, we consider different models of random graphs: the Configuration Model (CM, [9]), and Rank-1

Inhomogeneous Random Graph models (IRG, [45], Chapter 3), such as the Chung-Lu model [20], and the Norros-
Reittu model [35]. All these models are defined by fixing in advance the number n of nodes, and n weights ρv,
one for each vertex in the graph. Then, edges are created at random, trying to give ρv outgoing edges to each
vertex v. We assume that the weights ρv are chosen according to a power law distribution λ, which is the degree
distribution of many real-world graphs [33]: more specifically, we assume that, for each d, the number of vertices
with weight bigger than d is Θ

(

n
dβ−1

)

, for some constant β.4

After defining the weights, we have to define how we generate the edges:

• in the CM, we give ρv half-edges, or stubs to a vertex v; edges are created by pairing theseM =
∑

v∈V ρv stubs
at random (we assume the number of stubs to be even, by adding a stub to a random vertex if necessary).

• in IRG, an edge between a vertex v and vertex w is created independently with probability f(ρvρw

M ), where
M =

∑

v∈V ρv, and

– in general, we assume the following:

∗ f is derivable at least twice in 0;

∗ f is increasing;

∗ f ′(0) = 1;

∗ f(x) = 1− o(xk) for each k, when x tends to infinity.

– in the Chung-Lu model, f(x) = min(x, 1);

– in the Norros-Reittu model, f(x) = 1− e−x.

Remark A.1. The first two assumptions in IRG are needed to exclude pathological cases. The third assumption
is just needed to simplify notation, but it can be easily lifted by modifying the weights ρv: for instance, if f

′(0) = c,
we may multiply all ρvs by

√
c, and redefine f1(x) = f

(

x
c

)

, obtaining the same graph with a function verifying
f ′
1(0) = 1. The fourth assumption is less natural, and there are models where it is not satisfied, like the Generalized
Random Graph model ([44], Chapter 6). However, if the average degree is finite (that is, β > 2), the proofs do not
need this assumption (in this work, we have chosen to use this assumption in order to simplify the statements).

In order to prove our results, we further need some technical assumptions, to avoid pathological cases. In
particular, we exclude from our analysis the values of β corresponding to the phase transitions: β = 2, and
β = 3. Furthermore, in the regime 1 < β < 2, we have other phase transitions related to the diameter of

the graph, which is
⌊

3 + β−1
2−β

⌋

: we assume that β−1
2−β is not an integer, and, with abuse of notation, we write

⌊

β−1
2−β − ε

⌋

=
⌊

β−1
2−β

⌋

=
⌈

β−1
2−β

⌉

− 1 =
⌈

β−1
2−β + ε

⌉

− 1.

Finally, we need a last assumption on the degree distribution λ: all our metric quantities make sense only if
the graph is connected. Hence, we need to assume that λ does not contain “too many vertices” of small degree,
so that a.a.s. there is a unique connected component of size Θ(n), named giant component. All our results hold
in the giant component of the graph considered.

In the remainder of this section, we define precisely this assumption, and we further define some more constants
that appear in the main theorems. A reader who is not interested in these technicalities might just skip this part,
assuming that the graph is connected, and that the main theorems hold (our probabilistic analyses do not depend
on the definition of these constants).

4In some cases, a stronger definition of power law is used, that is, it is assumed that there are Θ
(

n

dβ

)

vertices with degree d, for

each d. However, our proofs still work with the weaker definition.



The first definition is the residual distribution µ [25, 45, 44]: intuitively, if we choose a random node v, and
we choose a random neighbor w of v, the degree of w is µ-distributed (see Theorem B.2, in the case ℓ = 1). This
distribution is defined as follows.

Definition A.1. Given a distribution λ, its first moment M1(λ) is the expected value of a λ-distributed random
variable. The residual distribution µ of the distribution λ is:

• in the CM, µ(i) = (i+1)λ(i+1)
M1(λ)

;

• in IRG, let µ′(i) = iλ(i)
M1(λ)

: µ(i) is a Poisson distribution with random parameter µ′.

In Appendix B.3, we show that the number of vertices at distance ℓ from a given vertex v is very close to a
µ-distributed branching process Zℓ (for more background on branching processes, we refer to [5]). If M1(µ) < 1,
this branching process dies a.a.s.: in terms of graphs, it means that the biggest component has size O(logn),
and there is no giant component. Conversely, if M1(µ) is bigger than 1, then the branching process has an
infinite number of descendants with positive probability p: in terms of graphs, it means that there is a connected
component of size close to pn (see [44] for a proof). Hence, we assume M1(µ) > 1 and we ignore all vertices that
are not in the giant component.

Finally, given a µ-distributed branching process, we may consider only the branches that have an infinite
number of descendant (see [5], I.D.12): we obtain another branching process with offspring distribution η
depending on µ. In particular, our results depend on η(1), that is, the probability that an η-distributed random
variable has value 1. For more information on the value η(1), we refer to [25]. In the following, we also assume
that η(1) > 0: this is true if and only if µ(0) 6= 0 or µ(1) 6= 0. In IRG, this is automatically implied by the
definition of µ, while in the CM this is an additional technical assumption.

B Validity of the Properties in Random Graphs: Formal Proof.

In this section, we prove Theorem 3.1, that states that the four properties are a.a.s. verified if a graph is generated
with the Configuration Model, or with Rank-1 Inhomogeneous Random Graph models. We follow the sketch
in Section 3. In Appendix B.1 we state some basic lemmas that are used throughout this section, while in
Appendix B.2 we analyze the size of γℓ(s) when γℓ(s) is “big” (at least nε). Then, Appendix B.3 completes
Appendix B.2 by analyzing the size of γℓ(s) when γℓ(s) is small, using branching process approximation. Then,
in Appendix B.4 we analyze separately the case 1 < β < 2, which has a different behavior. Appendix B.5 develop
tools to convert probabilistic results into results on the number of vertices satisfying a certain property. Finally,
Appendix B.6 proves Theorem 3.1, relying on the results of all previous sections, and Appendix B.7 proves other
results that were used in some analyses (these analyses are marked with (∗) in Table 1).

B.1 Probabilistic Preliminaries. In this section, we state some basic probabilistic theorems that are used
in the proof of our main results. For a more thorough discussion and for their proof, we refer to [20].

Lemma B.1. (Multiplicative form of Chernoff bound) Let X1, . . . ,Xk be independent Bernoulli ran-

dom variables, and let S =
∑k

i=1 Xi. Then,

P (S < (1 − ε)E[S]) ≤
(

e−ε

(1− ε)1−ε

)E[S]

P (S > (1 + ε)E[S]) ≤
(

eε

(1 + ε)1+ε

)E[S]

Lemma B.2. (Hoeffding’s inequality) Let X1, . . . ,Xk be independent random variables such that ai < Xi <

bi almost surely, and let S =
∑k

i=1 Xi. Then,

P (|S − E[S]| > λ) ≤ 2e
− 2λ2
∑k

i=1
|bi−ai|

2

The next lemmas deal with supermartingales and submartingales, which are defined as follows.

Definition B.1. Let X1, . . . ,Xk be a sequence of random variables, let F1, . . . ,Fk be a sequence of σ-fields such
that X1, . . . ,Xi are Fi-measurable. The sequence is a martingale if the conditional expectation E[Xi+1|Fi] is
equal to Xi, it is a supermartingale if E[Xi+1|Fi] ≤ Xi, and it is a submartingale if E[X i+1|Fi] ≥ Xi.



The terms “submartingale” and “supermartingale” have not been used consistently in the literature, since in
some works a supermartingale verifies E[Xi+1|Fi] ≥ Xi, and a submartingale verifies E[X i+1|Fi] ≤ Xi [20]. In
this work, we use the most common definition.

Lemma B.3. (Azuma inequality for supermartingales) Let Xk be a supermartingale, and let us assume

that |Xk −Xk+1| < M almost surely. Then, P(Xn −X0 ≥ t) ≤ e−
t2

2nM2 .

Lemma B.4. (Azuma inequality for submartingales) Let Xk be a submartingale, and let us assume that

|Xk −Xk+1| < M almost surely. Then, P(Xn −X0 ≤ −t) ≤ e−
t2

2nM2 .

Lemma B.5. (strengthened version of Azuma inequality) Let Xk be a supermartingale associated with
a filter F , and assume that Var(Xk|Fk−1) ≤ σ2, and Xk − E(Xk|Fk−1) ≤ M . Then,

P (Xk ≥ X0 + λ) ≤ e
−λ2

2kσ2+Mλ
3 .

Finally, we need a technical lemma on the sum of power law random variables.

Lemma B.6. Let X =
∑k

i=1 Xi, where k tends to infinity and the Xis are power law random variables with

exponent 1 < β < 2. Then, for each c > 0, P
(

X > k
1+c
β−1

)

= O(k−c).

Proof. For each i, P
(

Xi > k
1+c
β−1

)

= O
(

(

k−
1+c
β−1

)β−1
)

= O
(

1
k1+c

)

, and consequently the probability that there

exists i such that Xi > k
1+c
β−1 is O (k−c).

Conditioned on Xi ≤ k
1+c
β−1 for each i,

E [X ] = E

[ ∞
∑

ℓ=1

|{i : Xi > ℓ}|
]

= E







k
1+c
β−1
∑

ℓ=1

|{i : X i > ℓ}|






=

k
1+c
β−1
∑

ℓ=1

E [|{i : X i > ℓ}|]

=

k
1+c
β−1
∑

ℓ=1

O(kℓ−β+1) = O
(

k1+
(1+c)(2−β)

β−1

)

= k
1+c(2−β)

β−1 .

We conclude that P

(

X > k
1+c
β−1

)

= P

(

X > k
1+c
β−1

∣

∣

∣∃i,Xi > k
1+c
β−1

)

P

(

∃i,Xi > k
1+c
β−1

)

+

P

(

X > k
1+c
β−1

∣

∣

∣∀i,Xi < k
1+c
β−1

)

P

(

∀i,Xi < k
1+c
β−1

)

≤ O (k−c) + 1

k
1+c
β−1

E

(

X > k
1+c
β−1

∣

∣

∣∀i,Xi < k
1+c
β−1

)

=

O
(

k−c + k
1+c(2−β)

β−1 − 1+c
β−1

)

= O (k−c + k−c) = O (k−c) by Markov inequality.

B.2 Big Neighborhoods. First of all, let us define precisely the typical time needed by a vertex of degree
d to reach size nx. In Section 2, we defined T (d → nx) as the smallest ℓ such that γℓ(s) > nx, and then
we stated which are the typical values of T (d → nx) in different regimes. In this section, we do the converse:
we define F (d → S) as a function of the degree distributions, and we show that there is a high chance that
γ(1−ε)F (d→S)(s) < S < γ(1+ε)F (d→S)(s), if s is a vertex of degree d in the giant component.

Definition B.2. In the following for any 0 < d < S, we denote by

F (d → S) =

{

logM1(µ)

(

S
d

)

if M1(µ) is finite.

log 1
β−2

(

logS
log d

)

if λ is a power law distribution with 2 < β < 3.

Following the intuitive proof, in this section we fix x, y bigger than ε, and we bound τ s (n
y)− τ s (n

x). The
main technique used is to prove that, w.h.p., each neighbor which is big enough satisfies some constraints, and
these constraints imply bounds on τ s (n

y)− τ s (n
x). More formally, we prove the following theorem.



Theorem B.1. For each 0 < x < y < 1, τ s (n
y)− τ s (n

x) ≥ (1− ε)F (nx → ny) a.a.s., and τ s (n
y)− τ s (n

x) ≤
(1 + ε)F (nx → ny) w.h.p..

The proof of this theorem is different for the CM and for IRG. In particular, the main tool used to prove this
theorem is an estimate on γℓ+1(s) knowing γℓ(s): intuitively, in the CM, for each vertex in Γℓ(s) we count how
many neighbors it has in Γℓ+1(s), while in IRG we count how many vertices outside N ℓ(s) have a neighbor in
Γℓ(s).

B.2.1 Configuration Model. Let us assume that we know the structure of N ℓ(s) (that is, we consider all
possible events Ei that describe the structure of N ℓ(s), and we prove bounds conditioned on Ei; finally, though
a union bound, we remove the conditioning). Let us define a random variable ∆ℓ(s), which measures “how big a
neighbor is”.

Definition B.3. Given a graph G = (V,E) generated through the CM, we denote by ∆ℓ(s) the set of stubs of
vertices in Γℓ(s), not paired with stubs of vertices in Γℓ−1(s). We denote δℓ(s) = |∆ℓ(s)|.

In order to make this analysis work, we need to assume that ρNℓ(s) < n1−ε and ∆ℓ(s) > nε.

Let us consider the following process: we sort all the stubs in ∆ℓ(s), obtaining a1, . . . , aδℓ(s), and, starting
from a1, we choose uniformly at random the “companion” of ai among all free stubs (if ai is already paired with
a stub aj for some j < i, we do not do anything). The companion of ai can be one of the following:

1. a stub of a vertex v that already belongs to Γℓ+1(s) (because another stub of v was already paired with a
stub in γℓ(s));

2. a stub of a “new” vertex;

3. another unpaired stub in ∆ℓ(s).

Let us prove that the number of stubs in ∆ℓ(s) that are paired with other stubs in ∆ℓ(s) is small (Item 3):
at each step, the probability that we choose one of these stubs is the ratio between the number of unpaired stubs
in ∆ℓ(s) with respect to the total number of unpaired stubs. Since ρNℓ(s) < n1−ε, the number of unpaired stubs

in ∆ℓ(s) is at most n1−ε, and the total number of unpaired stubs is at least M − n1−ε = M(1 − o(1)). Hence,

the probability that we choose one of these stubs is at most n1−ε

M < n−ε. Let Xa be a Bernoulli random variable

which is 1 if we pair a with another stub inside ∆ℓ(s), 0 if a is already paired when we process it, or if it is
paired outside ∆ℓ(s) (observe that the number of vertices paired inside ∆ℓ(s) is 2

∑

a∈∆ℓ(s) Xa). We want to

apply Azuma’s inequality: first, we sort the stubs in ∆ℓ(s), obtaining a1, . . . , aδℓ(s). By the previous argument,

Sk =
∑k

i=1 Xai
− kn−ε is a supermartingale, and hence P(Xk > εk) ≤ e−

ε2k2

2k : for k = ∆ℓ(s), this probability

is at most e−ε3nε

. In conclusion, w.h.p., at most 2ε∆ℓ(s) stubs in ∆ℓ(s) are paired to other stubs in ∆ℓ(s).
Let us consider a stub a paired outside ∆ℓ(s) with a random stub a′: if the number of stubs that are already

in ∆ℓ+1(s) is at most n1−ε2 , then the probability that a′ is already in ∆ℓ+1(s) is at most n−ε2 . In order to solve

the case where ρΓℓ+1(s) > n1−ε2 , let us assume that ∆ℓ(s) < n1−ε: in this case, since the number of elements in

∆ℓ+1(s) decreases at most by 1 at each step, ∆ℓ+1(s) ≥ n1−ε2 − n1−ε ≥ n1−ε.
Hence, the case that “almost always” occurs is that the new stub a′ belongs to a “new” vertex. Relying on

this, we can lower bound γℓ+1(s): by definition, γℓ+1(s) ≤ δℓ(s), and we want to prove that γℓ+1(s) ≥ (1−ε)δℓ(s).
Since the number of stubs in ∆ℓ(s) paired with other stubs in ∆ℓ(s) is negligible w.h.p., we can write

γℓ+1(s) =
∑(1−ε)δℓ(s)

i=1 X i, where Xi = 1 with probability at least 1 − n−ε2 , 0 otherwise (note that the Xis

are not independent, but if ∆ℓ+1(s) < n1−ε, then P(X i = 1) ≥ 1− n−ε2 , as before). We want to apply Azuma’s

inequality: Sk =
∑k

i=1 Xi − k(1 − n−ε2) is a submartingale, and hence P(Sk < −εk) ≤ e−
ε2k2

2k : for k = δℓ(s),

this probability is at most e−ε3nε

. Hence, w.h.p., Xi ≥ k(1 − n−ε2)− εk ≥ (1− 2ε)k, and for k = δℓ(s) we have
proved the following lemma.

Lemma B.7. Given a random graph G = (V,E) generated through the CM and a vertex s ∈ V , if δℓ(s) > nε and
ρNℓ(s) < n1−ε, then (1 − 2ε)δℓ(s) ≤ γℓ+1(s) ≤ δℓ(s) w.h.p..



Corollary B.1. For each vertex s, let τ ′
s (S) be the smallest integer such that δℓ(s) > S. Then, for each

0 < x < 1, τ ′
s (n

x) + 1 ≤ τ s (n
x) ≤ τ ′

s

(

nx

1−ε

)

+ 1 w.h.p..

Proof. For the first inequality, if ℓ = τ s (n
x), δℓ−1(x) ≥ γℓ(s) ≥ nx. For the second inequality, for each i < ℓ− 1,

nx > γi+1(s) ≥ (1 − ε)δi(s) by the previous lemma. Hence, τ ′
s

(

nx

1−ε

)

cannot be smaller than ℓ− 1.

Hence, in order to understand τ s (n
x) − τ s (n

y), we may as well understand τ ′
s (n

x) − τ ′
s (n

y), and we
do it by estimating δℓ+1(s) from δℓ(s). As before, δℓ+1(s) =

∑

a∈∆ℓ(s) Y a, where Y a is 0 if the stub a

paired with a is in ∆ℓ(s), −1 if a is in Γℓ+1(s), otherwise it the number of stubs of the vertex of a, minus
one (because a is not in ∆ℓ+1(s)). By definition, the distribution of Y a is very close to µ (more specifically,
∑∞

k=0 |µ(k)− P(Y a = k)| < 1
nε ).

It remains to estimate this sum: we need to do it differently for upper and lower bounds, and for different
regimes of β.

Lower bound, 2 < β < 3. The probability that at least one of the Y a is at least δℓ(s)
1−ε
β−2 is close to

P

(

µ > δℓ(s)
1−ε
β−2

)

, because, w.h.p., no visited vertex can have weight bigger than δℓ(s)
1−ε
β−2 (otherwise, there

would be a ℓ′ < ℓ such that δℓ
′

(s) ≥ δℓ(s)
1−ε
β−2 ). Hence, the probability that one of the Y as is at least

δℓ(s)
1−ε
β−2 is Θ

(

1

δℓ(s)
1−ε
β−2

(β−2)

)

= Θ
(

δℓ(s)−1+ε
)

. We want to apply Azuma’s inequality to prove that at least

one of Y as is bigger than δℓ(s)
1−ε
β−2 . Let us number the stubs in ∆ℓ(s), obtaining a1, . . . , aδℓ(s), and let

Sk =
∑k

i=0 Y
′
ai

− ckδℓ(s)−1+ε, where Y ′
ai

= 1 if Y ai
> δℓ(s)

1−ε
β−2 , 0 otherwise, and c is a small enough

constant, so that Sk is a submartingale. Furthermore, Var(Y ′
ai
) ≤ E[(Y ′

ai
)2] = E[Y ′

ai
]) = O

(

δℓ(s)
1−ε
β−2

)

.

Then, by the strengthened version of Azuma’s inequality (Lemma B.5), if k = δℓ(s), P
(

Sk ≤ c
2kδ

ℓ(s)−1+ε
)

≤

e
−Ω

(

k2δℓ(s)2

2kδℓ(s)+kδℓ(s)

)

≤ e−Ω(δℓ(s)ε) ≤ e−nε3

. Hence, w.h.p., Sδℓ(s) ≥ c
2kδ

ℓ(s)−1+ε > 0, and consequently there is i

such that Y ′
ai

6= 0. This means that, for each i, δℓ+i(s) ≥ δℓ(s)(
1−ε
β−2 )

i

.
Upper bound, 2 < β < 3. By Lemma B.6, since µ is a power law with exponent β − 1, and 2 < β < 3,

the probability that
∑

a∈∆ℓ(s) Y a is bigger than k
1+ε
β−2 is at most O(k−ε) = O

(

n−ε2
)

. Consequently, by a union

bound, δℓ+i(s) ≤ δℓ(s)(
1+ε
β−2 )

i

for each i < nε3 , with probability 1− o(1).
Lower bound, β > 3. We cannot apply directly Azuma’s inequality to say that δℓ+1(s) is close to

E[δℓ+1(s)] = (1 + o(1))M1(µ)δ
ℓ(s), because Y a can assume very large values. However, we can “cut the

distribution”, by defining Y ′
a = Y a if Y a < N , 0 otherwise. If N is big enough, E[Y ′

a] > M1(µ) − ε. By a
straightforward application of Azuma’s inequality (Lemma B.4), δℓ+1(s) ≥∑a∈∆ℓ(s) Y a ≥ (1−ε)(M1(µ)−ε)δℓ(s)

w.h.p.. Consequently, δℓ+i(s) ≥ (M1(µ)−O(ε))iδℓ(s), w.h.p..
Upper bound, β > 3. The expected value of δℓ+i(s) is at most (M1(µ) + ε)iδℓ(s). A straightforward

application of Markov inequality lets us conclude that P
(

δℓ+i(s) > (M1(µ) + ε)iδℓ(s)nε
)

≤ n−ε.

Proof. [Proof of Theorem B.1, CM] By Corollary B.1, τ ′
s (n

x) + 1 ≤ τ s (n
x) ≤ τ ′

s ((1 + ε)nx) + 1. Hence,
τ ′
s (n

y)− τ ′
s ((1 + ε)nx) ≤ τ s (n

y)− τ s (n
x) ≤ τ ′

s (n
y(1 + ε))− τ ′

s (n
x).

If we apply the lower bounds with i = F
(

Z0 → S
)

(1 + ε′), ℓ = τ ′
s (n

x), we obtain the following.

• If 2 < β < 3, either nℓ+j(s) > n1−ε for some j < i, or, w.h.p., δℓ+i(s) ≥ δℓ(s)(
1−ε
β−2 )

i

≥ nx( 1−ε
β−2 )

(1+ε′) log 1
β−2

y
x

=

nxe
log( y

x )(1+ε′)
log

1−ε
β−2

log 1
β−2 ≥ (1 + ε)ny if ε is small enough with respect to ε′. In both cases, τ s (n

y) − τ s (n
x) ≤

τ ′
s ((1 + ε)ny) − τ ′

x (n
x) ≤ F

(

Z0 → S
)

(1 + ε′). With a very similar computation, one can conclude

that τ s (n
y) − τ s (n

x) ≥ F
(

Z0 → S
)

(1 − ε′) a.a.s. (the only difference is how to handle the case where
nℓ+j(s) > n1−ε: to this purpose, it is enough to observe that if nx < ny < n1−ε, for the whole process
nℓ+j(s) < ny < n1−ε).



• If β > 3, as before, either nℓ+j(s) > n1−ε for some j < i, or, w.h.p., δℓ+i(s) ≥ δℓ(s)(M1(µ) − ε)i ≥
δℓ(s)(M1(µ)− ε)(1+ε) logM1(µ) n

y−x

= nxe
log(ny−x)(1+ε′)

M1(µ)−ε

M1(µ) ≥ ny(1+ ε) if ε is small enough with respect to
ε′. We conclude that τ s (n

y) − τ s (n
x) ≤ τ ′

s ((1 + ε)ny) − τ ′
x (n

x) ≤ F
(

Z0 → S
)

(1 + ε′) w.h.p.. A similar

computation yields τ s (n
y)− τ s (n

x) ≥ τ ′
s (n

y)− τ ′
x ((1 + ε)nx) ≤ F

(

Z0 → S
)

(1− ε′) a.a.s..

To conclude this section, we prove a stronger upper bound in the case β > 3, which is used in two of our
probabilistic analyses.

Lemma B.8. Assume that δℓ(s) > dmaxn
ε, where dmax is the maximum degree in the graph, and that M1(µ) is

finite. Then, w.h.p., δℓ+1(s) ≤ δℓ(s)(M1(µ) + ε).

Proof. We want to apply Azuma’s inequality as in the lower bound. More precisely, δℓ+1(s) ≤∑δℓ(s)
i=1 Y ai

, where

E [Y ai
] is at most M1(µ) + ε, conditioned on the values of Y aj

for each j < i. Hence,
∑k

i=1 Y ai
− k(M1(µ) + ε)

is a supermartingale, and Y ai
< n

1
β−1 < n

1
2−ε for ε small enough. By Azuma’s inequality (Lemma B.3),

P (Y k ≤ εk) ≤ e−
ε2k2

2kdmax ≤ e−ε3nε

for k = δℓ(s) > dmaxn
ε. We proved that, w.h.p., δℓ+1(s)− δℓ(s)(M1(µ) + ε) =

∑δℓ(s)
i=1 Y ai

− δℓ(s)(M1(µ) + ε) ≤ εδℓ(s), and consequently δℓ+1(s) ≤ δℓ(s)(M1(µ) + 2ε).

Combining this lemma with Lemma B.7, we obtain the following corollary.

Corollary B.2. Assume that dmaxn
ε < γℓ(s) < n1−ε, where dmax is the maximum degree in the graph, and

that M1(µ) is finite. Then, w.h.p., γℓ+1(s) ≤ γℓ(s)(M1(µ) + ε).

Corollary B.3. For each vertex v, and for each 0 < x < y < 1 such that dmax < nx−ε, τ v (n
y) − τ v (n

x) ≥
(1− ε) logM1(µ) n

y−x, w.h.p..

B.2.2 Inhomogeneous Random Graphs. Let us assume that we know the structure ofN ℓ(s). Following the
proof for the CM, we define the auxiliary quantity δℓ(s) = ργℓ(s). Again, we need to assume that ρNℓ(s) < n1−ε

and that δℓ(s) > nε.

Let w be a vertex with weight at most n1−ε

δℓ(s)
, outside N ℓ(s): P

(

w /∈ γℓ+1(s)
)

=
∏

v∈γℓ(s)

(

1− f
(

ρvρw

M

))

=

∏

v∈γℓ(s)

(

1− (1 + o(1))
(

ρvρw

M

))

= e−
∑

v∈γℓ(s)
(1+o(1))( ρvρw

M ) = e
−(1+o(1))

(

δℓ(s)ρw
M

)

= 1 − (1 + o(1))
(

δℓ(s)ρw

M

)

.

Hence, P
(

w ∈ γℓ+1(s)
)

= (1 + o(1))
(

δℓ(s)ρw

M

)

, and γℓ+1(s) =
∑

w/∈Nℓ(s) Xw, where the Xws are independent

Bernoulli random variables with success probability (1 + o(1))
(

δℓ(s)ρw

M

)

if this quantity is much smaller than

1, otherwise O(1). We want to compute the number of vertices in Γℓ+1(s), knowing δℓ(s): first, we observe

that the number of vertices with weight at least n1−ε

δℓ(s)
is O

(

n
(

δℓ(s)
n1−ε

)β−1
)

= O
(

δℓ(s)n
ε(β−1)δℓ(s)β−2

nβ−2

)

=

O
(

δℓ(s)nε(β−1)−√
ε(β−2)

)

= o(δℓ(s)), assuming δℓ(s) < n1−√
ε, and we can safely ignore these vertices. By

the multiplicative form of Chernoff bound (Lemma B.1), if S =
∑

w/∈Nℓ(s),ρw<n1−ε

δℓ(s)

Xw:

P (S < (1− ε)E[S]) ≤
(

e−ε

(1− ε)1−ε

)E[S]

≤ e(−ε−(1−ε) log(1−ε))nε ≤ e−ε3nε

P (S > (1 + ε)E[S]) ≤
(

eε

(1 + ε)1+ε

)E[S]

≤ e(ε+(1+ε) log(1+ε))nε ≤ e−ε3nε

if ε is small enough. By changing the value of ε with
√
ε, we have proved the following lemma.

Lemma B.9. Assume that ρNℓ(s) < n1−ε and that δℓ(s) > nε. Then, (1 − ε)δℓ(s) ≤ γℓ+1(s) ≤ (1 + ε)δℓ(s)
w.h.p..



Corollary B.4. For each vertex s, let τ ′
s (S) be the smallest integer such that δℓ(s) > S. Then, for each

0 < x < 1, τ ′
s ((1− ε)nx) + 1 ≤ τ s (n

x) ≤ τ ′
s ((1 + ε)nx) + 1.

As in the CM, we need to estimate τ ′
s (n

x) − τ ′
s (n

y). To this purpose, we compute ρΓℓ+1(s) knowing δℓ(s).
Using the previous notations, ρΓℓ+1(s) =

∑

w/∈Nℓ(s) ρwXw, and we estimate this sum by considering separately
upper and lower bounds, and the different possible values of β.

Lower bound, 2 < β < 3. Let us consider all vertices with weight at least δℓ(s)
1−ε
β−2 . The probability

that one of these vertices is connected to a vertex in Γℓ(s) is Θ
(

δℓ(s)
1−ε
β−2+1n−1

)

= Θ
(

δℓ(s)
β−1−ε
β−2 n−1

)

.

Through a straigthforward application of the multiplicative for of Chernoff bound (Lemma B.1), since there

are Θ
(

nδℓ(s)−
1−ε
β−2

)

such vertices, we can prove that there is at least one node with weight at least δℓ(s)
1−ε
β−2

which is connected to Γℓ(s), w.h.p.. This means that ργℓ+1(s) ≥ δℓ(s)
1−ε
β−2 , and consequently, by a union bound,

ρΓℓ+i(s) ≥ ρ
( 1−ε

β−2 )
i

Γℓ(s)
for each i such that ρΓℓ+i(s) < n1−ε.

Upper bound, 2 < β < 3. Let us consider all vertices with weight at least δℓ(s)
1+ε
β−2 . The probability

that one of these vertices is connected to a vertex in Γℓ(s) is Θ
(

δℓ(s)
1+ε
β−2+1n−1

)

= Θ
(

δℓ(s)
β−1+ε
β−2 n−1

)

. Since

there are Θ
(

nδℓ(s)−
(1+ε)(β−1)

β−2

)

such vertices, by a union bound, the probability that none of these vertices is

connected to a vertex in Γℓ(s) is 1 − Θ
(

δℓ(s)−
β−1+ε−(1+ε)(β−1)

β−2

)

= 1 − Θ
(

n−ε2
)

. Conditioned on this event,

the expected value of ρΓℓ+1(s) is at most δℓ(s)
∑

ρv<δℓ(s)
1+ε
β−2

ρ2
v

n = Θ
(

δℓ(s)1+
(1+ε)(3−β)

β−2

)

= Θ
(

δℓ(s)
1+ε(3−β)

β−2

)

. By

Markov inequality, with probability at least 1−n−ε3 , ρΓℓ+1(s) ≤ δℓ(s)
1+ε(3−β)

β−2 +ε = δℓ(s)
1

β−2+ε. As a consequence,

ρΓℓ+i(s) ≤ δℓ(s)(
1

β−2 )
i

for each i < nε4 , a.a.s..

Lower bound, β > 3. We want to apply Hoeffding’s inequality to prove that, if δℓ(s) > nε, δℓ+1(s) ≥
(1 − ε)E[δℓ+1(s)] ≥ (1 − 2ε)M1(µ)δ

ℓ(s). To this purpose, let N be a big constant (to be chosen later):
δℓ+1(s) = (1 + o(1))

∑

w∈V ρwXw ≥ (1 + o(1))
∑

ρw<N ρwXw. By Hoeffding’s inequality (Lemma B.2),

w.h.p.,
∑

ρw<N ρwXw is at least (1 − ε)E
[

∑

ρw<N ρwXw

]

: if we choose N big enough, the latter value

is at least (1 − 2ε)M1(µ). This means that δℓ+1(s) ≥ (1 − 2ε)M1(µ)δ
ℓ(s) w.h.p., and by a union bound

δℓ+i(s) ≥ (1− 2ε)iM1(µ)
iδℓ(s).

Upper bound, β > 3. Conditioned on δℓ(s), the expected value of δℓ+1(s) is at most
∑

w/∈Nℓ(s) ρwE[Xw] =

(1 + o(1))
∑

w∈V ρw
δℓ(s)ρw

M = (1 + o(1))δℓ(s)M2(λ)
M1(λ)

= (1 + o(1))δℓ(s)M1(µ) ≤ (M1(µ) + ε)δℓ(s). By Markov

inequality, P
(

δℓ+i(s) > (M1(µ) + ε)iδℓ(s)nε
)

≤ n−ε.

Proof. [Proof of Theorem B.1, IRG] By Corollary B.4, τ ′
s ((1 − ε)nx) + 1 ≤ τ s (n

x) ≤ τ ′
s ((1 + ε)nx) + 1. Hence,

τ ′
s ((1− ε)ny)−τ ′

s ((1 + ε)nx) ≤ τ s (n
y)−τ s (n

x) ≤ τ ′
s (n

y(1 + ε))−τ ′
s (n

x(1 − ε)). By the aforementioned lower
bounds on δd+i(s), the conclusion follows.

As before, we conclude this section by proving a stronger upper bound in the case β > 3, which is used in
two of our probabilistic analyses.

Lemma B.10. Assume that δℓ(s) > dmaxn
ε, where dmax is the maximum degree in the graph, and assume that

β > 3. Then, w.h.p., δℓ+1(s) ≤ δℓ(s)(M1(µ) + ε).

Proof. As in the lower bound, we write δℓ+1(s) = ρΓℓ+1(s) ≤
∑

w∈V ρwXw, where Xw is a Bernoulli random vari-

able with success probability 1−∏v∈Γℓ(s)

(

1− f
(

ρvρw

n

))

= 1−∏v∈Γℓ(s) e
−(1+o(1)) ρvρw

n = 1− e−(1+o(1))
ρ
Γℓ(s)

ρw

n =

(1 + o(1))
(

ρ
Γℓ(s)

ρw

n

)

. Hence, E
[
∑

w∈V ρwXw

]

= (1 + o(1))

(

∑

w∈V

ρ2
wρ

Γℓ(s)

n

)

≤ (M1(µ) + ε)δℓ(s). A simple

application of Hoeffding’s inequality (Lemma B.2) lets us conclude, since ρw < dmax for each w.

Combining this lemma with Lemma B.7, we obtain the following corollary.



Corollary B.5. Assume that dmaxn
ε < Γℓ(s) < n1−ε, where dmax is the maximum degree in the graph, and

that M1(µ) is finite. Then, w.h.p., γℓ+1(s) ≤ γℓ(s)(M1(µ) + ε).

Corollary B.6. For each vertex v, and for each 0 < x < y < 1 such that dmax < nx−ε, τ v (n
y) − τ v (n

x) ≥
(1− ε) logM1(µ) n

y−x, w.h.p..

B.3 Small Neighborhoods. Using Theorem B.1, we reduced ourselves to prove Property 2.1 and the bounds
in Table 2 for some small values of x. We start the proof by formalizing Item 1 in Section 3: the main tool is the
relationship between the size γℓ(s) of a neighbor of a vertex s and a µ-distributed branching process δℓ(s).

Theorem B.2. Let G = (V,E) be a random graph with degree distribution λ, let µ be the corresponding residual
distribution, and let s ∈ V . There are multisets ∆ℓ(s) of vertices such that:

1. the cardinality δℓ(s) of ∆ℓ(s) is a µ-distributed branching process;

2. if Θℓ(s) = ∪ℓ
i=0∆

i(s), P
(

Γℓ+1(s) = ∆ℓ+1(s)
∣

∣

∣
Θℓ(s) = N ℓ(s)

)

= O
(

ρ2
Θℓ(s)

M2(λ)
n

)

.

B.3.1 Proof for the Configuration Model. For each vertex v, let us fix a set of stubs av,1, av,ρv
attached

to v (let A the set of all stubs).
We define a procedure that generates a random pairing of stubs (and, hence, a graph), by fixing a vertex s

and pairing stubs “in increasing order of distance from s”, obtaining something similar to a breadth-first search
(BFS). This way, in order to understand the structure of nℓ(s), we only have to consider the first ℓ levels of this
BFS, and we may ignore how all other stubs are paired.

The procedure keeps the following information:

• a partial function α : A → A, that represent a partial pairing of stubs;

• for each ℓ, a set Iℓ of all stubs at distance ℓ from s;

• for each ℓ, a set ∆ℓ(s) of all vertices at distance ℓ from s.

The random part of our procedure is given by a set of random variables {ba,i}a∈A,i∈N, whose range is the
set of stubs. Informally, stub a “wants to be paired” with stub ba,0, if available, otherwise ba,1, and so on. We
assume that, for each a, A = {b ∈ A : ba,i = b for some i} is infinite (this event occurs with probability 1).

Definition B.4. The procedure P1 starts with α1 as the empty function, ∆0
1(s) = {s}, ∆ℓ

1(s) = ∅, I0
1 =

{as,1, . . . , as,ρs
}, Iℓ

1 = ∅ for each ℓ > 0. Then, for increasing values of ℓ, for each stub a in Iℓ
1 (any order is fine):

1. it sets b as the first ba,i such that α1(ba,i) is undefined;

2. it defines α1(a) = b, α1(b) = a;

3. if b is not in Iℓ
1 for any ℓ:

(a) it adds to Iℓ+1
1 all stubs of V (b) except b;

(b) it adds V (b) to ∆ℓ+1
1 (s), and it sets V (a) as the father of V (b);

4. else:

(a) it removes b from Iℓ
1.

The procedure ends when Iℓ
1 is empty, and all remaining stubs are paired uniformly at random (so that α1 becomes

a total function).

At the end, the pairing α1 is uniformly distributed, because, at each step, we choose the “companion” of a
stub uniformly among all unpaired stubs. Furthermore, if we consider the graph obtained with the pairing α1,
the set ∆ℓ

1(s) is the set of vertices at distance ℓ from s.
Now, we define another similar, simplified procedure. This time, we let b be any stub, and we do not test

if b is not in Iℓ
2 for some ℓ, and we add it anyway to Iℓ+1

2 . This way, Iℓ
2 and ∆ℓ(s) become multisets (that is,

repetitions are allowed).



Definition B.5. The procedure P2 starts with ∆0(s) = {s}, ∆ℓ(s) = ∅ for each d > 0, I0
2 =

{as,1, . . . , as,ρs
}, Iℓ

2 = ∅ for each d > 0. Then, for increasing values of ℓ, for each stub a in Iℓ
2 (any order is

fine):

1. it sets b = ba,0, and it shifts the ba,is by one;

2. it defines α2(a) = b, α2(b) = a (in case, it replaces its value);

3. in any case:

(a) it adds to Iℓ+1
2 all stubs of V (b) except b;

(b) it adds V (b) to ∆ℓ+1(s), and it sets V (a) as the father of V (b);

The procedure ends when Iℓ
2 is empty, or continues indefinitely.

Thanks to these simplifications, we are able to prove that, in procedure P2, the cardinality δℓ(s) of ∆ℓ(s) is
a branching process, starting from δ1(s) = ρs.

Lemma B.11. In procedure P2, the stochastic process δℓ(s) is a µ-distributed branching process, starting from
δ1(s) = ρs.

Proof. First of all, we observe that δℓ+1(s) = |Iℓ
2|, so it is enough to prove that Iℓ

2 is a branching process. It is
clear that I0

2s = ρs. Moreover, Iℓ+1
2 =

∑

a∈Iℓ
2
ρV (ba,0) − 1. Let Xi : ρV (ba,0) − 1: since the ba,0s are independent,

also the Xis are independent, and P(Xi = k) = P(ρV (bi)) = k + 1 = (k+1)nλ(k+1)
∑∞

j=0 jnλ(j) = µ(k).

With this choice of δℓ(s), we have proved the first part of Theorem B.2. Now, we have to bound the probability
that ∆ℓ+1(s) 6= Γℓ+1(s), assuming Θℓ(s) = N ℓ(s): the next lemma gives a bound which is stronger than the
bound in Theorem B.2, and it concludes the proof.

Lemma B.12. Let N ℓ(s) =
⊔ℓ

i=0 Γ
ℓ(s), Θℓ(s) =

⊔ℓ
i=0 ∆

ℓ(s), where
⊔

denotes the disjoint union, and let

nℓ(s) = |N ℓ(s)|, θℓ(s) = |Θℓ(s)|. Assuming Θℓ(s) = N ℓ(s), the probability that ∆ℓ+1(s) 6= Γℓ+1(s) is at
most 1

n2ρ
2
Θℓ(s)

.

Proof. Let us pair the stubs in ∆ℓ(s) one by one, and try to bound the probability that a stub is paired
“differently”. More formally, for each stub a paired by the procedures P1, P2, we bound the probability that
a is the first stub that was paired differently (so that we can assume that the pairing of all other stubs was the
same). In particular, both procedures choose the companion b of a as ba,0, if ba,0 is not already in Θℓ(s), and it

is not already paired with a stub in Θℓ(s). Hence, the probability that the companion of a is the same in the two
procedures is at most the probability that ba,0 is not in Θℓ(s), and it is not already paired with a stub in Θℓ(s).

This probability is at most
2ρ

Θℓ(s)

M . By a union bound, we can estimate that the probability that at least a stub

is paired differently in the two procedures is at most ρ∆ℓ(s)

2ρ
Θℓ(s)

M ≤ 2ρ2

Θℓ(s)

M ≤ 2ρ2

Θℓ(s)

n .

B.3.2 Proof for Rank-1 Inhomogeneous Random Graphs. In this section, we prove Theorem B.2 in IRG.
Let us fix a set V of vertices, let us fix the expected degree ρv of each vertex v ∈ V , and let us fix M =

∑

v∈V ρv.
Let s be any vertex, and let us define a procedure that considers edges “in increasing order of distance from

s”, obtaining something similar to a BFS. This way, in order to understand the structure of nℓ(s), we only have
to consider the first d levels of this BFS, and we may ignore all other edges.

We denote by {Xv,w} a random variable that has value 1 if the edge (v, w) exists, 0 otherwise. Note that the
Xv,ws are independent Bernoulli random variables with success probability f

(

ρvρw

M

)

.

Definition B.6. The procedure P1 starts with ∆0
1(s) = {s}, ∆ℓ

1(s) = ∅. Then, for increasing values of d, for
each vertex v ∈ ∆ℓ

1(s):

1. for each vertex w such that Xv,w = 1:



(a) if w is not in
⋃∞

i=0 ∆
i
1(s):

i. add w to ∆ℓ+1
1 (s).

The procedure ends when ∆ℓ
1(s) is empty.

There are two reasons why this procedure is not a branching process. The first and simplest problem, that
occurred also in the CM, is that we need to check that w is “a new vertex”, and hence there is dependance between
the number of children of different vertices. However, there is also a more subtle problem: if we assume that
there is no dependency, we can informally write δℓ+1

1 (s) =
∑

v∈∆ℓ
1(s)

∑

w∈V Xv,w. To turn this into a branching

process, we have to link δℓ
1(s) with δℓ+1

1 (s), but the previous formula also depends on which vertices are in ∆ℓ
1(s).

If we condition on which vertices we find in ∆ℓ
1(s), then the random variables

∑

w∈V Xv,w are not identically

distributed. So, we have to fix δℓ
1(s), write ∆ℓ

1(s) = {v1, . . . ,vk}, where vi is a random variable taking values

in V , and then set δℓ+1
1 (s) =

∑∆
ℓ
1(s)

i=1

∑

w∈V Xvi,w. Now, the random variables
∑

w∈V Xvi,w are i.i.d., but the

distribution of the weight of vi (and hence the distribution of the sum) depends on γℓ(s) in general, so we do not
obtain a branching process. Summarizing, the second problem is that we need somehow to choose δℓ(s) before
choosing which vertices are in ∆ℓ(s), then choose vi in a way that is independent from δℓ(s). It turns out that,
if the random variables Xv,w are Poisson-distributed, actually the two choices can be made independent. So, in
the second procedure we define, we do not only ignore already visited vertices, but we also define new Poisson

random variables Y v,w such that Y v,w = Xv,w with probability 1−O
(

(

ρvρw

M

)2
)

, and we work with Y v,w.

Lemma B.13. Given a Bernoulli random variable X with success probability f(p), it is possible to define a random
variable Y = Poisson(p) such that X = Y with probability 1−O

(

p2
)

.

Proof. Let E0,E1 be the events X = 0, X = 1. Let E′
0 be an event such that E′

0 ⊆ E0 or E′
0 ⊇ E0, and

P(E′
0) = P(Poisson(p) = 0): we define Y = 0 in E′

0. Similarly, let E′
1 be an event such that E′

1 ⊆ E1 or
E′

1 ⊇ E1, E
′
1 ∩E′

0 = ∅, and P(E′
1) = P(Poisson(p) = 1). We define Y = 1 in E′

1. Then, we cover the rest of the
space as we wish.

We know that Y = X on E0 ∩ E′
0 and on E1 ∩ E′

1: let us prove that the probability of these events is
1 − O

(

p2
)

. Indeed, the probability of E0 is 1 − f(p) = 1 − p + O(p2), the probability of E1 is p + O(p2),
the probability of E′

0 is e−p = 1 − p + O(p2), and the probability of E′
1 is pe−p = p + O(p2). In any case,

P((E0 ∩E′
0) ∪ (E1 ∩E′

1)) = min(P(E0),P(E
′
0)) + min(P(E1),P(E

′
1)) = 1− p+O(p2) + p+O(p2) = 1 +O(p2).

Definition B.7. The procedure P2 starts with ∆0(s) = {s}, ∆ℓ(s) = ∅. Then, for increasing values of ℓ, for
each vertex v ∈ ∆ℓ(s):

1. for each vertex w:

(a) in any case:

i. add Y v,w times w to ∆ℓ+1(s);

ii. replace Y v,w with another Poisson
(

ρvρw

M

)

random variable, independent from all previous events.

The procedure ends when ∆ℓ(s) is empty, or it continues forever.

Theorem B.3. The cardinality δℓ(s) of ∆ℓ(s) is a µ-distributed branching process, starting from ∆1(s) = deg(s).

Proof. In this procedure, we got rid of the dependencies between different zones of the branching tree. Hence, if

∆ℓ(s) = {v1, . . . , vδℓ(s)}, we formalize the previous computation by saying that δℓ+1(s) =
∑δℓ(s)

i=1

∑

w∈V Y vi,w =
∑δℓ(s)

i=1

∑

w∈V Poisson
(ρvi

ρw

M

)

=
∑δℓ(s)

i=1 Poisson (ρvi
).

It only remains to prove that the probability that P (ρvi
= k) = kλ(k)

M1(λ)
, independently from ∆ℓ(s). We need

the following facts:

• δℓ(s) =
∑

v∈δℓ−1(s)

∑

w∈V Poisson
(

ρvρw

M

)

= Poisson
(

ρδℓ−1(s)

)

= Poisson(η) if η = ρδℓ−1(s);



• if T u is the number of times that vertex u appears in ∆ℓ(s), T u =
∑

v∈δℓ−1(s) Poisson
(

ρuρv

M

)

=

Poisson
(

ρuρ∆ℓ−1(s)

M

)

= Poisson(θ) if θ =
ρuρ∆ℓ−1(s)

M ;

• conditioned on T u = k, δℓ(s) − k =
∑

v∈∆ℓ−1(s)

∑

w∈V−{u} Poisson
(

ρvρw

M

)

= Poisson
(

ρ∆ℓ−1(s)
M−ρu

M

)

=

Poisson(η − θ).

Using these three results, we can prove that:

P

(

T u = k|δℓ(s) = h
)

=
P(δℓ(s) = h|T u = k)P(T u = k)

P(δℓ(s) = h)

=
P(Poisson(η − θ) = h− k)P(Poisson(θ) = k)

Poisson(η) = h

=
e−(η−θ) (η−θ)h−k

(h−k)! e−θ θk

k!

e−η ηh

h!

=
h!

k!(h− k)!

(

θ

η

)k (

1− θ

η

)h−k

=

(

h

k

)

(ρu
M

)k (

1− ρu
M

)h−k

Hence, the probability that u appears k times in our process is exactly the probability that u appears k
times if we select δℓ(s) vertices, by picking u with probability ρu

M . Summing over all vertices u with weight

k, P (ρvi
= k) = nλ(k) k

M = kλ(k)
M1(λ)

. This concludes the proof: indeed, δℓ+1(s) =
∑δℓ(s)

i=1 Poisson(ρvi
), and

P (ρvi
= k) = kλ(k)

M1(λ)
: hence, Poisson(ρvi

) is µ-distributed.

With this choice of ∆ℓ(s), we have proved the first part of Theorem B.2. Now, we have to bound the probability
that ∆ℓ+1(s) 6= Γℓ+1(s), assuming ∆ℓ(s) = Γℓ(s): the next lemma gives a bound which is stronger than the
bound in Theorem B.2, and it concludes the proof.

Lemma B.14. Let Θℓ(s) =
⊔ℓ

i=0 ∆
i(s), where

⊔

denotes the disjoint union, and let θℓ(s) = |Θℓ(s)|. Assuming

Θℓ(s) = N ℓ(s), P
(

∆ℓ+1(s) 6= Γℓ+1(s)
)

≤ 1
n2ρ

2
Θℓ(s)

.

Proof. The procedures P1 and P2 behave differently only if one of the following holds:

1. Y v,w > 0 for some v ∈ ∆ℓ(s), w ∈ Θℓ(s);

2. Y v,w 6= Xv,w for some v ∈ ∆ℓ(s), w ∈ V

The probability that the first case occurs is
∑

v∈∆ℓ(s)

∑

w∈Θℓ(s)
ρvρw

M ≤ ρ2

Θℓ(s)

M ≤ ρ2

Θℓ(s)

n . The probability that the

second case occurs is
∑

v∈∆ℓ(s)

∑

w∈V O
(

ρ2
vρ

2
w

M2

)

= O
(

ρ2
∆ℓ(s)

nM2(λ)
n2M1(λ)2

)

= O
(

ρ2
∆ℓ(s)

M2(λ)
n

)

.

B.3.3 Bounds for Branching Processes. In order to analyze the neighborhood sizes, we need to better
understand the behavior of branching processes. For this reason, we need the following lemmas.

Lemma B.15. Let Z be a µ-distributed branching process, let ℓ, S be integers such that S ≤ log2 ℓ. Then, for ℓ

tending to infinity, P
(

0 < Zℓ < S
)

≤ (η(1) + o(1))ℓ.

Proof. We divide the proof in two different cases: in the first case, we condition on the fact that Zℓ eventually
dies (for more background on branching processes conditioned on death/survival, we refer to [5]). Conditioned
on death, the expected number of descendants after ℓ steps is Z0η(1)ℓ ≤ e−ℓ(− log η(1)): by Markov inequality, the
probability that Zℓ ≥ 1 is at most E[Zℓ] = e−ℓ(− log η(1)).

In the second case, let Z̃
ℓ
be the process Zℓ conditioned on survival: since Zℓ ≥ Z̃

ℓ
, it is enough to prove the

claim for Z̃. We name “bad” a step of this process in which Z̃
ℓ+1

= Z̃
ℓ
(note that Z̃

ℓ+1 ≥ Z̃
ℓ
): let us perform



h = ℓ−S steps, trying to find S good steps. A step is bad with probability η(1), and the probability that at least
ℓ− S steps are bad is

ℓ
∑

i=ℓ−S

(

ℓ

i

)

η(1)i(1− η(1))ℓ−i ≤ SℓSη(1)ℓ−S = elogS+S log ℓ−(− log(η(1)))(ℓ−S) = e−(1+o(1))ℓ(− log η(1)).

If i is a good step, Z̃
i ≥ Z̃

i−1
+ 1, otherwise Z̃

i ≥ Zi−1: hence, if there are at least S good steps, Z̃
ℓ ≥ S.

Lemma B.16. Let Z be a µ-distributed branching process with Z0 = ω(1), and let S > Z0. Then, for each

ℓ > (1 + ε)F
(

Z0 → S
)

, P
(

Zℓ < S
)

≤ e−Ω(Z0) + o(1)ℓ−F(Z0→S). If µ(0) = 0, P
(

Zℓ < S
)

≤ o(1)ℓ−F(Z0→S).

Proof. We can view the branching process as the sum of Z0 different branching processes. A standard theorem
in the theory of branching processes [5, 1.A.5, Theorem 1] says that the probability that one of this branching
processes dies is zµ, where zµ is the only integer between 0 and 1 such that zµ =

∑

i∈N
µ(i)ziµ. Since the different

processes are independent, by Chernoff bound, the probability that at least Z0µ
2 processes survive is at least

e−
Z0zµ

8 = e−Ω(Z0). Hence, if Z̃ is the process Z conditioned on survival, Z̃
0
= Ω(Z0) with probability e−Ω(Z0).

Furthermore, if µ(0) = 0, Z̃
0
= Z0 by definition.

Then, let us perform ℓ steps, and let us estimate Z̃
ℓ
: a step is “bad” if Z̃

i+1 ≤ Z̃
i
M1(µ)

1−ε, if M1(µ) is finite,

or Z̃
i+1 ≤

(

Z̃
i
)

1−ε
β−1

if µ is a power law with exponent β: it is simple to prove that a step is bad with probability

at most o(1), if Z̃
ℓ ≥ Z̃

0
= Ω(Z0) tends to infinity. If the number of good steps is at least (1 + 3ε)F

(

Z0 → S
)

:

• if M1(µ) is finite, Z̃
ℓ ≥ Z̃

0
M1(µ)

(1−ε)(1+3ε)F(Z0→S) ≥ Z̃
0
M1(µ)

(1+ε)F(Z0→S) ≥ Z̃
0 S
Z0ω(1) ≥ S;

• if µ is power law with 1 < β < 2, Z̃
ℓ ≥

(

Z̃
0
)( 1−ε

β−1 )
(1+3ε)F(Z0→S)

≥
(

Z̃
0
)( 1

β−1 )
(1+ε)F(Z0→S)

≥

e
log(Z̃0) log(S)

log(Z0)
Ω(1) ≥ S.

Let ℓ′ = ℓ − (1 + 3ε)F
(

Z0 → S
)

be the maximum number of bad steps: by changing the value of ε in the

statement, we can assume that ℓ(1 − ε) ≥ (1 + 3ε)F
(

Z0 → S
)

, and hence ℓ′ = ℓ − (1 + 3ε)F
(

Z0 → S
)

≥ εℓ.
We need to bind the probability that at least ℓ′ steps are bad: this is equal to the probability that the sum of ℓ
Bernoulli variables with success probability o(1) is at least ℓ′. This probability is

ℓ
∑

i=ℓ′

(

ℓ

i

)

(o(1))i(1− o(1))n−i ≤ ℓ2ℓ(o(1))ℓ
′ ≤ 2O(ℓ′)(o(1))ℓ

′

= o(1)ℓ
′

.

Corollary B.7. Let Z be a µ-distributed branching process, and let S be an integer. If ℓ = ω(1), and

ℓ > (1 + ε)F
(

Z0 → S
)

, then P

(

0 < Z(1+ε)ℓ < S
)

≤ η(1)ℓ−F(Z0→S).

Proof. If the process dies, by Lemma B.15 it dies before performing ℓ steps with probability smaller than η(1)ℓ.

Otherwise, by Lemma B.15, Z̃
(1+ε)ℓ−F(Z0→S) ≥ log ℓ = ω(1) with probability 1 − η(1)

ℓ−F(Z0→S)
2 , if ℓ is big

enough. Conditioned on this event, by Lemma B.16, Z̃
(1+ε)ℓ−F(Z0→S)+(1+2ε)F(Z0→S)+εℓ ≥ S with probability

1 − o(1)εℓ+2εF (log ℓ→S)) ≥ 1 − o(1)εℓ ≥ 1 − η(1)ℓ

2 . Summing the two probabilities, P

(

0 < Z(1+2ε)ℓ < S
)

≤
η(1)ℓ−F(Z0→S).

Now, let us prove upper bounds on neighborhood sizes, that correspond to lower bounds on τ s (n
x).

Lemma B.17. Let us fix ε > 0, and a µ-distributed branching process Zℓ. Given a value S = ω(1),

P

(

∀ℓ < (1 − ε)F
(

Z0 → S
)

,Zℓ < S
)

≥ 1− o(1).



Proof. Assume that M1(µ) is finite: E

[

Zℓ
]

≤ E

[

Z(1−ε)F(Z0→S)
]

= Z0M1(µ)
(1−ε)F(Z0→S) =

Z0M1(µ)
(1−ε) logM1(µ)

S

Z0 = Z0
(

S
Z0

)1−ε
= S1−εZε

0 = S
(

Z0

S

)ε

. We conclude by Markov inequality.

Let us consider the case where µ is a power law distribution with 1 < β < 2. By Lemma B.6 applied with

k = Zi, with probability at least
(

1
Zi

)ε
, Zi+1 <

(

Zi
)

1+ε
β−1 . Let us assume Zi > logS for each i (increasing the

number of elements, we can only increase the number of descendants). Consequently, the probability that Zℓ is

bigger than
(

Z0
)( 1+ε

β−1 )
ℓ

is at most
∑ℓ

i=1

(

1
Zi

)ε ≥ ℓ
(

1
logS

)ε

= o(1) if ℓ = (1 − ε)F
(

Z0 → S
)

. With probability

1− o(1), Zk <
(

Z0
)( 1+ε

β−1 )
ℓ

: since ℓ < (1− ε′)F
(

Z0 → S
)

, the claim follows.

Now, we need to prove a corresponding bound for tail probabilities.

Lemma B.18. Let us fix ε > 0, and a µ-distributed branching process Zℓ such that Z0 = 1. Given integers
ℓ = ω(1), S such that F

(

1 → ℓ2
)

≤ εF
(

ℓ2 → S
)

, P
(

∀i < (1 − ε)(F
(

Z0 → S
)

+ ℓ), 0 < Zi < S
)

≥ η(1)ℓ.

Proof. First of all, let Z̃
ℓ
be the corresponding branching process conditioned on survival (Z̃

0
= 1 with probability

Ω(1)). Assuming Z̃
0

= 1, the probability that Z̃
ℓ
starts with a path of length ℓ is η(1)ℓ. Now, let us

estimate P

(

Zℓ = k ∧ Z̃
ℓ
= 1
)

≤ P

(

Z̃
ℓ
= 1
∣

∣

∣Z
ℓ = k

)

≤ kzkµ, where zµ is the probability that a µ-distributed

branching process has an infinite number of descendants. Hence, P(Z̃
ℓ
= 1 ∧ Zℓ < k) ≥ η(1)ℓ −∑∞

i=k iz
i−1
µ =

η(1)ℓ − kzk−1
µ (1−zµ)+zk

µ

(1−zµ)2
= η(1)ℓ −O

(

kzk−1
µ

)

.

For k = ℓ2, P(Zℓ < ℓ2) ≥ P

(

Zℓ < ℓ2 ∧ Z̃
ℓ
= 1
)

= η(1)ℓ − O
(

ℓ2zℓ
2−1

µ

)

= η(1)ℓ(1 − o(1)). Then,

let us consider the process Z1 defined by Zk
1 = Zℓ+k: since Z0

1 < ℓ2, we know by Lemma B.17 that

P

(

∀k < (1− ε)F
(

ℓ2 → S
)

+ ℓ,Zk
1 < S

)

≥ 1 − o(1). Since the behavior of Z1 is independent from the behavior

of Z, and since F
(

ℓ2 → S
)

= F (1 → S)− F
(

1 → ℓ2
)

≥ (1 − ε)F (1 → S),

P

(

∀k < (1 − 2ε)F (1 → S) + ℓ,Zk < S
)

= Ω
(

1 · η(1)ℓ(1− o(1)) · 1
)

= Ω
(

η(1)ℓ
)

.

We conclude by replacing ℓ with (1− ε)ℓ.

B.3.4 Bounds on Neighborhood Sizes. Now, we need to translate the results in the previous section from
the realm of branching processes to the realm of random graphs, using Theorem B.2. First of all, the following
corollary of Theorem B.2 gives us a simpler bound to decide when the branching process approximation works.

Corollary B.8. Let G be a random graph, s ∈ G. There exists a constant cλ only depending on λ such that,

for each ℓ < ncλ P

(

Θℓ(v) 6= N ℓ(v)
)

= O (n−cλ), assuming ρ∆i(s) < ncλ for each i < ℓ. The same is true if we

condition on the size of ∆ℓ(v).



Proof. By Theorem B.2,

P

(

Θℓ(v) 6= N ℓ(v)
)

=

ℓ
∑

i=1

P
(

Θi(v) 6= N i(v) ∧Θi−1(v) = N i−1(v)
)

=

ℓ
∑

i=1

P
(

∆i(v) 6= Γi(v) ∧Θi−1(v) = N i−1(v)
)

≤
ℓ
∑

i=1

P
(

∆i(v) 6= Γi(v)
∣

∣Θi−1(v) = N i−1(v)
)

= O
(

ℓ
∑

i=1

ρ2
Θi(s)

M2(λ)

n

)

= O
(

ℓ3n2cλ
M2(λ)

n

)

= O
(

M2(λ)

n1−5cλ

)

.

We conclude because M2(λ) = O(1) if λ has finite variance, M2(λ) = n3−β if λ is power law with exponent
2 < β < 3: this means that it is enough to choose cλ such that nmax(0,3−β)−1+5cλ < n−cλ , that is,

cλ < 1−max(0,3−β)
6 .

From this corollary, it is easy to translate Lemmas B.17 and B.18 in terms of random graphs, at least for
values of x smaller than cλ.

Corollary B.9. Let G = (V,E) be a random graph, let s ∈ V be in the giant component, and let x < cλ be
a fixed, small enough constant. Then, P (τ s (n

x) > (1− ε)F (deg(s) → nx)) ≥ 1 − o(1). Furthermore, if s has
degree 1, P (τ s (n

x) > (1− ε)(F (1 → nx) + α)) ≥ η(1)α for α = ω(1).

Proof. By Corollary B.8, assuming x < cλ, ∆
ℓ(s) = γℓ(s) with probability 1−o(1); furthermore, by Lemma B.17,

∆ℓ(s) < nx for each ℓ < (1− ε)F (deg(s) → nx) with probability 1− o(1).
Similarly, by Lemma B.18, P(∀i < (1−ε)(F (deg(s) → nx)+α), δi(s) < nx) ≥ η(1)α , and since γi(s) = δi(s)

with probability 1 − o(1) for each i < τ s (n
x), we conclude that P (τ s (n

x) > (1 − ε)(F (1 → nx) + α)) ≥
(1− o(1))η(1)α.

The translation of the lower bounds is more complicated: the main problem is that, when Θℓ(s) 6= N ℓ(s), we
know very little on the size of Θℓ(s). In order to deal also with this case, as soon as Θℓ(s) 6= N ℓ(s), we remove the
whole N ℓ(s) from the graph, and we consider the neighborhood growth of a new vertex s′ which was in Γℓ+1(s)
in the previous graph. We prove that the behavior of the neighbors of s′ in the new graph is “very similar” to
the behavior of the neighbors of s in the old graph: basically, the only difference is that we re-start from size 1
instead of δℓ(s). However, this difference is compensated by the fact that the probability that Θℓ(s) 6= N ℓ(s) is
small. In other words, it is more likely that δℓ(s) remains 1 for ℓ steps, rather than that Θℓ(s) 6= N ℓ(s).

Let us formalize this intuitive proof. First of all, we need to understand what happens when we remove a
neighbor from the graph.

Lemma B.19. Let G = (V,E) be a random graph, let s ∈ V , let ℓ ∈ N, and let us assume that ρNℓ(s) < n1−ε.

Then, conditioned on the structure of N ℓ(s), the subgraph induced by V −N ℓ(s) is again a random graph, and
the values of η(1), M1(µ) change by O

(

1
nε

)

.

Proof. [Proof for the CM] Let us consider the graph obtained from G by removing all the stubs in N ℓ(s), and all
the stubs paired with stubs in N ℓ(s). The pairing on the remaining stubs is clearly a random pairing, and the
number of stubs removed is at most n1−ε, and if λ′ is the degree distribution of G−N ℓ(s),

∑

i∈N
|λ(i)−λ′(i)| < 1

nε .
From this condition, it is easy to prove that η(1) and M1(µ) cannot change by more than O(nε), if n is big enough.



Proof. [Proof for IRG] In this case, let us remove N ℓ(s), and let us consider the probability that two vertices

outside N ℓ(s) are connected: P(E(v, w)) = f
(

ρvρw

M

)

= f
(

ρvρw

M−ρ
Nℓ(s)

M−ρ
Nℓ(s)

M

)

. Let ρ′v = ρv

√

M−ρ
Nℓ(s)

M : clearly,

ρ′v = ρv(1+o(1)), and G−N ℓ(s) is a random graph with weights ρ′v. Furthermore, if λ′ is the degree distribution
of G−N ℓ(s), it is clear that the required conditions are satisfied, because the dependency between λ, µ, and η
is continuous.

Using this lemma, we may translate Corollary B.7 to the context of random graphs.

Lemma B.20. Let G be a graph with a power law degree distribution λ with exponent β, let µ, η be as before. There
exists a positive constant cλ only depending on λ such that, for each ℓ, S such that ℓ = O(log n), nε < S < ncλ ,

P

(

∀ℓ′ < ℓ(1 + ε), 0 < γℓ′(s) < S
)

= O
(

η(1)ℓ−F(Z0→S)
)

.

Proof. First of all, we may assume that ℓ− F
(

Z0 → S
)

= ω(1), otherwise the probabilistic bound is trivial. By
Corollary B.8, the three following cases are possible:

• N ℓ(s) = Θℓ(s);

• ρΓi(s) ≥ 4Snε for some i < ℓ;

• none of the two cases above applies.

In the first case, the result follows directly by Corollary B.7. In the second case, let i be the smallest integer
such that ρΓi(s) ≥ 4Snε: in IRG, by Lemma B.9, Γi+1(s) ≥ (1 − ε)ρΓi(s) w.h.p., and τ s (n

x) < i + 1 < ℓ. In

the CM, δi−1(s) + δi(s) ≥ 4Snε, and as a consequence either δi−1(s) ≥ 2Snε or δi(s) ≥ 2Snε: by Lemma B.7,
τ s (n

x) < i + 1 < ℓ.
It only remains to solve the third case. The probability that this case occurs is O (n−cλ) by Corollary B.8.

However, n−cλ is not sufficient for our purposes, because η(1)ℓ−F(Z0→S) can be much smaller. Let us consider the
following process: we explore neighbors of v of increasing size, until we hit a neighbor i verifying ∆i(s) 6= Γi(s).
If ∆i(s) 6= Γi(s), either all vertices in Γi(s) have all edges directed inside Γi(s), and Γi+1(s) is empty, or there
is at least a vertex v with an edge directed outside Γi(s). In the former case, we know that γi+1(s) = 0, and
the conclusion follows. In the latter case, we remove Γi(s) from the graph: the size of Γi+j(s) is at least the
size of Γj(v′), where v′ is the neighbor of v outside Γi(s). Furthermore, by Lemma B.19, G− Γi(s) is a random
graph, with degree distribution very similar to the degree distribution of G: indeed, i < ℓ = O(log n), and the
volume of vertices removed is at most S logn ≤ n1−ε. Moreover, the size of the neighbors of v′ is independent
from all previous events, because all we knew about v′ has been removed from the graph. Then, we can restart
the exploration from v′, in the new graph: if ∆j(v′) 6= Γj(v′), we proceed again as before.

More formally, let us fix ℓ, and let P (ℓ, h) be the probability that Γℓ(s) < S, and that∆j(s) 6= Γj(s) happened

h times in the aforementioned process. We prove by induction on h that P (ℓ, h) ≤ e−(1+ε)(ℓ−F(Z0→S))(− log η(1)).
The base case follows by our initial argument. For inductive step, let ℓ′ be the smallest integer such that

Γℓ′(s) 6= ∆ℓ′(s): note that P
(

ℓ′ = i
)

≤ P
(

ℓ′ < ℓ
)

≤ n−k

ℓ ≤ n−k+ε, and that, by inductive hypothesis,

P (ℓ− ℓ′, h) ≤ e−(− log η(1)+ε)(ℓ−ℓ′) if ℓ− ℓ′ ≥ logS, and consequently P (ℓ − ℓ′, h) ≤ e−(− log η(1)+ε)(ℓ−ℓ′−logS).

P(ℓ, h+ 1) ≤
ℓ
∑

i=0

P(ℓ′ = i)P (i, 0)P (ℓ− i, S, h)

≤
ℓ
∑

i=0

n−k+εe−(− log η(1)+ε)(i−F(Z0→S))e−(− log η(1)+ε)(ℓ−i−log S−F(Z0→S))

≤ n−k+εe−(− log η(1)+ε)(ℓ−2F(Z0→S)−logS)

≤ e−(− log η(1)+ε)(ℓ−F(Z0→S))e−(k−ε) logn+F(Z0→S)+log S .

The inductive step is proved, if e−(k−ε) logn+F(Z0→S)+logS < 1, that is, (min(1, β − 2) − 2 logn S − 2ε) logn >

F
(

Z0 → S
)

+logS, which is implied by (min(1, β−2)−2ε) logn > logM1(µ) S+3 logS, that is, S
(

3 + 1
logM1(µ)

)

<

nmin(1,β−2)−2ε. The lemma follows by choosing the right value of cλ.



By combining this lemma with Theorem B.1, we have proved the following theorem.

Theorem B.4. Let G = (V,E) be a random graph, let λ be the degree distribution of G, let µ, η be as before,
and let 0 < x < 1. Then, if s ∈ V , deg(v) = d, the following hold:

• τ s (n
x) ≥ (1− ε)F (d → nx) a.a.s.;

• P (τ s (n
x) ≥ (1 + ε) (α+ F (d → nx))) = O (η(1)α);

• P (τ s (n
x) ≥ (1 − ε) (α+ F (d → nx))) = Ω (η(1)α).

B.4 The Case 1 < β < 2. In the case 1 < β < 2, the branching process approximation does not work: indeed,
the distribution µ is not even defined, because M1(λ) is infinite. For this reason, we need a different analysis,
which looks similar to the “big neighbors” analysis in the case β > 2. We prove that the graph which is generated
from this distribution has a very dense core, which is made by all vertices whose degree is big enough: almost all
the other vertices are either connected to the core, or isolated, so that the average distance between two nodes is
2 or 3. There are also some paths of length O(1) leaving the core, whose length depends on the value β of the
distribution.

In our analysis, in order to avoid pathological cases, we have to assume that ρv < (1− ε)M for each v in the
Chung-Lu model (otherwise, all vertices with weight at least 1 + ε would be connected to the maximum degree
vertex). Note that this event holds with probability O(1).

Before entering the details of our analysis, we need some probabilistic lemmas that describe the relationship
between the weight and the degree of a vertex.

Lemma B.21. ([43], Equation A.1.7) For each ε > 0, there exists Nε and Cε not depending on n such that
the following hold a.a.s.:

• M = (1 + ε)
∑Nε

i=1 ρi;

• ρ1 ≤ CερNε
.

Corollary B.10. The vertex with maximum weight has weight Θ
(

n
1

β−1

)

a.a.s., and M = Θ
(

n
1

β−1

)

.

In this regime, we still need the definitions of ∆ℓ(s) as in the case β > 2, but in this case we will not prove

that γℓ+1(s) is close to δℓ(s) w.h.p.: for example, let s be a vertex with weight M = Θ
(

n
1

β−1

)

: clearly, γℓ+1(s)

cannot be M , which is bigger than n. Indeed, we prove that γℓ+1(s) is close to ∆ℓ(s)β−1: this way, the number
of neighbors of a vertex s with weight Θ(M) is close to n, which makes sense. In order to prove this result, we
need a technical lemma on the volume of some vertices.

Lemma B.22. Given a random graph with a degree distribution λ which is power law with exponent 1 < β < 2,
∑

ρw≤d ρw = O
(

nd2−β
)

.

Proof. This result is a simple application of Abel’s trick to estimate a sum:
∑

ρw≤d ρw =
∑d

i=1 i(|{w : ρw ≥
i}| − |{w : ρw ≥ i + 1}|) =

∑d
i=1 i|{w : ρw ≥ i}| −∑d+1

i=2 |(i − 1){w : ρw ≥ i}|) ≤ ∑d
i=1 |{w : ρw ≥ i}| =

∑d
i=1 O

(

n
iβ−1

)

= O
(

n
∫ d

1
2
x1−βdx

)

= O
(

nd2−β
)

.

Using this lemma, we can formally prove the relation between δℓ(s) and γℓ+1(s).

Lemma B.23. For each ε > 0, and for each ℓ such that nℓ(s) < δℓ(s)β−1n−ε, and δℓ(s) > nε, γℓ+1(s) =

Θ
(

δℓ(s)β−1
)

.

Proof. Let us fix ε > 0, and let us prove that δℓ+1(v) ≥ γℓ(v)β−1. Let us consider the set W made by all

vertices with weight at least M
δℓ(s)

, not in N ℓ(s): there are Θ

(

n
(

δℓ(s)
M

)β−1
)

= Θ
(

δℓ(s)β−1
)

such vertices,



because nℓ(s) < δℓ(s)β−1. We want to apply concentration inequalities to prove that there are O(|W |) vertices
in W that are in ∆ℓ+1(s). First of all, let us assume without loss of generality that δℓ(s) > nε, otherwise this
inequality is empty. In the Configuration Model, let us sort the vertices in W , obtaining w1, . . . , wk, and let
us consider a procedure where we pair stubs of wi until we find a connection to ∆ℓ(s). Since, at each step,
the number of stubs in ∆ℓ(s) that are not paired with a vertex in W is O(∆ℓ(s)), and wi has Mnε

∆ℓ(s)
stubs, at

each step there is probability O(1) that wi is connected to a vertex in Γℓ(s). A simple application of Azuma’s
inequality lets us conclude. In IRG, the probability that a vertex w ∈ W is linked to a vertex in Γℓ+1(s) is at

least
∑

v∈Γℓ(s) f
(

ρv

δℓ(s)

)

= O(1): a simple application of the multiplicative form of Chernoff bound (Lemma B.1)

lets us conclude.
For an upper bound, we can divide the vertices in Γℓ+1(s) in two sets W,W ′, where W is the set of

vertices with weight at most M
ρv
, W ′ = WC . For W ′, the number of vertices with weight at least M

ρv
is

O
(

n
(

ρv

M

)β−1
)

= O
(

ρβ−1
v

)

, and hence the number of neighbors of v in W ′ is at most ρβ−1
v . For the set W ,

we have to consider separately IRG and the CM. In the first case, let Xw = 1 if w ∈ Γℓ+1(s), 0 otherwise: we
want to estimate

∑

w∈W Xw. Through the previous lemma, the expected value of this sum is:

E

[

∑

w∈W

Xw

]

=
∑

w∈W

∑

v∈Γℓ(s)

f
(ρvρw

M

)

=
∑

w∈W

∑

v∈Γℓ(s)

(1 + o(1))
ρvρw
M

= (1 + o(1))
δℓ(s)

M

∑

w∈W

ρw

= O
(

δℓ(s)

M
n

(

M

δℓ(s)

)2−β
)

≤ δℓ(s)β−1.

Since these random variables are independent, we can apply Chernoff bound to prove that
∑

w∈W Xw ≤
E
[
∑

w∈W Xw

]

.

In the CM, let a1, . . . , aδℓ(s) be the stubs in ∆ℓ(s). By the previous lemma, the number of stubs in W is
∑

w∈W ρw = O
(

nM2−β

δℓ(s)2−β

)

= O
(

M
δℓ(s)2−β

)

. The number of vertices in W ∩γℓ+1(s) is at most the number of stubs

in δℓ(s) which are paired with stubs in W : let us pair stubs in δℓ(s) in order: at each step, the probability that

we hit a stub in W is O
(

1
M

M
δℓ(s)2−β

)

, because there are still O(M) stubs outside W . A simple application of

Azuma’s inequality proves that γℓ+1(s) ≤ O
(

δℓ(s)

δℓ(s)2−β

)

= O
(

δℓ(s)β−1
)

.

Corollary B.11. For each vertex s with degree at least nε, the number of neighbors of s is Θ
(

ρβ−1
s

)

.

Proof. Apply the previous lemma with ℓ = 0.

Using the last two results, we can transform statements dealing with the number of vertices to statements
dealing with weights. For this reason, we can analyze the weights, which are much simpler.

Lemma B.24. The probability that a vertex v with weight ρv is connected to a vertex with weight at most ρ is

O
(

nρvρ
2−β

M

)

.

Proof. First, we can assume that ρv ≪ M
nρ2−β , otherwise the thesis of the lemma is trivially true.

In the CM, let us pair all the stubs of v in order. At each step, the probability that we hit a stub whose

vertex has weight at most ρ is O
(

1
M

∑

w:ρw<ρ ρw

)

, because we have paired at most ρv ≪ M vertices. Summing

over all stubs of v, we obtain ρv

M

∑

w:ρw<ρ ρw = O
(

nρvρ
2−β

M

)

by Lemma B.22.



In IRG, this probability is
∑

w:ρw<ρ f
(

ρvρw

M

)

= (1 + o(1))ρv

M

∑

w:ρw<ρ ρw = O
(

nρvρ
2−β

M

)

by Lemma B.22.

Lemma B.25. A vertex v with degree at least log2 n is w.h.p. connected to all vertices with weight at least εM .

Proof. In IRG, this lemma follows from our assumptions on f . In the CM, let v be a vertex with degree at least
log2 n, let w be a vertex with degree at least εM , and let a1, . . . , ak be the stubs of v. Let us pair the stubs ai in
order: at each step, the probability that ai is connected to a stub in w is at least ε. Hence, by Azuma’s inequality
(Lemma B.4), at least one of the stubs ai is connected to a stub in W .

Lemma B.26. For each vertex s with degree at most n1−ε, P
(

τ s

(

n1−ε
)

= 2
)

= 1− 1
nO(ε) .

Proof. Since deg(s) < n1−ε, τ s

(

n1−ε
)

≥ 2. For the lower bound, if s is connected to a vertex with weight M1− ε
2 ,

then τ s

(

n1−ε
)

≤ 2 by Corollary B.11. By Lemma B.25, this happens w.h.p. if deg(v) > log2 n: for this reason,

the only remaining case is when deg(v) < log2 n, and v is not connected to any vertex with weight n1− ε
2 . In

this case, we prove that v is likely to be isolated: indeed, let us bind the probability that v is connected to a
vertex w with degree at most n1− ε

2 (hence, with weight at most M1−ε′). By Lemma B.24, this probability is

O
(

nρvM
(2−β)(1−ε′)

M

)

= O
(

n lognM1−βM−ε′(2−β)
)

= O
(

n−ε′′
)

. This means that, by Markov inequality, the

number of vertices that are not isolated and not connected to a vertex with degree n1−ε is at most n1−ε′′ , a.a.s..

We conclude that T
(

d → n1−ε
)

≥ 2 +O
(

n−ε′′
)

.

Let us now estimate the deviations from this probability.

Lemma B.27. For each vertex s, P (τ s (n
x) = ℓ) ≤ n1− 2−β

β−1 (ℓ−2−x)+o(1).

Proof. If deg(s) > log2 n, τ s (n
x) ≤ 2 w.h.p.. Otherwise, since all vertices with degree at least log2 n are connected

to the vertex with maximum degree, τ s (n
x) = ℓ implies that all vertices at distance at most ℓ − 3 from s have

degree at most log2 n. Hence, γi(v) ≤ log2ℓ n = no(1) for each i ≤ ℓ − 3. This means that, for each i ≤ ℓ − 4,
there is a vertex in γi(v) with weight no(1) connected to another vertex with weight no(1). The probability that

this happens is at most n− 2−β
β−1+o(1), because there are no(1) such vertices, and we may apply Lemma B.24 to each

of them.
Since these events are independent, if we multiply the probabilities for each i between 0 and ℓ − 4, the

probability becomes n−(ℓ−3) 2−β
β−1+o(1). Finally, all vertices in γℓ−3(s) should be connected to vertices with degree

at most nx, and hence to vertices with weight at most O
(

n
x

β−1

)

. Again by Lemma B.24, the probability that

this event happens is no(1) nno(1)n
x(2−β)
β−1

M = n1− 1
β−1+

x(2−β)
β−1 +o(1) = n− 2−β

β−1 (1−x)+o(1). Overall, the probability that

τ s (n
x) = ℓ is at most n− 2−β

β−1 (ℓ−2−x)+o(1).

Lemma B.28. For each vertex s with degree 1, P (τ s (n
x) = ℓ) ≥ n1− 2−β

β−1 (ℓ−2−x)+o(1).

Proof. Let s be a vertex of weight 1: we want to estimate the probability that s is connected to a vertex of weight

2 in the CM, with weight 1 in IRG. This probability is 2nλ(2)
M = n− 2−β

β−1+o(1) in the CM, 1 −
(

1− f
(

1
M

))n
=

1 −
(

1− 1+o(1)
M

)n

= 1 − e
−n(1+o(1))

M = n(1+o(1))
M = n− 2−β

β−1+o(1). Assuming this event holds, the probability that

s is not connected to any other vertex is 1 in the CM, and it is O(1) in IRG, assuming the maximum weight

is smaller than (1 − ε)M . This means that, with probability O(1)n− 2−β
β−1+o(1) = n− 2−β

β−1+o(1), s is connected to
a single vertex s1 with weight 1 in IRG, 2 in the CM. We may re-iterate the process with s1, finding a new

vertex s2, and so on, for ℓ − 3 steps. The probability that we find a path of length ℓ − 3 is n−(ℓ−3) 2−β
β−1+o(1).

Then, let us estimate the probability that sℓ−3 is connected only to a vertex with degree at most nx. In the

CM, the number of stubs of vertices with degree at most nx is
∑

ρw<n
x

β−1
ρw = O

(

n1+x 2−β
β−1

)

, and hence the

probability that we hit a stub of a vertex with degree at most nx is O
(

n
1+x

2−β
β−1

M

)

= n−(1−x) 2−β
β−1+o(1). In IRG, the



probability is 1−∏
ρw<n

x+o(1)
β−1

(

1− f
(

ρw

M

))

= 1−∏
ρw<n

x+o(1)
β−1

(

1− ρw(1+o(1))
M

)

= 1−∏
ρw<n

x+o(1)
β−1

e−
ρw(1+o(1))

M =

1− e−
n
1+x

2−β
β−1

+o(1)

M = 1− e−n
−(1−x)

2−β
β−1

+o(1)

= n−(1−x) 2−β
β−1+o(1).

In both cases, we proved that the probability of having a path of length ℓ−2 followed by a vertex with degree

at most nx is at most n−(ℓ−2−x) 2−β
β−1+o(1). It is clear that in this case τ s (n

x) ≥ ℓ.

Summarizing the results obtained in this section, we have proved the following theorem.

Theorem B.5. Let G = (V,E) be a random graph with degree distribution λ, which is power law with 1 < β < 2.
Then, if s ∈ V , deg(v) = d, for each x between 0 and 1, the following hold:

• τ s (n
x) ≤ 2 a.a.s.;

• P (τ s (n
x) ≥ α+ 2) ≤ ncα−x+o(1);

• P (τ s (n
x) ≥ α+ 2) ≥ ncα+1−x+o(1).

B.5 Applying the Probabilistic Bounds. Until now, we have proved bounds on the probability that τ s (n
x)

has certain values. In this section, we turn these probabilistic bounds into bounds on the number of vertices that
satisfy a given constraint, concluding the proof of the main theorems, and of the values in Table 2. The main
tool used in the following lemma.

Lemma B.29. For each vertex t, let Eℓ(t) be an event that only depends on the structure of N ℓ(t). Then, for
each set T ⊆ V , 0 < x < 1, if E(t) is the event ∀ℓ < τ t (n

x)− 1,Eℓ(t)

|{t ∈ T : E(t)}| = (1± o(1))
∑

t∈T

P (E(t)|t ∈ T )± |T | M2x

M1−o(1)
.

If we condition on the structure of a neighbor with volume at most ny, a very similar result holds:

|{t ∈ T : E(t)}| = (1± o(1))
∑

t∈T

P (E(t)|t ∈ T )± |T |
(

Mx+y +M2x

M1−o(1)

)

.

Proof. First of all, we assume without loss of generality that |T | < n2ε, by dividing T in several
sets if this is not the case. Let us sort the vertices in T , obtaining t1, . . . , tk, let Xi be 1 if E(ti)

holds, 0 otherwise, and let us assume that we know the structure of Nτ tj
(nx)−2(tj) for each j < i

(in other words, let Ai be the σ-field generated by all possible structures of N
τ tj

(nx)−2(tj) for each

j < i, and of the neighbor with volume at most ny). Then, the probability that Nτ ti
(nx)−2(ti)

touches Nτ tj
(nx)−2(tj) is at most

∑

ℓ,ℓ′<O(logn) P

(

ℓ ≤ τ tj (n
x)− 2 ∧ ℓ′ ≤ τ ti (n

x)− 2 ∧ Γℓ(ti) ∩ Γℓ′(tj) 6= ∅
)

≤
∑

ℓ,ℓ′<O(logn) P

(

Γℓ(ti) ∩ Γℓ′(tj) 6= ∅
∣

∣

∣ℓ ≤ τ tj (n
x)− 2 ∧ ℓ′ ≤ τ ti (n

x)− 2
)

≤ O(log2 n)M
2x+Mx+y

M1−ε , because

γτ ti
(nx)−1(ti) < nx for each i, and consequently δτ ti

(nx)−2(ti) < Mx+ε w.h.p., by Lemmas B.7, B.9 and B.23.

As a consequence pi = P (E(ti))− M2x+2ε

M ≤ P(E(ti)|Ai) ≤ P (E(ti)) +
M2x+2ε

M = qi.

We have proved that Sk =
∑k

i=1 Xi − pi,S
′

k =
∑k

i=1 qi − Xi are submartingales. If p =
∑k

i=1 pi, by the

strengthened version of Azuma’s inequality (Lemma B.5), P (Sk > εkp) ≤ e
−O

(

ε2k2p2

kp+εkp

)

≤ e−ε3kp ≤ e−ε3nε

. This

proves that |{t ∈ T : E(t)}| ≥ (1− ε)
∑

t∈V P (Eℓ(t)|ℓ < τ t (n
x)− 1, t ∈ T ) + |T |M2x+Mx+y

M1−ε , w.h.p.. The other
inequality follows from a very similar argument applied to S′

k.

Corollary B.12. Let p = P(τ t (n
x)) ≤ ℓ| deg(t) = d), and let us assume that p > M2x+ε−1. Then,

(1− ε)p|T | ≤ |{t ∈ T : τ s (n
x)) ≤ ℓ} ≤ (1 + ε)p|T |.

Proof. We apply Lemma B.29 with T as the set of vertices of degree d, Eℓ(t) as the event that ℓ ≤
2 + (1 − ε)F (k → nx). We obtain that |{t ∈ T : τ s (n

y) ≤ (1 − ε)F (d → nx)}| = |{t ∈ T : ∀ℓ < τ s (n
y) − 1, ℓ ≤

(1− ε)F (d → nx)− 2}| = (1± o(1))p|T | ± |T |M2x+o(1)

M = (1± o(1))p|T |.



B.6 Proof of Theorem 3.1.

Proof. [Proof that Property 2.1 holds] For the first statement, if deg(s) = nα with α > ε, in the case β > 2, we
know by Theorem B.1 that τ s (n

y) ≤ τ s (n
α)+(1+ε)F (nα → ny) ≤ 1+(1+ε)T (nα → ny) ≤ (1+2ε)T (nα → ny).

In the case 1 < β < 2, we know by B.25 that s is connected to the maximum degree vertex, which has degree
Θ(n): hence, τ s (n

x) ≤ 2 = T (nα → nx).
For the other statements, if x is small enough, this result follows by Corollary B.12 and Theorems B.4 and B.5.

For bigger values of x, we can extend it with Theorem B.1.

Proof. [Proof that Property 2.2 holds, CM] Let us recall the definition of ∆ℓ(s) as the set of stubs of vertices at

distance ℓ from s, not paired with stubs at distance ℓ−1. We know that ∆ℓ(s) ≥ Γℓ+1(s)max( 1
β−1 ) by Lemmas B.7

and B.23. For ℓs = τ s (n
x) − 1, ℓt = τ t (n

y) − 1, δℓs(s) ≥ γℓs+1(s)max(1, 1
β−1 )n−ε ≥ nxmax(1, 1

β−1 )−ε ≥ Mx−ε,
and similarly δℓt(t) ≥ My−ε. Consequently, ∆ℓs(s)∆ℓt(t) ≥ Mx+y−2ε ≥ M1+ε′ . We claim that, w.h.p., a stub
in ∆ℓs(s) is paired with a stub in ∆ℓt(t), and consequently dist(s, t) ≤ ℓs + ℓt + 1 = τ s (n

x) + τ t (n
y) − 1,

proving the theorem. To prove this claim, let us first observe that if N ℓs(s) and N ℓt(t) touch each other, then
dist(s, t) ≤ ℓs + ℓt < τ s (n

x) + τ t (n
y) − 1, and the result follows. Otherwise, let us assume without loss of

generality that x < y (if x > y, we swap the roles of s and t, if x = y, we can decrease x by a small amount, and
we change the value of ε). Let us consider the Mx−ε unpaired stubs a1, . . . , aMx−ε in ∆ℓt(s), and let us pair these
stubs one by one, by defining Xi = 1 if the stub is paired to a stub in ∆ℓt(t), 0 otherwise. Note that, conditioned

on all possible pairings of aj with j < i, E[Xi] ≥ My−ε−Mx−ε

M ≥ My−2ε

M . Hence, Sk = kMy−2ε

M −∑k
i=1 Xi is a

supermartingale, and Var [X i] ≤ E
[

X2
i

]

≤ E [Xi] ≤ My−2ε

M . By a strengthened version of Azuma’s inequality

(Lemma B.5), P
(

∑k
i=1 Xi = 0

)

≤ P

(

kMy−2ε

M −∑k
i=1 Xi < εiM

y−2ε

M

)

≤ e
−ε2k2M2(y−2ε)

Ω(kMy−2εM) = e
−Ω
(

ε2kMy−2ε

M

)

. For

k = Mx−ε, we have proved that, w.h.p., the number of stubs in ∆ℓs(s) that are paired with stubs in ∆ℓt(t) is at

least (1− ε)M
x+y−3ε

M ≥ 1, and consequently dist(s, t) ≤ ℓs + ℓt < τ s (n
x) + τ t (n

y)− 1.

Proof. [Proof that Property 2.2 holds, IRG] As in Appendix B.2, let ∆ℓ(s) be the volume of Γℓ(s), and let
ℓs = τ s (n

x) − 1, ℓt = τ t (n
y) − 1. If β > 2, by Lemma B.9, δℓs(s) > (1 − ε)Mx, and δℓt(t) > (1 − ε)My. The

probability that a vertex v ∈ Γℓs(s) is not connected to any vertex w ∈ Γℓt(t) is
∏

w∈Γℓt (t) 1− f
(

ρvρw

M

)

. We have
to consider different cases separately.

• If
∑

v∈Γℓs(s),ρv<
M
My

ρv > Mnε

My , by removing some vertices we can assume that all vertices in Γℓs(s) have weight

at most M
My . In this case, the number of vertices v ∈ Γℓs(s) having a connection to Γℓt(t) is

∑

v∈Γℓs (s) Xv,

where the Xvs are independent random variables with success probability 1 − ∏w∈Γℓt(t) 1 − f
(

ρvρw

M

)

=

1−∏w∈Γℓt (t) e
−Ω( ρvρw

M ) = 1− e
−Ω
(

ρvMy

M

)

= Ω
(

ρvM
y

M

)

. We conclude by a straightforward application of the

multiplicative form of Chernoff bound (Lemma B.1).

• If we do not fall into the previous case,
∑

v∈Γℓs (s),ρv<
M
My

ρv < Mnε

My , and by slightly decreasing x we can

assume without loss of generality that all vertices in Γℓs(s) have weight at least M
My . By changing the roles

of s and t, we can also assume that all vertices in Γℓt(t) have weight at least M
Mx . Assuming this, we still

have to divide the analysis in two possible cases.

– if γℓs(s)γℓt(t) > nε, the number of connections between Γℓs(s) and Γℓt(t) is at least
∑

v∈Γℓs (s),w∈Γℓt (t) Xv,w, where the Xv,ws are independent random variables with success probabil-

ity f
(

ρvρw

M

)

= Θ(1). Since the sum is made by at least nε terms, we can conclude by a straightforward
application of the multiplicative form of Chernoff bound (Lemma B.1).

– If γℓs(s)γℓt(t) < nε, there is at least a vertex v ∈ Γℓs(s) with weight nx−ε, and a vertex w ∈ Γℓt(t) with

weight ny−ε. Then, P(E(v, w)) = f
(

ρvρw

M

)

= f
(

Mx+y−2ε

M

)

≥ f (M ε) ≥ 1− o(M εk) for each k (we recall

that, in our assumptions, f(x) = 1− o(xk) for each k, if x tends to infinity). We conclude because this
means that v is connected to w w.h.p..



Proof. [Proof that Property 2.3 holds] Let us fix x ≥ 1
2 , let s be any vertex, and let us fix an inte-

ger ℓs such that δℓs(s) < Mx+ε. Let us consider a vertex t ∈ W , and let ℓt be an integer such

that δℓt(t) < My+ε: if E
(

δℓs(s), δℓt(t)
)

is the event that there is an edge between ∆ℓs(s) and ∆ℓt(t),

P

(

E
(

δℓs(s), δℓt(t)
)∣

∣

∣δ
ℓs(s) < Mx+ε, δℓ(t) < My+ε

)

< Mx+y+3ε

M . Hence,

P
(

∃ℓs, ℓt : δℓs(s) < Mx+ε ∧ δℓt(t) < My+ε ∧E
(

δℓs(s), δℓt(t)
))

≤
O(logn)
∑

ℓs,ℓt=0

P

(

δℓs(s) < Mx+ε ∧ δℓt(t) < My+ε ∧E
(

δℓs(s), δℓt(t)
))

≤
O(logn)
∑

ℓs,ℓt=0

P

(

E
(

δℓs(s), δℓt(t)
)∣

∣

∣
δℓs(s) < Mx+ε, δℓt(t) < My+ε

)

≤ Mx+y+4ε

M
.

This means that, with probability 1 − Mx+y+4ε

M , dist(s, t) ≥ ℓs + ℓt + 2, where ℓs (resp., ℓt) is the maximum

integer such that δℓs(s) < Mx+ε (resp., δℓt(t) < My+ε). By definition of ℓs, ℓt, δℓs+1(s) > nx+ε, and by
Lemmas B.7, B.9 and B.23, γℓs+2(s) > nx, meaning that τ s (n

x) ≤ ℓs + 2, w.h.p.. Since the same holds for t,

dist(s, t) ≥ ℓs + ℓt + 2 ≥ τ s (n
x) + τ t (n

y)− 2, with probability 1− Mx+y+4ε

M .
We have to translate this probabilistic result into a result on the number of vertices t such that dist(s, t) <

τ s (n
x) + τ t (n

y)− 2. To this purpose, we apply Lemma B.29, by fixing s, conditioning on Nτ s(n
x)−2(s) (which

has volume at most nx), and defining E(t) as dist(s, t) < τ s (n
x) + τ t (n

y) − 2. Since y < x, and x + y < 1,

|{t ∈ T : dist(s, t) < τ s (n
x)} ≤ (1 + o(1))|T |Mx+y+4ε−1

M ± |T |Mx+y+M2x

M1−o(1) ≤ |T |Mx+y+5ε−1.

Proof. [Proof that Property 2.4 holds] For values of d bigger than nε, by Lemmas B.7, B.9 and B.23, a vertex with

weight d has degree Θ

(

dmax(1,n
1

β−1 )

)

. Hence, since the number of vertices with weight at least d is Θ
(

n
dβ−1

)

,

the conclusion follows.
For smaller values of d, a vertex with weight d has degree bigger than 1

2d
max(1, 1

β−1 ) with probability p = O(1):
through simple concentration inequalities it is possible to prove that the degree number of vertices with degree

at least 1
2d

max(1, 1
β−1 ) is O(|{v ∈ V : ρv ≥ d}|) = O( n

dβ−1 ). By defining d′ = dmax(1, 1
β−1 ), we conclude.

B.7 Other Results. Before concluding, we need to prove some lemmas that are used in some probabilistic
analyses, even if they do not follow from the main theorems.

Lemma B.30. Assume that β > 2, and let T be the set of vertices with degree at least nx. Then, dist(s, T ) :=
mint∈T dist(s, t) ≤ τ s

(

nx(β−2)+ε
)

+ 1 w.h.p..

Proof. By removing some vertices from T , we can redefine T as the set of vertices with weight at least nx+ε

(because each vertex with weight at least nx+ε has degree at least nx by Lemmas B.7, B.9 and B.23). After
this modification, the number of vertices in T is Θ

(

n
n(x+ε)(β−1)

)

= Θ
(

n1−(x+ε)(β−1)
)

, and the volume of T is

Ω
(

n1−(x+ε)(β−1)+x+ε
)

= Ω
(

n1−(x+ε)(β−2)
)

. We recall the definition of δℓ(s): in the CM, it is the number of stubs
at distance ℓ from s, not paired with stubs at distance ℓ− 1, while in IRG it is the volume of the set of vertices at
distance ℓ from s. By Lemmas B.7, B.9 and B.23, if ℓ = τ s

(

n(x+3ε)(β−2)
)

− 1, δℓ(s) ≥ n(x+2ε)(β−2). In the CM,

since the pairing of stubs is random, there is w.h.p. a stub in ∆ℓ(s) which is paired with a stub of a vertex in T .
In IRG, the probability that a vertex in Γℓ(s) is paired with a vertex in T is at least

∑

v∈Γℓ(s)

∑

t∈T Xvt, where

the Xvts are Bernoulli random variables with success probability f
(

ρvρt

M

)

. We conclude by a straightforward
application of Chernoff bound (Lemma B.1).

Lemma B.31. Given a vertex v and an integer ℓ, assume that nε < γℓ(v) < n1−ε, and let S = {s ∈ V : nα <
deg(s) < nα+ε}, for some α > 0. Then, |S ∩ Γℓ(v)| ≤ γℓ(v)|S|n−1+α+ε w.h.p..



Proof. [Proof for the CM] By Lemma B.7, we can assume that nε ≤ δℓ−1(v) ≤ n1−ε. Let us sort the stubs
in ∆ℓ−1(v), and let Xi be 1 if the i-th stub is paired with a stub of a vertex in S, 0 otherwise. Clearly,

|S ∩ Γℓ(v)| ≤ ∑δℓ−1(v)
i=1 Xi. Since δℓ−1(v) < n1−ε, conditioned on the outcome of the previous variables Xj ,

P (Xi = 1) = O
(

1
n

∑

v∈S ρv
)

≤ |S|n−1+α+ε (because we have already paired at most o(n) stubs). Hence,

Sk = k|S|n−1+α+ε −∑k
i=0 Xi is a submartingale, and if k = δℓ−1(v), by the strenghtened version of Azuma’s

inequality (Lemma B.5), w.h.p., Sk ≥ −k|S|n−1+α+ε, that is, k|S|n−1+α+ε −∑k
i=0 Xi ≥ −k|S|n−1+α+ε, and

|S ∩ Γℓ(v)| ≤∑k
i=0 Xi ≤ 2k|S|n−1+α+ε. The result follows.

Proof. [Proof for IRG] By Lemma B.9, we can assume that nε ≤ δℓ−1(v) ≤ n1−ε. The probability that a
vertex s ∈ S is not linked to any vertex in Γℓ−1(v) is

∏

w∈Γℓ−1(v)

(

1− f
(

ρwρs

n

))

=
∏

w∈Γℓ−1(v)

(

1−O
(

ρwρs

n

))

≤
∏

w∈Γℓ−1(v) e
−O(ρwρs

n ) = e
−O

(

δℓ−1(v)ρs
n

)

= e
−O

(

δℓ−1(v)nα+ε

n

)

. If δℓ−1(v) > n1−α−2ε, the result of the lemma is

trivial, if we change the value of ε. If δℓ−1(v) < n1−α−2ε, the probability that a vertex in S is not linked to any

vertex in δℓ−1(s) is e
−O

(

δℓ−1(s)nα+ε

n

)

= 1−O
(

δℓ−1(s)nα+ε

n

)

, and hence the probability that it is connected to a

vertex in δℓ−1(s) is O
(

δℓ−1(s)nα+ε

n

)

. By a straightforward application of Chernoff bound, the number of vertices

in S that belong to Γℓ(s) is O
(

|S|δℓ−1(s)nα+ε

n

)

, w.h.p..

Lemma B.32. Assume that β > 3, and let v a vertex with degree ω(1). Let S be the set of vertices with degree
between nα and nα+ε. Then, the number of pairs of vertices s, t ∈ S such that dist(s, v)+dist(v, t) ≤ c logM1(µ) n,

and dist(s, w)+dist(w, t) > c logM1(µ) n for each w such that deg(w) > deg(v) is at most deg(v)2|S|2n−2+c+2α+ε.

Proof. First of all, we want to assume without loss of generality that v is the vertex with maximum degree. To
this purpose, we remove from the graph all vertices with degree bigger than deg(v): by Lemma B.19, we obtain
a new random graph G′, and the value of M1(µ) changes by o(1). Furthermore, v is the vertex with maximum
degree in the new graph, and the shortest paths not passing from vertices with degree bigger than deg(v) are
conserved.

Then, let us assume that v is the vertex with maximum degree. By Corollaries B.2 and B.5, γi(v) ≤
nε deg(v)(M1(µ) + ε)i, and by Lemma B.31, |S ∩ Γi(v)| ≤ γi(v)|S|n−1+α+ε ≤ deg(v)|S|(M1(µ) + ε)in−1+α+2ε.
We conclude that the number of pairs (s, t) ∈ S2 such that dist(s, v) + dist(v, t) ≤ c logM1(µ) n is at most:

∑

i+j=c logM1(µ) n

|{s : dist(s, v) ≤ i}||{t : dist(t, v) ≤ c logM1(µ) n− i}|

≤
∑

i+j=c logM1(µ) n

i deg(v)|S|(M1(µ) + ε)in−1+α+2ε · j deg(v)|S|(M1(µ) + ε)jn−1+α+2ε

≤
∑

i+j=c logM1(µ) n

deg(v)2|S|2(M1(µ) + ε)i+jn−2+2α+5ε

≤ deg(v)2|S|2n−2+c+2α+ε′ .

C The BCM Algorithm.

The BCM algorithm [15, 7] exactly computes the k most central vertices according to closeness centrality.
We recall that the farness f(s) of a vertex s is defined as

∑

t∈V dist(s, t); the closeness centrality of s is
c(s) = 1

f(s) = 1
∑

t∈V dist(s,t) . Intuitively, a vertex with high closeness centrality needs a few step to “talk” to

all other vertices, and consequently it is considered central.
The textbook algorithm that computes the k most central vertices simply computes the farness f(s) of each

vertex s through n BFSes, and it returns the k vertices with smallest f(s) values. The running time is O(mn).
The improvement proposed by the BCM algorithm stops the BFS from a vertex s as soon as we can guarantee
that s is not in the top-k. To this purpose, assume that the k-th smallest farness found until now is fk, and we



have visited all vertices up to distance ℓ. Then, we can lower bound the farness of s by setting distance ℓ+ 1 to
all unvisited vertices, and if this lower bound is bigger than fk, then we can safely interrupt the BFS.

A further speed-up can be obtained by computing a better bound: we set distance ℓ + 1 to a number of
vertices equal to

∑

t∈Γℓ(s) deg(t) − 1 (which is the number of edges exiting from level ℓ of the BFS tree), and
distance ℓ+ 2 to all other vertices. In formula, we stop a visit from a vertex s after ℓ steps if:

f̃ℓ(s) :=
∑

t∈Nℓ(s)

dist(s, t) + (ℓ+ 1)γℓ
U (s) + (ℓ+ 2)

(

n− |N ℓ(s)| − γℓ
U (s)

)

≥ fk

where N ℓ(s) is the set of vertices at distance at most ℓ from s, Γℓ(s) is the set of vertices at distance exactly ℓ
from s, γℓ

U (s) =
∑

v∈Γℓ(s) deg(v)− 1.
It remains to choose the order in which vertices are processed. In order to speed-up the computation as much

as possible, the algorithm processes vertices in decreasing order of degree, so that we obtain quite soon high values
of fk.

In order to analyze this algorithm, we first provide a deterministic bound on the running time. The idea
behind these bounds is that a BFS from s visits all vertices at distance at most fk − 2, then it might find a lower
bound bigger than fk. In particular, if the number of vertices visited at distance at most fk − 2 is much smaller
than n, the bound is likely to be sufficient to stop the visit. Otherwise, the BFS from s has already visited Θ(n)
vertices: in both cases, the number of visited vertices is close to the number of vertices at distance at most fk − 2
from s.

Lemma C.1. Let fk be the k-th smallest farness among the k vertices with highest degree, and let ℓ ≥ (1+α) fkn −2

be an integer. Then, the running time of the algorithm is at most O
(

m+ 1
α

∑

s∈V

∑

v∈Nℓ(s) deg(v)
)

.

Proof. The first k BFSes need time O(m), because they cannot be cut. For all subsequent BFSes, the k-
th smallest farness found is at least fk. Let us consider a BFS from s, and let us assume that we have
visited all vertices up to distance ℓ: our lower bound on the farness of s is

∑

v∈Nℓ(s) dist(s, v) + (ℓ +

1)γℓ
U (s) + (ℓ + 2)

(

n− |N ℓ(s)| − γℓ
U (s)

)

≥ (ℓ + 2)
(

n− |N ℓ(s)| − γℓ
U (s)

)

≥ (ℓ + 2)
(

n−∑v∈Nℓ(s) deg(v)
)

≥
(1 + α) fk

n

(

n−∑v∈Nℓ(s) deg(v)
)

. We claim that the BFS from s visits at most m
nα

∑

v∈Nℓ(s) deg(v) edges: this

is trivially true if
∑

v∈Nℓ(s) deg(v) >
α
2n, because the value becomes O(m), while if

∑

v∈Nℓ(s) deg(v) <
α
2n, the

lower bound is at least (1 + α) fk
n

(

1− α
2

)

n ≥ fk, and the BFS is stopped after ℓ steps.

Lemma C.2. Let fk be the k-th smallest farness, and let ℓ ≤ fk
n − 2. Then, the running time of the algorithm is

Ω
(
∑

s∈V nℓ(s)
)

.

Proof. Clearly, at any step, the k-th minimum farness found is at least fk. We want to prove that the BFS
from s reaches level ℓ: indeed, the lower bound on the farness of s is

∑

v∈Nℓ(s) dist(s, v) + (ℓ + 1)γℓ
U (v) + (ℓ +

2)
(

n− |N ℓ(s)| − γℓ
U (s)

)

≤ n(ℓ + 2) ≤ fk. Hence, the BFS is not cut until level ℓ, and at least Ω
(
∑

s∈V nℓ(s)
)

vertices are visited.

We now need to compute these values in graphs in our framework. We analyze separately the running time
in the case 1 < β < 2, in the case 2 < β < 3, and in the case β > 3.

C.1 The Case 1 < β < 2. By Property 2.4, if s is one of the k vertices with maximum degree, then deg(s) > 2cn
for some c only depending on k, and by Theorem 5.3, the farness of s is at most (2 + o(1))n − deg(s) ≤
(2 − c)n if n is big enough. By Lemma C.1 applied with ℓ = 0 and α = c, the running time is at most

O
(

m+ 1
c

∑

s∈V

∑

t∈N0(s) deg(t)
)

= O
(

m+
∑

s∈V deg(s)
)

= O(m).

C.2 The Case 2 < β < 3. In this case, we know by Theorem 5.4 applied with x = 1
2 that the minimum farness

is at least n(1+o(1)) (τ s (n
x)− T (1 → nx) + distavg (n)− 1) = n

(

1
2 + o(1)

)

distavg (n) = (1+o(1)) log 1
β−2

logn =

Θ(log logn).



We claim that all vertices with degree at least nx are at distance O(1) from each other: indeed, if

deg(s), deg(t) > nx, by Property 2.1, τ s

(

n
2
3

)

, τ t

(

n
2
3

)

= O(1), and by Property 2.2, dist(s, t) < τ s

(

n
2
3

)

+

τ t

(

n
2
3

)

= O(1).

By Lemma C.2, if ℓ + 2 is smaller than fk, the running time is Ω
(
∑

s∈V nℓ(v)
)

=

Ω
(

∑

deg(s)>nx nΘ(log log n)(s)
)

= Ω
(

∑

deg(s)>nx |{t : deg(t) > nx}|
)

≥ Ω
(

(

n1−x(β−1)
)2
)

= Ω
(

n2−2x(β−1)
)

. If

we choose x = ε, the running time is Ω
(

n2−O(ε)
)

.

C.3 The Case β > 3. Let us estimate the farness of the k vertices with highest degree. By Property 2.4, the k

maximum degrees are Θ
(

n
1

β−1

)

, and their farness is n(1 + O(ε))
(

τ s

(

n
1

β−1

)

− T
(

1 → n
1

β−1

)

+ distavg (n)
)

≤
n(1+O(ε)) logM1(µ)

(

n1− 1
β−1

)

. Hence, by Lemma C.2 applied with ℓ = (1+O(ε)) logM1(µ)

(

n1− 1
β−1

)

, we obtain

that the running time is O
(

∑

s∈V

∑

v∈Nℓ(s) deg(v)
)

= O
(

∑

s∈V

∑

v∈Nℓ(s) ρv

)

= O
(

nε
∑

s∈V nℓ+1(v)
)

, because

deg(v) ≤ nερv, and γℓ+1(v) > ρΓℓ(v) in random graphs, as shown in Lemmas B.7 and B.9. For the lower bound,
we use two partial results that we obtain in the proof of the main theorems: Corollaries B.3 and B.6. These
corollaries say that τ s (n

y) − τ s (n
x) ≥ (1 − ε)(y − x) logM1(µ) n, for each 1

β−1 < x < y < 1. Hence, for each

vertex s, f(s) ≥
(

n− n1−ε
)

τ s

(

n1−ε
)

≥
(

1− 1
β−1 −O(ε)

)

logM1(µ) n ≥ (1−O(ε)) logM1(µ)

(

n1− 1
β−1

)

.

We conclude that, by Lemmas C.1 and C.2, the running time of the algorithm is
∑

s∈V nℓ(s), where

ℓ = (1±O(ε)) logM1(µ)

(

n1− 1
β−1

)

. To estimate this value, we use the following result, that we prove in Appendix B

(Theorem B.1).

Theorem C.1. For each 0 < x < y < 1, τ s (n
y) − τ s (n

x) ≥ (1 − ε) logM1(µ) n
y−x a.a.s.. Moreover,

τ s (n
y)− τ s (n

x) ≤ (1 + ε) logM1(µ) n
y−x w.h.p..

Thanks to this result, for each vertex s, τ s (n
y) ≤ τ s (n

ε deg(s)) + (1 + ε) logM1(µ) n
y−x ≤ (1 +

O(ε)) logM1(µ)
ny

deg(s) ≤ ℓ if y = 1− 1
β−1 +

log deg(s)
logn +O(ε), and consequently γi(s) < ny for each i < ℓ. Hence, the

running time is smaller than nO(ε)
∑

s∈V nℓ(s) ≤ nO(ε)
∑

s∈V ℓny ≤ n1− 1
β−1+O(ε)∑

s∈V deg(s) ≤ n2− 1
β−1+O(ε).

An analogous argument proves that the running time is at least n2− 1
β−1−O(ε).

D Distance Oracle.

In this section, we analyze the performances of the distance oracle in [4]. Basically, this distance oracle assigns a
label L(s) to each vertex s: each label is a set of pairs (v, dist(s, v)), where v is a vertex in the graph, and dist(s, v)
is the distance between s and v. The construction of these labels enforces the so-called 2-hop cover property: for
each pair of vertices s, t, there is a vertex v in a shortest path between s and t that belongs both to L(s) and to
L(t). Using the 2-hop cover property, it is possible to compute dist(s, t) = minv∈L(s)∩L(t) dist(s, v) + dist(v, t), in

time O(|L(s)|+ |L(t)|). The space required is Θ
(
∑

s∈V |L(s)|
)

.
In order to compute a set of labels that satisfies the 2-hop cover property, we sort all vertices s obtaining

s1, . . . , sn (any order is fine), and we perform a BFS from each vertex, following this order. During the BFS from
si, as soon as we visit a vertex t, we add (si, dist(si, t)) to the label of t. Furthermore, we prune each BFS at each
vertex t such that dist(s, t) = minv∈L(s)∩L(t) dist(s, v) + dist(v, t), where L(s) and L(t) are the current labels. It
is proved in [4] that the labels generated by the algorithm satisfy the 2-hop cover property, and that si is in the
label of t if and only if there is no vertex sj for some j < i that belongs to an (s, t)-shortest path. It remains
to define how vertices are sorted: in [4], it is suggested to sort them in order of degree (tie-breaks are solved
arbitrarily).

First, as we did in the previous analyses, we compute a deterministic bound on the expected time of a distance
query between two random vertices.

Lemma D.1. For each si, let Nsi be the number of vertices t ∈ V such that no (s, t)-shortest path passes from a
vertex sj with j < i. Then, the average query time is O

(

1
n

∑

s∈V N(s)
)

, and the space used is Θ
(
∑

s∈V N(s)
)

.



Proof. If the labels are sorted, in order to intersect L(s) and L(t), we need time O (|L(s)|+ |L(t)|). Hence,
the expected time of a distance query between two random vertices is 1

n2

∑

s,t∈V O (|L(s)|+ |L(t)|) =

O
(

1
n

∑

t∈V |L(t)|
)

= O
(

1
n

∑

s,t∈V Xst

)

= O
(

1
n

∑

s∈V N(s)
)

, where Xst = 1 if s ∈ L(t), 0 otherwise. Simi-

larly, the space used is Θ
(

1
n

∑

t∈V |L(t)|
)

= Θ
(
∑

s∈V N(s)
)

.

D.1 The Case 1 < β < 2. Let us fix ε > 0, and let us consider vertices s with small degree (at most, n2ε):
the number of vertices reachable from s at distance k passing only through vertices of degree smaller than deg(s)
is at most deg(s)k: hence, N(s) ≤ D deg(s)D ≤ Dn2εD = nO(ε) (because the diameter D is constant).

Let us consider vertices s such that deg(s) > n2ε: by Property 2.2, all these vertices are connected to each
vertex with degree at least n1−ε, and no vertex t with degree bigger than nε can contain s in their label, unless
t is a neighbor of s. Consequently, the vertices that contain s in their label are at most deg(s) vertices at

distance 1 from s, N2(s) vertices at distance 2 from s, and at most
(

n2ε
)D

N2(s) = nO(ε)N2(s) vertices at a

bigger distance. Summing these values, we obtain that N(s) ≤ deg(s) + N2(s)n
O(ε): summing over all vertices

s, the average query time is 1
nO

(

n1+ε +
∑

s∈V,deg(s)>n2ε deg(s) +N2(s)n
2ε
)

= nO(ε)
(

1 + 1
n

∑

s∈V N2(s)
)

. Since

t ∈ N2(s) implies that deg(t) < n2ε, and since the number of vertices with degree bigger than nx is n1−x+o(1) by
Property 2.4,

∑

s∈V

N2(s) =
∑

s∈V

∑

v∈Γ1(s),deg(v)<deg(s)

∑

t∈Γ1(v),deg(t)<n2ε

1

=
∑

v∈V

∣

∣

{

t ∈ Γ1(v) : deg(t) < n2ε
}∣

∣

∣

∣

{

s ∈ Γ1(v) : deg(s) > deg(v)
}∣

∣

≤
∑

v∈V

deg(v)max

(

deg(v),
n1+ε

deg(v)

)

=

n
∑

d=1

|{v : deg(v) = d}| dmax

(

d,
n1+ε

d

)

≤
n

1
2
∑

d=1

|{v : deg(v) = d}| d2 +
n
∑

d=n
1
2

|{v : deg(v) = d}|n1+ε

≤ S1 + n
3
2+ε.

Let us estimate S1 using Abel’s summation technique:

S1 =

n
1
2
∑

d=1

|{v : deg(v) = d}| d2

=

n
1
2
∑

d=1

|{v : deg(v) ≥ d}| d2 −
n

1
2
∑

d=1

|{v : deg(v) ≥ d+ 1}| d2

≤ n+
n

1
2
∑

d=1

|{v : deg(v) ≥ d}| (d2 − (d− 1)2)

≤ n+

n
1
2
∑

d=1

n

d
2d

= O
(

n
3
2

)

.

Then, the average query time is nO(ε)
(

1 + 1
n

∑

s∈V N2(s)
)

= n
1
2+O(ε). The space occupied is n multiplied by the

average query time, that is, n
3
2+O(ε), by Lemma D.1.



D.2 The Case 2 < β < 3. Let us consider the number Nℓ(s) of vertices t such that s ∈ L(t) and dist(s, t) = ℓ.
For small values of ℓ, we estimate Nℓ(s) ≤ Nℓ−1(s) deg(s), while for bigger values of ℓ, we prove that all vertices
with high degree are at distance at most ℓ − 2 from s, obtaining that Nℓ(s) ≤ f(ℓ, deg(s))Nk−1(s), for some
function f .

More formally, let s, t be two vertices with degree at least log2 n: the distance between s and t is at most

τ s

(

n
1+ε
2

)

+ τ t

(

n
1+ε
2

)

≤ (1+ ε)

(

log 1
β−2

(

log2 n
1+ε
2

log deg(s) log deg(t)

))

(our properties say that this approximation holds

for deg(s), deg(t) > nε, but it is easy to extend the results in Appendix B.2 to the case deg(s) > log2 n).

Consequently there is no vertex at distance k from s with degree bigger than max

(

log2 n, e(β−2)
k

1+ε log2 n
1+ε
2

log(deg(s))

)

.

As we said before, for k < k0 = (1 + ε)

(

log 1
β−2

(

log2 n
1+ε
2

log2 deg(s)

))

, we estimate Nk+1(s) ≤ Nk(s) deg(s),

and consequently Nk(s) ≤ deg(s)k ≤ deg(s)
(1+ε)

(

log 1
β−2

(

log2 n
1+ε
2

log2 deg(s)

))

. For bigger values of k, since Γk+1(v)

does not contain any vertex with degree bigger than max

(

log2 n, e(β−2)
k

1+ε log2 n
1+ε
2

log(deg(s)) + log2 n

)

, Nk+1(S) ≤

Nk(S)max

(

log2 n, e(β−2)
k−1
1+ε log2 n

1+ε
2

log(deg(s))

)

. As a consequence, we can prove by induction that, if k = O(log logn):

Nk(s) ≤ Nk0(s)

k
∏

i=k0

e
(β−2)

i−1
1+ε log2 n

1+ε
2

log2 deg(s) log2k n

≤ Nk0(s)n
ε

k
∏

i=k0

e(β−2)
i−k0
1+ε (β−2)

k0−1
1+ε log2 n

1+ε
2

log(deg(s))

≤ Nk0(s)n
εe
∑k

i=k0
(β−2)

i−k0
1+ε log deg(s)

≤ Nk0(s)n
ε deg(s)

1

1−(β−2)
1

1+ε .

≤ n2ε deg(s)
(2+2ε)

(

log 1
β−2

(

log n
1+ε
2

log deg(s)

))

+ 1
3−β

= f(deg(s)).

For bigger values of k, there are very few vertices at distance k from s, and their contribution is negligible.
Hence, we know that N(s) ≤ min(n, nεf(deg(s))) = g(deg(s)): we want to compute

∑

s∈V g(deg(s)).

Lemma D.2. If G is a random graph with power law degree distribution,

∑

s∈V,deg(s)>log2 n

g(d) = O



n

∫ n
1

β−1
+ε

log2 n

g(x)

xβ
dx+ n1+ε



 .



Proof. We use Abel’s summation technique twice:

∑

s∈V,deg(s)>log2 n

g(d) =

n
1+ε
β−1
∑

d=log2 n

|{s ∈ V : deg(s) = d}| g(d)

=

n
1+ε
β−1
∑

d=log2 n

(|{s ∈ V : deg(s) ≥ d}| − |{s ∈ V : deg(s) ≥ d+ 1}|) g(d)

≤
n

1+ε
β−1
∑

d=log2 n

(|{s ∈ V : deg(s) ≥ d}| − |{s ∈ V : deg(s) ≥ d+ 1}|) g(d)

≤
n

1+ε
β−1
∑

d=log2 n

n

dβ−1
(g(d) − g(d− 1)) +O(ng(log2 n))

≤ O(ng(log2 n)) +

n
1+ε
β−1
∑

d=log2 n

ng(d)

(

1

dβ−1
− 1

(d+ 1)β−1

)

≤ O(ng(log2 n)) +

n
1+ε
β−1
∑

d=log2 n

ng(d)

(

1

dβ−1
− 1

(d+ 1)β−1

)

= O






n1+ε +

n
1+ε
β−1
∑

d=log2 n

ng(d)

dβ






.

We have to transform this sum into an integral: to this purpose, we observe that g(d + ε) = O(g(d)) for each

d > log2 n− 1, and for each ε ≤ 1. Hence,
∑n

1+ε
β−1

d=log2 n
g(d)
dβ =

∫ n
1

β−1
+ε

log2 n−1
g(⌈x⌉)
⌈x⌉β dx = O

(

∫ n
1

β−1
+ε

log2 n−1
g(x)
xβ dx

)

.

It remains to estimate this integral.

n

∫ n
1

β−1

log2 n

1

xβ
min



n, x
(2+2ε) log 1

β−2

(

log n
1+ε
2

log x

)

+ 1
3−β



 dx =

(

log x

logn
= t

)

≤ n1+O(ε)

∫ 1
β−1

0

n−βt min

(

n, n
t

(

2 log 1
β−2

( 1
2t )+

1
3−β

))

nt logn dt

= n1+O(ε)

∫ 1
β−1

0

n
t

(

min

(

1,2 log 1
β−2

( 1
2t )+

1
3−β

)

−β+1

)

dt

= n
1+O(ε)+max t∈[0, 1

β−1 ]t
(

min

(

1,2 log 1
β−2

( 1
2t)+

1
3−β

)

−β+1

)

.

Then, the average query time is n
max

t∈[0, 1
β−1 ]

t

(

min

(

1,2 log 1
β−2

( 1
2t)+

1
3−β

)

−β+1

)

+O(ε)
. We are not able to find an

analytic form for this function, but the result is plotted in Figure 5. The exponent of the total space occupancy
is this function, plus one.

D.3 The Case β > 3. In this case, we prove that the algorithm does not provide a significant improvement:
indeed, the time needed for a distance query is n1−O(ε). To prove this result, it is enough to show that, for a set
of graphs that satisfy the four properties, the algorithm is not efficient on this set of graph. The set of graphs we
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Figure 5: an upper bound on the exponent in the average distance query time of the distance oracle for 2 < β < 3.

choose is the set of random graphs generated through the CM, or through IRG: for this reason, we are allowed to
use theorems that are specific of these models.

In this proof, we show that, if S is the set of vertices with degree between nα and nα+ε2 , then the number of
pairs (s, t) ∈ S2 such that s ∈ L(t) is Ω

(

|S|2
)

, and hence the average label size is big, because, by Property 2.4,

|S| = n1−α(β−1)+o(1) = n1−o(1) if α tends to 0.

More formally, by Properties 2.1 and 2.2, for each pair of vertices s, t ∈ S, dist(s, t) ≤ τ s

(

n
1
2+ε
)

+

τ t

(

n
1
2+ε
)

≤ (2+2ε)T
(

nα → n
1
2+ε
)

≤ (2+2ε) logn
1
2
+ε−α

logM1(µ)
≤ (1−2α+4ε) logn

logM1(µ)
=: DS . We want to prove that,

a.a.s., if s, t ∈ S and deg(t) < deg(s), there is a high chance that s ∈ L(t). To this purpose, we consider all vertices
v with degree bigger than deg(s), and we count the number of pairs s, t ∈ S such that dist(s, v)+ dist(v, t) ≤ DS.
Then, we sum this contribution over all vertices v: if this sum is o (|S|), it means that Ω(|S|) vertices in S have
s in their label.

More formally, we start by estimating, for each vertex v, the number of vertices s, t ∈ S such that
dist(s, v) + dist(v, t) ≤ DS .

Lemma D.3. (for a proof, see Lemma B.32) Let v be a vertex with degree ω(1). Then, the number of pairs
of vertices s, t ∈ S such that dist(s, v) + dist(v, t) ≤ DS, and dist(s, w) + dist(w, t) > DS for each w such that
deg(w) > deg(v), is at most deg(v)2|S|2n−1+O(ε).

Let us consider the ordering of all vertices s1, . . . , sn, and let us estimate:

|{(si, sj) ∈ S2 : i < j, si /∈ L(sj)}|
≤ |{(si, sj) ∈ S2 : i < j, ∃k < i, dist(si, sj) = dist(si, sk) + dist(sk, sj)}|
≤ |{(si, sj) ∈ S2 : i < j, ∃k < i, dist(si, sk) + dist(sk, sj) ≤ DS}|
≤
∑

k<i

deg(sk)
2|S|2n−1+O(ε)

≤ n1−α(β−3)+ε|S|2n−1+O(ε)

= o(|S|2).

We used the fact that
∑

k<i deg(sk)
2 ≤ n1−α(β−3)+ε: let us prove it formally, using Abel’s summation technique

and Property 2.4.



∑

k<i

deg(sk)
2 =

+∞
∑

d=nα

d2|{v : deg(v) = nα}|

=

+∞
∑

d=nα

d2|{v : deg(v) ≥ d}| −
+∞
∑

d=nα+1

(d− 1)2|{v : deg(v) ≥ d}|

≤ n2α|{v : deg(v) ≥ nα}|+
+∞
∑

d=nα

2d|{v : deg(v) ≥ d}|

≤ n2α n

nα(β−1)
+

+∞
∑

d=nα

2d
n

dβ−1
= O

(

n1−α(β−3)
)

.

We have proved that |{(si, sj) ∈ S2 : i < j, si ∈ L(sj)}| = Ω
(

|S|2
)

, and consequently the total label size is

at least Ω
(

|S|2
)

≥ n2−3α(β−1). We claim that this means that there are many labels with size bigger than

n1−4α(β−1), because no label has size bigger than n. Indeed, if ℓi is the size of label i, n2−3α(β−1) ≤ ∑n
i=1 ℓi ≤

n1−4α(β−1)|{i : ℓi ≤ n1−4α(β−1)}| + n|{i : ℓi > n1−4α(β−1)}| ≤ n2−4α(β−1) + n|{i : ℓi > n1−4α(β−1)}|, and hence
|{i : ℓi > n1−4α(β−1)}| ≥ n1−3α(β−1) − n1−4α(β−1) ≥ n1−4α(β−1).

We have proved that, for each α′ = 4α(β − 1), there are at least n1−α′

labels of size n1−α′

: consequently,

the expected time to perform a distance query is at least n2−2α′

n2 n1−α′

, because the probability that we hit two

vertices s, t whose labels are bigger than n1−α′

is at least n2−2α′

n2 . If we let α′ = O(ε), the average time for a

distance query becomes at least n1−O(ε). Similarly, the space occupied is n2−O(ε).


