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Abstract

Given an underlying graph, we consider the following
dynamics: Initially, each node locally chooses a value
in {−1, 1}, uniformly at random and independently
of other nodes. Then, in each consecutive round,
every node updates its local value to the average of
the values held by its neighbors, at the same time
applying an elementary, local clustering rule that only
depends on the current and the previous values held
by the node.

We prove that the process resulting from this dy-
namics produces a clustering that exactly or approx-
imately (depending on the graph) re�ects the under-
lying cut in logarithmic time, under various graph
models that exhibit a sparse balanced cut, including
the stochastic block model. We also prove that a nat-
ural extension of this dynamics performs community
detection on a regularized version of the stochastic
block model with multiple communities.

Rather surprisingly, our results provide rigorous
evidence for the ability of an extremely simple and
natural dynamics to address a computational prob-
lem that is non-trivial even in a centralized setting.

Keywords: Distributed Algorithms, Averaging Dy-
namics, Community Detection, Spectral Analysis,
Stochastic Block Models.
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1 Introduction

Consider the following distributed algorithm on an
undirected graph: At the outset, every node picks an
initial value, independently and uniformly at random
in {−1, 1}; then, in each synchronous round, every
node updates its value to the average of those held
by its neighbors. A node also tags itself �blue� if the
last update increased its value, �red� otherwise.

We show that under various graph models ex-
hibiting sparse balanced cuts, including the stochastic
block model [28], the process resulting from the above
simple local rule converges, in logarithmic time, to
a coloring that exactly or approximately (depending
on the model) re�ects the underlying cut. We further
show that our approach simply and naturally extends
to more communities, providing a quantitative anal-
ysis for a regularized version of the stochastic block
model with multiple communities.

Our algorithm is one of the few examples of a
dynamics [4, 3, 21, 47] that solves a computational
problem that is non-trivial in a centralized setting.
By dynamics we here mean synchronous distributed
algorithms characterized by a very simple structure,
whereby the state of a node at round t depends only
on its state and a symmetric function of the multiset
of states of its neighbors at round t − 1, while the
update rule is the same for every graph and every
node and does not change over time. Note that this
de�nition implies that the network is anonymous,
that is, nodes do not possess distinguished identities.
Examples of dynamics include update rules in which
every node updates its state to the plurality or the
median of the states of its neighbors,1 or, as is

1When states correspond to rational values.



the case in this paper, every node holds a value,
which it updates to the average of the values held
by its neighbors. In contrast, an algorithm that,
say, proceeds in two phases, using averaging during
the �rst 10 log n rounds and plurality from round
1 + 10 log n onward, with n the number of nodes,
is not a dynamics according to our de�nition, since
its update rule depends on the size of the graph.
As another example, an algorithm that starts by
having the lexicographically �rst vertex elected as
�leader� and then propagates its state to all other
nodes again does not meet our de�nition of dynamics,
since it assigns roles to the nodes and requires them
to possess distinguishable identities.

The Averaging dynamics, in which each node
updates its value to the average of its neighbors,
is perhaps one of the simplest and most interesting
examples of linear dynamics and it always converges
when G is connected and not bipartite: It converges
to the global average of the initial values if the
graph is regular and to a weighted global average
if it isn't [13, 50]. Important applications of linear
dynamics have been proposed in the recent past
[31, 5, 53, 33], for example to perform basic tasks
such as self-stabilizing consensus in faulty distributed
systems [8, 55, 48]. The convergence time of the
Averaging dynamics is the mixing time of a random
walk on G [50]. It is logarithmic in |V | if the
underlying graph is a good expander [29], while it
is slower on graphs that exhibit sparse cuts.

While previous work on applications of linear dy-
namics has focused on tasks that are speci�c to dis-
tributed computing (such as reaching consensus, or
stability in the presence of faulty nodes), in this pa-
per we show that our simple protocol based on the
the Averaging dynamics is able to address commu-
nity detection, i.e., it identi�es partition (V1, V2) of
a clustered graph G = ((V1, V2), E), either exactly
(in which case we have a strong reconstruction algo-
rithm) or approximately (in which case we speak of
a weak reconstruction algorithm).

1.1 Our contributions. Consider a graph G =
(V,E). We show that, if a partition (V1, V2) of G
exists, such that 1V1

− 1V2
is2 (or is close to) a right-

eigenvector of the second largest eigenvalue of the
transition matrix of G, and the gap between the sec-
ond and the third largest eigenvalues is su�ciently
large, our algorithm identi�es the partition (V1, V2),
or a close approximation thereof, in a logarithmic

2As explained further, 1Vi
, is the vector with |V | compo-

nents, such that the j-th component is 1 if j ∈ Vi, it is 0
otherwise.

number of rounds. Though the algorithm we propose
does not explicitly perform any eigenvector computa-
tion, its exploits the spectral structure of the under-
lying graph, based on the intuition that the dynam-
ics is a distributed simulation of the power method.
Our analysis involves two main novelties, relating to
how nodes assign themselves to clusters, and to the
spectral bounds that we prove for certain classes of
graphs.

A conceptual contribution is to make each node,
at each round t, assign itself to a cluster (��nd its
place�) by considering the di�erence between its value
at time t and its value at time t− 1. Such a criterion
removes the component of the value lying in the �rst
eigenspace without explicitly computing it. This idea
has two advantages: it allows a particularly simple
algorithm, and it gives a running time that depends
on the third eigenvalue of the transition matrix of
the graph. In graphs that have the structure of two
expanders joined by a sparse cut, the running time of
the algorithm depends only on the expansion of the
components and it is faster than the mixing time of
the overall graph. To the best of our knowledge, this
is the �rst distributed block reconstruction algorithm
converging faster than the mixing time.

Our algorithm works on any graph where (i) the
right-eigenspace of the second eigenvalue of the tran-
sition matrix is correlated to the cut between the
two clusters and (ii) the gap between the second and
third eigenvalues is su�ciently large. While these
conditions have been investigated for the spectrum
of the adjacency matrix of the graph, our analysis
requires these conditions to hold for the transition
matrix. A technical contribution of this paper is to
show that such conditions are met by a large class
of graphs, that includes graphs sampled from the
stochastic block model. Proving spectral properties
of the transition matrix of a random graph is more
challenging than proving such properties for the ad-
jacency matrix, because the entries of the transition
matrix are not independent.

Strong reconstruction for regular clustered

graphs. A (2n, d, b)-clustered regular graph G =
((V1, V2), E) is a connected graph over vertex set
V1 ∪ V2, with |V1| = |V2| = n, adjacency matrix
A, and such that every node has degree d and it
has (exactly) b neighbors outside its cluster. If
the two subgraphs induced by V1 and V2 are good
expanders and b is su�ciently small, the second and
third eigenvalues of the graph's transition matrix P =
(1/d) · A are separated by a large gap. In this case,
we can prove that the following happens with high



probability (for short w.h.p3): If the Averaging
dynamics is initialized by having every node choose
a value uniformly and independently at random in
{−1, 1}, within a logarithmic number of rounds the
system enters a regime in which nodes' values are
monotonically increasing or decreasing, depending on
the community they belong to. As a consequence,
every node can apply a simple and completely local
clustering rule in each round, which eventually results
in a strong reconstruction (Theorem 3.1).

We then show that, under mild assumptions,
a graph selected from the regular stochastic block
model [14] is a (2n, d, b)-clustered regular graph that
satis�es the above spectral gap hypothesis, w.h.p. We
thus obtain a fast and extremely simple dynamics
for strong reconstruction, over the full range of
parameters of the regular stochastic block model for
which this is known to be possible using centralized
algorithms [45, 14] (Section 1.2 and Corollary 3.1).

We further show that a natural extension of our
algorithm, in which nodes maintain an array of values
and an array of colors, correctly identi�es a hidden
balanced k-partition in a regular clustered graph with
a gap between λk and λk+1. Graphs sampled from the
regular stochastic block model with k communities
satisfy such conditions, w.h.p. (Theorem 5.1).

Weak reconstruction for non-regular clus-

tered graphs. As a main technical contribution,
we extend the above analysis to show that our dy-
namics also ensures weak reconstruction in clustered
graphs having two clusters that satisfy an approx-
imate regularity condition and a gap between sec-
ond and third eigenvalues of the transition matrix
P (Theorem 4.1). As an application, we then prove
that these conditions are met by the stochastic block
model [1, 18, 19, 22, 28, 30, 41], a random graph
model that o�ers a popular framework for the prob-
abilistic modelling of graphs that exhibit good clus-
tering or community properties. We here consider
its simplest version, i.e., the random graph G2n,p,q

consisting of 2n nodes and an edge probability distri-
bution de�ned as follows: The node set is partitioned
into two subsets V1 and V2, each of size n; edges
linking nodes belonging to the same partition ap-
pear in E independently at random with probability
p = p(n), while edges connecting nodes from di�er-
ent partitions appear with probability q = q(n) < p.
Calling a = pn and b = qn, we prove that graphs
sampled from G2n,p,q satisfy the above approximate
regularity and spectral gap conditions, w.h.p., when-

3We say that a sequence of events En, n = 1, 2, . . . holds
with high probability if P (En) = 1−O(1/nγ) for some positive
constant γ > 0.

ever a− b >
√

(a+ b) · log n (Lemma 4.2).
We remark that the latter result for the stochas-

tic block model follows from an analysis that applies
to general non-random clustered graphs and hence
does not exploit crucial properties of random graphs.
A further technical contribution of this paper is a
re�ned, ad-hoc analysis of the Averaging dynam-
ics for the G2n,p,q model, showing that this proto-
col achieves weak-reconstruction, correctly classify-
ing a 1 − ε fraction of vertices, in logarithmic time
whenever a − b > Ωε(

√

(a+ b)) and the expected
degree d = a+ b grows at least logarithmically (The-
orem 4.2). This re�ned analysis requires a deeper
understanding of the eigenvectors of the transition
matrix of G. Coja-Oghlan [18] de�ned certain graph
properties that guarantee that a near-optimal bisec-
tion can be found based on eigenvector computations
of the adjacency matrix. Similarly, we show simple
su�cient conditions under which a right eigenvector
of the second largest eigenvalue of the transition ma-
trix of a graph approximately identi�es the hidden
partition. We give a tight analysis of the spectrum
of the transition matrix of graphs sampled from the
stochastic block model in Section D.2. Notice that
the analysis of the transition matrix is somewhat
harder than that of the adjacency matrix, since the
entries are not independent of each other; we were
not able to �nd comparable results in the existing
literature.

1.2 Related work and additional remarks

Dynamics for block reconstruction. Dy-
namics received considerable attention in the recent
past across di�erent research communities, both as
e�cient distributed algorithms [4, 8, 48, 42] and
as abstract models of natural interaction mecha-
nisms inducing emergent behavior in complex sys-
tems [3, 15, 21, 24, 47]. For instance, simple aver-
aging dynamics have been considered to model opin-
ion formation mechanisms [20, 25], while a number
of other dynamics have been proposed to describe
di�erent social phenomena [23]. Label propagation
algorithms [49] are dynamics based on majority up-
dating rules [4] and have been applied to some com-
putational problems including clustering. Several pa-
pers present experimental results for such protocols
on speci�c classes of clustered graphs [6, 38, 49]. The
only available rigorous analysis of label propagation
algorithms on planted partition graphs is the one pre-
sented in [34], where the authors propose and ana-
lyze a label propagation protocol on G2n,p,q for dense
topologies. In particular, their analysis considers the
case where p = Ω(1/n1/4−ε) and q = O(p2), a param-
eter range in which very dense clusters of constant di-



ameter separated by a sparse cut occur w.h.p. In this
setting, characterized by a polynomial gap between p
and q, simple combinatorial and concentration argu-
ments show that the protocol converges in constant
expected time. They also conjecture a logarithmic
bound for sparser topologies.

Because of their relevance for the reconstruc-
tion problem, we also mention another class of algo-
rithms, belief propagation algorithms, whose simplic-
ity is close to that of dynamics. Belief propagation
algorithms are best known as message-passing algo-
rithms for performing inference in graphical models
[39]. Belief propagation cannot be considered a dy-
namics: At each round, each node sends a di�erent
message to each neighbors, thus the update rule is not
symmetric w.r.t. the neighbors, requiring thus port
numbering [52], and the required local memory grows
linearly in the degree of the node. Non-rigorous meth-
ods have given strong evidence that some belief propa-
gation algorithms are optimal for the reconstruction
problem [19]. Its rigorous analysis is a major chal-
lenge; in particular, the convergence to the correct
value of belief propagation is far from being fully-
understood on graphs which are not trees [54, 43]. As
we discuss in the next subsection, more complex algo-
rithms, inspired by belief propagation, have been rig-
orously shown to perform reconstruction optimally.

General algorithms for block reconstruc-

tion. While an important goal, improving perfor-
mance of spectral clustering algorithms and testing
their limits to the purpose of block reconstruction is
not the main driver behind this work. Still, for the
sake of completeness, we next compare our dynamics
to previous general algorithms for block reconstruc-
tion.

Several algorithms for community detection are
spectral : They typically consider the eigenvector
associated to the second eigenvalue of the adjacency
matrix A of G, or the eigenvector corresponding to
the largest eigenvalue of the matrix A − d

nJ [9, 17,
18, 41]4, since these are correlated with the hidden
partition. More recently spectral algorithms have
been proposed [2, 18, 44, 35, 12] that �nd a weak
reconstruction even in the sparse, tight regime.

Even though the above mentioned algorithms
have been presented in a centralized setting, spec-
tral algorithms turn out to be a feasible approach
also for distributed models. Indeed, Kempe and Mc-
Sherry [32] show that eigenvalue computations can
be performed in a distributed fashion, yielding dis-

4A is the adjacency matrix of G, J is the matrix having all
entries equal to 1, d is the average degree and 2n is the number
of vertices.

tributed algorithms for community detection in var-
ious models, including the stochastic block model.
However, the algorithm of Kempe and McSherry as
well as any distributed version of the above men-
tioned centralized algorithms are not dynamics. Ac-
tually, adopting the e�ective concept from Hassin
and Peleg in [27], such algorithms are even not light-
weight : Di�erent and not-simple operations are exe-
cuted at di�erent rounds, nodes have identities, mes-
sages are treated di�erently depending on the origi-
nator, and so on. Moreover, a crucial aspect is con-
vergence time: The mixing time of the simple random
walk on the graph is a bottleneck for the distributed
algorithm of Kempe and McSherry and for any algo-
rithm that performs community detection in a graph
G by employing the power method or the Lanczos
method [36] as a subroutine to compute the eigen-
vector associated to the second eigenvalue of the ad-
jacency matrix of G. Notice that the mixing time of
graphs sampled from G2n,p,q is at least of the order
of a+b

2b : hence, it can be super-logarithmic and even

nΩ(1).
In general, the reconstruction problem has been

studied extensively using a multiplicity of techniques,
which include combinatorial algorithms [22], belief
propagation [19] and variants of it [46], spectral-
based techniques [41, 18], Metropolis approaches [30],
and semide�nite programming [1], among others.
Stochastic Block Models have been studied in a
number of areas, including computer science [9, 41,
40], probability theory [45], statistical physics [19],
and social sciences [28]. Unlike the distributed
setting, where the existence of light-weight protocols
[27] is the main issue (even in non-sparse regimes), in
centralized setting strong attention has been devoted
to establishing sharp thresholds for weak and strong
reconstruction. De�ne a = np as the expected
internal degree (the number of neighbors that each
node has on the same side of the partition) and
b = nq as the expected external degree (the number
of neighbors that each node has on the opposite side
of the partition). Decelle et al. [19] conjectured
that weak reconstruction is possible if and only if
a− b > 2

√
a+ b. This was proved by Massoulie and

Mossel et al. [44, 40, 45]. Strong recovery is instead
possible if and only if a− b > 2

√
a+ b+ log n [1].

Versions of the stochastic block model in which
the random graph is regular have also been consid-
ered [45, 14]. In particular Brito et al. [14] show that
strong reconstruction is possible in polynomial-time
when a− b > 2

√
a+ b− 1.



2 Preliminaries

Distributed block reconstruction. Let G =
((V1, V2), E) be a graph with V1 ∩ V2 = ∅. A weak
(block) reconstruction is a two-coloring of the nodes
that separates V1 and V2 up to a small fraction of the
nodes. Formally, we de�ne an ε-weak reconstruction
as a map f : V1 ∪ V2 → {red, blue} such that there
are two subsets W1 ⊆ V1 and W2 ⊆ V2 with |W1 ∪
W2| > (1−ε)|V1∪V2| and f(W1)∩f(W2) = ∅. When
ε = 0 we say that f is a strong reconstruction. Given
a graph G = ((V1, V2), E), the block reconstruction
problem requires computing an ε-reconstruction of G.

In this paper, we propose the following dis-
tributed protocol. It is based on the averaging dy-
namics and produces a coloring of the nodes at the
end of every round. In the next two sections we show
that, within O(log n) rounds, the coloring computed
by the algorithm we propose achieves strong recon-
struction of the two blocks in the case of clustered
regular graphs and weak reconstruction in the case of
clustered non-regular graphs.

Averaging protocol:

Rademacher initialization: At round t = 0 every
node v ∈ V independently samples its value from
{−1,+1} uniformly at random;

Updating rule: At each subsequent round t > 1,
every node v ∈ V

1. (Averaging dynamics) Updates its value
x(t)(v) to the average of the values of its
neighbors at the end of the previous round,

2. (Coloring) If x(t)(v) > x(t−1)(v) then v
sets color(t)(v) = blue otherwise v sets
color(t)(v) = red.

The choice of the above coloring rule will be clar-
i�ed in the next section, just before Theorem 3.1. We
give here two remarks. First of all, the algorithm is
completely oblivious to time, being a dynamics in the
strictest sense. Namely, after initialization the proto-
col iterates over and over at every node. Convergence
to a (possibly weak) reconstruction is a property of
the protocol, of which nodes are not aware, it is some-
thing that eventually occurs. Second, the clustering
criterion is completely local, in the sense that a deci-
sion is individually and independently made by each
node in each round, only on the basis of its state
in the current and previous rounds. This may seem
counterintuitive at �rst, but it is only super�cially
so. Despite being local, the clustering criterion uses
information that re�ects the global structure of the

network, since nodes' values are related to the second
eigenvector of the network's transition matrix.

The Averaging dynamics and random

walks on G. The analysis of the Averaging dy-
namics on a graph G is closely related to the behavior
of random walks in G, which are best studied using
tools from linear algebra that we brie�y summarize
below.

Let G = (V,E) be an undirected graph (possibly
with multiple edges and self loops), A its adjacency
matrix and di the degree of node i. The transition
matrix of (the random walk on) G is the matrix
P = D−1A, where D is the diagonal matrix such that
Di,i = di. Pi,j = (1/di) · Ai,j is thus the probability
of going from i to j in one-step of the random walk on
G. P operates as the random walk process on G by
left multiplication, and as the Averaging dynamics
by right multiplication. For i = 1, 2, de�ne 1Vi , as the
|V |-dimensional vector, whose j-th component is 1 if
j ∈ Vi, it is 0 otherwise. If (V1, V2) is a bipartition of
the nodes with |V1| = |V2| = n, we de�ne the partition
indicator vector χ = 1V1

− 1V2
. If x is the initial

vector of values, after t rounds of the Averaging
dynamics the vector of values at time t is x(t) = P tx.
The product of the power of a matrix times a vector
is best understood in terms of the spectrum of the
matrix, which is what we explore in the next section.

In what follows we always denote by λ1 > . . . >
λ2n the eigenvalues of P . Recall that, since P is
a stochastic matrix we have λ1 = 1 and λ2n >

−1, moreover for all graphs that are connected and
not bipartite it holds that λ2 < 1 and λ2n >
−1. We denote by λ the largest, in absolute value,
among all but the �rst two eigenvalues, namely
λ = max {|λi| : i = 3, 4, . . . , 2n}. Unless otherwise
speci�ed, the norm of a vector x is the `2 norm
‖x‖ :=

√
∑

i(x(i))
2 and the norm of a matrix A is

the spectral norm ‖A‖ := sup
x:‖x‖=1 ‖Ax‖. For a

diagonal matrix, this is the largest diagonal entry in
absolute value.

3 Strong reconstruction for regular graphs

If G is d-regular then P = (1/d)A is a real symmetric
matrix and P and A have the same set of eigenvec-
tors. We denote by v1 = (1/

√
2n)1,v2, . . . ,v2n a ba-

sis of orthonormal eigenvectors, where each vi is the
eigenvector associated to eigenvalue λi. Then, we can
write a vector x as a linear combination x =

∑

i αivi

and we have:

P tx =
∑

i

λt
iαivi =

1

2n

(

∑

i

x(i)

)

1+

2n
∑

i=2

λt
iαivi,



which implies that x(t) = P tx tends to α1v1 as t
tends to in�nity, i.e., it converges to the vector that
has the average of x in every coordinate.

We next show that, if the regular graph is �well�
clustered, then the Averaging protocol produces a
strong reconstruction of the two clusters w.h.p.

Definition 1. (Clustered Regular Graph) A
(2n, d, b)-clustered regular graph G = ((V1, V2), E) is
a graph over vertex set V1 ∪ V2, with |V1| = |V2| = n
and such that: (i) Every node has degree d and (ii)
Every node in cluster V1 has b neighbors in cluster
V2 and every node in V2 has b neighbors in V1.

We know that 1 is an eigenvector of P with eigen-
value 1, and it is easy to see that the partition indi-
cator vector χ is an eigenvector of P with eigenvalue
1− 2b/d (see Observation 2 in Appendix A). We �rst
show that, if 1−2b/d happens to be the second eigen-
value, after t rounds of the Averaging dynamics,
the con�guration x(t) is close to a linear combina-
tion of 1 and χ. Formally, if λ < 1 − 2b/d we prove
(see Lemma C.1 in Appendix C) that there are reals
α1, α2 such that for every t

(3.1) x(t) = α11+ α2λ
t
2χ+ e(t),

where
∥

∥e(t)
∥

∥

∞ 6 λt
√
2n.

Informally speaking, the equation above natu-
rally �suggested� the choice of the coloring rule in
the Averaging protocol, once we considered the dif-
ference of two consecutive values of any node u, i.e.,

x(t−1)(u)− x(t)(u)

= α2λ
t−1
2 (1− λ2)χ(u) + e(t−1)(u)− e(t)(u) .(3.2)

Intuitively, if λ is su�ciently small, we can exploit
the bound on

∥

∥e(t)
∥

∥

∞ in (3.1) to show that, after a

short initial phase, the sign of x(t−1)(u) − x(t)(u) is
essentially determined by χ(u), thus by the commu-
nity u belongs to, w.h.p. The following theorem and
its proof provide formal statements of the above fact.

Theorem 3.1. (Strong reconstruction)
Let G = ((V1, V2), E) be a connected (2n, d, b)-
clustered regular graph with 1 − 2b/d > (1 + δ)λ
for an arbitrarily-small constant δ > 0. Then the
Averaging protocol produces a strong reconstruction
within O(log n) rounds, w.h.p.

Outline of Proof. From (3.2), we have that
sgn

(

x(t−1)(u)− x(t)(u)
)

= sgn (α2χ(u)) whenever

(3.3)
∣

∣α2λ
t−1
2 (1− λ2)

∣

∣ >
∣

∣

∣e
(t−1)(u)− e(t)(u)

∣

∣

∣

From (3.1) we have that
∣

∣e(t)(u)
∣

∣ 6 λt
√
2n, thus (3.3)

is satis�ed for all t such that

t− 1 > log

(

2
√
2n

|α2|(1− λ2)

)

· 1

log (λ2/λ)
.

The second key-step of the proof relies on the
randomness of the initial vector. Indeed, since x is a
vector of independent and uniformly distributed ran-
dom variables in {−1, 1}, the absolute di�erence be-
tween the two partial averages in the two commu-
nities, i.e. |α2|, is �su�ciently� large, w.h.p. More
precisely, from Lemma B.1 we have that is the sum
of 2n Rademacher random variables, we have

P

(

|R| 6 δ
√
2n
)

6 O(δ).

Since α2 = 1
2n 〈χ,x〉 and x is a vector of Rademacher

random variables, the previous inequality implies
that

|α2| =
1

2n
〈χ,x〉 > n−γ ,

for some positive constant γ, w.h.p. The theorem
thus follows from the above bound on |α2| and from
the hypothesis λ2 > (1 + δ)λ. �

Remark. Graphs to which Theorem 3.1 apply are
those consisting of two regular expanders connected
by a regular sparse cut. Indeed, let G = ((V1, V2), E)
be a (2n, d, b)-clustered regular graph, and let λA =
max {λ2(A1), λ2(A2)} and λB = λ2(B), where A1,
A2 and B are the adjacency matrices of the subgraphs
induced by V1, V2 and the cut between V1 and V2,
respectively. Since λ = a

dλA + b
dλB , if a − b >

(1 + ε)(aλA + bλB), G satis�es the hypothesis of
Theorem 3.1.

Regular stochastic block model. We can use
Theorem 3.1 to prove that the Averaging protocol
achieves strong reconstruction in the regular stochas-
tic block model. In the case of two communities, a
graph on 2n vertices is obtained as follows: Given
two parameters a(n) and b(n) (internal and exter-
nal degrees, respectively), partition vertices into two
equal-sized subsets V1 and V2 and then sample a ran-
dom a(n)-regular graph over each of V1 and V2 and a
random b(n)-regular graph between V1 and V2. This
model can be instantiated in di�erent ways depend-
ing on how one samples the random regular graphs
(for example, via the uniform distribution over regu-
lar graphs, or by taking the disjoint union of random
matchings) [45, 14].

If G is a graph sampled from the regular stochas-
tic block model with internal and external degrees
a and b respectively, then it is a (2n, d, b)-clustered
graph with largest eigenvalue of the transition ma-
trix 1 and corresponding eigenvector 1, while χ is



also an eigenvector, with eigenvalue 1 − 2b/d, where
d := a + b. Furthermore, we can derive the fol-
lowing upper bound on the maximal absolute value
achieved by the other 2n− 2 eigenvalues correspond-
ing to eigenvectors orthogonal to 1 and χ:

(3.4) λ 6
2

a+ b
(
√
a+ b− 1 + on(1))

This bound can be proved using some general result
of Friedman and Kohler [26] on random degree k lifts
of a graph. (see Lemma D.1 in Appendix D). Since
λ2 = a−b

a+b , using (3.4) in Theorem 3.1, we get a strong
reconstruction for the regular stochastic block model:

Corollary 3.1. Let G be a random graph sampled
from the regular stochastic block model with a − b >
2(1 + η)

√
a+ b for any constant η > 0, then the

Averaging protocol produces a strong reconstruction
in O(log n) rounds, w.h.p.

4 Weak reconstruction for non-regular

graphs

The results of Section 3 rely on very clear spectral
properties of regular, clustered graphs, immediately
re�ecting their underlying topological structure. In-
tuition suggests that these properties should be ap-
proximately preserved if we suitably relax the notion
of regularity. With this simple intuition in mind, we
generalize our approach for regular graphs to a large
class of non-regular clustered graphs.

Definition 2. (Clustered γ-regular graphs)
A (2n, d, b, γ)-clustered graph G = ((V1, V2), E) is a
graph over vertex set V1 ∪ V2, where |V1| = |V2| = n
such that: i) Every node has degree d ± γd, and ii)
Every node in V1 has b ± γd neighbors in V2 and
every node in V2 has b± γd neighbors in V1.

If G is not regular then matrix P = D−1A is
not symmetric in general, however it is possible to
relate its eigenvalues and eigenvectors to those of a
symmetric matrix as follows. Denote the normalized
adjacency matrix of G as N := D−1/2AD−1/2 =
D1/2PD−1/2. Notice that N is symmetric, P and
N have the same eigenvalues λ1, . . . , λ2n, and x is an
eigenvector of P if and only if D1/2x is an eigenvector
of N (if G is regular then P and N are the same
matrix). Let w1, . . . ,w2n be a basis of orthonormal
eigenvectors of N , with wi the eigenvector associated
to eigenvalue λi, for every i. We have that w1 =
D1/2

1

‖D1/21‖ . If we set vi := D−1/2wi, we obtain a set of

eigenvectors for P and we can write x =
∑

i αivi as
a linear combination of them. Then, the averaging

process can again be described as

P tx =
∑

i

λt
iαivi = α1v1 +

2n
∑

i=2

λt
iαivi.

So, if G is connected and not bipartite, the
Averaging dynamics converges to α1v1. In general,
it is easy to see that αi = wT

i D
1/2x (see the �rst lines

in the proof of Lemma 4.1) and α1v1 is the vector

(wT
1 D

1/2x) ·D−1/2w1 =
1TDx

‖D1/21‖21 =

∑

i dix(i)
∑

i di
·1 .

As in the regular case, if the transition matrix P
of a clustered γ-regular graph has λ2 close to 1 and
|λ3|, . . . , |λ2n| small, the Averaging dynamics has a
long phase in which x(t) = P tx is close to α11+α2v2.

However, providing an argument similar to the
regular case is considerably harder, since the partition
indicator vector χ is no longer an eigenvector of
P . In order to �x this issue, we generalize (3.1),
proving in Lemma 4.1 that x(t) is still close to a linear
combination of 1 and χ. We set ν = 1− 2b

d , since this
value occurs frequently in this section.

Lemma 4.1. Let G be a connected (2n, d, b, γ)-
clustered graph with γ 6 1/10, and assume the
Averaging dynamics is run on G with initial vec-
tor x. If λ < ν we have:

x(t) = α11+ α2λ
t
2χ+ α2λ

t
2z+ e(t) ,

for some vectors z and e(t) with ‖z‖ 6
88 γ
ν−λ3

√
2n

and ‖e(t)‖ 6 4λt‖x‖. Coe�cients α1 and α2 are

α1 = 1
ᵀDx

‖D
1
2 1‖2

and α2 =
w

ᵀ

2D
1
2 x

w
ᵀ

2D
1
2 χ

.

Outline of Proof. We prove the following two key-
facts: (i) the second eigenvalue of the transition
matrix of G is not much smaller than 1 − 2b/d, and
(ii) D1/2

χ is close, in norm, to its projection on
the second eigenvector of the normalized adjacency
matrix N . Namely, in Lemma C.2 we prove that if
λ3 < ν then

(4.5)
λ2 > ν − 10γ and
∥

∥D1/2
χ− β2w2

∥

∥ 6
44 γ
ν−λ3

√
2nd ,

where β2 = χ
ᵀD1/2w2. Now, we can use the above

bounds to analyze x(t) = P tx. To begin, note that
N = D−1/2AD−1/2 and P = D−1A imply that P =
D−1/2ND1/2 and P t = D−1/2N tD1/2. Thus, for any
vector x, if we write D1/2x as a linear combination
of an orthonormal basis of N , D1/2x =

∑2n
i=1 aiwi,

we get

P tx = D−1/2N tD1/2x



= D−1/2
2n
∑

i=1

aiλ
t
iwi =

2n
∑

i=1

aiλ
t
iD

−1/2wi.

We next estimate the �rst term, the second term, and
the sum of the remaining terms:

- We have w1 = D1/2
1

‖D1/21‖ , so the �rst term can be

written as α11 with

α1 =
a1

∥

∥D1/21
∥

∥

=
w

ᵀ

1D
1/2x

∥

∥D1/21
∥

∥

=
1ᵀDx

∥

∥D1/21
∥

∥

2 .

- If we write D1/2
χ = β2w2+y, with β2 = w

ᵀ

2D
1/2

χ,
(4.5) implies that ‖y‖ 6

44 γ
ν−λ3

√
2nd. Hence the

second term can be written as

a2λ
t
2D

−1/2w2 = a2λ
t
2D

−1/2

(

D1/2
χ− y

β2

)

=
a2
β2

λt
2χ− a2

β2
λt
2z = α2λ

t
2χ− α2λ

t
2z,

where

‖z‖ =
∥

∥

∥D−1/2y

∥

∥

∥ 6

∥

∥

∥D−1/2
∥

∥

∥ ‖y‖

6
2√
d
· 44 γ

ν − λ3

√
2nd =

88 γ

ν − λ3

√
2n ,

and

α2 = a2/β2 =
w

ᵀ

2D
1/2x

w2D1/2χ
.

- As for all other terms, observe that

‖e(t)‖2 =

∥

∥

∥

∥

∥

2n
∑

i=3

aiλ
t
iD

−1/2wi

∥

∥

∥

∥

∥

2

6

∥

∥

∥D−1/2
∥

∥

∥

2
∥

∥

∥

∥

∥

2n
∑

i=3

aiλ
t
iwi

∥

∥

∥

∥

∥

2

=
∥

∥

∥D−1/2
∥

∥

∥

2 2n
∑

i=3

a2iλ
2t
i

6

∥

∥

∥D−1/2
∥

∥

∥

2

λ2t
2n
∑

i=3

a2i 6

∥

∥

∥D−1/2
∥

∥

∥

2

λ2t
∥

∥

∥D1/2x

∥

∥

∥

2

6

∥

∥

∥D−1/2
∥

∥

∥

2 ∥
∥

∥D1/2
∥

∥

∥

2

λ2t‖x‖2 6 16λ2t‖x‖2.

�

The above lemma allows us to generalize our ap-
proach to achieve e�cient, weak reconstruction in
non-regular clustered graphs. The full proof of the
following theorem is given in appendix C.1.

Theorem 4.1. (Weak reconstruction) Let
G be a connected (2n, d, b, γ)-clustered graph with
γ 6 c(ν − λ3) for a suitable constant c > 0. If
λ < ν and λ2 > (1 + δ)λ for an arbitrarily-small
positive constant δ, then the Averaging protocol

produces an O(γ2/(ν − λ3)
2)-weak reconstruction

within O(log n) rounds w.h.p.5

Outline of Proof. Lemma 4.1 implies that for every
node u at any round t we have

x(t−1)(u)− x(t)(u) =

= α2λ
t−1
2 (1−λ2) (χ(u) + z(u))+e(t−1)(u)−e(t)(u)

Hence, for every node u such that |z(u)| < 1/2,6

we have sgn
(

x(t−1)(u)− x(t)(u)
)

= sgn (α2χ(u))
whenever

(4.6)

∣

∣

∣

∣

1

2
α2λ

t−1
2 (1− λ2)

∣

∣

∣

∣

>
∣

∣

∣e
(t−1)(u)− e(t)(u)

∣

∣

∣ .

From Lemma 4.1 we have
∣

∣e(t)(u)
∣

∣ 6 4λt
√
2n,

thus (4.6) is satis�ed for any t such that

t− 1 > log

(

16
√
2n

|α2|(1− λ2)

)

· 1

log (λ2/λ)
.

The right-hand side of the above formula is O(log n)
w.h.p., because of the following three points: i) λ2 >

(1 + δ)λ by hypothesis; ii) 1 − λ2 > 1/(2n4) from
Cheeger's inequality (see e.g. [16]) and the fact that
the graph is connected; iii) using similar (although
harder - see Lemma B.2) arguments as in the proof
of Theorem 3.1, we can prove that Rademacher
initialization of x w.h.p. implies |α2| > n−c for
some large enough positive constant c. Finally, from
Lemma 4.1 we have ‖z‖ 6

88 γ
ν−λ3

√
2n. Thus, the

number of nodes u with z(u) > 1/2 is O(nγ2/(ν −
λ3)

2). �

Roughly speaking, the above theorem states that the
quality of block reconstruction depends on the regu-
larity of the graph (through parameter γ) and con-
ductance within each community (here represented
by the di�erence |ν − λ3|). Interestingly enough, as
long as |ν −λ3| = Θ(1), the protocol achieves O(γ2)-
weak reconstruction on (2n, d, b, γ)-clustered graphs.

Stochastic block model. Below we prove that
the stochastic block model G2n,p,q satis�es the hy-
potheses of Theorem 4.1, w.h.p., and, thus, the
Averaging protocol e�ciently produces a good re-
construction. In what follows, we will often use the
following parameters of the model: expected internal
degree a = pn, expected external degree b = qn, and
d = a+ b.

5Consistently, Theorem 3.1 is a special case of this one when
γ = 0.

6The value 1/2 is chosen here only for readability sake, any
constant smaller than 1 will do.



Lemma 4.2. Let G ∼ G2n,p,q. If a − b >
√

(a+ b) log n then a positive constant δ ex-
ists such that the following hold w.h.p.: i) G
is (2n, d, b, 6

√

log n/d)-clustered and ii) λ 6

min
{

λ2/(1 + δ) , 24
√

(log n)/d
}

.

Outline of Proof. Claim (i) follows (with probability
1 − n−1) from an easy application of the Cherno�
bound. As for Claim (ii), since G is not regular
and random, we derive spectral properties on its
adjacency matrix A by considering a �more-tractable�
matrix, namely the expected matrix

B := E [A] =

(

pJ, qJ

qJ, pJ

)

where Bi,j is the probability that the edge (i, j) ex-
ists in a random graph G ∼ G2n,p,q. In Lemma D.2
we will prove that such a G is likely to have an adja-
cency matrix A close to B in spectral norm. Then, in
Lemma D.3 we will show that every clustered graph
whose adjacency matrix is close to B has the prop-
erties required in the analysis of the Averaging dy-
namics, thus getting Claim (ii). �

By combining Lemma 4.2 and Theorem 4.1, we
achieve weak reconstruction for the stochastic block
model.

Corollary 4.1. Let G ∼ G2n,p,q. If a − b >
25
√
d log n and b = Ω(log n/n2) then the Averaging

protocol produces an O(d log n/(a− b)2)-weak recon-
struction in O(log n) rounds w.h.p.

Outline of Proof. From Lemma 4.2 we get that w.h.p.
G is (2n, d, b, γ)-clustered with γ 6 6

√

log n/d, |λi| 6
4γ for all i = 3, . . . , 2n and λ2 > (1 + δ)λ3 for some
constant δ > 0. Given the hypotheses on a and
b, we also have that the graph is connected w.h.p.
Moreover, since dν = (a− b) > 25

√
d log n, then

γ

ν − λ3
=

dγ

dν − dλ3
6

6
√
d log n

(a− b)− 24
√
d log n

= O
(√

d log n

(a− b)

)

.

Theorem 4.1 then guarantees that the Averaging
protocol �nds an O

(

d log n/(a− b)2
)

-weak recon-
struction w.h.p. �

4.1 Tight analysis for the stochastic block

model In Lemma 4.2 we have shown that, when
(a − b) >

√

(a+ b) log n, a graph sampled according
to G2n,p,q satis�es the hypothesis of Theorem 4.1
w.h.p.: The simple Averaging protocol thus gets
weak-reconstruction in O(log n) rounds. As for the

parameters' range of G2n,p,q, we know that the above
result is still o� by a factor

√
log n from the threshold

(a − b) > 2
√

(a+ b) [44, 40, 45], the latter being a
necessary condition for any (centralized or not) non-
trivial weak reconstruction. Essentially, the reason
behind this gap is that, while Theorem 4.1 holds for
any (i.e. �worst-case�) (2n, d, b, γ)-clustered graph,
in order to apply it to G2n,p,q we need to choose
parameters a and b in a way that γd bounds the
variation of the degree of any node w.r.t. the regular
case w.h.p.

On the other hand, since the degrees in G2n,p,q are
distributed according to a sum of Bernoulli random
variables, the rare event that some degrees are much
higher than the average does not a�ect too much the
eigenvalues and eigenvectors of the graph. Indeed,
by adopting ad-hoc arguments for G2n,p,q, we prove
that the Averaging protocol actually achieves an
O(d/(a − b)2)-weak reconstruction w.h.p., provided
that (a − b)2 > c1(a + b) > 5 log n, thus matching
the weak-reconstruction threshold up to a constant
factor for graphs of logarithmic degree. The main
argument relies on the spectral properties of G2n,p,q

stated in the following lemma, whose complete proof
is given in Appendix D.

Lemma 4.3. Let G ∼ G2n,p,q. If (a−b)2 > c1(a+b) >

5 log n and6 a+b < n
1
3
−c5 for some positive constants

c1 and c5, then the following claims hold w.h.p.:

1. λ2 > 1−2b/d− c2/
√
d for some constant c2 > 0,

2. λ2 > (1+ δ)λ for some constant δ > 0 (where as
usual λ = max{|λ3|, . . . , |λ2n|}),

3. |
√
2nd(D−1/2w2)(i) − χ(i)| 6 1

100 for each i ∈
V \ S, for some subset S with |S| = O(nd/(a −
b)2).

Idea of the proof. The key-steps of the proof are two
probability-concentration results. In Lemma D.5, we
prove a tight bound on the deviation of the Laplacian
L(A) = I − N of G2n,p,q from the Laplacian of the
expected matrix L(B) = I − 1

dB. As one may expect
from previous results on the Erd®s-Rényi model and
from Le and Vershynin's recent concentration results
for inhomogeneous Erd®s-Rényi graph (see [37]), we
can prove that w.h.p. ‖L(A)−L(B)‖ = O(

√
d), even

when d = Θ(log n). To derive the latter result, we
leverage on the aforementioned Le and Vershynin's
bound on the spectral norm of inhomogeneous Erd®s-
Rényi graphs; in G2n,p,q this bound implies that if

d = Ω(log n) then w.h.p. ‖A − B‖ = O(
√
d).

Then, while Le and Vershynin replace the Laplacian
matrix with regularized versions of it, we are able to
bound ‖L(A) − L(B)‖ directly by upper bounding



it with ‖A − B‖ and an additional factor ‖B −
d−1 D1/2BD1/2‖. We then bound from above the
latter additional factor thanks to our second result:
In Lemma D.6, we prove that w.h.p.

∑

(
√
di−

√
d)2 6

2n and
∑

(di−d)2 6 2nd. We can then prove the �rst
two claims of Lemma 4.3 by bounding the distance of
the eigenvalues of N from those of d−1 B via Lemma
A.2. As for the third claim of the lemma, we prove
it by upper bounding the components of D−1/2w

orthogonal to χ. In particular, we can limit the
projection w1 of D−1/2w on 1 by using Lemma D.6.
Then, we can upper bound the projection w⊥ of
D−1/2w on the space orthogonal to both χ and 1

with Lemma D.5: We look at N as a perturbed
version of B and apply the Davis-Kahan theorem.
Finally, we conclude the proof observing that ‖w2 −
(2n)−1/2‖ 6 2(‖w1‖+ ‖w⊥‖). �

Once we have Lemma 4.3 we can prove the main
theorem on G2n,p,q with the same argument used for
Theorem 4.1 (the full proof is given in Appendix D).

Theorem 4.2. Let G ∼ G2n,p,q. If (a− b)2 > c1(a+

b) > 5 log n and7 a + b < n
1
3
−c5 for some positive

constants c1 and c5, then the Averaging protocol
produces an O(d/(a−b)2)-weak reconstruction within
O(log n) rounds w.h.p.

5 Moving beyond two communities: An

outlook

The Averaging protocol can be naturally extended
to address the case of more communities. One way
to achieve this is by performing a suitable number of
independent, parallel runs of the protocol. We next
outline the analysis for a natural generalization of the
regular block model. This allows us to easily present
the main ideas and to provide an intuition of how and
why the protocol works.

Let G = (V,E) be a d-regular graph in which V is
partitioned into k equal-size communities V1, . . . , Vk,
while every node in Vi has exactly a neighbors within
Vi and exactly b neighbors in each Vj , for j 6= i.
Note that d = a + (k − 1) · b. It is easy to see that
the transition matrix P of the random walk on G
has an eigenvalue (a − b)/d with multiplicity k − 1.
The eigenspace of (a − b)/d consists of all stepwise
vectors that are constant within each community Vi

and whose entries sum to zero. If max{|λ2n|, λk+1} <
(1−ε)·(a−b)/d, P has eigenvalues λ1 = 1, λ2 = · · · =
λk = (a − b)/d, with all other eigenvalues strictly
smaller by a (1− ε) factor.

7It should be possible to weaken the condition d < n
1
3
−c5

via some stronger concentration argument; see the proof of
Lemma D.6 in [7] for details.

Let T be a large enough threshold such that, for
all t > T , λt

2 > n2λt
k+1 and note that T is in the

order of (1/ε) log n. Let x ∈ R
V be a vector. We say

that a vertex v is of negative type with respect to x if,
for all t > T , the value (P tx)v decreases with t. We
say that a vertex v is of positive type with respect to
x if, for all t > T , the value (P tx)v increases with t.
Note that a vertex might have neither type, because
(P tx)v might not be strictly monotone in t for all
t > T .

In Appendix E we prove the following: If we
pick ` random vectors x1, . . . ,x`, each in {−1, 1}V
then, with high probability, i) every vertex is either of
positive or negative type for each xi;8 ii) furthermore,
if we associate a �signature� to each vertex, namely,
the sequence of ` types, then vertices within the
same Vi exhibit the same signature, while vertices
in di�erent Vi, Vj have di�erent signatures. These
are the basic intuitions that allow us to prove the
following theorem.

Theorem 5.1. (More communities) Let G =
(V,E) be a k-clustered d-regular graph de�ned as
above and assume that λ = max{|λ2n|, λk+1} <
(1 − ε)a−b

d , for a suitable constant ε > 0. Then, for
` = Θ(log n), the Averaging protocol with ` parallel
runs produces a strong reconstruction within O(log n)
rounds, w.h.p.
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Appendix

A Linear algebra toolkit

If M ∈ R
n×n is a real symmetric matrix, then it

has n real eigenvalues (counted with repetitions),
λ1 > λ2 > · · · > λn, and we can �nd a corresponding
collection of orthonormal real eigenvectors v1, . . . ,vn

such that Mvi = λivi. Thus, if x ∈ R
n is any

vector, then we can write it as a linear combination
x =

∑

i αivi of eigenvectors, where the coe�cients
of the linear combination are αi = 〈x,vi〉. In this
notation, we can see that

Mx =
∑

i

λiαivi, and so M tx =
∑

i

λt
iαivi.

Lemma A.1. (Cauchy-Schwarz inequality)
For any pair of vectors x and y

|〈x,y〉| 6 ‖x‖ · ‖y‖.
Observation 1. For any matrix A and any vector x

‖Ax‖ 6 ‖A‖ · ‖x‖, and ‖A ·B‖ 6 ‖A‖ · ‖B‖.
Observation 2. If G is a (2n, d, b)-clustered regular
graph with clusters V1 and V2 and χ = 1V1

−1V2
is the

partition indicator vector, then χ is an eigenvector of
the transition matrix P of G with eigenvalue 1−2b/d.

Proof. Every node i has b neighbors j on the opposite
side of the partition, for which χ(j) = −χ(i), and
d− b neighbors j on the same side, for which χ(j) =
χ(i), so

(Pχ)i =
1

d
((d− b)χ(i)− bχ(i)) =

(

1− 2b

d

)

χ(i).

Theorem A.1. (Matrix Bernstein Inequality)
Let X1, . . . , XN be a sequence of independent n × n
symmetric random matrices, such that E [Xi] = 0

for every i and such that ‖Xi‖ 6 L with probability
1 for some L. Call σ := ‖E

[
∑

i X
2
i

]

‖. Then, for
every t, we have

P

(∥

∥

∥

∥

∥

∑

i

Xi

∥

∥

∥

∥

∥

> t

)

6 2ne
−t2

2σ+2
3
Lt .



Theorem A.2. (Corollary 4.10 in [51]) Let M1 and
M2 be two Hermitian matrices, let λ1 > λ2 > · · · >
λn be the eigenvalues of M1 with multiplicities in
non-increasing order, and let λ′

1 > λ′
2 > · · · > λ′

n

be the eigenvalues of M2 with multiplicities in non-
increasing order. Then, for every i,

|λi − λ′
i| 6 ‖M1 −M2‖.

Theorem A.3. (Davis and Kahan, 1970) Let
M1 and M2 be two symmetric real matrices, let x

be a unit length eigenvector of M1 of eigenvalue t,
and let xp be the projection of x on the eigenspace of
the eigenvectors of M2 corresponding to eigenvalues
6 t− δ. Then

‖xp‖ 6
2

δπ
‖M1 −M2‖.

B Length of the projection of x

For the analysis of the Averaging dynamics on both
regular and non-regular graphs, it is important to
understand the distribution of the projection of x on
1 and χ, that is (up to scaling) the distribution of
the inner products 〈x,1〉 and 〈x,χ〉. In particular we
are going to use the following bound.

Lemma B.1. If we pick x uniformly at random in
{−1, 1}2n then, for any δ > 0 and any �xed vector
w ∈ {−1, 1}2n with ±1 entries, it holds

P

(

∣

∣〈(1/
√
2n)w, x〉

∣

∣ 6 δ
)

6 O(δ).

Proof. Since x is a vector of independent and uni-
formly distributed random variables in {−1, 1}, both
〈x,χ〉 and 〈x,1〉 have the distribution of a sum
of 2n Rademacher random variables. Such a sum
takes the value 2k − 2n with probability 1

2n

(

2n
k

)

,
and so every possible value has probability at
most 1

2n

(

2n
n

)

≈ 1√
2πn

. Consequently, if R is the

sum of 2n Rademacher random variables, we have
P
(

|R| 6 δ
√
2n
)

6 O(δ).

Although it is possible to argue that a Rademacher
vector has Ω(1) probability of having inner product
Ω(‖w‖) with every vector w, such a statement does
not hold w.h.p. We do have, however, estimates of the
inner product of a vectorw with a Rademacher vector
x provided that w is close to a vector in {−1, 1}2n.

Lemma B.2. Let k be a positive integer. For
every nk-dimensional vector w such that
| {i | |w(i)| > c} | > n for some positive constant c, if
we pick x uniformly at random in {−1, 1}kn, then

P

(

∣

∣〈(1/
√
kn)w, x〉

∣

∣ 6 δ
)

6 O(kδ) +O
(

1√
n

)

.

Proof. Let S ⊂ {1, . . . , kn} be the set of coordinates
i of w such that |w(i)| > c. By hypothesis, we have
|S| > n. Let T := {1, . . . , kn} − S. Now, for every
assignment a ∈ {−1, 1}kn, we will show that

P

(

|〈w,x〉| 6 δ
√
kn | ∀i ∈ T, x(i) = a(i)

)

6 O(δ),

and then the lemma will follow. Call t :=
∑

i∈T aizi.
We need to show

P

(

|
∑

i∈S

x(i)w(i) + t| 6 δ
√
kn

)

6 O(δ).

From the Berry-Esseen theorem,

P

(

|
∑

i∈S

x(i)w(i) + t| 6 δ
√
kn

)

6

6 P

(

|g + t| 6 δ
√
kn
)

+O
(

1√
n

)

,

where g is a Gaussian random variable of mean 0 and
variance σ2 =

∑

i∈S(w(i))2 > c2|S| > c2 n, so

P

(

|g + t| 6 δ
√
kn
)

=
1√
2σ2π

∫ −t+δ
√
kn

−t−δ
√
kn

e−
s2

2σ2 ds

6
2δ
√
kn√

2πc2 n
=

√
2kδ√
πc

,

where we used the fact that e−s2/2 6 1 for all s.

C Clustered Graphs

Lemma C.1. Assume we run the Averaging dy-
namics in a (2n, d, b)-clustered regular graph G (see
De�nition 1) with any initial vector x ∈ {−1, 1}2n.
If λ < 1 − 2b/d then there are reals α1, α2 such that
at every round t we have

x(t) = α11+α2λ
t
2χ+e(t) where

∥

∥

∥e
(t)
∥

∥

∥

∞
6 λt

√
2n .

Proof. Since x(t) = P tx we can write

P tx =
∑

i

λt
i〈x,vi〉vi,

where 1 = λ1 > λ2 = 1 − 2b/d > λ3 > · · · > λ2n are
the eigenvalues of P and v1 = 1√

2n
1, v2 = 1√

2n
χ, v3,

. . . , v2n are a corresponding sequence of orthonormal
eigenvectors. Hence,

x(t) =
1

2n
〈x,1〉 · 1+ λt

2

1

2n
〈x,χ〉 · χ+

2n
∑

i=3

λt
iαivi

= α11+ α2λ
t
2 · χ+

2n
∑

i=3

λt
iαivi,



where we set α1 = 1
2n 〈1,x〉 and α2 = 1

2n 〈χ,x〉. We
bound the `∞ norm of the last term as

∥

∥

∥

∥

∥

2n
∑

i=3

λt
iαivi

∥

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

∥

2n
∑

i=3

λt
iαivi

∥

∥

∥

∥

∥

2

=

√

√

√

√

2n
∑

i=3

λ2t
i α2

i

6 λt

√

√

√

√

2n
∑

i=1

α2
i = λt‖x‖ = λt

√
2n.

Lemma C.2. Let G be a connected (2n, d, b, γ)-
clustered graph (see De�nition 2) with γ 6 1/10. If
λ3 < ν then

λ2 > ν − 10γ and
∥

∥D1/2
χ− β2w2

∥

∥ 6
44 γ
ν−λ3

√
2nd,

where β2 = χ
ᵀD1/2w2.

Proof. For every node v, let us name av and bv the
numbers of neighbors of v in its own cluster and
in the other cluster, respectively, and dv = av + bv
its degree. Since from the de�nition of (2n, d, b, γ)-
clustered graph it holds that (1−γ)d 6 dv 6 (1+γ)d
and b− γd 6 bv 6 b+ γd, it is easy to check that

|av − bv − νdv| 6 4d γ

for any node v. Hence,

‖Aχ− νDχ‖2

=
∑

v∈[2n]





∑

w∈Neigh(v)
χ(w)− νdvχ(v)





2

=
∑

v∈[2n]

(avχ(v)− bvχ(v)− νdvχ(v))
2

=
∑

v∈[2n]

(av − bv − νdv)
2
6 32nd2γ2.

Thus,

(C.1)
∥

∥

∥ND1/2
χ− νD1/2

χ

∥

∥

∥ =

=
∥

∥

∥D−1/2Aχ− νD1/2
χ

∥

∥

∥

=
∥

∥

∥D−1/2 (Aχ− νDχ)
∥

∥

∥

6

∥

∥

∥D−1/2
∥

∥

∥ · ‖Aχ− νDχ‖

6
2√
d
·
√
2n4d γ = 8

√
2nd γ.

Observe that w1 is parallel to D1/21 and we have
that

(C.2) |1ᵀDχ| =

∣

∣

∣

∣

∣

∣

∑

v∈[2n]

χ(v)dv

∣

∣

∣

∣

∣

∣

6 (1 + γ)dn− (1− γ)dn = 2nd γ.

Hence, if we name y the component of D1/2
χ orthog-

onal to the �rst eigenvector, we can write it as

(C.3) D1/2
χ =

1ᵀDχ

‖D1/21‖2D
1/21+ y.

Thus,

(C.4) ‖Ny − νy‖ =

=

∥

∥

∥

∥

N

(

D1/2
χ− 1ᵀDχ

‖D1/21‖2D
1/21

)

−

−ν

(

D1/2
χ− 1ᵀDχ

‖D1/21‖2D
1/21

)∥

∥

∥

∥

6

6

∥

∥

∥
ND1/2

χ− νD1/2
χ

∥

∥

∥
+

+
|1ᵀDχ|
‖D1/21‖2

∥

∥

∥ND1/21− νD1/21

∥

∥

∥ =

=
∥

∥

∥ND1/2
χ− νD1/2

χ

∥

∥

∥+
|1ᵀDχ|
‖D1/21‖

2b

d
6

6 8
√
2nd γ + 4

√
2nd γ,

where in the last inequality we used (C.1) and (C.2)
and the facts that b 6 d/2 and

∥

∥D1/21
∥

∥ >

(1/2)
√
2nd. From (C.3) it follows that

(C.5) ‖y‖ >

∥

∥

∥D1/2
χ

∥

∥

∥− 1ᵀDχ
∥

∥D1/21
∥

∥

> (1− γ)
√
2nd− 4γ

√
2nd

= (1− 5γ)
√
2nd > (1/2)

√
2nd.

Now, let us we write y as a linear combination of
the orthonormal eigenvectors of N , y = β2w2+ · · ·+
βnwn (recall that yᵀw1 = 0 by de�nition of y in
(C.3)). From (C.4) and (C.5), it follows that

(C.6) 100γ2‖y‖2 > ‖Ny − νy‖2

=

∥

∥

∥

∥

∥

n
∑

i=2

(λi − ν)βiwi

∥

∥

∥

∥

∥

2

=

n
∑

i=2

(λi − ν)2β2
i .

Moreover, from hypothesis λ3 < ν we have that

(C.7)

n
∑

i=2

(λi − ν)2β2
i >

n
∑

i=3

(λi − ν)2β2
i

> (λ3 − ν)2
n
∑

i=3

β2
i = (λ3 − ν)2‖y − β2w2‖2.



Thus, by combining together (C.6) and (C.7) we get

‖y − β2w2‖ 6
10 γ

ν − λ3
‖y‖

where β2 = yᵀw2 =
(

D1/2
χ
)ᵀ

w2.
As for the �rst thesis of the lemma, observe that if
λ2 > ν then the �rst thesis is obvious. Otherwise, if
λ2 < ν, then (λ2− ν)2 6 (λ3− ν)2 6 · · · 6 (λn− ν)2.
Thus, the �rst thesis follows from (C.6) and the fact
that

n
∑

i=2

(λi − ν)2β2
i > (λ2 − ν)2

n
∑

i=2

β2
i = (λ2 − ν)2‖y‖2.

As for the second thesis of the lemma, we have

∥

∥

∥D1/2
χ− β2w2

∥

∥

∥ =

∥

∥

∥

∥

1ᵀDχ

‖D1/21‖2D
1/21+ y − β2w2

∥

∥

∥

∥

6
|1ᵀDχ|
‖D1/21‖ + ‖y − β2w2‖ 6 4 γ

√
2nd +

10 γ

ν − λ3
‖y‖

(a)

6 4 γ
√
2nd +

20 γ

ν − λ3

√
2nd 6

44 γ

ν − λ3

√
2nd,

where in (a) we used that y is the projection of D
1
2χ

on D
1
21, and thus ‖y‖ 6 ‖D 1

2χ‖ 6 2
√
2nd.

C.1 Proof of Theorem 4.3 From Lemma 4.1 it
follows that for every node u at any round t we have

x(t−1)(u)− x(t)(u) =

= α2λ
t−1
2 (1−λ2) (χ(u) + z(u))+e(t−1)(u)−e(t)(u) .

Hence, for every node u such that |z(u)| < 1/2
(we choose 1/2 here for readability sake, however
any other constant smaller than 1 works as well) it
holds that sgn

(

x(t−1)(u)− x(t)(u)
)

= sgn (α2χ(u))
whenever

(C.8)

∣

∣

∣

∣

1

2
α2λ

t−1
2 (1− λ2)

∣

∣

∣

∣

>
∣

∣

∣e
(t−1)(u)− e(t)(u)

∣

∣

∣ .

From Lemma 4.1 we have that
∣

∣e(t)(u)
∣

∣ 6 4λt
√
2n,

thus (C.8) is satis�ed for all

(C.9) t− 1 >

log
(

16
√
2n

|α2|(1−λ2)

)

log (λ2/λ)
.

The right-hand side in the above formula is O(log n)
w.h.p., because of the following three points:

• From Cheeger's inequality (see e.g. [16]) and the
fact that the graph is connected it follows that
1− λ2 > 1/(2n4);

• λ2 > (1 + δ)λ by hypothesis;

• It holds |α2| > n−c for some large enough
positive constant c w.h.p., as a consequence of
the following equations that we prove below:

P

(

|α2| 6
1

nc

)

= P





∣

∣

∣
w

ᵀ

2D
1
2x

∣

∣

∣

∣

∣

∣w
ᵀ

2D
1
2χ

∣

∣

∣

6
1

nc





6 P

(

∣

∣

∣
w

ᵀ

2D
1/2x

∣

∣

∣
6

2
√
d

nc−1/2

)

6 O
(

1√
n

)

.(C.10)

In the �rst equality of (C.10) we used that, by

de�nition, |α2| = |wᵀ

2D
1
2x|/|wᵀ

2D
1
2χ|. In the

�rst inequality we used that, by the Cauchy-
Schwarz inequality, |wᵀ

2D
1
2χ| 6 ‖D 1

2χ‖ 6

2
√
dn. In order to prove the last inequality of

(C.10), we use that from Lemma C.2 it holds

∥

∥

∥D1/2
χ− β2w2

∥

∥

∥

2

=

=
∥

∥

∥D1/2
χ

∥

∥

∥

2

+ ‖β2w2‖2 − 2〈D1/2
χ, β2w2〉 6

6 2
442 γ2

(ν − λ3)2
nd,

that is

(C.11) 〈D1/2
χ, β2w2〉 = 〈D1/2

χ,w2〉2

>
1

2

(

∥

∥

∥
D1/2

χ

∥

∥

∥

2

− 2
442 γ2

(ν − λ3)2
nd

)

>
nd

3
.

Since w2 is normalized the absolute value of its
entries is at most 1, which toghether with (C.11)
implies that at least a fraction 12/13 of its entries
have an absolute value greater than 1/12. Thus,
we can apply Lemma B.2 and prove the last
inequality of (C.10) and, consequently, the fact
that (C.9) is O(log n).

Finally, from Lemma 4.1 we have

‖z‖ 6
88 γ

ν − λ3

√
2n .

Thus the number of nodes u with z(u) > 1/2 is
O(nγ2/(ν − λ3)

2).

D Stochastic Block Models

D.1 Regular stochastic block model

Lemma D.1. Let G be a graph sampled from the reg-
ular stochastic block model with internal and external
degrees a and b respectively. W.h.p., it holds that

λ 6
2

a+ b
(
√
a+ b− 1 + on(1))



Proof. The lemma follows from the general results
of Friedman and Kohler [26], recently simpli�ed by
Bordenave [11]. If G is a multigraph on n vertices,
then a random degree k lift of G is a distribution over
graphs G′ on kn vertices sampled as follows: every
vertex v of G is replaced by k vertices v1, . . . , vk in
G′, every edge (u, v) in G is replaced by a random
bipartite matching between u1, . . . , uk and v1, . . . , vk
(if there are multiple edges, each edge is replaced
by an independently sampled matching) and every
self loop over u is replaced by a random degree-2
graph over u1, . . . , uk which is sampled by taking a
random permutation π : {1, . . . , k} → {1, . . . , k} and
connecting ui to uπ(i) for every i.

For every lift of any d-regular graph, the lifted
graph is still d-regular, and every eigenvalue of the
adjacency matrix of the base graph is still an eigen-
value of the lifted graph. Friedman and Kohler [26]
prove that, if d > 3, then with probability 1−O(1/k)
over the choice of a random lift of degree k, the new
eigenvalues of the adjacency matrix of the lifted graph
are at most 2

√
d− 1 + ok(1) in absolute value. Bor-

denave [11, Corollary 20] has considerably simpli�ed
the proof of Friedman and Kohler; although he does
not explicitly state the probability of the above event,
his argument also bound the failure probability by
1/kΩ(1) [10].

The lemma now follows by observing that the
regular stochastic block model is a random lift of
degree n of the graph that has only two vertices v1
and v2, it has b parallel edges between v1 and v2, and
it has a/2 self-loops on v1 and a/2 self-loops on v2.

D.2 Proof of Lemma 4.2

Lemma D.2. Let A be the adjacency matrix of G.
If a(n), b(n) are such that d := a + b > log n, then
w.h.p. (over the choice of G ∼ G2n, an , b

n
) it holds

‖A−B‖ 6 O(
√
d log n).

Proof. We can write A − B as
∑

{i,j} X
{i,j}, where

the matrix X{i,j} is zero in all coordinates except
(i, j) and (j, i), and, in those coordinates, it is equal
to A − B. Then we see that the matrices X{i,j} are
independent, that E

[

X{i,j}] = 0, that ‖X{i,j}‖ 6 1,
because every row contains at most one non-zero
element, and that element is at most 1 in absolute
value, and that E[

∑

{i,j}(X
{i,j})2] is the matrix that

is zero everywhere except for the diagonal entries (i, i)
and (j, j), in which we have Bi,i−B2

i,i and Bj,j−B2
j,j

respectively. It follows that

‖E[
∑

{i,j}
(X{i,j})2]‖ 6 d.

Putting these facts together, and applying the Ma-
trix Bernstein Inequality (see Theorem A.1 in Ap-
pendix A) with t =

√
6d log n, we have

P

(

‖A−B‖ >
√

9d log n
)

6 2ne
− 9d log n

2d+2
3

√
9d log n

6 2ne−
9d log n

4d 6 2n−1,

where we used d > log n.

Lemma D.3. Let G be a (2n, d, b, γ)-clustered graph
such that ν = 1− 2b

d > 12γ and such that its adjacency
matrix A satis�es ‖A − B‖ 6 γd. Then for every
i ∈ {3, . . . , 2n}, |λi| 6 4γ and λ2 > (1 + δ)λ3 for
some constant δ > 0.

Proof. The matrix B has a very simple spectral struc-
ture: 1 is an eigenvector of eigenvalue d, χ is an eigen-
vector of eigenvalue a− b, and all vectors orthogonal
to 1 and to χ are eigenvectors of eigenvalue 0. In
order to understand the eigenvalues and eigenvectors
of N , and hence the eigenvalues and eigenvectors of
P , we �rst prove that A approximates B and that N
approximates (1/d)A, namely ‖dN −A‖ 6 3γd.

To show that dN approximates A we need to
show that D approximates dI. The condition on the
degrees immediately gives us ‖D − dI‖ 6 γd. Since
every vertex has degree di in the range d ± γd, then
the square root

√
di of each vertex must be in the

range [
√
d − γ

√
d,
√
d + γ

√
d], so we also have the

spectral bound:

(D.12) ‖D1/2 −
√
dI‖ 6 γ

√
d.

We know that ‖D‖ 6 d+γd < 2d and that ‖N‖ = 1,
so from (D.12) we get

‖A− dN‖ = ‖D1/2ND1/2 − dN‖

6 ‖D1/2ND1/2 −
√
dND1/2‖+ ‖

√
dND1/2 − dN‖

= ‖(D1/2 −
√
dI) ·ND1/2‖+ ‖

√
dN · (D1/2 −

√
dI)‖

6 ‖D1/2 −
√
dI‖ · ‖N‖ · ‖D1/2‖

+
√
d · ‖N‖ · ‖D1/2 −

√
dI‖ 6 3γd.

(D.13)

By using the triangle inequality and (D.13) we get

‖N − (1/d)B‖
6 ‖N − (1/d)A‖+ (1/d) · ‖A−B‖ 6 4γ.(D.14)

Finally, we use Theorem A.2 (See Appendix A),
which is a standard fact in matrix approximation



theory: if two real symmetric matrices are close in
spectral norm then their eigenvalues are close. From
(D.14) and the fact that all eigenvalues of (1/d)B
except for the �rst and second one are 0, for each
i ∈ {3, . . . , 2n} we have

(D.15) |λi| = |λi − 0| 6 ‖N − 1

d
B‖ 6 4γ.

Similarly, from the fact that the second eigenvalue of
(1/d)B is 1− 2b/d we get

|λ2 − (1− 2b/d)| 6 ‖N − 1

d
B‖ 6 4γ,

that is, from hypothesis ν > 12γ and (D.15), λ2 >

(1 + δ)λ3 for some constant δ > 0. This concludes
the proofs of Lemma D.3 and Theorem 4.2.

D.3 Proof of Lemma 4.3 Let G be a randomly-
generated graph according to G2n,p,q with a = pn,
b = qn and d = a + b. Recall the de�nitions of
A, D, N , P , λi and wi (i ∈ {1, . . . , 2n}) in Section
2, and let B be de�ned as in Section D.2. Let us
denote with Ai (i ∈ {1, 2}) the adjacency matrix of
the subgraph of G induced by community Vi, with
AB = {Au,v−n}u∈V1,v∈V2

the matrix whose entry

(i, j) is 1 i� there is an edge between the i-th node of
V1 and the j-th node of V2, then

A =

(

A1 AB

Aᵀ

B A2

)

.

We need the following technical lemmas.

Lemma D.4. If d > 5 log n then for some positive
constant c3 it holds ‖A−B‖ 6 c3

√
d w.h.p.

Proof. The lemma directly follows from Theorem 2.1
in [37] with d′ = 2d and the observation that, from
the Cherno� bounds, all degrees are smaller than 2d
w.h.p.

Lemma D.5. If d > 5 log n then for some constant
c4 > 0 it holds w.h.p.

‖dN −B‖ 6 c4
√
d.

The idea for proving Lemma D.5 is to use the triangle
inequality to upper bound ‖dN − B‖ in terms of
‖A−B‖, which we can bound with Lemma D.4, and
‖B − 1/dD1/2BD1/2‖, which we can upper bound
by bounding ‖

√
d1 − D1/21‖ and ‖

√
dχ − D1/2

χ‖
where 1 and χ are the eigenvector corresponding to
the only two non-zero eigenvalues of B. The complete
proof of Lemma D.5 is deferred to Section D.4. As
for the required bound on ‖

√
d1−D1/21‖2 = ‖

√
dχ−

D1/2
χ‖2 =

∑

j∈V |
√
d −

√

dj |2, we provide it in the
following lemma, whose proof is given in the full
version [7].

Lemma D.6. If 5 log n < d < n
1
3
−c5 for any constant

c5 > 0, it holds w.h.p.

∑

j∈V

|
√
d−

√

dj |2 6 2n and

∑

j∈V

|d− dj |2 6 2dn.

By combining Lemma D.5 and Theorem A.2 we have
|λi − λ′

i| 6 ‖N − d−1B‖ = O(1/
√
d), where λ′

1 = 1,
λ′
2 = 1− 2b/d and λ′

i = 0 for i ∈ {3, . . . , 2n} are the
eigenvalues of d−1B. This proves the �rst two part
of Lemma 4.3.

As for the third part, let us write w2 = w1 +
wχ +w⊥ where w1 and wχ are the projection of w2

on 1 and χ respectively, and w⊥ is the projection of
w2 on the space orthogonal to 1 and χ.

Observe that the only non-zero eigenvalues of
(1/d)B are 1 and (a− b)/d. Thus, from Lemma D.5
and the Davis-Kahan theorem (Theorem A.3) with
M1 = N , M2 = 1

dB, t = λ2, x = w2 and δ = λ2/2,
we get

‖w⊥‖ 6
4

λ2π

∥

∥

∥N − 1

d
B
∥

∥

∥

6 O
(

1√
dλ2

)

= O
( √

d

a− b

)

.(D.16)

As for w1, we know that 〈w2, D
−1/21〉 = 0, thus

‖w1‖ =
1√
2n

〈w2,1− d−
1
2D

1
21〉

6
1√
2n

‖w2‖‖1− d−
1
2D

1
21‖ 6

1√
d
,(D.17)

where in the last inequality we used Lemma D.6.
By the law of cosines and the fact that

√
1− x >

1− x for x ∈ [0, 1] we have that

∥

∥

∥
w2 −

1√
2n

χ

∥

∥

∥

2

= ‖w2‖2 +
∥

∥

∥

1√
2n

χ

∥

∥

∥

2

− 2〈w2,
1√
2n

χ〉

= 2− 2‖wχ‖
= 2− 2

√

1− ‖w1‖2 − ‖w⊥‖2

6 2
(

‖w1‖2 + ‖w⊥‖2
)

= O
(

d

(a− b)2

)

,(D.18)

where in the last inequality we used (D.16) and
(D.17). (D.18) implies that, with the exception of
a set S of at most O(nd/(a− b)2) nodes, we have

(D.19)
∣

∣

∣

√
2nw2(i)− χ(i)

∣

∣

∣
6

1

201
,



for each i ∈ V/S. From the Cherno� bound, we also
have that w.h.p.

√

d/di = 1 ± 1/201. Thus, (D.19)
and the last fact imply that for each i ∈ V/S it holds
w.h.p.

∣

∣

∣

√
2ndD− 1

2w2(i)− χ(i)
∣

∣

∣ 6
1

100
,

concluding the proof. �

Remark 1. After looking at Lemma 4.3, one may
wonder whether it could be enough to generalize
De�nition 2 to include �quasi-(2n, d, b, γ)-clustered
graph�, i.e. graphs that are (2n, d, b, γ)-clustered
except for a small number of nodes which may have
a much higher degree. In fact, this would be rather
surprising: This higher-degree nodes may connect to
the other nodes in such a way that would greatly
perturb the eigenvalues and eigenvectors of the graph.
In G2n,p,q, besides the fact that the nodes with degree
much larger than d are few, it is also crucial that
they are connected in a non-adversarial way, i.e.
randomly.

D.4 Proof of Lemma D.5 A simple application
of the Cherno� bound and the union bound shows
that w.h.p.

(D.20)
√
d‖D−1/2‖ 6 1 +O

(
√

log n

d

)

,

hence

‖dN −B‖

= ‖(
√
dD−1/2)A(

√
dD−1/2)−B‖

6 ‖
√
dD−1/2‖

∥

∥

∥

∥

A− 1√
d
D1/2B

1√
d
D1/2

∥

∥

∥

∥

‖
√
dD−1/2‖

6

∥

∥

∥

∥

A− 1

d
D1/2BD1/2

∥

∥

∥

∥

‖
√
dD−1/2‖2

6
(

‖A−B‖+
∥

∥B − 1

d
D1/2BD1/2

∥

∥

)(

1 +O
(

√

log n

d

)

)

.

(D.21)

Thanks to Lemma D.4, it holds ‖A − B‖ = O(
√
d).

Hence, in order to conclude the proof, it remains to
show that ‖B − d−1D1/2BD1/2‖ = O(

√
d). We do

that by observing that
∥

∥

∥

∥

B − 1

d
D1/2BD1/2

∥

∥

∥

∥

6

∥

∥

∥

∥

B − 1√
d
BD1/2

∥

∥

∥

∥

+

∥

∥

∥

∥

1√
d
BD1/2 − 1

d
D1/2BD1/2

∥

∥

∥

∥

,(D.22)

and by upper-bounding the two terms on the right
hand side. The two only non-zero eigenvalues of B
are a+ b and a− b, with corresponding eigenvectors
(2n)−1/2 1 and (2n)−1/2

χ, therefore we can write
B = d/(2n)11ᵀ + (a − b)/(2n)χχᵀ, which implies
that

B − 1√
d
BD1/2 =

√
d

2n
1 (

√
d1−D1/2 1)ᵀ

+
a− b√
d 2n

χ (
√
dχ−D1/2

χ)ᵀ.

It follows that, for an arbitrary unitary vector x it
holds

∥

∥

∥

∥

(

B − 1√
d
BD1/2

)

x

∥

∥

∥

∥

6

∥

∥

∥

∥

∥

√
d

2n
1 (

√
d1−D1/2 1)ᵀx

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

a− b√
d 2n

χ (
√
dχ−D1/2

χ)ᵀx

∥

∥

∥

∥

=

√
d

2n
‖1‖ |(

√
d1−D1/2 1)ᵀx|

+
a− b√
d 2n

‖χ‖ |(
√
dχ−D1/2

χ)ᵀx|

6

√
d√
2n

∥

∥

∥

√
d1−D1/2 1

∥

∥

∥ · ‖x‖

+
a− b√
2dn

∥

∥

∥

√
dχ−D1/2

χ

∥

∥

∥ · ‖x‖ 6 2
√
d,(D.23)

where we used the triangle inequality, the fact that
‖1‖ = ‖χ‖ =

√
2n, the Cauchy-Schwartz inequality,

Lemma D.6 and a− b < d. As for the other term on
the r.h.s. of (D.22), we have that w.h.p.

∥

∥

∥

∥

1√
d
BD1/2 − 1

d
D1/2BD1/2

∥

∥

∥

∥

6

∥

∥

∥

∥

B − 1√
d
D1/2B

∥

∥

∥

∥

1√
d
‖D1/2‖

6 2
√
d

(

1 +O
(
√

log n

d

))

,(D.24)

where in the last inequality we used (D.20) and that
for any matrix M it holds ‖M‖ = ‖Mᵀ‖. Finally,
(D.23) and (D.24) togheter implies the desired upper
bound on (D.22) and thus (D.21), concluding the
proof. �



D.5 Proof of Theorem 4.2 For any vector x, we
can write

x(t) = P tx =

2n
∑

i=1

aiλ
t
iD

−1/2wi = α11+ a2λ
t
2D

−1/2w2 + e(t),

where α1 = 1ᵀDx/‖D1/21‖ and ‖e(t)‖ 6 4λt‖x‖.
From Lemma 4.3 (Claim 3) we have that for at

least 2n − O(nd/(a − b)2) entries i of D−1/2w2, we
get |

√
2nd(D−1/2w2)(i)− χ(i)| 6 1

100 , that is

(D−1/2w2)(i) >
99

100
√
2nd

if i ∈ V1 ∩ S and

(D−1/2w2)(i) 6 − 99

100
√
2nd

if i ∈ V2 ∩ S.

Thus, we get
∣

∣

∣x
(t) − x(t−1)

∣

∣

∣

=
∣

∣

∣a2λ
t−1
2 (λ2 − 1)D−1/2w2 + e(t) + e(t−1)

∣

∣

∣

6

∣

∣

∣a2λ
t−1
2 (λ2 − 1)D−1/2w2

∣

∣

∣+
∣

∣

∣e
(t) − e(t−1)

∣

∣

∣(D.25)

and, when t − 1 > log
(

16
√
2n

|a2|(1−λ2)

)

/ log
(

λ2

λ

)

, from

(D.25) it follows that

(x(t) − x(t−1))(i) >
99

200
√
2nd

a2λ
t−1
2 (λ2 − 1)

if i ∈ Vj ∩ S and

(x(t) − x(t−1))(i) 6 − 99

200
√
2nd

a2λ
t−1
2 (λ2 − 1)

if i ∈ V3−j ∩ S.

either for j = 1 or for j = 2. Since |S| > n −
O(nd/(a − b)2), we thus get a O(d/(a − b)2)-weak
reconstruction. �

E More communities

Recall the de�nition of negative and positive type in
Section 5. In this section we prove Theorem 5.1. The
proof is divided in the following two lemmas.

Lemma E.1. Pick x ∼ {−1, 1}kn u.a.r. Then, with
high probability, the vertices of V1 are either all of
positive type or all of negative type. Furthermore, the
two events have equal probability.

Proof. We will write

x = x1 + xV1
+ x⊥1

+ x⊥,

where x1 is the component of x parallel to 1, xV1
is

the component parallel to the vector 1V1
− k−11V ,

x⊥1
is the component in the eigenspace of λ2 and

orthogonal to 1V1
−k−11V , and x⊥ is the component

orthogonal to 1 and to the eigenspace of λ2.
For the above the make sense, 1V1

− k−11V

must be an eigenvector of λ2, which is easily veri�ed
because its entries sum to zero and they are constant
within components.

An important observation, and the reason for
picking the above decomposition, is that x⊥1

is zero
in V1. The reason is that x⊥1

has to be orthogonal
to 1V and to 1V1

− k−11V so from

〈x⊥1
,1V 〉 = 〈x⊥1

,1V1
− k−11V 〉 = 0,

we deduce
〈x⊥1

,1V1
〉 = 0.

Thus, the entries of x⊥1
sum to zero within V1, but,

being in the eigenspace of λ2, the entries of x⊥1
are

constant within components, and so they must be all
zero within V1.

Now we have

P tx = x1 + λt
2xV1

+ λt
2x⊥1

+ P tx⊥,

and so, for each v ∈ V1 it holds

(P t+1x)v − (P tx)v

= λt
2 · (1− λ2)(xV1

)v + ((P t+1 − P t)x⊥)v.(E.26)

For t > T , the hypothesis λ < (1− ε)λ2 implies that

|(P tx⊥)v| 6 ||P tx⊥||∞

6 ||P tx⊥|| 6 λt||x⊥|| 6
√
n · λt

6
1

n1.5
λt
2.(E.27)

Moreover, for each v ∈ V1 we have

|(xV1
)v| =

〈x,1V1
− k−11V 〉

‖1V1
− k−11V ‖2

(

1− k−1
)

=
k

(k − 1)n

(

∑

i∈V1

xi −
∑

i∈V

xi

k

)

(

k − 1

k

)

=
1

n

(

∑

i∈V1

xi −
∑

i∈V

xi

k

)

,

and

||xV1
|| = 〈x,1V1

− k−11V 〉
‖1V1

− k−11V ‖

=

√

k

(k − 1)n

(

∑

i∈V1

xi −
∑

i∈V

xi

k

)

,

which imply that

(E.28) |(xV1
)v| =

√

(1− 1/k)/n ‖xV1
‖.



Finally, note that by Lemma B.2 it holds w.h.p.
||xV1

|| > 1
n ||x|| >

√

k/n.
The latter fact together with (E.27) and (E.28)

imply that w.h.p. the sign of (E.26) is the same as
the sign of (xV1

)v, which is the same for all elements
of V1 and is equally likely to be positive or negative.

Of course the same statement is true if we replace
V1 by Vi for any i = 1, . . . , k; by a union bound,
it is also true for all i simultaneously with high
probability.

Lemma E.2. Pick x ∼ {−1, 1}kn u.a.r. There is an
absolute constant p (e.g., p = 1

100) such that, with
probability at least p, all vertices of V1 have the same
type, all vertices of V2 have the same type, and the
types are di�erent.

Proof. This time we write

x = x1 + xV1⊕2
+ xV1	2

+ x⊥1,2
+ x⊥

where

• x1 is the component parallel to 1V ,

• xV1⊕2
is the component parallel to 1V1

+ 1V2
−

2
k1V ,

• xV1	2
is the component parallel to 1V1

− 1V2
,

• x⊥1,2 is the component in the eigenspace of λ2

and orthogonal to xV1⊕2
and xV1	2

,

• x⊥ is the rest.

Similarly to the proof of Lemma E.1, the important
observations are that xV1⊕2

and xV1	2
are in the

eigenspace of λ2, and that x⊥1,2
is zero in all the

coordinates of V1 and of V2.
Thus, for each v ∈ V1 ∪ V2 we have

(P t+1x)v − (P tx)v = λt
2(1− λ2)(xV1⊕2

+ xV1	2
)v

+ ((P t+1 − P t)x⊥)v.(E.29)

From (E.29) it is easy to see that if x is such that,
for every v ∈ V1 ∪ V2, we have the two conditions

|(xV1⊕2
)v| 6

3

4
|(xV1	2

)v| and(E.30)

|((P t+1 − P t)x⊥)v|

6
1

8
λt
2 · (1− λ2) · |(xV1	2

)v|,(E.31)

then such an x satis�es the conditions of the Lemma,
that is all the elements in V1 have the same type, all

the elements of V2 have the same type, and the types
are di�erent. Now note that, since

|(xV1⊕2
)v| =

1

2n

(

∑

i∈V1

xi +
∑

i∈V1

xi −
2

k

∑

i∈V

xi

)

and

|(xV1	2
)v| =

1

2n

(

∑

i∈V1

xi −
∑

i∈V2

xi

)

,

if x satis�es

2
√
n 6

∑

v∈V1

xv 6 3
√
n,(E.32)

−2
√
n 6

∑

v∈V2

xv 6 −√
n and(E.33)

0 6
∑

v∈V/(V1∪V2)

xv 6
1

10

√
kn,(E.34)

then (E.30) is satis�ed, and note that (E.32), (E.33)
and (E.34) are independent and each happens with
constant probability.

Finally, observe that if (E.30) holds then (E.31)
is satis�ed with high probability when t > T .

It is enough to pick ` = log(3n) to have, with
high probability, that the signatures are well de�ned
and they are the same within each community and
di�erent between communities. The �rst lemma
guarantees that, with high probability, for all `
vectors, all vertices within each community have the
same type. The second lemma guarantees that, with
high probability, the signatures are di�erent between
communities.
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