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Abstract—Many recent scientific efforts have been devoted
to constructing the human connectome using Diffusion Tensor
Imaging (DTI) data for understanding large-scale brain net-
works that underlie higher-level cognition in human. However,
suitable network analysis computational tools are still lacking
in human brain connectivity research. To address this problem,
we propose a novel probabilistic multi-graph decomposition
model to identify consistent network modules from the brain
connectivity networks of the studied subjects. At first, we propose
a new probabilistic graph decomposition model to address the
high computational complexity issue in existing stochastic block
models. After that, we further extend our new probabilistic graph
decomposition model for multiple networks/graphs to identify the
shared modules cross multiple brain networks by simultaneously
incorporating multiple networks and predicting the hidden block
state variables. We also derive an efficient optimization algorithm
to solve the proposed objective and estimate the model param-
eters. We validate our method by analyzing both the weighted
fiber connectivity networks constructed from DTI images and
the standard human face image clustering benchmark data
sets. The promising empirical results demonstrate the superior
performance of our proposed method.

Index Terms—Probabilistic Graph Decomposition; Multi-
Graph Decomposition; Human Connectome

I. INTRODUCTION

Advent of diffusion MRI technology has made tremendous
progress over the last decade [1] and enables us to use
Diffusion Tensor Imaging (DTI) for non-invasive in vivo white
matter mapping of the human brain by the inference of axonal
fiber pathways from local water diffusion [2]. DTI combined
with tractography allows reconstruction of the major fiber
bundles in the brain and also permits the mapping of white
matter cortico-cortical and cortico-subcortical projections at
high spatial resolution. These studies enable the analysis of the
human connectome as organizational principle of the central
nervous system.

Understanding the structural basis of functional connectivity
patterns requires a comprehensive map of structural connection
of the human brain, which has been conceptualized as the
human connectome [3]. A connectome is a comprehensive
description of the network elements and connections that
form the brain. Such clear and comprehensive knowledge
of anatomical connections lies at the basis of understanding
network functions. The connectome can be represented as a
large interconnected graph, in which nodes are neuroanatom-
ical regions and synapses are bundles of white matter tracts.
The resultant networks exhibit important topological properties
such as small-worldness and highly connected hubs regions
in the posterior medial cortical regions. These studies have
accelerated our understandings of human connectome [4], [5],
[6].

Although many network and graph analysis tools have been
applied to human connectome studies, most of them focus
on analyzing the connectome of each subject individually.
How to find the consistent network modules from a group of
subjects under the same condition (e.g. normal or Alzheimer)
is important to understand the underlying brain structural and
functional mechanisms. To solve this challenging problem,
we propose a Bayesian inference based approach to identify
consistent network modules from brain connectivity networks
of multiple subjects. We explore a new graphical model (prob-
abilistic multi-graph decomposition) to incorporate multiple
networks and inference hidden block state variables, by which
we identify local cliques among the graphs. The common
connectome modules are then pruned from the cliques. By
analyzing the weighted fiber connectivity network from 24
young male adults, we identify 4 consistent network modules
which consistently carry high connectivity among all the
subjects. To show the superior clustering capability of our
new model, we also evaluate our method using the human



face image clustering benchmark data sets.

We will organize the rest of this paper by the following
order. First, we will introduce the previous Mixed Membership
Block Model, which is powerful to group data points through
graph but not computationally efficient (use O(n?) latent
valuables) and also not for multi-graph situation. Second,
we will propose a new probabilistic graph decomposition
model to address the computational efficiency problem for
single graph case. Third, we will further introduce the new
Probabilistic Multi-Graph Decomposition (PMGD) method
with the optimization algorithm for multi-graph problem. After
that, we will provide the data description and the details of
brain connectivity construction. At last, we will show the
empirical results on both medical image analysis and human
face image clustering tasks to support the proposed algorithms.

II. PROBABILISTIC MULTI-GRAPH LEARNING MODEL
A. Problem Description and Related Work

The brain connectome of each subject can be represented as
a graph G, in which each nodes is an ROI (region of interest)
in human brain and the weight of each edge is the density of
the nerve fibers connecting a pair of nodes. In later section,
we will describe the details of brain network construction. In
this section, we will focus on the new probabilistic graphic
model to formulate the multiple brain connectivity networks
and identify the consistent network modules.

For m subjects with n ROIs, we can denote their connec-
tivity networks as G', G2,--- ,G™, where G* € R"*" and
ij denotes the connectivity of the i-th ROI and the j-th ROI
in the k-th subject, £ = 1,2,--- ;m,1 < 4,5 < n. Given
these m networks, we hope to discover the consistent network
modules, i.e. common structures of connectivity, which are
shared by all subjects. Given S as the set of all nodes, we say
a subset of S : ¢ C S is a “consistent network module” if

all the G¥ are highly connected module, for k = 1,2,--- ,m,
where
(GE),; =G o)1 <05 < |el.

Related work on pattern analysis of graphs falls into two
folds. The first fold is spectral graph partitioning which
clusters objects into groups on the spectral embedding space
[7]. The second category is stochastic block modeling, in
which the graphs are assumed to be the observations of a
pair-dependent stochastic block model [8].

However, all these models are not applicable in our problem,
since these models only accept single graph as input and no
trivial extensions of these methods are available to handle mul-
tiple graphs. Meanwhile, the existing stochastic block models
require high computational complexity, which limits their
practical applications. To address these challenging problems,
in this paper we will propose a new and efficient graphical
model to capture the hidden generative dependency among the
ROIs in structural brain activities from multiple graphs. We
will develop the likelihood function for the model and present
an EM-like algorithm to estimate the model parameters by
maximizing the likelihood.

B. Previous Mixed Membership Block Model

We first provide a brief review of previous Mixed Mem-
bership Block Model (MMB) [8]. MMB extends the mixed
membership models, such as latent Dirichlet allocation [9],
which have emerged in recent years as a flexible modeling
tool for data in which the single group assumption is violated
by the heterogeneity within a unit of analysis. They have
been successfully applied in many domains, e.g. natural scene
categories learning [10].

Mixed membership models associate each node of graph
with multiple groups rather than a single group, via a member-
ship probability-like vector. More specifically MMB models
assume that a random graph is generated by the following
model:

« For each node i, sample 7; ~ Dir(6).

« For each node pair (3, j),

- Sample % ;; ~ Mul(7;)

- Sample 7 j; ~ Mul(7;)

- Sample G;; ~ Ber (9287 ;)
where ?ij and 7ji are K x 1 vectors, indicating which group
the nodes belong to, i.e., if the node belongs to group ¢, the ¢
position is 1, and all other positions are 0. B is a K x K matrix
where K is the number of blocks (e.g. the number of topics
or clusters). Here we denote the Dirichlet, Multinomial, and
Bernouli distributions by Dir, Mul and Ber.

This generative model resamples the membership
indicator Z;; and 7j; for every node pair. Notice that
0, B are constant quantities to be estimated, and while
T, Ry Tny Z11, 2120 s Zans 2115 212007 2
are unknown variable quantities whose posterior distribution
needs to be determined. They employ the variational EM
[11] procedure to carry out approximate estimation and
inference approximately. This model is successfully applied
in relational data modeling [8].

Fig. 1. A graphical dependency diagram of the proposed Probabilistic Multi-
Graph Decomposition (PMGD) model.

C. New Efficient Probabilistic Graph Decomposition Model

The mixed membership formalism is a particularly nat-
ural idea for relational data, where the objects can bear
multiple latent roles or cluster-memberships that influence
their relationships to others. However, from point of view of
clustering, this assumption is not natural. In most data mining
applications, each node usually belongs to a unique cluster.
For example, in image segmentation by clustering pixels, it



is possible that pixels from different objects (segments) might
have connectivity (similar in color and texture, or close in
space), but we always assume each pixel belongs to a unique
object. Another examples is human face image clustering. It
is not natural to allow a single image to belong to different
persons.

Moreover, the number of latent valuables is O(n?), where
n is the number of nodes, which leads to prohibitively compu-
tational complexity in most of computer vision applications.

In order to address these issues, we propose Probabilistic
Graph Decomposition in which the membership indicators are
sampled once (instead of n times) for each node. To simplify
the problem, we use undirect graph as example (one can easily
generate it into directed graph). We assume the observation
data are generated by the following model:

« For each node ¢

- Sample 771 ~ Dir(0).
— Sample Z; ~ Mul(7;).

« For each node pair (3, j),

- Sample G;; ~ Ber (z] BZ;)

Since each 7; is sampled independently, we further reduce
the generative model by ignoring the distribution of Zz; and
consider Z; as a free parameter, see Figure 1.

D. New Probabilistic Multi-Graph Decomposition Model

In this paper, we target to identify the consistent network
modules, thus we need model the multiple graph block struc-
tures. The above methods are only designed for single network
or graph. Thus, we propose a new Probabilistic Multi-Graph
Decomposition (PMGD) model to formulate the multiple
structural brain connectivity networks and identify hidden
consistent network modules. The reason of using graphical
model is that all the observed graphs are naturally integrated
in the model and principled to learn the model by fitting the
real anatomical data. The mixed membership formalism is a
particularly natural idea for relational data, where the objects
can bear multiple latent roles or cluster-memberships that
influence their relationships to others given multiple graphs.

Based our above probabilistic graph decomposition model,
we assume the observation data are drawn by the following
generative model:

e For each node i, =1,2,--- ., n

— Sample 7; ~ Dir(6), where 6,7 € RX,

- Sample Z; ~ Mul(7;), where Z; € {0,1}%.

« For each node pair (i,j),1 <14,j <mn,
— For each graph k,
Sample ij ~ Ber (,?ZTBZJ) ,

where B € RE*K and § € RE*! are the model parameters,
K is the number of blocks. The dependency diagram of our
model is illustrated in Figure 1. In this model, we assume the
ROIs belong to K groups. If ROI 7 belongs to the p-th group
and ROI j belongs to g-th group, then the observation of G;
has a probability of B, to be 1 and 1 — B,,, to be zero. Then
a reasonable B should have a diagonal structure, where the
diagonal elements have large value and off-diagonal elements

have values close to zero. We will show this property in the
experimental section.

Since each 7; is sampled independently, we further reduce
the generative model by ignoring the distribution of Zz; and
consider Z; as a free parameter. In order to balance among
the individual difference between subjects, we discretize the
weighted graph to binary graph by thresholding. We use binary
graph G as input in our algorithm.

III. OPTIMIZATION ALGORITHM FOR PMGD MODEL

We are going to derive the algorithm to inference the model
parameters to fit the observations of m connectivity graphs
G = {G!,G2,... ,G™}. For convenience, we denote Z =
[517 ZQ, s ,Zn}T € RXK,

The distribution of G given Z and B is,

SINCESN

k=1 1ij

i)

)1—G,’§,-

P(G|B,Z) (1 - 2Bz

We construct an indicator vector c by c; = arg maxy Z;x,
and Eq. (1) can be written as

~1I1I®

k=1 133

1-G;

P(G|B,c) ~Be.,) )

clc]

We will use c the represent the membership indicator in the
rest of this paper. To estimate the parameters of the PMGD
model, we solve the following optimization problem:

max L(B,c) =

Z {Z ijlochlcj (m— Z GF)log(1 — B, ¢ )}
ij k=1 k=1

st. 0<B<1. 3)

Here we set 0 < B < 1 to restrict elements in B with
the probability constraint. We will show that our solution
automatically satisfies the constraint. We solve Eq. (3) as
following. Initialize c and then iteratively: (1) solve B while
fixing c and (2) solve c while fixing B until ¢ does not change.

A. Estimation of B

Denote C), = {i : ¢; = p},p = 1,2,..., K. Here C,, serves
as the group set, i.e. Cp is the set of nodes which belong
to group p. For any group pair (p, q), any pair nodes (i, j) :
¢; = p,c¢; = q equally contribute to the log likelihood function
defined in Eq. (3). Thus we can rewrite Eq. (3) in terms of
group index p, q instead of node index ¢, j as:

L(B) = Z $pqlogBpg + (npng — spg)log(l — Byg), (4)
pq

where n, and n, are the cardinalities of sets C, and C,,
respectively, and s,q = 320 3 ,cc e, G}, is the total
number of edges between group p and ¢ (cross-cut between
the two groups). Thus,

OL(B) _ Spq. + MpTlq — Spq (5)

B B 1-B

pq pq pq



We set

0L(B) _ ©)
By,
and get the estimation
Spq | MpTq — Spq
qu 1 - qu
or
B, = 2. ®)
P ng

Since s, is the total number of edges between group p and
g, Spg = 0 and s, < nyng. Thus 0 < % < 1, indicating
the constraint in Eq. (3) is automatically satisfied. One can
easily see that this solution is equivalent to solve maximum
likelihood estimation along all the Bernouli distributions over
groups p and ¢ independently. This is similar with the estima-
tion of B in [8].

B. Estimation of Indicator Vector c

One of the advantages of the PMGD model is that it
reduces the number of latent valuables from n? to n, thus
the estimation of the membership indicators is dramatically
simplified. As inspired from on-line updating algorithm of K-
means method, we solve the indicator one node by one node.
For Eq. (3), considering node i, we rewrite the likelihood as
a function of ¢; = t:

, By, By
L'(t) = log———— Gl
() = > logg—p—+> Gilosy—p-
VED) J k=1
+» log(1—By,) +log(1—By).  (9)
J#

By denoting a n x K matrix U;; = L(t), we have the
maximum likelihood estimation of node ::

¢; = arg mzax U;;. (10)

C. PMGD Algorithm

We summarize the algorithm of our new PMGD Algorithm
as follows:

D. Consistent Network Module Recovery

In the previous model, we can interpret By; as the cliqueness
among the objects in the block ¢,t = 1,2,--- | K. Thus if By
is high, we consider the ¢-th block is a module. In our study, we
use 0.5 as a threshold, , i.e. if B;; > 0.5 we consider the t-th
block is a common module. We can also see the connectivity
of block ¢t and s from B, which will be discussed in the
experimental section later.

IV. THEORETICAL ANALYSIS OF PROBABILISTIC GRAPH
DECOMPOSITION
Here we explore the relationship between Probabilistic
Graph Decomposition and Ratio Cut spectral clustering. The
Ratio Cut objective [12] is defined as following:

Teele) =3 Sap | Sap

n n
p#tq P a

(1)

Input: Brain connectivity networks G, the number of
groups K
Output: Clustering indicator vector ¢
Initialize ¢ with cg: ¢ < co while true do
foreach p, ¢ do
‘ By, < 2, as defined in Eq. (8).
end
foreach i =1,2,--- ,n do
Construct U;; = L*(t) as defined in Eq. (9)
c; + arg max; Uy,

end

if c never changes then
| break.

end

end
Algorithm 1: The proposed PMGD algorithm.

where s,,,n,,n, are the cross cuts, and cardinality of group
p and ¢, respectively.

In this section, we show that this objective function is
an approximation of log likelihood of Probabilistic Graph
Decomposition, with a negative coefficient.

A. Diagonal of B

From Eq. (8), we have

Skk KQSkk
B =Y ko . (12)
Shu=Y s

k

If we assume the data is balanced, i.e. each group has close
number of nodes, we have n; ~n/K.

K3 S K
~ ~ Pg __
Ek Bkk ~ 2 Skk and Jrc ~ E - = E Tl Spq-

ptq K PF#q
(13)
Thus
K? K3 K3
TJrc‘FZBkk = FZSP(I =& 49
k Pq
or
Jpe = — — $, 15

where E is the number of edges in the graph. Eq. (15)
indicates that minimizing the Ratio Cut objective is equivalent
to maximizing the diagonal of B.

B. Ratio Cut versus Probabilistic Graph Decomposition

By substituting Eq. (8) into Eq. (4), we get
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¢ of our method.

L(c)
s
= Z Spglogspg — Spqlognyng + (npng — spe)log(l — ﬁ)
e pTq
NpNg — Spq (”pnq)2
= annqlogi — Spq § log————— —logs,,
e NpTq NpNg — Spq
—~ K? Spq ("p"q)2
~ Z K2 logi — Spq {lognpnq_qu — logqu
pq
~o— /BJ(H
(16)
where
4
2s (n
=) —log— ™ log— )
‘- ZKQ +Z$kk{og k(g = skx) |
and )
p= log ik

Here we assume that the off-diagonal of B is relative small
compared to the diagonal. This is supported by the argument
in [8] and our experimental results (see experiment section for
more details).

In order to verify Eq. (16), we use four datasets AT&T,
JAFFE, PIE, and YALEB to construct the relational graph,
(see experiment section for more details) and we randomly
generate membership indicators around the solution of our
algorithm c*, i.e. randomly pick some position of c¢* and
randomly assign the node to other clusters. In Figure 2, we
plot Jyc(c) versus the log likelihood L(B, ¢) with randomly
generated membership indicator ¢ (red dots) and the the curve
A — BJ. (blue solid line). Here B is computed by Eq. (8).
From the figures, we can see that in most cases, the true log
likelihood of Probabilistic Graph Decomposition is linear to
the Ratio Cut objective with a coefficient f%log%.

V. CONSTRUCTION OF STRUCTURAL BRAIN
CONNECTIVITY NETWORKS

In this section, we will describe how did we collect and
construct the human connectome, which are used to identify
the consistent network modules. In our project, participants
included 24 healthy young male adults (age: 24.0 £+ 3.2)
with no history of neurological or psychiatric disorder. The

MRI scans were acquired on a Siemens 3T TIM Trio (Er-
langen, Germany) using a 12-channel receive only phased
array head coil in combination with a body coil for radio
frequency transmission. A SE-EPI DTI sequence was applied
using parameters: matrix= 128 x 128; FOV= 256 x 256mm;
TE/TR=77/8300 ms; 68 transversal slices with 2mm thickness;
48 diffusion directions with gradients b=1000s/mm?2, and 8
samplings at b=0. Each session also included a high resolution
T1-weighted MP-RAGE imaging as anatomical reference for
subsequent parcellation and co-registration. Our processing
pipeline includes three major steps: (1) DTI tractography, (2)
ROI generation from T1-weighted MRI (MP-RAGE or SPGR),
and (3) connectivity network construction.

The DTI data are analyzed in FSL!. DTI preprocessing
includes correction for motion and eddy current effects in
DTI images. The processed DTI images are then output
to Diffusion Toolkit (http://trackvis.org/) for fiber tracking,
using the streamline tractography algorithm called FACT (fiber
assignment by continuous tracking). The FACT algorithm
initializes tracks from many seed points and propagates these
tracks along the vector of the largest principle axis within each
voxel until certain termination criteria are met. In our study,
stop angle threshold is set to 35 degree, which means if the
angle change between two voxels is greater than 35 degree,
the tracking process stops. A spline filtering is then applied to
smooth the tracks.

Anatomical parcellation is performed using FreeSurfer 5.1
[13], [14], [15] on the high-resolution T1-weighted anatomical
MRI scan acquired with MP-RAGE sequence. The parcellation
is an automated operation on each subject to obtain 68 gyral-
based ROIs, with 34 cortical ROIs in each hemisphere. The
T1-weighted MRI image is registered to the low resolution b0
image of DTI data using the FLIRT toolbox in FSL, and the
warping parameters are applied to the ROIs so that a new set
of ROIs in the DTI image space are created. These new ROIs
are used for constructing the structural network.

The topological representation of a network is a collection
of nodes and edges between pairs of nodes. In constructing
the weighted, undirected network, the nodes are chosen to be
the 68 registered ROIs obtained from FreeSurfer parcellation.
The weight of the edge is defined as the density of the fibers
connecting a pair of nodes, which is the number of tracks

Uhttp://www.fmrib.ox.ac.uk/fsL.html



between two ROIs divided by the mean volume of the two
ROIs [16], [17]. A fiber is considered to connect two ROIs if
and only if its end points fall in the two ROIs respectively.
The weighted network can be represented by a matrix. The
rows and columns correspond to the nodes, and the elements
of the matrix correspond to the weights.

VI. EXPERIMENTAL RESULTS

In our experiments, we first perform the proposed PMGD
method on the connectivity networks to identify the consistent
modules. Because the biomedical image application lacks the
ground truth, we also evaluate the proposed model using the
image clustering tasks on four human face benchmark data
sets.

A. Brain Connectivity Network Module Finding

We employ the PMGD model on the connectivity network
data described in the above section. Notice that there is only
one hyper-parameter (the number of groups K, which is set
to be 8 in all experiments) in our model no parameters in the
its optimization algorithm. We first compare three connectivity
networks measurements: fiber number (FN), fiber length (LL),
and the weighted network (W) [6]. Since we have no ground
truth for the consistent modules of the human brain structure
modules, we test the quality of connectivity measurements by
comparing with the random background. For each connectivity
measurement (FN, LL, or W), we run our algorithm and obtain
consistent network modules (we use 0.01 as the threshold to
discretize the weighted graph). Then we randomly permute
all graph. With the random permuted graph, we apply our
algorithm again. Presumably, results on such random graph
should be very poor and thus serve as a background to
compare.

We compare the significance of the differences between
each connectivity graph and its permutation and use the
P-value to measure the quality of the connectivity graph
(100 permutations). We show the results in Table I. For
the weighted, fiber number, and fiber length networks, we
discover 4, 6, and 7 consistent network modules, respectively.
We show the P-values for the all the consistent network
modules for weighted and the first 4 for FN and LL (sorted
by the cliqueness By;). One can observe from Table I that
our method performs much better than the background for the
weighted network. For example, the significance of difference
between the first and the second consistent network modules
and the random background is 2.14 x 10~°% and 7.25 x 103,
respectively, while other networks achieve much lower level of
significance. We also visualize the locations of the consistent
modules in Figure 4 in top, bottom, left and right views.

We visualize the weighted connectivity network and high-
light the consistent modules discovered by PMGD algorithm
in Figure 3. Module 1 includes 5 ROIs: RINS, RPOC, RST,
RSMG, , and RTRT. Module 2 includes LINS, LPOC, LST,
LSMG, and LTRT. They are symmetric. Module 3 includes
7 ROIS LCMF,LLOF, LPCS, LPOB, LPAG, LPRC, and
LRMF. Module 4 includes 10 ROIs: LCNS, LISC, LLIN,

LPEC, LPCN, RCNS, RISC, RLIN, RPEC, and RPCN.
Module 4 itself is symmetric.

Since the result of block matrix B represents the cliqueness
within modules and the connectivity between modules, we are
also interested in the representation capability of block matrix
B, which is show in (a) in Figure 5. In (b), we demonstrate
how consistently they ROIs belong to the corresponding
consistent network modules among the 24 subjects. One can
observe that LPOC, LST, LSMG, LTRT, RPOC, RST,
RSMG, RTRT, LCNS, LPCN, and RPCN are always consis-
tent among the 24 subjects with high probability (> 0.99) of
belonging to the corresponding consistent network modules.

B. Evaluations Using Clustering Benchmark Data

We also evaluate our model using the human face bench-
mark data sets. Because existing clustering methods are usu-
ally for single data graph clustering, to compare different
methods, we apply the probabilistic graph decomposition
method in §2.3 to data graph and perform clustering task.
Using this set up, we can compare the clustering performance
of our new model with other related clustering approaches.

We use ten benchmark data sets to evaluate the perfor-
mance of the proposed model and algorithm, including five
image data sets: AT&T 2, JAFFE (The Japanese Female
Facial Expression)3, CMU PIE (Face Pose, Illumination, and
Expression) [18], YALEB*, MNIST; and five data sets: Zoo,
Wine, Iris, Soybean, Dermatology, from UCI machine learning
repository>.

In all experiments, we construct the pairwise relation using
K -nearest neighbor graph, i.e. G;; = 1 if node ¢ is the K-
nearest neighbor of j or node j is the K-nearest neighbor of
i, G;; = 0 otherwise. We set K = 5 in all the experiments.

We first compare our algorithm with standard K-means
[19] and spectral clustering (normalized cut) [20], [21]. For
K-means, we use the gray level values of pixels as feature,
and the distance and means are taken in Euclidean space. For
spectral clustering, we first calculate the eigenvector of graph
Laplacian L = D — G, where D = diag(d, ds, ...,d,,) and
di =53 ; Gij. And a standard K'-means algorithm is applied
on the K eigenvectors associated with the K least eigenvalues
of graph Laplacian L. Here K is set to the number of person
according to ground truth.

The clustering accuracy is computed as follows. Suppose
we have N = n; + nge + --- + ng data objects (n
are known/observed to belong to class F}, etc.). They are
clustered into K clusters. with my = |C|. This forms a
contingency table T = (T};), where Tj; denotes the number
of objects from class F}, and have been clustered into cluster
Ci. Clearly, Y, Tiy = ny and ), Ty = my. The clustering
accuracy is the percentage of objects been correctly clustered:
p = Zk Tyr/N. In practice, matching Fj to C; is obtained

Zhttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.kasrl.org/jaffe.html
“http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
Shttp://archive.ics.uci.edu/ml/



TABLE I
A PERMUTATION TEST OF OUR METHOD ON WEIGHTED, FIBER NUMBER, AND FIBER LENGTH CONNECTIVITY.

Module

Weighted Fiber Number Fiber Length

Bit P-value Byt P-value Byt P-value

W

0.7692 2.14 x 10754 0.7306 2.87 x 10725 0.7778 1.19 x 104
0.7569 7.25 x 10753 0.6781 3.52 x 1012 0.6427 6.28 x 10~4
0.5490 1.21 x 1077 0.6560 1.69 x 106 0.5616 4.11 x 10~3
0.5289 7.90 x 1075 0.6420 1.41 x 10~4 0.5566 7.21 x 10~2
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Fig. 3. The weighted
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N

connectivity networks of 24 young males and their consistent network modules discovered by PMGD algorithm. There are 5, 5, 7, and
, 2, 3, and 4 respectively. Module 1 is symmetric with Module 2 and Module 4 itself is symmetric.

Fig. 4. Location visualization of 4 consistent network modules discovered by PMGD model from (a) top , (b) bottom, (c) right, and (d) left views.

by running the Hungarian algorithm for the optimal bipartite initializations, we run multiple random trials to approximate

matching.

the optimal results. We perform 128 trials for all three methods
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Fig. 5. The optimization results for PMGD algorithm on the networks of 24 connectivity young males. (a): the visualization of block matrix B. M1, M2,
M3, and M4 are four modules discovered by our method. (b): The probability (U;+) of each ROI ¢ belonging to the corresponding consistent network module

(t) for M1, M2, M3, and M4.

following. Define Best(V) to be the highest accuracy among
N random trials for all four approaches. Clearly, Best(N)
improves as we increase N. We plot Best(N) versus N in
Figure 6 for all four data sets. In experimental results, our
method consistently outperforms other related methods. For
example, in JAFFE data set, the best our clustering accuracy is
quite close to 1, about 95%, which is far better than the other
approaches. Please not ice that these approaches are totally
unsupervised.

In Figure 7, we visualize the block structures found by our
algorithm on JAFFE data set (other data sets have more clus-
ters and cannot be clearly plotted). We plot the faces according
the membership indicators ¢ of the solution of probabilistic
graph decomposition. The edges within the groups are also
plotted. We can see that the structure we find is consistent
with human understanding.

pBE0g,

Pppl

Fig. 7. Block structures found by our method on JAFFE. Our probabilistic
graph decomposition model can correctly identify categories of different face
images.

Soft Membership Indicator. One of the advantage of the
Probabilistic Graph Decomposition is the soft clustering capa-
bility.

The probability of node 7 belonging to cluster &k (soft

membership indicator) is calculated as following:
eUik
B Dol

where U is defined near Eq. (9).

Here we select four groups from each face image data set
(other non-image data cannot be meaningfully visualized) and
visualize the data with membership probabilities in Figure 8.

In Figure 8, we plot the original faces and the corresponding
soft membership above each them. Notice that the selected
images are sorted by the probability obtained by the our
algorithm. One can see that the soft membership indicator is
consistent with human perception. For example, in the first
group in AT&T dataset (left top panel of Figure 8), even
though two last 6 faces come from different person, they are
visually similar with the first 9 face images. And for the fist
9 images, they have a high probability to belong to the group.

P(i, k) (17)

VII. CONCLUSION

In this paper, we proposed a novel brain connectivity
network analysis method by employing the new probabilistic
multi-graph decomposition model to identify the consistent
network modules (common pseudo-cliques) cross multiple
brain connectivity networks, which are potentially associated
to cognitive functions of humans. We first proposed a new
probabilistic graph decomposition method to reduce the high
computational complexity which appears in previous stochas-
tic block models. After that, we introduced the probabilistic
multi-graph decomposition model to solve the multi-graph
problem. Meanwhile, we derived an efficient optimization
algorithm to solve the proposed objective and estimate the
model parameters. The real DTI data were used to construct
the brain connectivity networks to validate our methods. We
also evaluate the proposed models via the humane face image
clustering task on benchmark data.
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Fig. 6. Clustering accuracy and Ratio Cut objective on ten data sets. For Ratio Cut objective, the lower the better.



Fig. 8. Probability output of our method for AT&T, JAFFE, PIE and YALEB data.

(c) PIE

and the image below it is the corresponding face image.
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