
New Probabilistic Multi-Graph Decomposition

Model to Identify Consistent Human Brain

Network Modules

Dijun Luo∗, Zhouyuan Huo∗, Yang Wang†, Andrew J. Saykin‡, Li Shen‡ and Heng Huang∗

∗Department of Computer Science and Engineering

University of Texas at Arlington, USA

Email: dijun.luo@gmail.com, huozhouyuan@gmail.com, heng@uta.edu
†Department of Radiology

Medical College of Wisconsin, USA

Email: yangwang@mcw.edu
‡Department of Radiology and Imaging Sciences

Indiana University School of Medicine, USA

Email: asaykin@iupui.edu, shenli@iu.edu

Abstract—Many recent scientific efforts have been devoted
to constructing the human connectome using Diffusion Tensor
Imaging (DTI) data for understanding large-scale brain net-
works that underlie higher-level cognition in human. However,
suitable network analysis computational tools are still lacking
in human brain connectivity research. To address this problem,
we propose a novel probabilistic multi-graph decomposition
model to identify consistent network modules from the brain
connectivity networks of the studied subjects. At first, we propose
a new probabilistic graph decomposition model to address the
high computational complexity issue in existing stochastic block
models. After that, we further extend our new probabilistic graph
decomposition model for multiple networks/graphs to identify the
shared modules cross multiple brain networks by simultaneously
incorporating multiple networks and predicting the hidden block
state variables. We also derive an efficient optimization algorithm
to solve the proposed objective and estimate the model param-
eters. We validate our method by analyzing both the weighted
fiber connectivity networks constructed from DTI images and
the standard human face image clustering benchmark data
sets. The promising empirical results demonstrate the superior
performance of our proposed method.

Index Terms—Probabilistic Graph Decomposition; Multi-
Graph Decomposition; Human Connectome

I. INTRODUCTION

Advent of diffusion MRI technology has made tremendous

progress over the last decade [1] and enables us to use

Diffusion Tensor Imaging (DTI) for non-invasive in vivo white

matter mapping of the human brain by the inference of axonal

fiber pathways from local water diffusion [2]. DTI combined

with tractography allows reconstruction of the major fiber

bundles in the brain and also permits the mapping of white

matter cortico-cortical and cortico-subcortical projections at

high spatial resolution. These studies enable the analysis of the

human connectome as organizational principle of the central

nervous system.

Understanding the structural basis of functional connectivity

patterns requires a comprehensive map of structural connection

of the human brain, which has been conceptualized as the

human connectome [3]. A connectome is a comprehensive

description of the network elements and connections that

form the brain. Such clear and comprehensive knowledge

of anatomical connections lies at the basis of understanding

network functions. The connectome can be represented as a

large interconnected graph, in which nodes are neuroanatom-

ical regions and synapses are bundles of white matter tracts.

The resultant networks exhibit important topological properties

such as small-worldness and highly connected hubs regions

in the posterior medial cortical regions. These studies have

accelerated our understandings of human connectome [4], [5],

[6].

Although many network and graph analysis tools have been

applied to human connectome studies, most of them focus

on analyzing the connectome of each subject individually.

How to find the consistent network modules from a group of

subjects under the same condition (e.g. normal or Alzheimer)

is important to understand the underlying brain structural and

functional mechanisms. To solve this challenging problem,

we propose a Bayesian inference based approach to identify

consistent network modules from brain connectivity networks

of multiple subjects. We explore a new graphical model (prob-

abilistic multi-graph decomposition) to incorporate multiple

networks and inference hidden block state variables, by which

we identify local cliques among the graphs. The common

connectome modules are then pruned from the cliques. By

analyzing the weighted fiber connectivity network from 24

young male adults, we identify 4 consistent network modules

which consistently carry high connectivity among all the

subjects. To show the superior clustering capability of our

new model, we also evaluate our method using the human



face image clustering benchmark data sets.

We will organize the rest of this paper by the following

order. First, we will introduce the previous Mixed Membership

Block Model, which is powerful to group data points through

graph but not computationally efficient (use O(n2) latent

valuables) and also not for multi-graph situation. Second,

we will propose a new probabilistic graph decomposition

model to address the computational efficiency problem for

single graph case. Third, we will further introduce the new

Probabilistic Multi-Graph Decomposition (PMGD) method

with the optimization algorithm for multi-graph problem. After

that, we will provide the data description and the details of

brain connectivity construction. At last, we will show the

empirical results on both medical image analysis and human

face image clustering tasks to support the proposed algorithms.

II. PROBABILISTIC MULTI-GRAPH LEARNING MODEL

A. Problem Description and Related Work

The brain connectome of each subject can be represented as

a graph G, in which each nodes is an ROI (region of interest)

in human brain and the weight of each edge is the density of

the nerve fibers connecting a pair of nodes. In later section,

we will describe the details of brain network construction. In

this section, we will focus on the new probabilistic graphic

model to formulate the multiple brain connectivity networks

and identify the consistent network modules.

For m subjects with n ROIs, we can denote their connec-

tivity networks as G1,G2, · · · ,Gm, where Gk ∈ R
n×n and

Gk
ij denotes the connectivity of the i-th ROI and the j-th ROI

in the k-th subject, k = 1, 2, · · · ,m, 1 ≤ i, j ≤ n. Given

these m networks, we hope to discover the consistent network

modules, i.e. common structures of connectivity, which are

shared by all subjects. Given S as the set of all nodes, we say

a subset of S : c ⊂ S is a “consistent network module” if

all the Gk
c are highly connected module, for k = 1, 2, · · · ,m,

where
(

Gk
c

)

ij
= Gk

ci,cj
, 1 ≤ i, j ≤ |c|.

Related work on pattern analysis of graphs falls into two

folds. The first fold is spectral graph partitioning which

clusters objects into groups on the spectral embedding space

[7]. The second category is stochastic block modeling, in

which the graphs are assumed to be the observations of a

pair-dependent stochastic block model [8].

However, all these models are not applicable in our problem,

since these models only accept single graph as input and no

trivial extensions of these methods are available to handle mul-

tiple graphs. Meanwhile, the existing stochastic block models

require high computational complexity, which limits their

practical applications. To address these challenging problems,

in this paper we will propose a new and efficient graphical

model to capture the hidden generative dependency among the

ROIs in structural brain activities from multiple graphs. We

will develop the likelihood function for the model and present

an EM-like algorithm to estimate the model parameters by

maximizing the likelihood.

B. Previous Mixed Membership Block Model

We first provide a brief review of previous Mixed Mem-

bership Block Model (MMB) [8]. MMB extends the mixed

membership models, such as latent Dirichlet allocation [9],

which have emerged in recent years as a flexible modeling

tool for data in which the single group assumption is violated

by the heterogeneity within a unit of analysis. They have

been successfully applied in many domains, e.g. natural scene

categories learning [10].

Mixed membership models associate each node of graph

with multiple groups rather than a single group, via a member-

ship probability-like vector. More specifically MMB models

assume that a random graph is generated by the following

model:

• For each node i, sample ~πi ∼ Dir(~θ).
• For each node pair (i, j),

– Sample ←−z ij ∼Mul(~πi)
– Sample −→z ji ∼Mul(~πj)
– Sample Gij ∼ Ber

(←−z T
ijB
−→z ji

)

where←−z ij and −→z ji are K×1 vectors, indicating which group

the nodes belong to, i.e., if the node belongs to group t, the t
position is 1, and all other positions are 0. B is a K×K matrix

where K is the number of blocks (e.g. the number of topics

or clusters). Here we denote the Dirichlet, Multinomial, and

Bernouli distributions by Dir,Mul and Ber.

This generative model resamples the membership

indicator ←−z ij and −→z ji for every node pair. Notice that

θ,B are constant quantities to be estimated, and while

~π1, ~π2, · · · , ~πn,
←−z 11,

←−z 12, · · · ,
←−z nn,

−→z 11,
−→z 12, · · · ,

−→z nn

are unknown variable quantities whose posterior distribution

needs to be determined. They employ the variational EM

[11] procedure to carry out approximate estimation and

inference approximately. This model is successfully applied

in relational data modeling [8].

Fig. 1. A graphical dependency diagram of the proposed Probabilistic Multi-
Graph Decomposition (PMGD) model.

C. New Efficient Probabilistic Graph Decomposition Model

The mixed membership formalism is a particularly nat-

ural idea for relational data, where the objects can bear

multiple latent roles or cluster-memberships that influence

their relationships to others. However, from point of view of

clustering, this assumption is not natural. In most data mining

applications, each node usually belongs to a unique cluster.

For example, in image segmentation by clustering pixels, it



is possible that pixels from different objects (segments) might

have connectivity (similar in color and texture, or close in

space), but we always assume each pixel belongs to a unique

object. Another examples is human face image clustering. It

is not natural to allow a single image to belong to different

persons.

Moreover, the number of latent valuables is O(n2), where

n is the number of nodes, which leads to prohibitively compu-

tational complexity in most of computer vision applications.

In order to address these issues, we propose Probabilistic

Graph Decomposition in which the membership indicators are

sampled once (instead of n times) for each node. To simplify

the problem, we use undirect graph as example (one can easily

generate it into directed graph). We assume the observation

data are generated by the following model:

• For each node i

– Sample ~πi ∼ Dir(~θ).
– Sample ~zi ∼ Mul(~πi).

• For each node pair (i, j),

– Sample Gij ∼ Ber
(

~zTi B~zj
)

Since each ~πi is sampled independently, we further reduce

the generative model by ignoring the distribution of ~zi and

consider ~zi as a free parameter, see Figure 1.

D. New Probabilistic Multi-Graph Decomposition Model

In this paper, we target to identify the consistent network

modules, thus we need model the multiple graph block struc-

tures. The above methods are only designed for single network

or graph. Thus, we propose a new Probabilistic Multi-Graph

Decomposition (PMGD) model to formulate the multiple

structural brain connectivity networks and identify hidden

consistent network modules. The reason of using graphical

model is that all the observed graphs are naturally integrated

in the model and principled to learn the model by fitting the

real anatomical data. The mixed membership formalism is a

particularly natural idea for relational data, where the objects

can bear multiple latent roles or cluster-memberships that

influence their relationships to others given multiple graphs.

Based our above probabilistic graph decomposition model,

we assume the observation data are drawn by the following

generative model:

• For each node i, i = 1, 2, · · · , n

– Sample ~πi ∼ Dir(~θ), where ~θ, ~πi ∈ R
K ,

– Sample ~zi ∼ Mul(~πi), where ~zi ∈ {0, 1}
K .

• For each node pair (i, j), 1 ≤ i, j ≤ n,

– For each graph k,

Sample Gk
ij ∼ Ber

(

~zTi B~zj
)

,

where B ∈ R
K×K and ~θ ∈ R

K×1 are the model parameters,

K is the number of blocks. The dependency diagram of our

model is illustrated in Figure 1. In this model, we assume the

ROIs belong to K groups. If ROI i belongs to the p-th group

and ROI j belongs to q-th group, then the observation of Gij

has a probability of Bpq to be 1 and 1−Bpq to be zero. Then

a reasonable B should have a diagonal structure, where the

diagonal elements have large value and off-diagonal elements

have values close to zero. We will show this property in the

experimental section.

Since each ~πi is sampled independently, we further reduce

the generative model by ignoring the distribution of ~zi and

consider ~zi as a free parameter. In order to balance among

the individual difference between subjects, we discretize the

weighted graph to binary graph by thresholding. We use binary

graph Gk as input in our algorithm.

III. OPTIMIZATION ALGORITHM FOR PMGD MODEL

We are going to derive the algorithm to inference the model

parameters to fit the observations of m connectivity graphs

G = {G1,G2, · · · ,Gm}. For convenience, we denote Z =
[~z1, ~z2, · · · , ~zn]

T ∈ R
n×K .

The distribution of G given Z and B is,

P (G|B,Z) =
m
∏

k=1

∏

ij

(

~zTi B~zj
)G

k
ij
(

1− ~zTi B~zj
)1−G

k
ij . (1)

We construct an indicator vector c by ci = argmaxk Zik,

and Eq. (1) can be written as

P (G|B, c) =

m
∏

k=1

∏

ij

(

Bcicj

)G
k
ij
(

1−Bcicj

)1−G
k
ij . (2)

We will use c the represent the membership indicator in the

rest of this paper. To estimate the parameters of the PMGD

model, we solve the following optimization problem:

max
B,c

L(B, c) =

∑

ij

{

m
∑

k=1

Gk
ij logBcicj + (m−

m
∑

k=1

Gk
ij)log(1−Bcicj )

}

s.t. 0 ≤ B ≤ 1. (3)

Here we set 0 ≤ B ≤ 1 to restrict elements in B with

the probability constraint. We will show that our solution

automatically satisfies the constraint. We solve Eq. (3) as

following. Initialize c and then iteratively: (1) solve B while

fixing c and (2) solve c while fixing B until c does not change.

A. Estimation of B

Denote Cp = {i : ci = p}, p = 1, 2, ...,K. Here Cp serves

as the group set, i.e. Cp is the set of nodes which belong

to group p. For any group pair (p, q), any pair nodes (i, j) :
ci = p, cj = q equally contribute to the log likelihood function

defined in Eq. (3). Thus we can rewrite Eq. (3) in terms of

group index p, q instead of node index i, j as:

L(B) =
∑

pq

spqlogBpq + (npnq − spq)log(1−Bpq), (4)

where np and nq are the cardinalities of sets Cp and Cq ,

respectively, and spq =
∑m

k=1

∑

i∈Cpj∈Cq
Gk

ij is the total

number of edges between group p and q (cross-cut between

the two groups). Thus,

∂L(B)

Bpq

=
spq
Bpq

+
npnq − spq
1−Bpq

. (5)



We set
∂L(B)

Bpq

== 0 , (6)

and get the estimation

spq
Bpq

+
npnq − spq
1−Bpq

= 0 , (7)

or

B̂pq =
spq
npnq

. (8)

Since spq is the total number of edges between group p and

q, spq ≥ 0 and spq ≤ npnq . Thus 0 ≤
spq
npnq

≤ 1, indicating

the constraint in Eq. (3) is automatically satisfied. One can

easily see that this solution is equivalent to solve maximum

likelihood estimation along all the Bernouli distributions over

groups p and q independently. This is similar with the estima-

tion of B in [8].

B. Estimation of Indicator Vector c

One of the advantages of the PMGD model is that it

reduces the number of latent valuables from n2 to n, thus

the estimation of the membership indicators is dramatically

simplified. As inspired from on-line updating algorithm of K-

means method, we solve the indicator one node by one node.

For Eq. (3), considering node i, we rewrite the likelihood as

a function of ci = t:

Li(t) =
∑

j 6=i

log
Btcj

1−Btcj

+

m
∑

k=1

Gk
iilog

Btt

1−Btt

+
∑

j 6=i

log(1−Btcj ) + log(1−Btt). (9)

By denoting a n × K matrix Uit = Li(t), we have the

maximum likelihood estimation of node i:

ĉi = argmax
t

Uit. (10)

C. PMGD Algorithm

We summarize the algorithm of our new PMGD Algorithm

as follows:

D. Consistent Network Module Recovery

In the previous model, we can interpret Btt as the cliqueness

among the objects in the block t, t = 1, 2, · · · ,K. Thus if Btt

is high, we consider the t-th block is a module. In our study, we

use 0.5 as a threshold, , i.e. if Btt ≥ 0.5 we consider the t-th
block is a common module. We can also see the connectivity

of block t and s from Bst, which will be discussed in the

experimental section later.

IV. THEORETICAL ANALYSIS OF PROBABILISTIC GRAPH

DECOMPOSITION

Here we explore the relationship between Probabilistic

Graph Decomposition and Ratio Cut spectral clustering. The

Ratio Cut objective [12] is defined as following:

Jrc(c) =
∑

p 6=q

sqp
np

+
sqp
nq

, (11)

Input: Brain connectivity networks G, the number of

groups K
Output: Clustering indicator vector c

Initialize c with c0: c← c0 while true do

foreach p, q do

Bpq ←
spq
npnq

, as defined in Eq. (8).

end

foreach i = 1, 2, · · · , n do

Construct Uit = Li(t) as defined in Eq. (9)

ci ← argmaxt Uit

end

if c never changes then
break.

end

end

Algorithm 1: The proposed PMGD algorithm.

where spq, np, nq are the cross cuts, and cardinality of group

p and q, respectively.

In this section, we show that this objective function is

an approximation of log likelihood of Probabilistic Graph

Decomposition, with a negative coefficient.

A. Diagonal of B

From Eq. (8), we have

∑

k

Bkk =
∑

k

skk
n2
k

≈
K2skk

n
. (12)

If we assume the data is balanced, i.e. each group has close

number of nodes, we have nk ≈ n/K.

∑

k

Bkk ≈
K3

n2
skk and Jrc ≈

∑

p 6=q

spq
n
K

=
∑

p 6=q

K

n
spq.

(13)

Thus

K2

n
Jrc +

∑

k

Bkk =
K3

n2

∑

pq

spq =
K3

n2
E, (14)

or

Jrc =
KE

n
−

n
∑

k Bkk

K2
, (15)

where E is the number of edges in the graph. Eq. (15)

indicates that minimizing the Ratio Cut objective is equivalent

to maximizing the diagonal of B.

B. Ratio Cut versus Probabilistic Graph Decomposition

By substituting Eq. (8) into Eq. (4), we get
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Fig. 2. The relationship between Ratio Cut objective and log likelihood of Probabilistic Graph Decomposition on 4 datasets. Blue circles are for the solutions
ĉ of our method.

L(c)

=
∑

pq

spqlogspq − spqlognpnq + (npnq − spq)log(1−
spq
npnq

)

=
∑

pq

npnqlog
npnq − spq

npnq

− spq

{

log
(npnq)

2

npnq − spq
− logspq

}

≈
∑

pq

n2

K2
log

n2 −K2spq
n2

− spq

{

log
(npnq)

2

npnq − spq
− logspq

}

≈α− βJc,
(16)

where

α =
∑

pq

n2

K2
log

n2 −K2spq
n2

+
∑

k

skk

{

log
(n4

)

skk(n2
k − skk)

}

,

and

β =
n

K
log

n2

K2
.

Here we assume that the off-diagonal of B is relative small

compared to the diagonal. This is supported by the argument

in [8] and our experimental results (see experiment section for

more details).

In order to verify Eq. (16), we use four datasets AT&T,

JAFFE, PIE, and YALEB to construct the relational graph,

(see experiment section for more details) and we randomly

generate membership indicators around the solution of our

algorithm c∗, i.e. randomly pick some position of c∗ and

randomly assign the node to other clusters. In Figure 2, we

plot Jrc(c) versus the log likelihood L(B̂, c) with randomly

generated membership indicator c (red dots) and the the curve

A − BJc (blue solid line). Here B̂ is computed by Eq. (8).

From the figures, we can see that in most cases, the true log

likelihood of Probabilistic Graph Decomposition is linear to

the Ratio Cut objective with a coefficient − n
K
log n2

K2 .

V. CONSTRUCTION OF STRUCTURAL BRAIN

CONNECTIVITY NETWORKS

In this section, we will describe how did we collect and

construct the human connectome, which are used to identify

the consistent network modules. In our project, participants

included 24 healthy young male adults (age: 24.0 ± 3.2)

with no history of neurological or psychiatric disorder. The

MRI scans were acquired on a Siemens 3T TIM Trio (Er-

langen, Germany) using a 12-channel receive only phased

array head coil in combination with a body coil for radio

frequency transmission. A SE-EPI DTI sequence was applied

using parameters: matrix= 128× 128; FOV= 256× 256mm;

TE/TR=77/8300 ms; 68 transversal slices with 2mm thickness;

48 diffusion directions with gradients b=1000s/mm2, and 8

samplings at b=0. Each session also included a high resolution

T1-weighted MP-RAGE imaging as anatomical reference for

subsequent parcellation and co-registration. Our processing

pipeline includes three major steps: (1) DTI tractography, (2)

ROI generation from T1-weighted MRI (MP-RAGE or SPGR),

and (3) connectivity network construction.

The DTI data are analyzed in FSL1. DTI preprocessing

includes correction for motion and eddy current effects in

DTI images. The processed DTI images are then output

to Diffusion Toolkit (http://trackvis.org/) for fiber tracking,

using the streamline tractography algorithm called FACT (fiber

assignment by continuous tracking). The FACT algorithm

initializes tracks from many seed points and propagates these

tracks along the vector of the largest principle axis within each

voxel until certain termination criteria are met. In our study,

stop angle threshold is set to 35 degree, which means if the

angle change between two voxels is greater than 35 degree,

the tracking process stops. A spline filtering is then applied to

smooth the tracks.

Anatomical parcellation is performed using FreeSurfer 5.1

[13], [14], [15] on the high-resolution T1-weighted anatomical

MRI scan acquired with MP-RAGE sequence. The parcellation

is an automated operation on each subject to obtain 68 gyral-

based ROIs, with 34 cortical ROIs in each hemisphere. The

T1-weighted MRI image is registered to the low resolution b0

image of DTI data using the FLIRT toolbox in FSL, and the

warping parameters are applied to the ROIs so that a new set

of ROIs in the DTI image space are created. These new ROIs

are used for constructing the structural network.

The topological representation of a network is a collection

of nodes and edges between pairs of nodes. In constructing

the weighted, undirected network, the nodes are chosen to be

the 68 registered ROIs obtained from FreeSurfer parcellation.

The weight of the edge is defined as the density of the fibers

connecting a pair of nodes, which is the number of tracks

1http://www.fmrib.ox.ac.uk/fsl.html



between two ROIs divided by the mean volume of the two

ROIs [16], [17]. A fiber is considered to connect two ROIs if

and only if its end points fall in the two ROIs respectively.

The weighted network can be represented by a matrix. The

rows and columns correspond to the nodes, and the elements

of the matrix correspond to the weights.

VI. EXPERIMENTAL RESULTS

In our experiments, we first perform the proposed PMGD

method on the connectivity networks to identify the consistent

modules. Because the biomedical image application lacks the

ground truth, we also evaluate the proposed model using the

image clustering tasks on four human face benchmark data

sets.

A. Brain Connectivity Network Module Finding

We employ the PMGD model on the connectivity network

data described in the above section. Notice that there is only

one hyper-parameter (the number of groups K, which is set

to be 8 in all experiments) in our model no parameters in the

its optimization algorithm. We first compare three connectivity

networks measurements: fiber number (FN), fiber length (LL),

and the weighted network (W) [6]. Since we have no ground

truth for the consistent modules of the human brain structure

modules, we test the quality of connectivity measurements by

comparing with the random background. For each connectivity

measurement (FN, LL, or W), we run our algorithm and obtain

consistent network modules (we use 0.01 as the threshold to

discretize the weighted graph). Then we randomly permute

all graph. With the random permuted graph, we apply our

algorithm again. Presumably, results on such random graph

should be very poor and thus serve as a background to

compare.

We compare the significance of the differences between

each connectivity graph and its permutation and use the

P-value to measure the quality of the connectivity graph

(100 permutations). We show the results in Table I. For

the weighted, fiber number, and fiber length networks, we

discover 4, 6, and 7 consistent network modules, respectively.

We show the P-values for the all the consistent network

modules for weighted and the first 4 for FN and LL (sorted

by the cliqueness Btt). One can observe from Table I that

our method performs much better than the background for the

weighted network. For example, the significance of difference

between the first and the second consistent network modules

and the random background is 2.14×10−54 and 7.25×10−53,

respectively, while other networks achieve much lower level of

significance. We also visualize the locations of the consistent

modules in Figure 4 in top, bottom, left and right views.

We visualize the weighted connectivity network and high-

light the consistent modules discovered by PMGD algorithm

in Figure 3. Module 1 includes 5 ROIs: RINS, RPOC, RST,

RSMG, , and RTRT. Module 2 includes LINS, LPOC, LST,

LSMG, and LTRT. They are symmetric. Module 3 includes

7 ROIS LCMF,LLOF, LPCS, LPOB, LPAG, LPRC, and

LRMF. Module 4 includes 10 ROIs: LCNS, LISC, LLIN,

LPEC, LPCN, RCNS, RISC, RLIN, RPEC, and RPCN.

Module 4 itself is symmetric.

Since the result of block matrix B represents the cliqueness

within modules and the connectivity between modules, we are

also interested in the representation capability of block matrix

B, which is show in (a) in Figure 5. In (b), we demonstrate

how consistently they ROIs belong to the corresponding

consistent network modules among the 24 subjects. One can

observe that LPOC, LST, LSMG, LTRT, RPOC, RST,

RSMG, RTRT, LCNS, LPCN, and RPCN are always consis-

tent among the 24 subjects with high probability (≥ 0.99) of

belonging to the corresponding consistent network modules.

B. Evaluations Using Clustering Benchmark Data

We also evaluate our model using the human face bench-

mark data sets. Because existing clustering methods are usu-

ally for single data graph clustering, to compare different

methods, we apply the probabilistic graph decomposition

method in §2.3 to data graph and perform clustering task.

Using this set up, we can compare the clustering performance

of our new model with other related clustering approaches.

We use ten benchmark data sets to evaluate the perfor-

mance of the proposed model and algorithm, including five

image data sets: AT&T 2, JAFFE (The Japanese Female

Facial Expression)3, CMU PIE (Face Pose, Illumination, and

Expression) [18], YALEB4, MNIST; and five data sets: Zoo,

Wine, Iris, Soybean, Dermatology, from UCI machine learning

repository5.

In all experiments, we construct the pairwise relation using

K-nearest neighbor graph, i.e. Gij = 1 if node i is the K-

nearest neighbor of j or node j is the K-nearest neighbor of

i, Gij = 0 otherwise. We set K = 5 in all the experiments.

We first compare our algorithm with standard K-means

[19] and spectral clustering (normalized cut) [20], [21]. For

K-means, we use the gray level values of pixels as feature,

and the distance and means are taken in Euclidean space. For

spectral clustering, we first calculate the eigenvector of graph

Laplacian L = D − G, where D = diag(d1, d2, ..., dn) and

di =
∑

j Gij . And a standard K-means algorithm is applied

on the K eigenvectors associated with the K least eigenvalues

of graph Laplacian L. Here K is set to the number of person

according to ground truth.

The clustering accuracy is computed as follows. Suppose

we have N = n1 + n2 + · · · + nK data objects (n1

are known/observed to belong to class F1, etc.). They are

clustered into K clusters. with mk = |Ck|. This forms a

contingency table T = (Tkl), where Tkl denotes the number

of objects from class Fk and have been clustered into cluster

Cl. Clearly,
∑

l Tkl = nk and
∑

k Tkl = ml. The clustering

accuracy is the percentage of objects been correctly clustered:

ρ =
∑

k Tkk/N . In practice, matching Fk to Cl is obtained

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3http://www.kasrl.org/jaffe.html
4http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
5http://archive.ics.uci.edu/ml/



TABLE I
A PERMUTATION TEST OF OUR METHOD ON WEIGHTED, FIBER NUMBER, AND FIBER LENGTH CONNECTIVITY.

Weighted Fiber Number Fiber Length

Module Btt P-value Btt P-value Btt P-value

1 0.7692 2.14× 10
−54 0.7306 2.87× 10

−25 0.7778 1.19× 10
−4

2 0.7569 7.25× 10
−53 0.6781 3.52× 10

−12 0.6427 6.28× 10
−4

3 0.5490 1.21× 10
−7 0.6560 1.69× 10

−6 0.5616 4.11× 10
−3

4 0.5289 7.90× 10
−5 0.6420 1.41× 10

−4 0.5566 7.21× 10
−2

Module 1
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RST
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RTRT
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LTRT

Module 3
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LRMF

Module 4
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RLIN

RPEC
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N/A

Fig. 3. The weighted connectivity networks of 24 young males and their consistent network modules discovered by PMGD algorithm. There are 5, 5, 7, and
10 ROIs in Modules 1, 2, 3, and 4 respectively. Module 1 is symmetric with Module 2 and Module 4 itself is symmetric.

Fig. 4. Location visualization of 4 consistent network modules discovered by PMGD model from (a) top , (b) bottom, (c) right, and (d) left views.

by running the Hungarian algorithm for the optimal bipartite

matching.

Since the results of all clustering methods depend on the

initializations, we run multiple random trials to approximate

the optimal results. We perform 128 trials for all three methods

with random initializations. We evaluate the performance as



Fig. 5. The optimization results for PMGD algorithm on the networks of 24 connectivity young males. (a): the visualization of block matrix B. M1, M2,
M3, and M4 are four modules discovered by our method. (b): The probability (Uit) of each ROI i belonging to the corresponding consistent network module
(t) for M1, M2, M3, and M4.

following. Define Best(N) to be the highest accuracy among

N random trials for all four approaches. Clearly, Best(N)
improves as we increase N . We plot Best(N) versus N in

Figure 6 for all four data sets. In experimental results, our

method consistently outperforms other related methods. For

example, in JAFFE data set, the best our clustering accuracy is

quite close to 1, about 95%, which is far better than the other

approaches. Please not ice that these approaches are totally

unsupervised.

In Figure 7, we visualize the block structures found by our

algorithm on JAFFE data set (other data sets have more clus-

ters and cannot be clearly plotted). We plot the faces according

the membership indicators c of the solution of probabilistic

graph decomposition. The edges within the groups are also

plotted. We can see that the structure we find is consistent

with human understanding.

Fig. 7. Block structures found by our method on JAFFE. Our probabilistic
graph decomposition model can correctly identify categories of different face
images.

Soft Membership Indicator. One of the advantage of the

Probabilistic Graph Decomposition is the soft clustering capa-

bility.

The probability of node i belonging to cluster k (soft

membership indicator) is calculated as following:

P (i, k) =
eUik

∑

k e
Uik

, (17)

where U is defined near Eq. (9).

Here we select four groups from each face image data set

(other non-image data cannot be meaningfully visualized) and

visualize the data with membership probabilities in Figure 8.

In Figure 8, we plot the original faces and the corresponding

soft membership above each them. Notice that the selected

images are sorted by the probability obtained by the our

algorithm. One can see that the soft membership indicator is

consistent with human perception. For example, in the first

group in AT&T dataset (left top panel of Figure 8), even

though two last 6 faces come from different person, they are

visually similar with the first 9 face images. And for the fist

9 images, they have a high probability to belong to the group.

VII. CONCLUSION

In this paper, we proposed a novel brain connectivity

network analysis method by employing the new probabilistic

multi-graph decomposition model to identify the consistent

network modules (common pseudo-cliques) cross multiple

brain connectivity networks, which are potentially associated

to cognitive functions of humans. We first proposed a new

probabilistic graph decomposition method to reduce the high

computational complexity which appears in previous stochas-

tic block models. After that, we introduced the probabilistic

multi-graph decomposition model to solve the multi-graph

problem. Meanwhile, we derived an efficient optimization

algorithm to solve the proposed objective and estimate the

model parameters. The real DTI data were used to construct

the brain connectivity networks to validate our methods. We

also evaluate the proposed models via the humane face image

clustering task on benchmark data.
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Fig. 6. Clustering accuracy and Ratio Cut objective on ten data sets. For Ratio Cut objective, the lower the better.
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Fig. 8. Probability output of our method for AT&T, JAFFE, PIE and YALEB data. For each class, the first row is the probability of a face belong the class,
and the image below it is the corresponding face image.
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