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Abstract—In multi-task learning, it is paramount to discover
the relational structure of tasks and utilize the learned task
structure. Previous works have been using the low-rank latent
feature subspace to capture the task relations, and some of
them aim to learn the group based relational structure of
tasks. However, in many cases, the low-rank subspace may
not exist for the specific group of tasks, thus using this
paradigm would not work. To discover the task relational
structures, we propose a novel multi-task learning method
using the structured sparsity-inducing norms to automatically
uncover the relations of tasks. Instead of imposing the low-
rank constraint, our new model uses a more meaningful
assumption, in which the tasks from the same relational group
should share the common feature subspace. We can discover
the group relational structure of tasks and learn the shared
feature subspace for each task group, which help to improve
the predictive performance. Our proposed algorithm avoids
the high computational complexity of integer programming,
thus it converges very fast. Empirical studies conducted on
both synthetic and real-world data show that our method
consistently outperforms related multi-task learning methods.
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I. INTRODUCTION

Multi-task learning (MTL) is an emerging machine learn-

ing paradigm that learns multiple tasks (in the image catego-

rization example, each category of image is a task) jointly.

In recent years, it has been observed by many researchers

[1], [2], [3], [4] that if tasks are correlated, one task would

benefit from others by jointly learning multiple tasks. Thus,

multi-task learning has been widely researched and applied

to many related areas such as computer vision [5], medical

image analysis [6], bioinformatics [7], and natural language

processing [8].

In order to exploit multi-task learning for vision tasks, one

paramount issue is to discover the task relational structure

and utilize the uncovered task relations to enhance the multi-

task learning models. Only by successfully capturing the

relational structure of tasks, we can benefit from learning

these tasks jointly and increase the predictive performances.

Otherwise, if dissimilar or non-related tasks are learned

jointly, it may lead to the negative effect on the knowledge

transfer, resulting that learning these tasks jointly is worse

than learning them independently. Thus, discovering the

correct task relational structure is the pillar for multi-task

learning.

In current literature, the common way to utilize the task

relations in the multi-task learning models is to assume that

the related tasks share a common yet latent low-rank feature

subspace [1], [8]. The trace norm (nuclear norm) regular-

ization is often used to discover the low-rank subspace. For

example, in [1], Argyriou et. al. proposed to minimize a

loss function with the trace norm based regularization of

the model parameter matrix for all tasks.

However, these methods only assume the task correlations

and impose them in the learning model without explicitly

discovering the task relational structure. In the other recent

work [5], Kang et. al. presented a new method to discover

the task group relations by combining the low-rank subspace

and task group learning, and used the learned task correla-

tions to enhance the predictive performance.

In general, the related tasks are expected to share a com-

mon subset of useful features. If related tasks are grouped

together, tasks from the same group should share a common

subspace consisting of the same subset of features. Based

on this intuition, in this paper, we propose a new multi-

task learning model, which can automatically discover the

task group relational structure, and learn the feature subspace

shared by each task group. Our method jointly optimizes the

model parameter matrix of multi-task learning and the group

indicator matrix of tasks, which groups tasks based on their

relations. As a result, the uncovered task group relational

structure and common feature subspaces can further enhance

the multi-task learning model.

II. NEW MULTI-TASK LEARNING MODEL

Multi-task learning can utilize the interrelations between

tasks by learning multiple tasks jointly. In [1], a multi-task

feature learning model was introduced to find a common

low-rank feature subspace for all tasks. Because the trace

norm is often used to find a low-rank subspace, their

objective function minimizes the loss function with the trace

norm regularization on the model parameter matrix of entire

tasks, which is as following:

min
W

T
∑

t=1

l(Dt;wt) + γ‖W‖
2
∗ . (1)



(a) (b)

Figure 1. The structures of model parameter matrix W discovered using
different regularization terms: (a) applying task group relational structure
regularization (imposing `2,0-norm on each individual task group, which
is discovered automatically) on the model parameter matrix; (b) applying
the flat task regularization (imposing `2,0-norm on all the tasks).

where l(·) is a loss function, T is the number of tasks,Dt

consists of the data matrix (nt data points) and labels (yt)

for the t-th task, W ∈ <d×T is the model parameter matrix,

wt is the t-th column of W , and γ is the tradeoff parameter,

‖W‖∗ denotes the trace norm of W .

This model assumes all tasks share the same common

subspace without investigating the task relational structure.

However, not all tasks are correlated to each other. If the

dissimilar or non-correlated tasks are learned jointly, it may

lead to negative effect on the knowledge transfer and reduce

the predictive performance. Thus, it is crucial to discover

the task relational structure and learn the correlated tasks

together.

In this paper, we propose to learn the task group relational

structure for multi-task learning. If the task group structure

is learned, this information can be used to better regularize

the feature space: by regularizing parameters in each group

rather than regularizing the whole matrix across groups,

we can obtain better knowledge transfer between similar

tasks and avoid negative transfer between dissimilar tasks.

However, learning task group structure is very difficult

since partitioning of tasks into groups involves combinatorial

optimization problem.

Motivated by the above observation, in this paper, we

propose a new regularization formulation for multi-task

learning. The underlying idea is: If the tasks are grouped

according to the task interrelations, the tasks from the same

group are supposed to share a common feature subspace,

whereas tasks in different groups are more likely to have

different feature subspaces. We implement this mechanism

into a newly proposed regularization formulation based on

structured sparsity-inducing norm, which is widely used in

to achieve sparsity for feature selection [9], dimensionality

reduction [10], and regression/classification [11] tasks. An

efficient algorithm is proposed to learn the task group

structure. The algorithm avoids the computational cost of

solving combinatorial optimization problem.

When we propose the new objective and theoretical

analysis, we will use the following example for illustration

purpose, in which we have 20 tasks and 20 features: without

loss of generality, we assume that the group structure of

the tasks is as in Figure 1(a). In this figure, the first 10

tasks belong to one group, and the remaining tasks belong

to another group. The feature subspace of Group 1 (Task 1

to Task 10) consists of features from 1 to 5, and the subspace

of Group 2 (Task 11 to Task 20) consists of features from

11 to 15.

A. New Group Structured Multi-Task Learning Objective

Function

The `2,1-norm of a matrix M is defined as: ‖M‖2,1 =
∑

i

∥

∥M i
∥

∥

2
=

∑

i

√

∑

j m
2
ij , where M i indicates the i-th

row of the matrix M . `2,1-norm is a sparsity-inducing norm

that enforces some rows of the matrix to be zero. `2,0-norm

a matrix M is defined as the non-zeros rows in M .

It is well known that the `2,1-norm is a convex envelop

of the `2,0-norm and can lead to structured sparsity in the

model parameter matrix, which has been successfully used

for multi-task feature learning in previous research [3]. We

propose to regularize the model parameter matrix by the

`2,1-norm to discover the task group relational structure.

However, we cannot straightforwardly apply the `2,1-norm

or `2,0-norm regularization on the model parameter matrix

W . Because different task groups share different feature

subspaces, the regularization should be applied within each

task group. If the regularization is applied on the entire

model parameter matrix, all tasks would share the same

common feature subspace. Thus, the learned structure of

model parameter matrix will be similar to Figure 1(b).

However, this is not the case for those dissimilar and non-

correlated tasks. We expect the task group regularization

term can discover the real task relational structure such that

the model parameter matrix has the proper structural patterns

as shown in Figure 1(a). Therefore, the regularization on the

entire model parameter matrix may lead to negative effect

on the knowledge transfer and thus deteriorate classification

performance.

If we regularize the model parameter matrix within each

group using the structured sparsity-inducing norms, it natu-

rally comes out to solve the following objective function:

min
W

T
∑

t=1

l(Dt;wt) + γ

G
∑

g=1

‖Wg‖2,0 , (2)

The loss function in our proposed model can be any type

of loss functions. However, optimizing Eq. (2) would lead

to trivial solution, i.e., the solutions found by using `2,0-

norm regularization on grouped model parameter matrix

(
G
∑

g=1
‖Wg‖2,0) and on one single non-grouped model pa-

rameter matrix (‖W‖2,0) could be identical. As a result, the

correct task group relational structure cannot be properly



discovered. This situation is similar to the trace norm regu-

larization case we discussed in previous section (using trace

norm to the parameter matrix of entire tasks may uncover

the similar low-rank subspaces as using the trace norm to

the parameter matrices of each individual task group).

We are going to explain the reason with using the illus-

tration example in Figure 1. When the `2,0-norm is used

as regularization for (1) the parameter matrix of entire tasks

and (2) the parameter matrices of each individual task group,

the penalties will generate the same results in these two

cases. The value of `2,0-norm is the number of retained

features. In the first case, when the `2,0-norm regularization

is imposed to the parameter matrix of the entire tasks, the

learning results are shown in Figure 1(b). The penalty term

value is 10 (the number of retained features). In the second

case, when the `2,0-norm regularization is imposed to the

parameter matrices of each individual task group, we expect

to discover the task group relational structure as shown in

Figure 1(a). In this case, the value of the penalty term is

the sum of number of features retained in every group, i.e.,

5 + 5 = 10. However, the penalty term values in these

two cases are the same, i.e. 10, such that the model has

no motivation to discover the correct task group structure as

shown in Figure 1(a). Thus, in the second case, the resulted

task group relational structure can combine all tasks into

one group and leave no tasks in the other group, which is

identical to task relational structure as shown in Figure 1(b).

To tackle this issue, we propose to use the square of `2,0-

norm as regularization, and optimize the following objective:

min
W

T
∑

t=1

l(Dt;wt) + γ

G
∑

g=1

‖Wg‖
2
2,0 . (3)

In our new formulation, the penalty term values are

different in the above two cases: for case in Figure 1(a),

the value of the penalty term is 52 + 52 = 50; for case in

Figure 1(b), the value becomes (5 + 5)2 = 100. Because

we aim to minimize Eq. (3), the model will choose case

(a), i.e. the correct group relational structure of tasks can

be discovered. What’s more, if the ground-truth structure

of W is Figure 1(a), the minimum penalty is achieved by

grouping the tasks as two groups. If G = 3, one of the two

groups need to be split into two new groups. As a result,

the penalty term value becomes 52+52+52 = 75, which is

greater than the penalty value of two groups. From the above

analysis, we can see that using the square of `2,0-norm as

regularization the new model in (3) is optimized to discover

the correct task group relational structure. Because solving

the `2,0-norm minimization requires integer programming

optimization with high computational cost and the `2,1-norm

is a good convex approximation of the `2,0-norm, we will

utilize the squared `2,1-norm in our new objective to discover

the task group relational structure.

Let Q ∈ <G×T be the binary group indicator matrix

whose elements qgt ∈ {0, 1}, and qgt = 1 if the t-th

task belongs to the g-th task group, otherwise qgt = 0.

Let Qg ∈ <T×T be a diagonal matrix whose elements are

qgt. Obviously, Qg(t, t) = 1 if task t belongs to the g-th

group, otherwise Qg(t, t) = 0, and
∑

g

Qg = I. Then Wg

can be written as: Wg = WQg , which is actually a subset

of columns of W that belong to the g-th group. Thus, our

new group structural multi-task learning model solves:

Jopt = min
W,Qg

Qg(t,t)∈{0,1}

T
∑

t=1

l(Dt;wt) + γ

G
∑

g=1

‖WQg‖
2
2,1 (4)

In our new objective, we simultaneously optimize the co-

efficient matrix W and the task group relational structure

matrix Qg . Therefore, the task group relational structure

can be automatically learned. Meanwhile, the squared `2,1-

norm also imposes the structured sparsity to the tasks

from the same group, such that they share the common

feature subspace and jointly learn together. Please notice

that although the `2,1-norm was used in previous multi-task

learning, the previous models cannot discover the task group

relational structure. Our regularization term is new with

combining both `2,1-norm and group indicator matrix. Based

on our above analysis, our new regularization can discover

the task relational structure better than existing work using

trace norm based regularization.

III. OPTIMIZATION ALGORITHM

In this paper, we propose an iterative re-weighted strategy

to optimize the proposed model (4), which converges very

fast. Actually, the algorithm converges in less than 10

iterations on all the data sets in our experiments.

The loss function in our proposed model can be any type

of loss functions. Since our focus is on the regularization

term, the loss function is set as least square loss for sim-

plicity.

Using the iterative re-weighted strategy, solving problem

(4) is equivalent to solve the following problem:

min
W,Qg

∥

∥Y −XTW
∥

∥

2

F
+ γ

G
∑

g=1
Tr(QgW

TDgWQg)

= min
W,Qg

∥

∥Y −XTW
∥

∥

2

F
+ γ

G
∑

g=1
Tr(QgW

TDgW ) , (5)

where Dg is a diagonal matrix whose diagonal elements are:

Dg(t, t) =
‖WQg‖2,1

‖(WQg)t‖2
, where M t represents the tth row of

M .

We adopt a two step procedure to alternatively optimize

the objective function over W and Q.

When Q is fixed, taking derivative w.r.t W and set it as

0, problem (5) becomes:

XXTW −XY + γ

G
∑

g=1

DgWQg = 0 . (6)



Table I
RMSE OF OUR MODEL WHEN USING DIFFERENT NUMBER OF GROUPS

G. THE SMALLER IS BETTER.

G 1 2 3 4 T

RMSE 0.54 0.32 0.25 0.53 0.29

It is easy to see that Eq. (6) can be decoupled between tasks.

Thus Eq. (6) can be written as:

XXTwt −Xyt + γ

G
∑

g=1

Qg(t, t)DgWt = 0 . (7)

Thus, we get the update equation for wt as following:

wt = (XXT + γ

G
∑

g=1

Qg(t, t)Dg)
−1Xyt . (8)

When W is fixed, problem (5) is reduced to:

min
Qg

G
∑

g=1

Tr(QgW
TDgW ) . (9)

It seems difficult to solve problem (9). However, after careful

analysis, we find that problem (9) can be decoupled by tasks.

Denotes Q ∈ <T×G, where Q(:, g) = diag(Qg) (diag(M)
is defined as taking out the diagonal elements of M as a

vector), and A ∈ R
T×G, where A(:, g) = diag(WTDgW ).

Then problem (9) is reduced to:

min
Q

Tr(QAT ) ⇒ min
Q

T
∑

t=1

Q(t, :)A(t, :)T . (10)

Because each task exactly belongs to one group, only one

elements in Q(t, :) can be 1 and all others should be 0. So

the solution for problem (10) should be as following:

Q(t, g) = 1 if g = g∗

Q(t, g) = 0 if g 6= g∗ , (11)

where g∗ = argmin
g

A(t, g).

It deserves to be mentioned that: although the model

(4) contains integer variables Qg which casts it as an

integer programming problem and makes it very difficult to

solve, our algorithm avoids the computational complexity

of integer programming by decoupling the problem with

tasks when solving Q. Hence, the updating process is very

fast. However, the algorithm proposed in [5] discretized the

integer programming problem, and then used a nested loop

in their algorithm to alternatively optimize model parameter

W and group indicator matrix Q. Thus, their algorithm

converges slowly. We summarize our algorithm in Alg. 1.

The algorithm will converge into a local minimum since

each iteration is decreasing the objective function value. For

space reason, we omit the proof of convergence.

Algorithm 1 Algorithm to solve the problem (4).

Initialize Dg = I .

Random initialize Q.

repeat

Update W by Eq. (8):

wt = (XXT + γ
G
∑

g=1
Qg(t, t)Dg)

−1Xyt

Update Q by Eq. (11):

Q(t, g) = 1 if g = g∗; Q(t, g) = 0 if g 6= g∗ ,

Compute Dg by Dg(t, t) =
‖WQg‖2,1

‖(WQg)t‖2
.

until Converges

(a) Ground-truth structure (b) Task structure recovered by
our model

Figure 2. The task relational structure in parameter matrix. Blue back-
ground means the value is zero.

IV. EXPERIMENTAL RESULTS

In this section, we will present our empirical results to

evaluate the proposed multi-task group learning approach

on vision tasks. The comparison methods used in this paper

are as following:

(1) Non-Grouped MTL (NG): the resulted objective when

we set G = 1 in our model (4), where all tasks indiscrim-

inately assigned into one group and learnt jointly. This is

equivalent to `2,1-norm regularized classification.

(2) Single Task (Single): the resulted approach when we

set G = T in our model (4), where all tasks are learnt

independently.

(3) Grouped Low-Rank MTL (GLR): the method described

in the paper [5].

(4) Non-Grouped Low-Rank MTL (NGLR): the method

described in the paper [1]. This method assumes all tasks

share a common low-rank subspace.

Experiments are conducted on both synthetic data and six

real world vision data. We follow the multi-task learning

experimental set up in previous papers [12], [5]. When we

use one-vs-rest mechanism to solve multi-class classification

problems, we can jointly learn the c (c is the number

of classes) one-vs-rest learning tasks together as a multi-

task learning process. First, we use two handwritten digit

recognition data sets: MNIST and USPS, which were used to

evaluate the Grouped Low-Rank MTL method in the paper

[5]. Moreover, four face recognition data sets are used to

further validate the effectiveness of our method, which are



ORL, YaleB, PIE, and UMIST.

Five-fold cross validation is conducted to evaluate the

performance of those methods. The group number G is

chosen by performing cross validation. RMSE (root mean

squared error, used for regression task) and error rate (used

for classification task) are computed to evaluate the perfor-

mance of these methods.

A. Synthetic Data

The synthetic data are important to help us check whether

a method works as what we expected. The synthetic data

used in our experiments is generated as following: the data

set consists of 900 samples, 30 features, and 30 tasks. We

first generate the model parameter matrix W with sparsity

structure as in Figure 2(a). This means that the first 10 tasks,

middle 10 tasks and the last 10 tasks come form 3 task

groups, respectively. Tasks in each group share a common

subspace consisting of 5 features (the non-zero parts in

Figure 2(a)). Then the data matrix X is randomly generated.

After that, we compute the target variable Y = XTW .

Figure 2(b) shows the task relational structure in model

parameter matrix recovered by our algorithm. We can see

that the pattern (the retained features in different task groups)

in Figure 2(b) is very similar to the ground truth structure of

W in Figure 2(a). This means that our model can correctly

uncover the task relational structure and find the proper com-

mon feature subspaces for different task groups. Using these

recovered feature subspaces, the predictive performance of

multi-task learning can be enhanced.

Figure 3 shows the group structure of tasks by visualizing

the group indicator matrix Q. We see that when the group

number G is set to be 3 (the ground truth group number), our

model recovers the true group structure for all tasks except

for one task.

Table I shows the RMSE for different numbers of groups.

The RMSE is normalized by the standard deviation of target

variable Y . The best RMSE is achieved by setting G = 3
(the ground truth number of task groups), and the result is

significantly better than others.

B. Real World Data Sets

In this section, we evaluate the performance of our

model on handwritten digit recognition data sets and face

recognition data sets. Following previous multi-task learning

experimental setup [12], [5], we treat multi-way classifica-

tion as a multi-task learning problem, where each task is a

classification task of one digit against all the others.

Two handwritten digit data sets are used: MNIST, USPS.

Both of them contain 10 digits from 0 to 9, and one digit is

one class. Multi-way classification problem can be treated as

multi-task learning problems using the one-vs-rest paradigm,

such that each class is a task.

Four image data sets are used for face recognition tasks:

ORL, YaleB, PIE, and Umist. These data sets are all

comprising of human faces, represented using gray scale

pixel values. For the fairness of comparison, the regular-

ization parameters γ are tuned with the same granular-

ity in the same range for different methods, both from

{10−4, 10−3, ..., 103, 104}.

Table II provides the error rates of different methods on

the two digit data sets and four face data sets. On both

handwritten digit data sets, our method (denoted by MTGL)

outperforms other comparison methods. This is because

our multi-task group learning approach is able to discover

the group relational structure of tasks, and utilize different

common feature subspaces for different task groups. MTGL

also outperforms GLR, this shows that: with respect to

discovering the correct group structure in the multi-task

learning setting, identifying a subset of features as the

subspace is better than finding a low-rank subspace. The

performance of NG (non-grouped) method is worse than

MTGL, and NGLR is also worse than GLR. The reason

is that severe incorrect knowledge transfer occurs while

indiscriminately requiring all tasks belong to one group.

What’s more, our method (MTGL) outperforms GLR and

NGLR with statistical significance on three out of the four

data sets: YaleB, PIE, and UMIST. On the MNIST data

set, our method’s improvement over other methods is not

significant. Actually, on both handwritten digit data sets, the

performance of Single (G = T , which is equivalent to Lasso)

and MTGL is quite close. Sounds like on these two data

sets, the traditional Lasso regularized classification performs

pretty good. So the improvement of using multi-task learning

is not obvious.

C. Running Time Comparison

Table III shows the running time comparison for our

MTGL and the GLR method. It is computed by running

the algorithm 20 times on a double core, 3.40Ghz, 64 bit

operating system with 16GB memory. The average time and

standard deviation for running the algorithm one time is

reported. Table III shows that our algorithm converges much

faster than the GLR method.

V. CONCLUSION

In this paper, we propose a new group structured multi-

task learning model with assuming the correlated tasks from

the same group should share the common feature subspaces.

Our method can discover the group relational structure of

tasks and learn the shared common feature subspaces for

each task group. We derive an efficient algorithm using the

iterative re-weighted optimization strategy. The algorithm

avoids the integer programming which has high computa-

tional cost, thus our new algorithm converges very fast.
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(a) G=2 (b) G=3 (c) G=4

Figure 3. Task group structure Q when group number G is varying. Horizontal axis is task, vertical axis is group. Red area means which group the task
is assigned to.

Table II
MEAN ERROR RATES AND STANDARD DEVIATIONS OF DIFFERENT METHODS ON REAL WORLD DATA SETS.

MNIST USPS ORL YaleB PIE UMIST

MTGL 15.5±0.5 8.6±0.4 3.7±0.2 0.3±0.07 3.9±0.3 13.0±1.2

NG 16.1±0.4 9.4±0.6 4.3±0.3 0.4±0.06 3.9±0.4 13.5±1.2
GLR 16.2±0.7 10.9±0.6 3.9±0.2 3.9±0.1 7.1±0.6 21.6±1.7

NGLR 16.4±0.4 11.26±0.3 3.9±0.2 4.2±0.1 7.7±0.7 22.3±1.8
Single 16.1±0.5 9.2±0.4 5.0±0.4 0.6±0.07 4.5±0.4 15.5±1.4

Table III
AVERAGE TIME (SECONDS) AND STANDARD DEVIATION OF RUNNING

THE ALGORITHM ONCE ON DIFFERENT DATA SETS.

MTGL GLR

MNIST 3.5±0.2 16.8±1.1
USPS 3.8±0.3 16.7±1.0
ORL 7.9±0.5 54.5±4.1
YaleB 9.9±0.5 53.9±4.3
PIE 18.1±0.7 123.2±7.7

UMIST 3.9±0.3 32.6±3.2
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