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Abstract—In multi-task learning, it is paramount to discover
the relational structure of tasks and utilize the learned task
structure. Previous works have been using the low-rank latent
feature subspace to capture the task relations, and some of
them aim to learn the group based relational structure of
tasks. However, in many cases, the low-rank subspace may
not exist for the specific group of tasks, thus using this
paradigm would not work. To discover the task relational
structures, we propose a novel multi-task learning method
using the structured sparsity-inducing norms to automatically
uncover the relations of tasks. Instead of imposing the low-
rank constraint, our new model uses a more meaningful
assumption, in which the tasks from the same relational group
should share the common feature subspace. We can discover
the group relational structure of tasks and learn the shared
feature subspace for each task group, which help to improve
the predictive performance. Our proposed algorithm avoids
the high computational complexity of integer programming,
thus it converges very fast. Empirical studies conducted on
both synthetic and real-world data show that our method
consistently outperforms related multi-task learning methods.
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I. INTRODUCTION

Multi-task learning (MTL) is an emerging machine learn-
ing paradigm that learns multiple tasks (in the image catego-
rization example, each category of image is a task) jointly.
In recent years, it has been observed by many researchers
[1], [2], [3], [4] that if tasks are correlated, one task would
benefit from others by jointly learning multiple tasks. Thus,
multi-task learning has been widely researched and applied
to many related areas such as computer vision [5], medical
image analysis [6], bioinformatics [7], and natural language
processing [8].

In order to exploit multi-task learning for vision tasks, one
paramount issue is to discover the task relational structure
and utilize the uncovered task relations to enhance the multi-
task learning models. Only by successfully capturing the
relational structure of tasks, we can benefit from learning
these tasks jointly and increase the predictive performances.
Otherwise, if dissimilar or non-related tasks are learned
jointly, it may lead to the negative effect on the knowledge
transfer, resulting that learning these tasks jointly is worse
than learning them independently. Thus, discovering the

correct task relational structure is the pillar for multi-task
learning.

In current literature, the common way to utilize the task
relations in the multi-task learning models is to assume that
the related tasks share a common yet latent low-rank feature
subspace [1], [8]. The trace norm (nuclear norm) regular-
ization is often used to discover the low-rank subspace. For
example, in [1], Argyriou et. al. proposed to minimize a
loss function with the trace norm based regularization of
the model parameter matrix for all tasks.

However, these methods only assume the task correlations
and impose them in the learning model without explicitly
discovering the task relational structure. In the other recent
work [5], Kang et. al. presented a new method to discover
the task group relations by combining the low-rank subspace
and task group learning, and used the learned task correla-
tions to enhance the predictive performance.

In general, the related tasks are expected to share a com-
mon subset of useful features. If related tasks are grouped
together, tasks from the same group should share a common
subspace consisting of the same subset of features. Based
on this intuition, in this paper, we propose a new multi-
task learning model, which can automatically discover the
task group relational structure, and learn the feature subspace
shared by each task group. Our method jointly optimizes the
model parameter matrix of multi-task learning and the group
indicator matrix of tasks, which groups tasks based on their
relations. As a result, the uncovered task group relational
structure and common feature subspaces can further enhance
the multi-task learning model.

II. NEW MULTI-TASK LEARNING MODEL

Multi-task learning can utilize the interrelations between
tasks by learning multiple tasks jointly. In [1], a multi-task
feature learning model was introduced to find a common
low-rank feature subspace for all tasks. Because the trace
norm is often used to find a low-rank subspace, their
objective function minimizes the loss function with the trace
norm regularization on the model parameter matrix of entire
tasks, which is as following:
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Figure 1.
different regularization terms: (a) applying task group relational structure
regularization (imposing £2 o-norm on each individual task group, which
is discovered automatically) on the model parameter matrix; (b) applying
the flat task regularization (imposing £2 o-norm on all the tasks).

The structures of model parameter matrix W discovered using

where [(-) is a loss function, 7" is the number of tasks,D;
consists of the data matrix (n; data points) and labels (y;)
for the t-th task, W € R4*7T is the model parameter matrix,
wy 18 the £-th column of W, and + is the tradeoff parameter,
[[W]|, denotes the trace norm of W.

This model assumes all tasks share the same common
subspace without investigating the task relational structure.
However, not all tasks are correlated to each other. If the
dissimilar or non-correlated tasks are learned jointly, it may
lead to negative effect on the knowledge transfer and reduce
the predictive performance. Thus, it is crucial to discover
the task relational structure and learn the correlated tasks
together.

In this paper, we propose to learn the task group relational
structure for multi-task learning. If the task group structure
is learned, this information can be used to better regularize
the feature space: by regularizing parameters in each group
rather than regularizing the whole matrix across groups,
we can obtain better knowledge transfer between similar
tasks and avoid negative transfer between dissimilar tasks.
However, learning task group structure is very difficult
since partitioning of tasks into groups involves combinatorial
optimization problem.

Motivated by the above observation, in this paper, we
propose a new regularization formulation for multi-task
learning. The underlying idea is: If the tasks are grouped
according to the task interrelations, the tasks from the same
group are supposed to share a common feature subspace,
whereas tasks in different groups are more likely to have
different feature subspaces. We implement this mechanism
into a newly proposed regularization formulation based on
structured sparsity-inducing norm, which is widely used in
to achieve sparsity for feature selection [9], dimensionality
reduction [10], and regression/classification [11] tasks. An
efficient algorithm is proposed to learn the task group
structure. The algorithm avoids the computational cost of
solving combinatorial optimization problem.

When we propose the new objective and theoretical
analysis, we will use the following example for illustration

purpose, in which we have 20 tasks and 20 features: without
loss of generality, we assume that the group structure of
the tasks is as in Figure 1(a). In this figure, the first 10
tasks belong to one group, and the remaining tasks belong
to another group. The feature subspace of Group 1 (Task 1
to Task 10) consists of features from 1 to 5, and the subspace
of Group 2 (Task 11 to Task 20) consists of features from
11 to 15.

A. New Group Structured Multi-Task Learning Objective
Function

The (3 1-norm of a matrix M is defined as: |[M]|,, =
S M, = 305 1/32; m?;, where M indicates the i-th
row of the matrix M. {3 1-norm is a sparsity-inducing norm
that enforces some rows of the matrix to be zero. 3 o-norm
a matrix M is defined as the non-zeros rows in M.

It is well known that the ¢ ;-norm is a convex envelop
of the ¢ o-norm and can lead to structured sparsity in the
model parameter matrix, which has been successfully used
for multi-task feature learning in previous research [3]. We
propose to regularize the model parameter matrix by the
£3,1-norm to discover the task group relational structure.
However, we cannot straightforwardly apply the /5 ;-norm
or {3 g-norm regularization on the model parameter matrix
W. Because different task groups share different feature
subspaces, the regularization should be applied within each
task group. If the regularization is applied on the entire
model parameter matrix, all tasks would share the same
common feature subspace. Thus, the learned structure of
model parameter matrix will be similar to Figure 1(b).
However, this is not the case for those dissimilar and non-
correlated tasks. We expect the task group regularization
term can discover the real task relational structure such that
the model parameter matrix has the proper structural patterns
as shown in Figure 1(a). Therefore, the regularization on the
entire model parameter matrix may lead to negative effect
on the knowledge transfer and thus deteriorate classification
performance.

If we regularize the model parameter matrix within each
group using the structured sparsity-inducing norms, it natu-
rally comes out to solve the following objective function:
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The loss function in our proposed model can be any type
of loss functions. However, optimizing Eq. (2) would lead
to trivial solution, i.e., the solutions found by using /5 o-
norm regularization on grouped model parameter matrix

(Z [Wgll,4) and on one single non-grouped model pa-

rameter matrix (||W|l, 5) could be identical. As a result, the
correct task group relational structure cannot be properly



discovered. This situation is similar to the trace norm regu-
larization case we discussed in previous section (using trace
norm to the parameter matrix of entire tasks may uncover
the similar low-rank subspaces as using the trace norm to
the parameter matrices of each individual task group).

We are going to explain the reason with using the illus-
tration example in Figure 1. When the /3 o-norm is used
as regularization for (1) the parameter matrix of entire tasks
and (2) the parameter matrices of each individual task group,
the penalties will generate the same results in these two
cases. The value of ¢3¢-norm is the number of retained
features. In the first case, when the /5 o-norm regularization
is imposed to the parameter matrix of the entire tasks, the
learning results are shown in Figure 1(b). The penalty term
value is 10 (the number of retained features). In the second
case, when the /5 o-norm regularization is imposed to the
parameter matrices of each individual task group, we expect
to discover the task group relational structure as shown in
Figure 1(a). In this case, the value of the penalty term is
the sum of number of features retained in every group, i.e.,
5 4+ 5 = 10. However, the penalty term values in these
two cases are the same, i.e. 10, such that the model has
no motivation to discover the correct task group structure as
shown in Figure 1(a). Thus, in the second case, the resulted
task group relational structure can combine all tasks into
one group and leave no tasks in the other group, which is
identical to task relational structure as shown in Figure 1(b).

To tackle this issue, we propose to use the square of /5 o-
norm as regularization, and optimize the following objective:
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In our new formulation, the penalty term values are
different in the above two cases: for case in Figure 1(a),
the value of the penalty term is 5% + 52 = 50; for case in
Figure 1(b), the value becomes (5 + 5)? = 100. Because
we aim to minimize Eq. (3), the model will choose case
(a), i.e. the correct group relational structure of tasks can
be discovered. What’s more, if the ground-truth structure
of W is Figure 1(a), the minimum penalty is achieved by
grouping the tasks as two groups. If G = 3, one of the two
groups need to be split into two new groups. As a result,
the penalty term value becomes 52 + 52 + 52 = 75, which is
greater than the penalty value of two groups. From the above
analysis, we can see that using the square of /3 o-norm as
regularization the new model in (3) is optimized to discover
the correct task group relational structure. Because solving
the {3 p-norm minimization requires integer programming
optimization with high computational cost and the /5 ;-norm
is a good convex approximation of the /3 g-norm, we will
utilize the squared ¢ ;-norm in our new objective to discover
the task group relational structure.

Let Q@ € RE*T be the binary group indicator matrix

whose elements ¢, € {0,1}, and ¢4+ = 1 if the t-th
task belongs to the g-th task group, otherwise g4 = 0.
Let Q, € R"*T be a diagonal matrix whose elements are
ggt- Obviously, Q4(t,t) = 1 if task ¢ belongs to the g-th
group, otherwise Q,(t,t) = 0, and Y Q4 = I Then W,

g
can be written as: W, = WQ,, which is actually a subset
of columns of W that belong to the g-th group. Thus, our
new group structural multi-task learning model solves:

T a
Jopp = min Y UDsw) +7)_ [WQl5, 4
Qq(t,)efo,1} t=1 g=1

In our new objective, we simultaneously optimize the co-
efficient matrix W and the task group relational structure
matrix 4. Therefore, the task group relational structure
can be automatically learned. Meanwhile, the squared /3 ;-
norm also imposes the structured sparsity to the tasks
from the same group, such that they share the common
feature subspace and jointly learn together. Please notice
that although the ¢ ;-norm was used in previous multi-task
learning, the previous models cannot discover the task group
relational structure. Our regularization term is new with
combining both /3 ;-norm and group indicator matrix. Based
on our above analysis, our new regularization can discover
the task relational structure better than existing work using
trace norm based regularization.

III. OPTIMIZATION ALGORITHM

In this paper, we propose an iterative re-weighted strategy
to optimize the proposed model (4), which converges very
fast. Actually, the algorithm converges in less than 10
iterations on all the data sets in our experiments.

The loss function in our proposed model can be any type
of loss functions. Since our focus is on the regularization
term, the loss function is set as least square loss for sim-
plicity.

Using the iterative re-weighted strategy, solving problem
(4) is equivalent to solve the following problem:

G
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min
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where D is a diagonal matrix whose diagonal elements are:

w
Dy(t,t) = % where M* represents the ¢4, row of
g 2
M

We adopt a two step procedure to alternatively optimize
the objective function over W and Q.

When @ is fixed, taking derivative w.r.z W and set it as
0, problem (5) becomes:

G
XXTW - XY +v) DWQ, =0. (6)
g=1



Table I
RMSE OF OUR MODEL WHEN USING DIFFERENT NUMBER OF GROUPS
(. THE SMALLER IS BETTER.

G 1 2 3 4 T
RMSE 054 032 025 053 0.29

It is easy to see that Eq. (6) can be decoupled between tasks.
Thus Eq. (6) can be written as:

G
XXTw, = Xys+9>_ Qq(t,t)DyWy =0 (7)

g=1

Thus, we get the update equation for w; as following:

G
we = (XXT 4+ 7Y Qy(t,t)Dyg) ' Xy (8)
g=1
When W is fixed, problem (5) is reduced to:
G
%;;1 ; Tr(QWTD,W). )

It seems difficult to solve problem (9). However, after careful
analysis, we find that problem (9) can be decoupled by tasks.
Denotes @ € RT*Y, where Q(:, g) = diag(Q,) (diag(M)
is defined as taking out the diagonal elements of M as a
vector), and A € RT*Y where A(:, g) = diag(WTD,W).
Then problem (9) is reduced to:

T
. T ; . AT
min Tr(QA") = min ;:1 Q(t,:)A(t,:)" . (10)

Because each task exactly belongs to one group, only one
elements in Q(¢,:) can be 1 and all others should be 0. So
the solution for problem (10) should be as following:

Qt,g) =1
Q(t,g) =0

where g* = argmin A(t, g).
g

if g=g"
if 9#9", (11)

It deserves to be mentioned that: although the model
(4) contains integer variables (), which casts it as an
integer programming problem and makes it very difficult to
solve, our algorithm avoids the computational complexity
of integer programming by decoupling the problem with
tasks when solving ). Hence, the updating process is very
fast. However, the algorithm proposed in [5] discretized the
integer programming problem, and then used a nested loop
in their algorithm to alternatively optimize model parameter
W and group indicator matrix (). Thus, their algorithm
converges slowly. We summarize our algorithm in Alg. 1.

The algorithm will converge into a local minimum since
each iteration is decreasing the objective function value. For
space reason, we omit the proof of convergence.

Algorithm 1 Algorithm to solve the problem (4).
Initialize D, = I.
Random initialize Q.
repeat
Update W by Eq. (8):

we = (XXT 7 32 Qy(t.0)Dy) Xy
Update Q by Eq. (11)°
Q(t,g) =1if g =g* Q(t,g) = 0if g # g*,
Compute D, by Dy (t,t) = H‘(WQﬁ
until Converges
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(a) Ground-truth structure

(b) Task structure recovered by
our model

Figure 2. The task relational structure in parameter matrix. Blue back-
ground means the value is zero.

IV. EXPERIMENTAL RESULTS

In this section, we will present our empirical results to
evaluate the proposed multi-task group learning approach
on vision tasks. The comparison methods used in this paper
are as following:

(1) Non-Grouped MTL (NG): the resulted objective when
we set G = 1 in our model (4), where all tasks indiscrim-
inately assigned into one group and learnt jointly. This is
equivalent to /5 ;-norm regularized classification.

(2) Single Task (Single): the resulted approach when we
set G = T in our model (4), where all tasks are learnt
independently.

(3) Grouped Low-Rank MTL (GLR): the method described
in the paper [5].

(4) Non-Grouped Low-Rank MTL (NGLR): the method
described in the paper [1]. This method assumes all tasks
share a common low-rank subspace.

Experiments are conducted on both synthetic data and six
real world vision data. We follow the multi-task learning
experimental set up in previous papers [12], [5]. When we
use one-vs-rest mechanism to solve multi-class classification
problems, we can jointly learn the ¢ (c is the number
of classes) one-vs-rest learning tasks together as a multi-
task learning process. First, we use two handwritten digit
recognition data sets: MNIST and USPS, which were used to
evaluate the Grouped Low-Rank MTL method in the paper
[5]. Moreover, four face recognition data sets are used to
further validate the effectiveness of our method, which are



ORL, YaleB, PIE, and UMIST.

Five-fold cross validation is conducted to evaluate the
performance of those methods. The group number G is
chosen by performing cross validation. RMSE (root mean
squared error, used for regression task) and error rate (used
for classification task) are computed to evaluate the perfor-
mance of these methods.

A. Synthetic Data

The synthetic data are important to help us check whether
a method works as what we expected. The synthetic data
used in our experiments is generated as following: the data
set consists of 900 samples, 30 features, and 30 tasks. We
first generate the model parameter matrix W with sparsity
structure as in Figure 2(a). This means that the first 10 tasks,
middle 10 tasks and the last 10 tasks come form 3 task
groups, respectively. Tasks in each group share a common
subspace consisting of 5 features (the non-zero parts in
Figure 2(a)). Then the data matrix X is randomly generated.
After that, we compute the target variable Y = XTWW.

Figure 2(b) shows the task relational structure in model
parameter matrix recovered by our algorithm. We can see
that the pattern (the retained features in different task groups)
in Figure 2(b) is very similar to the ground truth structure of
W in Figure 2(a). This means that our model can correctly
uncover the task relational structure and find the proper com-
mon feature subspaces for different task groups. Using these
recovered feature subspaces, the predictive performance of
multi-task learning can be enhanced.

Figure 3 shows the group structure of tasks by visualizing
the group indicator matrix ). We see that when the group
number G is set to be 3 (the ground truth group number), our
model recovers the true group structure for all tasks except
for one task.

Table I shows the RMSE for different numbers of groups.
The RMSE is normalized by the standard deviation of target
variable Y. The best RMSE is achieved by setting G = 3
(the ground truth number of task groups), and the result is
significantly better than others.

B. Real World Data Sets

In this section, we evaluate the performance of our
model on handwritten digit recognition data sets and face
recognition data sets. Following previous multi-task learning
experimental setup [12], [5], we treat multi-way classifica-
tion as a multi-task learning problem, where each task is a
classification task of one digit against all the others.

Two handwritten digit data sets are used: MNIST, USPS.
Both of them contain 10 digits from 0 to 9, and one digit is
one class. Multi-way classification problem can be treated as
multi-task learning problems using the one-vs-rest paradigm,
such that each class is a task.

Four image data sets are used for face recognition tasks:
ORL, YaleB, PIE, and Umist. These data sets are all

comprising of human faces, represented using gray scale
pixel values. For the fairness of comparison, the regular-
ization parameters vy are tuned with the same granular-
ity in the same range for different methods, both from
{107%,1073, ..., 103, 10%}.

Table II provides the error rates of different methods on
the two digit data sets and four face data sets. On both
handwritten digit data sets, our method (denoted by MTGL)
outperforms other comparison methods. This is because
our multi-task group learning approach is able to discover
the group relational structure of tasks, and utilize different
common feature subspaces for different task groups. MTGL
also outperforms GLR, this shows that: with respect to
discovering the correct group structure in the multi-task
learning setting, identifying a subset of features as the
subspace is better than finding a low-rank subspace. The
performance of NG (non-grouped) method is worse than
MTGL, and NGLR is also worse than GLR. The reason
is that severe incorrect knowledge transfer occurs while
indiscriminately requiring all tasks belong to one group.
What’s more, our method (MTGL) outperforms GLR and
NGLR with statistical significance on three out of the four
data sets: YaleB, PIE, and UMIST. On the MNIST data
set, our method’s improvement over other methods is not
significant. Actually, on both handwritten digit data sets, the
performance of Single (G = T, which is equivalent to Lasso)
and MTGL is quite close. Sounds like on these two data
sets, the traditional Lasso regularized classification performs
pretty good. So the improvement of using multi-task learning
is not obvious.

C. Running Time Comparison

Table III shows the running time comparison for our
MTGL and the GLR method. It is computed by running
the algorithm 20 times on a double core, 3.40Ghz, 64 bit
operating system with 16GB memory. The average time and
standard deviation for running the algorithm one time is
reported. Table III shows that our algorithm converges much
faster than the GLR method.

V. CONCLUSION

In this paper, we propose a new group structured multi-
task learning model with assuming the correlated tasks from
the same group should share the common feature subspaces.
Our method can discover the group relational structure of
tasks and learn the shared common feature subspaces for
each task group. We derive an efficient algorithm using the
iterative re-weighted optimization strategy. The algorithm
avoids the integer programming which has high computa-
tional cost, thus our new algorithm converges very fast.
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Table II
MEAN ERROR RATES AND STANDARD DEVIATIONS OF DIFFERENT METHODS ON REAL WORLD DATA SETS.
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MNIST USPS ORL YaleB PIE UMIST
MTGL 15.5+0.5 8.6+0.4 3.74+0.2 0.3£0.07 3.9+0.3 13.0+1.2
NG 16.1+0.4 9.41+0.6 4.340.3 0.4+0.06 3.9+04 13.5+1.2
GLR 16.2+0.7 10.940.6 3.940.2 3.940.1 7.1+0.6 21.6+1.7
NGLR 16.4+0.4 11.2640.3 3.940.2 4.240.1 7.7+£0.7 22.3+1.8
Single 16.14+0.5 9.2+0.4 5.0+04 0.6+0.07 45404 15.5+1.4
Table III

RAGE TIME (SECONDS) AND STANDARD DEVIATION OF RUNNING
THE ALGORITHM ONCE ON DIFFERENT DATA SETS.

MTGL GLR
MNIST 3.5+0.2 16.8+1.1
USPS 3.840.3 16.7+1.0
ORL 7.94+0.5 54.5+4.1
YaleB 9.94+0.5 53.944.3
PIE 18.1£0.7 123.2£7.7
UMIST 3.94+0.3 32.6+3.2
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