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Abstract Flexibility in plug-in electric vehicle (PEV) charg-

ing can reduce the ancillary cost effects of wind variability and

uncertainty on electric power systems. In this paper, we study

these benefits of PEV charging, demonstrating that controlled

PEV charging can reduce costs associated with wind uncer-

tainty and variability. Interestingly, we show that the system

does not require complete control of PEV-charging loads to

mitigate the negative cost impacts of wind variability and

uncertainty. Rather, PEV owners giving the system a two-hour

window of flexibility in which to recharge their vehicles pro-

videsmuchof thebenefits that giving full chargingcontrol does.

Keywords Plug-in electric vehicle, Controlled charging,

Wind integration, Demand response, Unit commitment and

dispatch

1 Introduction

Concerns surrounding growing energy demand, climate

change, and finite fossil-fuel supplies have increased

interest in the use of renewable energy resources.

Renewables, such as wind, can significantly reduce elec-

tricity-related emissions and costs by displacing conven-

tional fossil-fueled resources. They can, however, have

ancillary cost impacts on other generators. This is because

their real-time output is uncertain and variable when

making operational decisions day- or even hour-ahead.

More specifically, to accommodate this variability, con-

ventional generators may have to frequently adjust their

output levels or be cycled on and off. A power system may

also need more reserves from conventional generators to

balance wind uncertainty, forcing generators to operate

inefficiently in a partially loaded fashion [1, 2]. Empirical

numerical studies of the Belgian [3], Irish [4], Texas [5],

and U.K. [6] power systems further demonstrate these

effects of wind.

One commonly proposed means of mitigating these cost

impacts of renewables is to use some form of demand

response, whereby flexible demands follow the availability

of wind. Through such a scheme, demand responds to

unexpected drops in the availability of wind, reducing the

need to use costly conventional generators to replace

renewable supply. Demand can also respond to unexpected

increases in wind availability, reducing possible wind

curtailment due to generator or transmission constraints

[7]. A number of numerical studies [5, 8, 9] show that

demand response can effectively reduce the ancillary costs

of wind uncertainty and variability.

A limitation of these analyses is that they do not answer

the question of what exact loads respond to wind avail-

ability. Instead they assume that some portion of the load is

flexible and responds to price or other signals indicating

wind availability. A natural source of load flexibility is

plug-in electric vehicle (PEV) charging. A PEV owner is

typically only concerned with having energy recharged into

the PEV’s battery before the next vehicle departure. Thus,
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there is potentially flexibility in when and the rate at which

a PEV is recharged between its arrival to and subsequent

departure from a charging station. Properly controlled PEV

charging can, therefore, provide demand response to

accommodate wind variability.

A number of works examine how to control PEV

charging. Reddy et al. [10] develop a fireworks algorithm

to schedule PEV charging and the use of renewable energy

to minimize power system emissions and cost. Liu et al.

[11] develop a PEV charging-control algorithm to optimize

the peak-valley difference of a power system, considering

wind and solar production. Liu et al. [12] survey a variety

of centralized and decentralized PEV-charging-control

algorithms. They present a mathematical framework,

which they propose using to evaluate the positive and

negative characteristics of the algorithms in terms of dif-

ferent actors in the power system. Momber et al. [13]

introduce a PEV-charging control model that accounts for

risk-aversion.

In this paper we use a numerical case study, based on the

Electricity Reliability Council of Texas (ERCOT) system,

to demonstrate the benefits of controlled PEV charging on

wind integration. We focus on the impacts of controllable

PEV-charging loads on reducing the costs arising from

wind variability and uncertainty. Our analysis assumes that

PEVs are used solely to provide demand response. This

means that the timing and rate of PEV charging can be

adjusted based on wind availability and other power-sys-

tem conditions. Our analysis does not allow PEV batteries

to be discharged to provide so-called vehicle-to-grid ser-

vices [14–16]. Moreover, we require each PEV to be fully

recharged by the time it finishes each stop at a charging

station. Thus, the demand response that we model does not

allow PEV-charging load to go unserved. Rather, it only

allows those loads to be shifted during the window of time

that a vehicle is grid connected.

Our case study examines PEV charging and power

system operations over a one-year period. We assume

about 7GW of wind is added to a system with a peak non-

PEV load of about 60GW. We further assume that a fleet

of about 50000 PEVs, which require a total of about

470MWh of energy to be recharged into their batteries

each day, is added to the system.

We demonstrate that without the PEVs, wind uncer-

tainty and variability impose an ancillary cost of about

$0:23=MWh of wind. This cost increases to $0:46=MWh of

wind if PEV charging is not controlled (i.e., PEVs charge

immediately upon arrival at a charging station). However,

if PEV charging can be fully controlled, the ancillary cost

of wind uncertainty and variability is reduced to

$0:09=MWh. We also examine a case in which there is a

limited two-hour window of flexibility within which PEV

charging can be controlled. We show that such a two-hour

window of flexibility provides much of the benefits of

complete PEV-charging control. This is because the benefit

of controlled PEV charging is in allowing the system to

more easily accommodate errors in estimating wind

availability. Although wind forecasts can be wrong in a

particular hour, these errors tend to smooth out over the

course of several hours. Thus, some limited flexibility in

shifting PEV-charging loads around within two hours

provides almost as much benefit as complete control of

PEV charging in reducing wind-integration costs. The

choice of studying a two-hour window of flexibility is

meant to represent an intermediate case of charging con-

trol, between the extremes of uncontrolled and fully con-

trolled PEV charging. One could study other intermediate

cases, which is an area of further study.

The remainder of this paper is organized as follows.

Section 2 details the models that are used to examine how

the power system is operated and PEVs are recharged

under the different cases constituting our study. Section 3

summarizes the data and assumptions underlying our

numerical case study. Section 4 presents our results and

Section 5 concludes.

2 Models and methods

Our analysis is based on a unit commitment and dispatch

model that considers the scheduling of PEV-charging loads

[16]. Our model is agnostic to who actually controls PEV

charging, so long as it is co-ordinated and co-optimized

with the commitment and dispatch of the power system.

We give a detailed formulation of our scheduling model in

Section 2.1 and then explain how the model is used in

analyzing different PEV-charging and wind cases to eval-

uate the benefits of controlled PEV charging in Section 2.2.

2.1 Scheduling model formulation

Our analysis studies hourly power system operations and

PEV charging over a one-year period. We conduct this

analysis in a rolling-horizon fashion, which is further

detailed in Section 2.3. This is done by rolling forward

through each hour of the year and determining system

operations and PEV charging for that hour while consid-

ering future system and PEV-charging needs. In the fol-

lowing, we provide the formulation of the model starting

from hour m. Note that in the rolling-horizon technique,

the value of m varies from 1 to 8760 as the algorithm rolls

through the hours of the year.
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2.1.1 Model notation

We begin by first defining model notation.

1) Index parameters and sets

Our model assumes a fixed T-hour optimization horizon.

Although we simulate power system operations and PEV

charging one hour at a time, these decisions are made

taking into account future power-system and PEV-charging

needs over the subsequent T hours. The system is assumed

to have a set, I, of conventional generators. An additional

set of wind generators are modeled, but not included in the

set, I.

We also assume that the PEVs are categorized according

to a set, V, of PEV-driving profiles. The PEVs modeled are

each assigned to one of the driving profiles in the set, V.

2) Power system parameters and data

Generators are modeled using the three-part cost struc-

ture that is standard in unit commitment models. This

consists of a startup cost, cSi , which is incurred whenever

generator i is switched on from an offline state, a no-load

cost, cNi , which is incurred each hour that generator i is

online (regardless of its generation level), and a variable

cost, cVi ð�Þ, which gives the per-hour variable cost as a

function of energy produced. Although cVi ð�Þ can presum-

ably take any form, in our case study we restrict attention

to convex piecewise-linear functions, which is standard in

unit commitment modeling.

Our model includes standard constraints on generator

operations. Generator i must produce between Q�
i and

Qþ
i MW during hours that it is online. Otherwise, it is

restricted to producing 0MW when offline. There are also

restrictions on how much the output of each generator can

increase or decrease from one hour to the next. We let R�
i

and Rþ
i denote the maximum amount by which the output

of generator i can decrease and increase, respectively, from

one hour to the next. Generators also have restrictions on

being cycled on and off. We let s�i and sþi denote the

minimum number of hours that a generator must remain

offline after being shutdown and online after being started

up, respectively. Finally, generators have restrictions on

how much reserves they can provide. We let qSi denote the
maximum amount of spinning reserves that generator i can

provide in each hour, which can only be provided during

hours that the generator is online. Similarly, qNi denotes the

maximum amount of non-spinning reserves that generator i

can provide. Non-spinning reserves can be provided by

generators regardless of whether they are online or offline.

In addition to the limits, qSi and qNi , any reserves provided

by a generator must satisfy its ramping and capacity

constraints.

Wind generators are modeled as having zero operating

cost. Moreover, we let �Wt denote total wind generation

available in hour t.

We let lt denote the hour-t non-PEV load. In addition to

a load-balance constraint, we also impose load-based

reserve restrictions. We require that, at a minimum, a

fraction, gS, of the hourly load be held as spinning reserves.

We similarly require that, at a minimum, a fraction, gN , of
the hourly load be held as non-spinning reserves.

3) PEV parameters and data

Each of the PEVs that are modeled is assigned to one of

the driving profiles in the set, V. We let Nv denote the

number of PEVs that are assigned to driving profile v. We

further assume that all of the PEVs that are assigned to a

driving profile have the same driving patterns (i.e., arrival

times to and departure times from charging stations) and

battery state of charge (SOC) upon arrival to the charging

station. We let /A
v and /D

v denote the arrival time to and

departure time from the charging station of the PEVs that

are assigned to driving profile v.

We let fv denote the remaining charging energy that

must be supplied to PEVs in driving profile v. The value of

fv is updated in our rolling-horizon algorithm (cf. Sec-

tion 2.3) as PEV-charging decisions are made on an hour-

by-hour basis. We assume that a PEV can only be charged

between its arrival and departure times and that the full fv
MWh of charging demand must be supplied to each PEV in

driving profile v before its departure time in hour /D
v . All

PEVs are assumed to connect to the same type of charging

station with a charging capacity of �H MW.

Each PEV-driving profile is modeled as having a single

arrival and departure time. In practice, a PEVmayhavemultiple

trips and be parked at a charging stationmultiple times during a

day. We capture multiple parking events by representing each

event as a separate drivingprofile.As anexample, suppose that a

PEV is parked from 9 am until 11 am, then departs the charging

station, and is parked again from3 pm until 7 pm.Thiswould be

represented by breaking the PEV into two driving profiles. The

first would have arrival and departure times at 9 am and 11 am,

and the model would require the PEV to be fully recharged

before its 11 am departure. The second driving profile would

have 3 pm and 7 pm arrival and departure times.

4) Decision variables

We represent generator-commitment decisions using

three sets of binary variables. The variable ui;t is defined to

equal 1 is generator i is online in hour t and equal 0

otherwise. Similarly, hi;t and si;t are defined to equal 1 if

generator i is shutdown and started up in hour t, respec-

tively, and equal 0 otherwise. Generator-dispatch decisions

are modeled using another three sets of continuous vari-

ables. We let qi;t denote generator i’s hour-t production
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level in MW. We also let rSi;t and rNi;t denote the MW of

spinning and nonspinning reserves, respectively, provided

by generator i in hour t. We represent the dispatch of wind

generators with another set of continuous variables. We let

wt denote hour-t wind production in MW.

We assume that all of the PEVs that are assigned to a

driving profile have the same charging profile assigned to

them. We let zv;t denote the MW of power recharged in

hour m into each PEV with driving profile v.

2.1.2 Model formulation

Our hour-m scheduling model is formulated as:

min
h;q;r;s;u;w;z

XTþm

t¼m

X

i2I
cVi ðqi;tÞ þ cNi ui;t þ cSi si;t
� �

ð1Þ

s:t: lt þ
X

v2V
Nvzv;t ¼

X

i2I
qi;t þ wt 8t ¼ m; . . .; T þ m

ð2Þ
X

v2V
Nvzv;t þ

X

i2I
rSi;t

� gS � lt þ
X

v2V
Nvzv;t

 !
8t ¼ m; . . .; T þ m

ð3Þ

X

v2V
Nvzv;t þ

X

i2I
rSi;t þ rNi;t

� �

� gS þ gN
� �

� lt þ
X

v2V
Nvzv;t

 !
8t ¼ m; . . .; T þ m

ð4Þ

Q�
i ui;y � qi;t 8t ¼ m; . . .; T þ m; i 2 I ð5Þ

qi;t þ rSi;t �Qþ
i ui;y 8t ¼ m; . . .; T þ m; i 2 I ð6Þ

qi;t þ rSi;t þ rNi;t �Qþ
i 8t ¼ m; . . .; T þ m; i 2 I ð7Þ

0� rSi;t � qSi ui;t 8t ¼ m; . . .; T þ m; i 2 I ð8Þ

0� rNi;t � qNi 8t ¼ m; . . .; T þ m; i 2 I ð9Þ

R�
i � qi;t � qi;t�1 8t ¼ m; . . .;T þ m; i 2 I ð10Þ

qi;t þ rSi;t þ rNi;t � qi;t�1 �Rþ
i 8t ¼ m; . . .; T þ m; i 2 I

ð11Þ
Xt

n¼t�sþ
i

si;n � ui;t 8t ¼ m; . . .; T þ m; i 2 I ð12Þ

1�
Xt

n¼t�si
i

hi;n � ui;t 8t ¼ m; . . .; T þ m; i 2 I ð13Þ

ui;t � ui;t�1 ¼ si;t � hi;t 8t ¼ m; . . .; T þ m; i 2 I ð14Þ

ui;t; si;t; hi;t 2 f0; 1g 8t ¼ m; . . .; T þ m; i 2 I ð15Þ

0�wt � �Wt 8t ¼ m; . . .; T þ m ð16Þ

0� zv;t � �H 8t ¼ m; . . .; T þ m; v 2 V ð17Þ

zv;t ¼ 0 8v 2 V ; t 62 /A
v ;/

D
v

� �
ð18Þ

XTþm

t¼m

zv;t ¼ fv 8v 2 V ð19Þ

Objective function (1) minimizes the total unit commit-

ment and dispatch cost over the T-hour model horizon. Our

model includes three system-wide constraints. First, con-

straints (2) impose the hourly load-balance requirements

that the sum of non-PEV and PEV-charging demand

exactly equals energy produced by conventional and wind

generators. Constraints (3) and (4) impose contingency-

reserve requirements. We model two types of contingency

reserves: spinning and non-spinning reserves. These con-

straints allow the reserve requirements to be met using

PEV-charging loads. The reason for this is that if a system

contingency (e.g., a major generator or transmission fail-

ure) occurs in real-time, PEV-charging loads can be

reduced to help mitigate the supply shortfall [16]. Con-

straints (4) allow spinning reserves to serve the nonspin-

ning reserve requirement. This is because spinning reserves

are ‘higher-quality’ in the sense that they must be provided

by generators that are online and able to respond to a

system contingency quickly. Nonspinning reserves, con-

versely, can be provided by generators that are offline (so

long as they are able to startup and begin producing energy

within a relatively short window of time, which is reflected

in whether a generator has a non-zero value for qNi ).
Constraints (5)–(7) impose the capacity constraints on

the conventional generators. Note that when a generator is

offline (i.e., ui;t ¼ 0) it is restricted to providing zero

generation and spinning reserves but can provide non-

spinning reserves. Otherwise, if a generator is online, it can

provide any combination of energy and reserves, so long as

the maximum generation level is not violated. Con-

straints (8) and (9) impose the reserve-capability restric-

tions on the conventional generators. A conventional

generator can only provide spinning reserves in a given

hour if it is online during that hour (hence, the right-hand

sides of constraints (8) have ui;t terms). Generators that are

qualified to provide nonspinning reserves can provide them

when offline. Constraints (10) and (11) impose the ramp-

ing restrictions. As with generator upper-capacity con-

straints (6) and (7), ramp-up constraints (11) consider

energy and reserves provided by generators in each hour.

Constraints (12) and (13) impose the minimum up- and

down-time restrictions when a generator is started up- or
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shutdown. Constraints (14) impose the state-transition

logic by defining the values of the si;t and hi;t variables in

terms of changes in the ui;t variables. Constraints (15) force

the state variables to take on binary values. Con-

straints (16) impose the limits on wind generation.

Constraints (17) impose the charger capacity, by

restricting the amount recharged into each PEV based on

the capacity of the charger. Constraints (18) impose the

driving pattern, by only allowing each PEV to be recharged

while it is parked (i.e., between hours /A
v and /D

v ). Finally,

constraints (19) force each PEV to be fully recharged

before leaving its charging station.

2.2 Cases examined

We examine the impacts of wind and PEV charging

under the eight cases that are summarized in Table 1.

These cases vary in how wind and PEVs are modeled.

Cases 1, 3, 5, and 7 assume that future wind availability is

known with perfect foresight when solving the scheduling

model. This means that the values of �Wm; . . .; �WmþT that

are used in the hour-m scheduling model all reflect the

actual wind that will be available in each of hours m

through ðmþ TÞ. Cases 2, 4, 6, and 8, conversely, assume

that forecasts of future wind availability must be used when

solving the scheduling model. These cases all assume that

the value of �Wm that is used in the hour-m scheduling

model reflects the actual wind available in hour m. The

values of �Wmþ1; . . .; �WmþT that are used in the hour-m

scheduling model reflect hour-m forecasts of wind avail-

ability in hours ðmþ 1Þ through ðmþ TÞ, however. Fur-
ther details on how wind availability is simulated and wind

forecasts are generated are given in Section 3.3.

Cases 1, 3, 5, and 7 represent counterfactuals in which

future wind availability is known with perfect foresight.

The cost differences between each of Cases 1, 3, 5, and 7

and each of Cases 2, 4, 6, and 8, respectively, measure the

incremental cost impacts of having to schedule generation

and PEV charging without perfect foresight of future wind

availability. This is a commonly used metric to measure the

ancillary operational cost associated with wind uncertainty

and variability [5, 17–22] and is the metric that we use in

our analysis.

Cases 1 and 2 assume that there are no PEVs in the

system whereas Cases 3 through 8 assume that there are

PEVs employing different charging strategies. Cases 3

and 4 assume that there is no control over PEV charging. In

these cases, each PEV is assumed to begin charging

immediately upon arriving to its charging station. These

cases are modeled by fixing the values of the zv;t variables

to

zv;t ¼ min fv �
X

n\t

zv;n

 !þ

; �H

( )
8t ¼ /A

v ; . . .;/
D
v

ð20Þ

in the scheduling model. Equation (20) defines the hour-t

uncontrolled charging demand of PEVs with driving

profile v as the minimum between the amount of

unserved charging demand, which is defined as

fv �
X

n\t

zv;n

 !þ

and the charger capacity, which is �H.

Cases 5 and 6 assume that there is limited (two-hour)

control over PEV charging. This case is modeled by first

determining in which hour PEVs assigned to each driving

profile will be recharged in the no-control case as:

ev ¼ /A
v þ

fv
�H

� 	
8v 2 V ð21Þ

where d�e is the ceiling operator. Equation (21) defines the

amount of time that it takes PEVs to recharge as the ceiling

of the ratio between fv (the amount of energy that must be

recharged into the PEVs that are assigned to driving

profile v) and �H (the capacity of the charger). The two-hour

control case assumes that PEV owners allow an additional

two hours of flexibility in being fully recharged beyond the

time (i.e., the end of hour ev) that their PEVs would be

recharged if uncontrolled. These cases are modeled by

changing constraints (18) in the scheduling model to:

zv;t ¼ 0 8v 2 V ; t 62 ½/A
v ;minð/D

v ; ev þ 2Þ� ð22Þ

Finally, Cases 7 and 8 allow full flexibility in recharging

the PEV within the window of time that it is parked at the

charging station. These cases are modeled using the

scheduling model that is outlined in Section 2.1, without

any changes to the constraints or fixing of variables.

Figure 1 illustrates the charging windows in the three

charging-control cases studied. The horizontal axis of the

figure represents time and shows the case of a vehicle that

is parked in the charging station between hours /A
v and /D

v .

In the full-control case, the scheduling model has the

Table 1 Cases examined

PEV Wind

Perfect foresight Forecast

None 1 2

No control 3 4

Two-hour control 5 6

Full control 7 8
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flexibility to charge the PEV anytime between these arrival

and departure times (so long as the vehicle is fully

recharged before hour /D
v , as constraints (19) require). In

the no-control case, the PEV begins charging at the �HMW

capacity of the charger immediately and finishes charging

in hour ev, as defined in (21). The two-hour-control case

allows an intermediate amount of flexibility. The

scheduling model can charge the vehicles within an addi-

tional two-hour window of time, relative to the no-control

case. If a PEV is parked for less than two hours beyond ev,

then it is assumed to charge as in the uncontrolled case

(i.e., immediately) in the two-hour-control case.

Constraints (22), defining the two-hour control case, fix

values of zv;t ¼ 0 for t[ minð/D
v ; ev þ 2Þ. This is because

from some driving profiles, the two-hour control window

may extend beyond the period of time that the vehicle is

parked. For instance, if a vehicle is parked for two hours

and would require one hour of charging in the no-control

case, the two-hour- and full-control cases would give the

scheduling model the same window of time within which

to recharge the PEV.

Cost differences between the different PEV-charging

cases (i.e., between each of Cases 3 and 4, 5 and 6, and 7

and 8) allow us to gauge the cost effects and benefits of

allowing flexibility in recharging PEVs. The choice of

studying PEV charging in cases with no control, full con-

trol, and with a two-hour window of flexibility is meant to

represent two extreme and one intermediate cases. One

could study other intermediate cases (i.e., with half an hour

of charging control). This is, indeed, an area of further

study to understand how much charging flexibility is nee-

ded to harness the benefits of PEV charging in mitigating

wind-integration costs.

2.3 Rolling-horizon solution algorithm

We simulate the commitment and dispatch of generators

and the scheduling of PEV charging over a year-long

period. Solving an integrated scheduling model over a

year-long optimization horizon would be intractable. As

such, we employ the rolling-horizon solution method that is

outlined in Algorithm 1. This algorithm simulates the

generator and PEV-charging scheduling process over the

year one hour at a time, by rolling forward through the

hours of the year.

The algorithm works by first fixing the starting state in

hour 0 of all of the generators in Step 1. This is needed to

set hour-1 ramping and minimum up- and down-time

constraints for the generators. We assume that all of the

generators are online and producing at their minimum

operating points (i.e., that qi;0 ¼ Q�
i ; 8i 2 I) and that each

generator has been online a sufficient number of hours that

it could be immediately switched off in hour 1, if the

scheduling model finds it optimal to do so.

Steps 3 through 7 are the main iterative loop of our algo-

rithm, which goes through each hour of the year. The loop

begins in Step 3 by updating wind-availability data for the T-

hour horizon of the hour-m schedulingmodel. As discussed in

Section 2.2, the values of the �Wmþ1; . . .; �WmþT can either be

actual wind availabilities or forecasts, depending onwhich of

the cases that are listed in Table 1 is being modeled.

Next, Step 4 solves the hour-m scheduling problem and

Step 5 fixes the values of the hour-m generator and PEV-

charging scheduling variables only. The values of decision

v
A ev e v+2

v
D

Full
control

2-Hour
control

No
control

C
ha

rg
in

g-
co

nt
ro

l c
as

es

Time

Fig. 1 Illustration of charging window in no-, two-hour-, and full-

control cases

Algorithm 1 Rolling-horizon solution algorithm
1: fix starting values for h i,0 , qi,0 , s i,0 , u i,0
2: for m = 1, 2,. . . , 8760 do
3: update W̄ m , . . . , W̄ m + T
4: (h, q, r, s, u, w, z) arg min (1) s.t. (2)–(19)
5: fix h i,m , qi,m , r Ni,m , r

S
i,m , s i,m , u i,m ; i I ; wm ; zv,m ; v V; to values found in

6: Kt i I cVi (qi ,m) cNi u i,m cSi s i,m
7: v v z v,m ; v V such that A

v m and D
v m + 1

8: end for

Step 4

++
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variables for hours ðmþ 1Þ through ðmþ TÞ are deter-

mined in subsequent iterations of the algorithm. Step 6

computes the cost incurred in hour m, based on the values

of the hour-m decision variables, which are fixed in Step 5.

Finally, Step 7 updates the amount of charging energy that

remains unserved for vehicles that arrived before hour m,

based on the PEV-charging decisions determined by the

hour-m scheduling model.

3 Case-study data

We study the interactions of wind and PEV charging

over one year, using a case study based on the ERCOT

power system. Most of our case-study data are taken from

the work of Madaeni and Sioshansi [20], which is based on

year-2005 data for ERCOT. We formulate the scheduling

model using version 12.1.0 of the AMPL mathematical

programming software package and solve it using the

branch-and-cut algorithm in CPLEX 12.5.1.0 with default

settings. CPLEX is an industry-standard optimization sol-

ver that is widely used in the electric-power industry.

We detail all of the data sources that are used in our

analysis in the following subsections.

3.1 Conventional-generator data

Cost data for conventional generators are modeled using

heat rates and historical fuel and SO2-permit prices. These

data are obtained from proprietary databases maintained by

Platts Energy and Global Energy Decisions. Conventional-

generator-constraint data are obtained from Global Energy

Decisions. The two nuclear plants in ERCOT are modeled

as must-run units that constantly operate at their nameplate

capacity. In total we model 375 dispatchable generators

that were installed and operational in the ERCOT system in

the year 2005.

3.2 Non-PEV-load data

Non-PEV loads are modeled using 15-minute metered

historical ERCOT load data from the year 2005, obtained

from the Public Utility Commission of Texas. Because our

scheduling model is formulated using hourly time steps,

each of the four 15-minute measurements corresponding to

each hour are averaged together to obtain an hourly-aver-

age load.

3.3 Wind data

Our case study assumes that there is 7GW of wind

installed in the system, which is approximately 10% of the

peak non-PEV load of about 60GW. Thus, we study a

high-penetration scenario (relative to the year 2005), con-

sidering ERCOT did not achieve 7 GW of wind until 2008.

We simulate real-time wind availability and generate wind

forecasts using a vector autoregression model that is fit to

three years’ publicly available data from the Western Wind

Resources Dataset (WWRD) for the year 2005 [23].

The WWRD consists of modeled historical wind-gen-

eration data at 10-minute intervals for numerous sites

across the western United States and is generated by 3TIER

for the Western Wind and Solar Integration Study [24].

Each of the sites in the WWRD is able to support 30MW

of wind capacity. We assume that the 7GW of wind are

distributed among the 234 WWRD locations in ERCOT

that have the highest wind capacity factors.

We convert the WWRD data, which are reported at 10-

minute intervals, to hourly data. We then fit a vector

autoregression model [25] to the WWRD data. The fitted

model is then used to simulate hourly wind generation at

each of the 234WWRD locations and to generate the wind-

availability forecasts that are used in Cases 2, 4, 6, and 8.

3.4 PEV data

PEV driving patterns are modeled using a Monte Carlo-

based method to generate typical daily driving patterns. We

use statistical properties of light-duty vehicle driving pat-

terns within the United States [26, 27] to calibrate the

simulation model.

More specifically, we assume that the number of trips

each vehicle makes daily has a normal distribution with a

mean of 4 and a variance of 1.33 [27]. Once we simulate

the number of trips each vehicles makes daily, we deter-

mine the distances of each trip. If the vehicle makes a

single trip, the trip distance is randomly generated from a

Weibull distribution with a mean of 36.12 miles (we use

Imperial units for distances, because they are still the

standard unit of measure used in the United States) and a

variance of 12.04 [26]. If the vehicle makes two daily trips,

the distance of each trip is half of the distance generated

from the Weibull distribution (i.e., we assume that the

vehicle is used for commuting to and from a workplace). If

the vehicle makes three or more trips daily, two of them

(which represent commuting trips) have distances that are

one third of the Weibull-distributed distance. The remain-

ing trip distances are randomly generated using a truncated

non-negative Gaussian distribution. The mean and variance

of the Gaussian distribution are determined so that in

aggregate, one third of the vehicle miles driven are for

commuting to and from the workplace [27]. The starting

and ending times of each vehicle trip are determined based

on the relative weights of vehicles reported to be driving at

different times of day [27].
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We assume that the ERCOT system has 50000 PEVs,

which corresponds to 0.66% of the light-duty vehicle fleet

in ERCOT in 2005. The PEVs are assumed to have the

characteristics (i.e., battery capacity and energy-consump-

tion rate) of a 2014 Nissan Leaf and to connect to 5 kW

chargers that incur 10% energy losses in recharging the

vehicle batteries. Table 2 summarizes the tested charac-

teristics of the Nissan Leaf, which are used in our analysis.

The 10% energy losses in recharging the vehicle batteries

is taken into account when computing the value of fv in

Step 7 of Algorithm 1. The Monte Carlo model is used to

generate 1023 typical driving profiles. The 50000 PEVs are

uniformly assigned to the 1023 driving profiles, meaning

that about 49 PEVs follow each driving profile. We further

assume that each PEV follows the same driving profile

each day.

As noted in Section 2.1, the scheduling model repre-

sents each driving profile as having a single arrival and

departure time to a charging station. Because each of the

simulated driving profiles can have multiple daily trips,

each driving profile is subdivided into a separate profile in

the scheduling model. As such, there are 4410 PEV driving

profiles in the scheduling model, corresponding to these

subdivisions.

4 Case study results

Table 3 summarizes the total annual generation costs

incurred in the eight different cases (cf. Table 1) examined.

These costs are computed as:

X8760

t¼1

Kt;

where the Kt’s are defined in Step 6 of Algorithm 1. The

first two columns of the table show that without PEVs and

in the three different PEV-charging control cases, costs are

higher when the system must be scheduled using wind

forecasts as opposed to having perfect foresight of wind.

This is to be expected, and the cost difference between

each pair of forecast and perfect-foresight cases measures

the value of perfect wind-availability information.

The last column of Table 3 reports the cost difference

between the forecast and perfect-foresight cases divided by

total wind generation over the course of the year. The

values in this column represent the cost of wind uncertainty

and variability (which we term ‘wind-integration cost’ in

the table) on a per-MWh basis. We find that when PEVs are

added to the system but their charging cannot be con-

trolled, they double the ancillary cost impacts of wind

uncertainty. However, if PEV charging can be fully con-

trolled, wind-integration costs are reduced by close to 61%.

Interestingly, having only two-hours of flexibility within

which to control PEV charging reduces wind-integration

costs by close to 35%. This means that two hours of

charging control delivers close to 60% of the benefits of

complete control over PEV charging.

We note that with perfect foresight of wind, the two-

hour-control case achieves lower total cost than the full-

control case. This is not unexpected, because by default

CPLEX does not solve the scheduling model to complete

optimality. Rather, the branch-and-cut algorithm termi-

nates once the optimality gap of the incumbent solution is

sufficiently small. In essence, the objective function of the

scheduling model is extremely ‘flat’ around the optimum,

and there are many near-optimal solutions that are virtually

identical in terms of overall cost. A similar phenomenon is

observed by Sioshansi and Miller [28], who find that

adding emissions constraints to a model that schedules

PEV-charging loads has virtually no impact on overall

system costs. This cost-related finding is further evidence

of the fact that the two hours of charging control delivers

most of the benefits that complete charging control does.

When taking into account the fact that CPLEX finds near-

optimal solutions, the two cases are very similar in terms of

total overall cost.

Examining the charging profiles in the different cases

provides some insights into the different interactions

between PEV charging and wind. Figure 2 contrasts the

total aggregate PEV charging profile on the morning of

26 July with full and no charging control with and without

perfect foresight of wind. It also shows the actual wind

profile and wind forecasts in hours 11 and 14.

We first note that the PEV-charging profile with no

charging control does not respond in any way to system

load or wind availability. As expected, much of the PEV

Table 2 Tested characteristics of 2014 Nissan Leaf

Range 84 miles (135 km)

Battery capacity 24 kWh (21:3 kWh usable)

Efficiency 0:158 kWh=km

Table 3 Annual generation costs

PEVs Total generation cost

($ Million)

Wind-integration

cost ($/MWh of

wind)
Perfect foresight Forecast

None 10934.34 10940.67 0.23

No control 10928.22 10940.84 0.46

Two-hour control 10926.64 10930.86 0.15

Full control 10928.16 10930.68 0.09
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recharging is done midday and in the early evening when

vehicles first arrive at a charging station (e.g., at a work-

place or stopping while running errands midday or at home

in the early evening after commuting). This charging pro-

file is undesirable because on many days the PEVs are

adding load to the system when the non-PEV loads are

peaking as well [16, 29]. The PEV-charging profiles with

full control, conversely, defer vehicle charging from the

early evening (after commuters return home from work) to

the middle of the night when the non-PEV loads and the

marginal cost of generation are low.

We find that the full-charging-control cases do schedule

peaks in the PEV-charging profiles midday in hours 11, 14,

and 15. These peaks in the PEV-charging profiles are dri-

ven by wind availability. Contrasting the PEV-charging

profiles with and without perfect foresight of wind shows

the impacts of imperfect wind information. For instance,

the model schedules more PEV-charging load in hours 11

and 14 when using forecasts (compared to having perfect

foresight), because the model anticipates less wind being

available in the future. For instance, the hour-11 forecast

anticipates a total of 22:8GWh of wind being available

between hours 11 and 18 as opposed to 27:0GWh actually

being available. As such, the model schedules PEV-

charging loads earlier than when it is optimal to do so with

perfect information. Such an effect is also observed in

hour 14. The hour-14 wind forecast anticipates hour 14

having the peak wind availability of the afternoon. As such,

a peak in the PEV-charging load is scheduled in hour 14. In

reality, however, wind availability increases in hour 15 and

delaying PEV charging an hour longer reduces system

cost.

Figures 3 and 4 show two cases in which having only

two-hours of charging control does not and does hamper

the ability to coordinate PEV charging with power system

operations. Figure 3 shows a case in which the two-hour-

and full-control charging profiles are virtually identical.

The root mean square difference between the two charging

profiles is 0:0004MWh. The fact that the difference in the

charging profiles is so small suggests that the differences

may arise from numerical issues in solving the scheduling

problem.
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Fig. 2 Aggregate PEV-charging profiles with full control in

forecasted and perfect foresight of wind cases and with no control

and actual and forecasted wind on 26 July

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time (hour)

0

0.5

1.0

1.5

2.0

2.5

3.0

T
ot

al
 P

E
V

 c
ha

rg
in

g 
(M

W
h)

Two-hour control

Full control

No control

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
ot

al
 w

in
d 

av
ai

la
bi

lit
y 

(G
W

h)

Actual wind

Fig. 3 Aggregate PEV-charging profiles with two-hour, full, and no

control with wind forecasts used in scheduling on 26 July
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Fig. 4 Aggregate PEV-charging profiles with two-hour, full, and no

control with wind forecasts used in scheduling on 24 July

754 Sachin CHANDRASHEKAR et al.

123



Figure 4, conversely, shows a case in which there is a

marked difference between the charging profiles in two-

hour- and full-control cases. Here we see that if the

scheduling model has full flexibility to schedule PEV

charging, it would be optimal to delay some of the vehicles

to recharge in hour 15. Doing so would, however, violate

the two-hours of flexibility available in the two-hour-con-

trol case. As such, there is a larger peak in the PEV-

charging profile in hour 13, relative to the full-control

case.

Although there are days, such as that shown in Figure 4,

on which the two-hour limitation on control hinders the

ability to properly coordinate PEV charging with power

system operations, the limitation from two-hour control is

relatively small. This is because the two-hour-control case

achieves much of the benefits in mitigating wind-integra-

tion costs, as shown in Table 3.

5 Conclusion

This paper presents an analysis of the synergies between

wind and PEV charging [30]. We show that if PEV

charging is not coordinated with power system operations,

PEV-charging loads can exacerbate the ancillary costs of

wind uncertainty and variability. This is because PEV-

charging loads tend to add to peaks in the non-PEV-load

profile midday and in the early evening. As such, higher-

cost generators that are marginal in these hours must be

used to balance wind availability with demand and con-

ventional-generator supply.

Conversely, if PEV charging can be controlled, wind-

integration costs can be decreased substantially. Impor-

tantly, PEV owners do not have to ‘hand over’ full

charging control to the entity operating the power system.

Two hours of charging control is sufficient to achieve much

of the cost savings. This is because the benefit of controlled

PEV charging is in accommodating errors in estimating

wind availability. Wind-forecasting errors tend to smooth

out over the course of several hours. Thus, some limited

flexibility in shifting PEV-charging loads around within

two hours provides almost as much wind-integration ben-

efit as complete control of PEV charging. We expect that a

shorter charging window would deliver less benefits than a

two-hour charging window and that a longer charging

window would deliver more benefits. Our analysis shows

that demand response can be used as an effective means of

mitigating wind-integration costs and that PEV charging is

a natural source of demand-side flexibility. Moreover, the

cost savings achieved by controlling PEV charging could

be used to remunerate PEV owners for making charging

control available to the power system.

There are several future areas of research that can build off

of this work. For one, we only examine one case of inter-

mediate charging control in which there is a two-hour win-

dow of time within which to schedule PEV charging. A

natural question is what tradeoffs are introduced by

decreasing or increasing the window of time within which to

control charging. This may require modeling PEV charging

and power system operations at subhourly time steps.

Another question is the extent to which controlling midday

PEV charging is needed to mitigate wind-integration costs.

This is because PEVs stopping between trips midday may be

less likely to connect to a charging station (at least compared

to a PEV parked overnight). A third question that we do not

tackle is how to achieve the charging control assumed in our

case study. The literature proposes both centralized control

schemes (which would be akin to how we formulate the

charging-control problem) and decentralized schemes. This

is an area for further research. Thework of Liu et al. [12]may

give some insights into how different control schemes may

fare in achieving the desired PEV-charging patterns.
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