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Wind-integration benefits of controlled plug-in electric vehicle

charging

.

Sachin CHANDRASHEKAR!, Yixian LIU!, Ramteen SIOSHANSI'

Abstract Flexibility in plug-in electric vehicle (PEV) charg-
ing can reduce the ancillary cost effects of wind variability and
uncertainty on electric power systems. In this paper, we study
these benefits of PEV charging, demonstrating that controlled
PEV charging can reduce costs associated with wind uncer-
tainty and variability. Interestingly, we show that the system
does not require complete control of PEV-charging loads to
mitigate the negative cost impacts of wind variability and
uncertainty. Rather, PEV owners giving the system a two-hour
window of flexibility in which to recharge their vehicles pro-
vides much of the benefits that giving full charging control does.

Keywords Plug-in electric vehicle, Controlled charging,
Wind integration, Demand response, Unit commitment and
dispatch

1 Introduction

Concerns surrounding growing energy demand, climate
change, and finite fossil-fuel supplies have increased
interest in the use of renewable energy resources.
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Renewables, such as wind, can significantly reduce elec-
tricity-related emissions and costs by displacing conven-
tional fossil-fueled resources. They can, however, have
ancillary cost impacts on other generators. This is because
their real-time output is uncertain and variable when
making operational decisions day- or even hour-ahead.
More specifically, to accommodate this variability, con-
ventional generators may have to frequently adjust their
output levels or be cycled on and off. A power system may
also need more reserves from conventional generators to
balance wind uncertainty, forcing generators to operate
inefficiently in a partially loaded fashion [1, 2]. Empirical
numerical studies of the Belgian [3], Irish [4], Texas [5],
and U.K. [6] power systems further demonstrate these
effects of wind.

One commonly proposed means of mitigating these cost
impacts of renewables is to use some form of demand
response, whereby flexible demands follow the availability
of wind. Through such a scheme, demand responds to
unexpected drops in the availability of wind, reducing the
need to use costly conventional generators to replace
renewable supply. Demand can also respond to unexpected
increases in wind availability, reducing possible wind
curtailment due to generator or transmission constraints
[7]1. A number of numerical studies [5, 8, 9] show that
demand response can effectively reduce the ancillary costs
of wind uncertainty and variability.

A limitation of these analyses is that they do not answer
the question of what exact loads respond to wind avail-
ability. Instead they assume that some portion of the load is
flexible and responds to price or other signals indicating
wind availability. A natural source of load flexibility is
plug-in electric vehicle (PEV) charging. A PEV owner is
typically only concerned with having energy recharged into
the PEV’s battery before the next vehicle departure. Thus,
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there is potentially flexibility in when and the rate at which
a PEV is recharged between its arrival to and subsequent
departure from a charging station. Properly controlled PEV
charging can, therefore, provide demand response to
accommodate wind variability.

A number of works examine how to control PEV
charging. Reddy ez al. [10] develop a fireworks algorithm
to schedule PEV charging and the use of renewable energy
to minimize power system emissions and cost. Liu et al.
[11] develop a PEV charging-control algorithm to optimize
the peak-valley difference of a power system, considering
wind and solar production. Liu et al. [12] survey a variety
of centralized and decentralized PEV-charging-control
algorithms. They present a mathematical framework,
which they propose using to evaluate the positive and
negative characteristics of the algorithms in terms of dif-
ferent actors in the power system. Momber et al. [13]
introduce a PEV-charging control model that accounts for
risk-aversion.

In this paper we use a numerical case study, based on the
Electricity Reliability Council of Texas (ERCOT) system,
to demonstrate the benefits of controlled PEV charging on
wind integration. We focus on the impacts of controllable
PEV-charging loads on reducing the costs arising from
wind variability and uncertainty. Our analysis assumes that
PEVs are used solely to provide demand response. This
means that the timing and rate of PEV charging can be
adjusted based on wind availability and other power-sys-
tem conditions. Our analysis does not allow PEV batteries
to be discharged to provide so-called vehicle-to-grid ser-
vices [14-16]. Moreover, we require each PEV to be fully
recharged by the time it finishes each stop at a charging
station. Thus, the demand response that we model does not
allow PEV-charging load to go unserved. Rather, it only
allows those loads to be shifted during the window of time
that a vehicle is grid connected.

Our case study examines PEV charging and power
system operations over a one-year period. We assume
about 7 GW of wind is added to a system with a peak non-
PEV load of about 60 GW. We further assume that a fleet
of about 50000PEVs, which require a total of about
470 MWh of energy to be recharged into their batteries
each day, is added to the system.

We demonstrate that without the PEVs, wind uncer-
tainty and variability impose an ancillary cost of about
$0.23/MWh of wind. This cost increases to $0.46/MWh of
wind if PEV charging is not controlled (i.e., PEVs charge
immediately upon arrival at a charging station). However,
if PEV charging can be fully controlled, the ancillary cost
of wind uncertainty and variability is reduced to
$0.09/MWh. We also examine a case in which there is a
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limited two-hour window of flexibility within which PEV
charging can be controlled. We show that such a two-hour
window of flexibility provides much of the benefits of
complete PEV-charging control. This is because the benefit
of controlled PEV charging is in allowing the system to
more easily accommodate errors in estimating wind
availability. Although wind forecasts can be wrong in a
particular hour, these errors tend to smooth out over the
course of several hours. Thus, some limited flexibility in
shifting PEV-charging loads around within two hours
provides almost as much benefit as complete control of
PEV charging in reducing wind-integration costs. The
choice of studying a two-hour window of flexibility is
meant to represent an intermediate case of charging con-
trol, between the extremes of uncontrolled and fully con-
trolled PEV charging. One could study other intermediate
cases, which is an area of further study.

The remainder of this paper is organized as follows.
Section 2 details the models that are used to examine how
the power system is operated and PEVs are recharged
under the different cases constituting our study. Section 3
summarizes the data and assumptions underlying our
numerical case study. Section 4 presents our results and
Section 5 concludes.

2 Models and methods

Our analysis is based on a unit commitment and dispatch
model that considers the scheduling of PEV-charging loads
[16]. Our model is agnostic to who actually controls PEV
charging, so long as it is co-ordinated and co-optimized
with the commitment and dispatch of the power system.
We give a detailed formulation of our scheduling model in
Section 2.1 and then explain how the model is used in
analyzing different PEV-charging and wind cases to eval-
uate the benefits of controlled PEV charging in Section 2.2.

2.1 Scheduling model formulation

Our analysis studies hourly power system operations and
PEV charging over a one-year period. We conduct this
analysis in a rolling-horizon fashion, which is further
detailed in Section 2.3. This is done by rolling forward
through each hour of the year and determining system
operations and PEV charging for that hour while consid-
ering future system and PEV-charging needs. In the fol-
lowing, we provide the formulation of the model starting
from hour m. Note that in the rolling-horizon technique,
the value of m varies from 1 to 8760 as the algorithm rolls
through the hours of the year.
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2.1.1 Model notation

We begin by first defining model notation.
1) Index parameters and sets

Our model assumes a fixed 7-hour optimization horizon.
Although we simulate power system operations and PEV
charging one hour at a time, these decisions are made
taking into account future power-system and PEV-charging
needs over the subsequent 7" hours. The system is assumed
to have a set, I, of conventional generators. An additional
set of wind generators are modeled, but not included in the
set, 1.

We also assume that the PEVs are categorized according
to a set, V, of PEV-driving profiles. The PEVs modeled are
each assigned to one of the driving profiles in the set, V.
2) Power system parameters and data

Generators are modeled using the three-part cost struc-
ture that is standard in unit commitment models. This
consists of a startup cost, cis, which is incurred whenever
generator i is switched on from an offline state, a no-load
cost, cfv , which is incurred each hour that generator i is
online (regardless of its generation level), and a variable
cost, ¢ (-), which gives the per-hour variable cost as a
function of energy produced. Although ¢ (-) can presum-
ably take any form, in our case study we restrict attention
to convex piecewise-linear functions, which is standard in
unit commitment modeling.

Our model includes standard constraints on generator
operations. Generator i must produce between Q; and
Qi+ MW during hours that it is online. Otherwise, it is
restricted to producing 0 MW when offline. There are also
restrictions on how much the output of each generator can
increase or decrease from one hour to the next. We let R;”
and R;" denote the maximum amount by which the output
of generator i can decrease and increase, respectively, from
one hour to the next. Generators also have restrictions on
being cycled on and off. We let t;and 7, denote the
minimum number of hours that a generator must remain
offline after being shutdown and online after being started
up, respectively. Finally, generators have restrictions on
how much reserves they can provide. We let p? denote the
maximum amount of spinning reserves that generator i can
provide in each hour, which can only be provided during
hours that the generator is online. Similarly, pV denotes the
maximum amount of non-spinning reserves that generator i
can provide. Non-spinning reserves can be provided by
generators regardless of whether they are online or offline.
In addition to the limits, pf and pV, any reserves provided
by a generator must satisfy its ramping and capacity
constraints.
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Wind generators are modeled as having zero operating
cost. Moreover, we let W, denote total wind generation
available in hour .

We let [, denote the hour-f non-PEV load. In addition to
a load-balance constraint, we also impose load-based
reserve restrictions. We require that, at a minimum, a
fraction, 1%, of the hourly load be held as spinning reserves.
We similarly require that, at a minimum, a fraction, nN , of
the hourly load be held as non-spinning reserves.

3) PEV parameters and data

Each of the PEVs that are modeled is assigned to one of
the driving profiles in the set, V. We let N, denote the
number of PEVs that are assigned to driving profile v. We
further assume that all of the PEVs that are assigned to a
driving profile have the same driving patterns (i.e., arrival
times to and departure times from charging stations) and
battery state of charge (SOC) upon arrival to the charging
station. We let ¢ and ¢ denote the arrival time to and
departure time from the charging station of the PEVs that
are assigned to driving profile v.

We let {, denote the remaining charging energy that
must be supplied to PEVs in driving profile v. The value of
{, is updated in our rolling-horizon algorithm (cf. Sec-
tion 2.3) as PEV-charging decisions are made on an hour-
by-hour basis. We assume that a PEV can only be charged
between its arrival and departure times and that the full {,
MWh of charging demand must be supplied to each PEV in
driving profile v before its departure time in hour (,i)? . All
PEVs are assumed to connect to the same type of charging
station with a charging capacity of H MW.

Each PEV-driving profile is modeled as having a single
arrival and departure time. In practice, a PEV may have multiple
trips and be parked at a charging station multiple times during a
day. We capture multiple parking events by representing each
event as a separate driving profile. As an example, suppose thata
PEV is parked from 9 am until 11 am, then departs the charging
station, and is parked again from 3 pm until 7 pm. This would be
represented by breaking the PEV into two driving profiles. The
first would have arrival and departure times at 9 am and 11 am,
and the model would require the PEV to be fully recharged
before its 11 am departure. The second driving profile would
have 3 pm and 7 pm arrival and departure times.

4) Decision variables

We represent generator-commitment decisions using
three sets of binary variables. The variable u;, is defined to
equal 1 is generator i is online in hour ¢ and equal O
otherwise. Similarly, &;, and s;, are defined to equal 1 if
generator i is shutdown and started up in hour ¢, respec-
tively, and equal O otherwise. Generator-dispatch decisions
are modeled using another three sets of continuous vari-
ables. We let g;, denote generator i’s hour-# production
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level in MW. We also let r}, and r};, denote the MW of
spinning and nonspinning reserves, respectively, provided
by generator i in hour t. We represent the dispatch of wind
generators with another set of continuous variables. We let
w, denote hour-¢ wind production in MW.

We assume that all of the PEVs that are assigned to a
driving profile have the same charging profile assigned to
them. We let z,, denote the MW of power recharged in
hour m into each PEV with driving profile v.

2.1.2 Model formulation

Our hour-m scheduling model is formulated as:

T+m
1
S.t. lt+ZNVZV’t :qu"‘wt Vt=m aT+m
veV iel

POLEAED I

veV icl
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S M+ (4 )
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Uig, Sig hiy € {0,1} Ve=m,...T+mjiel 15

(15)

0<w,<W, Vit=m,...T+m (16)
(17)

(18)

0<z,<H Vt= ZT+myev 17
Ly = 0 WweV;t ¢ [d)é?qs?] 18
T+m
ZZV‘I = Cv VV € V (19)
t=m

Objective function (1) minimizes the total unit commit-
ment and dispatch cost over the 7-hour model horizon. Our
model includes three system-wide constraints. First, con-
straints (2) impose the hourly load-balance requirements
that the sum of non-PEV and PEV-charging demand
exactly equals energy produced by conventional and wind
generators. Constraints (3) and (4) impose contingency-
reserve requirements. We model two types of contingency
reserves: spinning and non-spinning reserves. These con-
straints allow the reserve requirements to be met using
PEV-charging loads. The reason for this is that if a system
contingency (e.g., a major generator or transmission fail-
ure) occurs in real-time, PEV-charging loads can be
reduced to help mitigate the supply shortfall [16]. Con-
straints (4) allow spinning reserves to serve the nonspin-
ning reserve requirement. This is because spinning reserves
are ‘higher-quality’ in the sense that they must be provided
by generators that are online and able to respond to a
system contingency quickly. Nonspinning reserves, con-
versely, can be provided by generators that are offline (so
long as they are able to startup and begin producing energy
within a relatively short window of time, which is reflected
in whether a generator has a non-zero value for pV).
Constraints (5)—(7) impose the capacity constraints on
the conventional generators. Note that when a generator is
offline (i.e., u;; = 0) it is restricted to providing zero
generation and spinning reserves but can provide non-
spinning reserves. Otherwise, if a generator is online, it can
provide any combination of energy and reserves, so long as
the maximum generation level is not violated. Con-
straints (8) and (9) impose the reserve-capability restric-
tions on the conventional generators. A conventional
generator can only provide spinning reserves in a given
hour if it is online during that hour (hence, the right-hand
sides of constraints (8) have u;, terms). Generators that are
qualified to provide nonspinning reserves can provide them
when offline. Constraints (10) and (11) impose the ramp-
ing restrictions. As with generator upper-capacity con-
straints (6) and (7), ramp-up constraints (11) consider
energy and reserves provided by generators in each hour.
Constraints (12) and (13) impose the minimum up- and
down-time restrictions when a generator is started up- or

@ Springer

STATE GRID ELECTRIC POWER RESEARCH INSTITUTE



750

Sachin CHANDRASHEKAR et al.

shutdown. Constraints (14) impose the state-transition
logic by defining the values of the s;, and h;, variables in
terms of changes in the u; ; variables. Constraints (15) force
the state variables to take on binary values. Con-
straints (16) impose the limits on wind generation.

Constraints (17) impose the charger -capacity, by
restricting the amount recharged into each PEV based on
the capacity of the charger. Constraints (18) impose the
driving pattern, by only allowing each PEV to be recharged
while it is parked (i.e., between hours qﬁf and d)f ). Finally,
constraints (19) force each PEV to be fully recharged
before leaving its charging station.

2.2 Cases examined

We examine the impacts of wind and PEV charging
under the eight cases that are summarized in Table 1.
These cases vary in how wind and PEVs are modeled.
Cases 1, 3, 5, and 7 assume that future wind availability is
known with perfect foresight when solving the scheduling
model. This means that the values of W,,,..., W, that
are used in the hour-m scheduling model all reflect the
actual wind that will be available in each of hours m
through (m + T). Cases 2, 4, 6, and 8, conversely, assume
that forecasts of future wind availability must be used when
solving the scheduling model. These cases all assume that
the value of W,, that is used in the hour-m scheduling
model reflects the actual wind available in hour m. The
values of W,,41,..., W7 that are used in the hour-m
scheduling model reflect hour-m forecasts of wind avail-
ability in hours (m + 1) through (m + T), however. Fur-
ther details on how wind availability is simulated and wind
forecasts are generated are given in Section 3.3.

Cases 1, 3, 5, and 7 represent counterfactuals in which
future wind availability is known with perfect foresight.
The cost differences between each of Cases 1, 3, 5, and 7
and each of Cases 2, 4, 6, and 8, respectively, measure the
incremental cost impacts of having to schedule generation
and PEV charging without perfect foresight of future wind
availability. This is a commonly used metric to measure the
ancillary operational cost associated with wind uncertainty

Table 1 Cases examined

PEV Wind

Perfect foresight Forecast
None 1 2
No control 3 4
Two-hour control 5 6
Full control 7 8
STATE GRID
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and variability [5, 17-22] and is the metric that we use in
our analysis.

Cases 1 and 2 assume that there are no PEVs in the
system whereas Cases 3 through 8 assume that there are
PEVs employing different charging strategies. Cases 3
and 4 assume that there is no control over PEV charging. In
these cases, each PEV is assumed to begin charging
immediately upon arriving to its charging station. These
cases are modeled by fixing the values of the z,; variables
to

+
Zvﬁl:min{ (Cv_zzv,f> 7H} vr:¢€a7¢vD

E<t

(20)

in the scheduling model. Equation (20) defines the hour-¢
uncontrolled charging demand of PEVs with driving
profile v as the minimum between the amount of
unserved charging demand, which is defined as

+
(év - Z Zv.f)
&<t

and the charger capacity, which is H.

Cases 5 and 6 assume that there is limited (two-hour)
control over PEV charging. This case is modeled by first
determining in which hour PEVs assigned to each driving
profile will be recharged in the no-control case as:

e, = ¢ + Fﬂ WweVv (21)

where [-] is the ceiling operator. Equation (21) defines the
amount of time that it takes PEVs to recharge as the ceiling
of the ratio between {, (the amount of energy that must be
recharged into the PEVs that are assigned to driving
profile v) and H (the capacity of the charger). The two-hour
control case assumes that PEV owners allow an additional
two hours of flexibility in being fully recharged beyond the
time (i.e., the end of hour e,) that their PEVs would be
recharged if uncontrolled. These cases are modeled by
changing constraints (18) in the scheduling model to:

2:=0 YWwe Vit [t min(¢p?, e, +2)] (22)

v

Finally, Cases 7 and 8 allow full flexibility in recharging
the PEV within the window of time that it is parked at the
charging station. These cases are modeled using the
scheduling model that is outlined in Section 2.1, without
any changes to the constraints or fixing of variables.
Figure 1 illustrates the charging windows in the three
charging-control cases studied. The horizontal axis of the
figure represents time and shows the case of a vehicle that
is parked in the charging station between hours ¢” and ¢”.
In the full-control case, the scheduling model has the
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Charging-control cases
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control

¢é e e v+2

=0

Time

Fig. 1 Illustration of charging window in no-, two-hour-, and full-
control cases

flexibility to charge the PEV anytime between these arrival
and departure times (so long as the vehicle is fully
recharged before hour qb? , as constraints (19) require). In

the no-control case, the PEV begins charging at the H MW
capacity of the charger immediately and finishes charging

allowing flexibility in recharging PEVs. The choice of
studying PEV charging in cases with no control, full con-
trol, and with a two-hour window of flexibility is meant to
represent two extreme and one intermediate cases. One
could study other intermediate cases (i.e., with half an hour
of charging control). This is, indeed, an area of further
study to understand how much charging flexibility is nee-
ded to harness the benefits of PEV charging in mitigating
wind-integration costs.

2.3 Rolling-horizon solution algorithm

We simulate the commitment and dispatch of generators
and the scheduling of PEV charging over a year-long
period. Solving an integrated scheduling model over a
year-long optimization horizon would be intractable. As
such, we employ the rolling-horizon solution method that is
outlined in Algorithm 1. This algorithm simulates the
generator and PEV-charging scheduling process over the
year one hour at a time, by rolling forward through the
hours of the year.

Algorithm 1 Rolling-horizon solution algorithm

1: fix starting values for h; 0, gio, Si0, 4i0
2: for m =1,2,..., 8760 do

3: update Wisooos Wit

(h, q, 1,8, u,w, ) < argmin (1) s.t. (2)=(19)
rfm,Si,m,Mi,m;Vi € L;wm; zvm; Vv € V5 to values found in Step 4

N
fix hi,my qim> r,‘ymv

G & — zZvm; Vv € V such that ¢4 <m and ¢ >m+1

end for

4
5
6: K: — Z,‘g[ [CIV (qi,m) + CIN Ujim + C;sSi,m]
7.
8:

in hour e,, as defined in (21). The two-hour-control case
allows an intermediate amount of flexibility. The
scheduling model can charge the vehicles within an addi-
tional two-hour window of time, relative to the no-control
case. If a PEV is parked for less than two hours beyond e,,
then it is assumed to charge as in the uncontrolled case
(i.e., immediately) in the two-hour-control case.

Constraints (22), defining the two-hour control case, fix
values of z,; = 0 for t > min(q’)i’7 e, + 2). This is because
from some driving profiles, the two-hour control window
may extend beyond the period of time that the vehicle is
parked. For instance, if a vehicle is parked for two hours
and would require one hour of charging in the no-control
case, the two-hour- and full-control cases would give the
scheduling model the same window of time within which
to recharge the PEV.

Cost differences between the different PEV-charging
cases (i.e., between each of Cases 3 and 4, 5 and 6, and 7
and 8) allow us to gauge the cost effects and benefits of

STATE GRID

The algorithm works by first fixing the starting state in
hour 0 of all of the generators in Step 1. This is needed to
set hour-1 ramping and minimum up- and down-time
constraints for the generators. We assume that all of the
generators are online and producing at their minimum
operating points (i.e., that g;o = Q;; Vi € I) and that each
generator has been online a sufficient number of hours that
it could be immediately switched off in hour 1, if the
scheduling model finds it optimal to do so.

Steps 3 through 7 are the main iterative loop of our algo-
rithm, which goes through each hour of the year. The loop
begins in Step 3 by updating wind-availability data for the 7-
hour horizon of the hour-m scheduling model. As discussed in
Section 2.2, the values of the W,,_1, ..., W, can either be
actual wind availabilities or forecasts, depending on which of
the cases that are listed in Table 1 is being modeled.

Next, Step 4 solves the hour-m scheduling problem and
Step 5 fixes the values of the hour-m generator and PEV-
charging scheduling variables only. The values of decision
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variables for hours (m + 1) through (m + T) are deter-
mined in subsequent iterations of the algorithm. Step 6
computes the cost incurred in hour m, based on the values
of the hour-m decision variables, which are fixed in Step 5.
Finally, Step 7 updates the amount of charging energy that
remains unserved for vehicles that arrived before hour m,
based on the PEV-charging decisions determined by the
hour-m scheduling model.

3 Case-study data

We study the interactions of wind and PEV charging
over one year, using a case study based on the ERCOT
power system. Most of our case-study data are taken from
the work of Madaeni and Sioshansi [20], which is based on
year-2005 data for ERCOT. We formulate the scheduling
model using version 12.1.0 of the AMPL mathematical
programming software package and solve it using the
branch-and-cut algorithm in CPLEX 12.5.1.0 with default
settings. CPLEX is an industry-standard optimization sol-
ver that is widely used in the electric-power industry.

We detail all of the data sources that are used in our
analysis in the following subsections.

3.1 Conventional-generator data

Cost data for conventional generators are modeled using
heat rates and historical fuel and SO,-permit prices. These
data are obtained from proprietary databases maintained by
Platts Energy and Global Energy Decisions. Conventional-
generator-constraint data are obtained from Global Energy
Decisions. The two nuclear plants in ERCOT are modeled
as must-run units that constantly operate at their nameplate
capacity. In total we model 375 dispatchable generators
that were installed and operational in the ERCOT system in
the year 2005.

3.2 Non-PEV-load data

Non-PEV loads are modeled using 15-minute metered
historical ERCOT load data from the year 2005, obtained
from the Public Utility Commission of Texas. Because our
scheduling model is formulated using hourly time steps,
each of the four 15-minute measurements corresponding to
each hour are averaged together to obtain an hourly-aver-
age load.

3.3 Wind data
Our case study assumes that there is 7GW of wind

installed in the system, which is approximately 10% of the
peak non-PEV load of about 60 GW. Thus, we study a
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high-penetration scenario (relative to the year 2005), con-
sidering ERCOT did not achieve 7 GW of wind until 2008.
We simulate real-time wind availability and generate wind
forecasts using a vector autoregression model that is fit to
three years’ publicly available data from the Western Wind
Resources Dataset (WWRD) for the year 2005 [23].

The WWRD consists of modeled historical wind-gen-
eration data at 10-minute intervals for numerous sites
across the western United States and is generated by 3TIER
for the Western Wind and Solar Integration Study [24].
Each of the sites in the WWRD is able to support 30 MW
of wind capacity. We assume that the 7GW of wind are
distributed among the 234 WWRD locations in ERCOT
that have the highest wind capacity factors.

We convert the WWRD data, which are reported at 10-
minute intervals, to hourly data. We then fit a vector
autoregression model [25] to the WWRD data. The fitted
model is then used to simulate hourly wind generation at
each of the 234 WWRD locations and to generate the wind-
availability forecasts that are used in Cases 2, 4, 6, and 8.

3.4 PEV data

PEV driving patterns are modeled using a Monte Carlo-
based method to generate typical daily driving patterns. We
use statistical properties of light-duty vehicle driving pat-
terns within the United States [26, 27] to calibrate the
simulation model.

More specifically, we assume that the number of trips
each vehicle makes daily has a normal distribution with a
mean of 4 and a variance of 1.33 [27]. Once we simulate
the number of trips each vehicles makes daily, we deter-
mine the distances of each trip. If the vehicle makes a
single trip, the trip distance is randomly generated from a
Weibull distribution with a mean of 36.12 miles (we use
Imperial units for distances, because they are still the
standard unit of measure used in the United States) and a
variance of 12.04 [26]. If the vehicle makes two daily trips,
the distance of each trip is half of the distance generated
from the Weibull distribution (i.e., we assume that the
vehicle is used for commuting to and from a workplace). If
the vehicle makes three or more trips daily, two of them
(which represent commuting trips) have distances that are
one third of the Weibull-distributed distance. The remain-
ing trip distances are randomly generated using a truncated
non-negative Gaussian distribution. The mean and variance
of the Gaussian distribution are determined so that in
aggregate, one third of the vehicle miles driven are for
commuting to and from the workplace [27]. The starting
and ending times of each vehicle trip are determined based
on the relative weights of vehicles reported to be driving at
different times of day [27].
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Table 2 Tested characteristics of 2014 Nissan Leaf

84 miles (135 km)
24kWh (21.3 kWh usable)
0.158 kWh/km

Range
Battery capacity
Efficiency

We assume that the ERCOT system has 50000 PEVs,
which corresponds to 0.66% of the light-duty vehicle fleet
in ERCOT in 2005. The PEVs are assumed to have the
characteristics (i.e., battery capacity and energy-consump-
tion rate) of a 2014 Nissan Leaf and to connect to 5 kW
chargers that incur 10% energy losses in recharging the
vehicle batteries. Table 2 summarizes the tested charac-
teristics of the Nissan Leaf, which are used in our analysis.
The 10% energy losses in recharging the vehicle batteries
is taken into account when computing the value of {, in
Step 7 of Algorithm 1. The Monte Carlo model is used to
generate 1023 typical driving profiles. The 50000 PEVs are
uniformly assigned to the 1023 driving profiles, meaning
that about 49 PEVs follow each driving profile. We further
assume that each PEV follows the same driving profile
each day.

As noted in Section 2.1, the scheduling model repre-
sents each driving profile as having a single arrival and
departure time to a charging station. Because each of the
simulated driving profiles can have multiple daily trips,
each driving profile is subdivided into a separate profile in
the scheduling model. As such, there are 4410 PEV driving
profiles in the scheduling model, corresponding to these
subdivisions.

4 Case study results
Table 3 summarizes the total annual generation costs

incurred in the eight different cases (cf. Table 1) examined.
These costs are computed as:

Table 3 Annual generation costs

PEVs Total generation cost Wind-integration

($ Million) cost ($/MWh of
- wind)

Perfect foresight Forecast

None 10934.34 10940.67 0.23

No control 10928.22 10940.84 0.46

Two-hour control 10926.64 10930.86  0.15

Full control 10928.16 10930.68 0.09

STATE GRID

where the K,’s are defined in Step 6 of Algorithm 1. The
first two columns of the table show that without PEVs and
in the three different PEV-charging control cases, costs are
higher when the system must be scheduled using wind
forecasts as opposed to having perfect foresight of wind.
This is to be expected, and the cost difference between
each pair of forecast and perfect-foresight cases measures
the value of perfect wind-availability information.

The last column of Table 3 reports the cost difference
between the forecast and perfect-foresight cases divided by
total wind generation over the course of the year. The
values in this column represent the cost of wind uncertainty
and variability (which we term ‘wind-integration cost’ in
the table) on a per-MWh basis. We find that when PEVs are
added to the system but their charging cannot be con-
trolled, they double the ancillary cost impacts of wind
uncertainty. However, if PEV charging can be fully con-
trolled, wind-integration costs are reduced by close to 61%.
Interestingly, having only two-hours of flexibility within
which to control PEV charging reduces wind-integration
costs by close to 35%. This means that two hours of
charging control delivers close to 60% of the benefits of
complete control over PEV charging.

We note that with perfect foresight of wind, the two-
hour-control case achieves lower total cost than the full-
control case. This is not unexpected, because by default
CPLEX does not solve the scheduling model to complete
optimality. Rather, the branch-and-cut algorithm termi-
nates once the optimality gap of the incumbent solution is
sufficiently small. In essence, the objective function of the
scheduling model is extremely ‘flat’ around the optimum,
and there are many near-optimal solutions that are virtually
identical in terms of overall cost. A similar phenomenon is
observed by Sioshansi and Miller [28], who find that
adding emissions constraints to a model that schedules
PEV-charging loads has virtually no impact on overall
system costs. This cost-related finding is further evidence
of the fact that the two hours of charging control delivers
most of the benefits that complete charging control does.
When taking into account the fact that CPLEX finds near-
optimal solutions, the two cases are very similar in terms of
total overall cost.

Examining the charging profiles in the different cases
provides some insights into the different interactions
between PEV charging and wind. Figure 2 contrasts the
total aggregate PEV charging profile on the morning of
26 July with full and no charging control with and without
perfect foresight of wind. It also shows the actual wind
profile and wind forecasts in hours 11 and 14.

We first note that the PEV-charging profile with no
charging control does not respond in any way to system
load or wind availability. As expected, much of the PEV
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Fig. 2 Aggregate PEV-charging profiles with full control in
forecasted and perfect foresight of wind cases and with no control
and actual and forecasted wind on 26 July

recharging is done midday and in the early evening when
vehicles first arrive at a charging station (e.g., at a work-
place or stopping while running errands midday or at home
in the early evening after commuting). This charging pro-
file is undesirable because on many days the PEVs are
adding load to the system when the non-PEV loads are
peaking as well [16, 29]. The PEV-charging profiles with
full control, conversely, defer vehicle charging from the
early evening (after commuters return home from work) to
the middle of the night when the non-PEV loads and the
marginal cost of generation are low.

We find that the full-charging-control cases do schedule
peaks in the PEV-charging profiles midday in hours 11, 14,
and 15. These peaks in the PEV-charging profiles are dri-
ven by wind availability. Contrasting the PEV-charging
profiles with and without perfect foresight of wind shows
the impacts of imperfect wind information. For instance,
the model schedules more PEV-charging load in hours 11
and 14 when using forecasts (compared to having perfect
foresight), because the model anticipates less wind being
available in the future. For instance, the hour-11 forecast
anticipates a total of 22.8 GWh of wind being available
between hours 11 and 18 as opposed to 27.0 GWh actually
being available. As such, the model schedules PEV-
charging loads earlier than when it is optimal to do so with
perfect information. Such an effect is also observed in
hour 14. The hour-14 wind forecast anticipates hour 14
having the peak wind availability of the afternoon. As such,
a peak in the PEV-charging load is scheduled in hour 14. In
reality, however, wind availability increases in hour 15 and
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Total PEV charging (MWh)
Total wind availability (GWh)
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Fig. 3 Aggregate PEV-charging profiles with two-hour, full, and no
control with wind forecasts used in scheduling on 26 July
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Time (hour)
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Full control == Actual wind

Fig. 4 Aggregate PEV-charging profiles with two-hour, full, and no
control with wind forecasts used in scheduling on 24 July

delaying PEV charging an hour longer reduces system
cost.

Figures 3 and 4 show two cases in which having only
two-hours of charging control does not and does hamper
the ability to coordinate PEV charging with power system
operations. Figure 3 shows a case in which the two-hour-
and full-control charging profiles are virtually identical.
The root mean square difference between the two charging
profiles is 0.0004 MWh. The fact that the difference in the
charging profiles is so small suggests that the differences
may arise from numerical issues in solving the scheduling
problem.
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Figure 4, conversely, shows a case in which there is a
marked difference between the charging profiles in two-
hour- and full-control cases. Here we see that if the
scheduling model has full flexibility to schedule PEV
charging, it would be optimal to delay some of the vehicles
to recharge in hour 15. Doing so would, however, violate
the two-hours of flexibility available in the two-hour-con-
trol case. As such, there is a larger peak in the PEV-
charging profile in hour 13, relative to the full-control
case.

Although there are days, such as that shown in Figure 4,
on which the two-hour limitation on control hinders the
ability to properly coordinate PEV charging with power
system operations, the limitation from two-hour control is
relatively small. This is because the two-hour-control case
achieves much of the benefits in mitigating wind-integra-
tion costs, as shown in Table 3.

5 Conclusion

This paper presents an analysis of the synergies between
wind and PEV charging [30]. We show that if PEV
charging is not coordinated with power system operations,
PEV-charging loads can exacerbate the ancillary costs of
wind uncertainty and variability. This is because PEV-
charging loads tend to add to peaks in the non-PEV-load
profile midday and in the early evening. As such, higher-
cost generators that are marginal in these hours must be
used to balance wind availability with demand and con-
ventional-generator supply.

Conversely, if PEV charging can be controlled, wind-
integration costs can be decreased substantially. Impor-
tantly, PEV owners do not have to ‘hand over’ full
charging control to the entity operating the power system.
Two hours of charging control is sufficient to achieve much
of the cost savings. This is because the benefit of controlled
PEV charging is in accommodating errors in estimating
wind availability. Wind-forecasting errors tend to smooth
out over the course of several hours. Thus, some limited
flexibility in shifting PEV-charging loads around within
two hours provides almost as much wind-integration ben-
efit as complete control of PEV charging. We expect that a
shorter charging window would deliver less benefits than a
two-hour charging window and that a longer charging
window would deliver more benefits. Our analysis shows
that demand response can be used as an effective means of
mitigating wind-integration costs and that PEV charging is
a natural source of demand-side flexibility. Moreover, the
cost savings achieved by controlling PEV charging could
be used to remunerate PEV owners for making charging
control available to the power system.

STATE GRID

There are several future areas of research that can build off
of this work. For one, we only examine one case of inter-
mediate charging control in which there is a two-hour win-
dow of time within which to schedule PEV charging. A
natural question is what tradeoffs are introduced by
decreasing or increasing the window of time within which to
control charging. This may require modeling PEV charging
and power system operations at subhourly time steps.
Another question is the extent to which controlling midday
PEV charging is needed to mitigate wind-integration costs.
This is because PEVs stopping between trips midday may be
less likely to connect to a charging station (at least compared
to a PEV parked overnight). A third question that we do not
tackle is how to achieve the charging control assumed in our
case study. The literature proposes both centralized control
schemes (which would be akin to how we formulate the
charging-control problem) and decentralized schemes. This
is an area for further research. The work of Liu et al. [12] may
give some insights into how different control schemes may
fare in achieving the desired PEV-charging patterns.
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