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Abstract—Unmanned aerial vehicle (UAV) plays prominent
role in enhancing backhaul connectivity and providing extended
coverage areas due to its mobility and flexible deployment. To re-
alize these objectives simultaneously, we present a new framework
for positioning the UAV to maximize the small-cells backhaul
network connectivity characterized by its Fiedler value, the
second smallest eigenvalue of the Laplacian matrix representing
the network graph, while maintaining particular signal-to-noise
ratio constraint for each individual user equipment. Moreover, we
show that the localization problem can be approximated by a low
complexity convex semi-definite programming optimization prob-
lem. Finally, our extensive simulations verify the approximation
validity and demonstrate the potential gain of UAV deployment.

Index terms— connectivity, coverage, 3-D positioning,

semi-definite programming, unmanned aerial vehicle.

I. INTRODUCTION

Deploying unmanned aerial vehicles (UAVs) has recently

gained an increasing interest in both the academic and the

industrial circles to enhance wireless services. In emergency

network breakdown, they are efficient and reliable alternatives

to restore the backhaul network connectivity among small-

cells (SCs) due to their mobility. Moreover, they can be used

as aerial base stations to extend the coverage areas and boost

quality of service (QoS) at user equipment (UEs).

Scanning the open literature, optimizing the UAV’s position

to enhance the coverage has been widely considered. In [1], the

authors derive a closed-form expression for the UAV position

to maximize the coverage radius in the presence of Rician

fading channel. Moreover, UAV positioning for cellular system

is discussed in [2], [3]. The authors of [2] investigate the

network coverage in terms of outage probability, which is used

to define the coverage, while in [3] signal-to-interference-plus-

noise ratio (SINR) is used to present the coverage.

On the other hand, positioning the UAV to restore and en-

hance the network connectivity has also been studied aiming to

avoid isolated nodes scenario and reduce networks congestion.

In [4], the authors deliver a broadband wireless connectivity

for destructed communication infrastructure during temporary

events at hotspot areas or after disasters. The random graph

theory concepts are used in [5] to illustrate the connectiv-

ity of the sensor network under Rayleigh fading channels.
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Fig. 1. System model.

Moreover, Fiedler value is a widely used metric to accurately

quantify the network connectivity and it is defined as the

second smallest eigenvalue of the graph Laplacian matrix.

The network algebraic connectivity is addressed in [6] for

network maintenance and repair purposes in wireless sensor

network. In [7], a coverage-based and a connectivity-based

mobility models are introduced for the same set of nodes

toward a UAV network monitoring followed by a comparison

between both models to clarify the tradeoff between achievable

area coverage for the connectivity-based model and achievable

connectivity for the coverage-based model. The models in [7]

aim at enhancing the network coverage or its connectivity

separately, however in this work we propose an inter-layer

model in which we consider enhancing coverage for some

nodes, UEs, and enhancing connectivity for other nodes, SCs.

None of the aforementioned works has optimized the UAV

position to jointly extend the network coverage and enhance

the backhaul connectivity. To the best of our knowledge, this

work is the first to address the tradeoff between coverage and

connectivity due to the UAV positioning. Our main contri-

butions in this paper are summarized as follows. We jointly

enhance the SCs network connectivity, while maintaining

UEs QoS greater than particular threshold. In particular, we

constrain the UEs SNR levels to be greater than particular

threshold. To this end, we formulate this problem as a non-978-1-5386-3531-5/17/$31.00 c© 2017 IEEE



convex optimization problem and we accurately approximate it

as convex semi-definite programming (SDP) problem. Finally,

we quantify the accuracy of the presented approximation

through numerical experiments.

The rest of the paper is organized as follows. First, the

system model is described in Section II. The optimization

problem and its SDP approximation are presented in Section

III. Finally, numerical results and concluding remarks are

provided in Sections IV and V, respectively.

Notation: Lower- and upper-case bold letters denote vectors

and matrices, respectively, also IM denotes the identity matrix

of size M . The operations (·)
T

, E [·], and |·| denote the trans-

pose, statistical expectation and absolute value, respectively.

The A � B denotes that B − A is a positive semi-definite

matrix. Finally, ⊗ denotes the Kronecker product operation.

II. SYSTEM MODEL

We consider a SC network consisting of M SCs and N

UEs suffering from severe path loss with no links to any SC

as shown in Fig. 1. For connectivity among SCs, we use a

simple, yet accurate, and widely used disc model [3], [7] with

its center at particular SC and all other small SCs inside this

disc are assumed to be connected with the center SC. The disc

radius, denoted by RSC which is a predetermined parameter

that depends on the SCs transmit power.

We model SCs’ connectivity using an undirected weighted

simple finite graph G(V,E) where V = {v1, . . . , vM} is

the vertices set of the M SCs and E = {e1, . . . , eK} is the

set of K edges [6]. For any edge l connecting two vertices

vi and vj ∈ V, the edge vector al ∈ R
M is all zeros vector

except its ith and jth elements are al,i = 1 and al,j = −1,

respectively. The graph incidence matrix of A ∈ R
M×K is

given by A , [a1, . . . , aK ] and its the M × M Laplacian

matrix can be written as follows [6]

L = A diag(w)AT =

K
∑

l=1

wlala
T
l , (1)

where w denotes the K × 1 weighting vector coefficients

for the K edges and is given by [w1, w2, · · · , wK ]T . The

Laplacian matrix is a positive semi-definite matrix, i.e., L � 0,

with the smallest eigenvalue denoted by λ1(L) is equal to zero

[6]. We term λ2(L) as the second smallest eigenvalue, also

known as Fiedler value, of the graph Laplacian matrix which

represents its algebraic connectivity. The smaller Fiedler value

is, the less connected the network is, and vice verse. It is worth

mentioning that when λ2(L) = 0, the graph is disconnected

in which at least one of its vertices is unreachable from any

other vertices in the graph.

With a UAV deployment, a new graph G′ is obtained with

the same number of M nodes, a larger set of edges denoted

by E
′ with K ′ edges where K ′ ≥ K, i.e., E ⊆ E

′, thanks to

the UAV for connecting the SCs within its disc radius RUAV.

Particularly, the UAV’s impact appears in relaying information

between SCs within RUAV distance from it, hence creating

additional K ′−K edges between the original SCs. Comparing

the network graphs pre and post UAV deployment, we can

realize the gain by computing λ2(L
′) ≥ λ2(L).

In addition, the UAV aims to extend the coverage area and

serve the N UEs who are in deep fade situation. The down-

link communications between the UAV and UEs are assumed

to occur over orthogonal resources such as frequency/time

division duplexing transmission to avoid interference among

the scheduled UEs as the UAV is assumed to be equipped

with a single antenna and multi-user beam-forming techniques

can not be utilized. Considering the interference among the

scheduled UEs is left for future work. Hence, the received

signal at the ith UE is given by

yi = d−α
i xi + ni (2)

where d−α
i is the large scale fading between the UAV and

the ith UE with di denoting the distance between them and

α is the the path loss exponent. The data symbol xi is the

data transmitted to UE i with E

[

|xi|
2

]

= Pi. Moreover,

ni denotes complex zero-mean circularly-symmetric additive-

white-Gaussian noise (AWGN) with variance σ2 and it is

assumed to be independent across the UEs. Note that in our

system model, we model only the large scale fading and ignore

the small scale fading. This is a well justified assumption

whenever the UAV position is calculated during the channel

coherence time and it varies from time slot to another which

effectively allows us to combine both large and small channel

fading coefficients in a single coefficient. Moreover, since no

multi-user multiple-input multiple-output (MU-MIMO) can be

applied with a single antenna UAV, we find beneficial to forgo

the small scaling fading in our model.

To quantify the coverage, we use the instantaneous signal-

to-noise ratio (SNR). For the ith UE, it is defined as follows

SNRi =
d−α
i Pi

σ2
. (3)

The reason of using distinct metrics, Fiedler value and

SNR, to quantify the connectivity among SCs and coverage

for UEs, respectively, is that in SCs backhaul network, multi-

hop communication is allowed. Therefore, we care more about

connectivity of the graph which is characterized by its Fiedler

value. On the other hand, in the access network, the UAV

directly communicates with the UEs, i.e., single hop link,

which makes the SNR appropriate to reflect the coverage.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate the UAV positioning optimiza-

tion problem in which the backhaul network connectivity is

maximized subject to particular QoS constraints for each UE.

Mathematically, it can be written as follows

max
u

λ2(L
′(u))

s. t. SNRi ≥ γth, ∀i ∈ {1, . . . , N},
(4)

where u is the 3 × 1 UAV position coordinates vector in a

Cartesian coordinate system and γth is SNR threshold. As
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Fig. 2. UAV positioning for different γth. The square, cross and diamond markers represent SC, UE and UAV, respectively.

illustrated in Section II, the Laplacian matrix L
′(u) depends

on the UAV location which determines the new links.
The optimization problem in (4) is a non-convex optimiza-

tion problem because of two reasons. First, λ2(L
′(u)) is not

a concave function. Second, the indirect dependence function

between L
′(u) and u which is described in Section II.

To cope with the non-concavity of λ2(L
′(u)), we exploit

the properties of the graph Laplacian matrix. In particular, its

smallest eigenvalue is equal to zero and the entries summation

of the eigenvector corresponding to λ2(L) is equal to zero [6].

Hence, λ2(L) can be formulated as a convex problem as

λ2(L) = min
z∈RM

z
T
Lz

s. t. ‖z‖ = 1 and 1
T
z = 0,

(5)

where 1 is the M × 1 all-ones vector.
To address the indirect relation between the graph Laplacian

matrix and the UAV position, we assume that SCs and UEs

are distributed over h × h × h volume. Moreover, the search

space over the x, y, and z axes is uniformly quantized with

a step size δ to get a search grid consisting of β candidate

positions for the UAV. This simplifies the Laplacian matrix to

be represented by the following formula

L
′ = L+

β
∑

j=1

xjAj diag(wj)A
T
j , (6)

where L is the original network graph before UAV deploy-

ment, xj is equal to one if UAV is positioned in the jth

grid point, otherwise xj = 0. Moreover, wj and Aj are the

weighting coefficients vector and the incidence matrix when

the UAV is deployed in this grid point.

Collecting xj , j ∈ {1, . . . , β}, in the β×1 vector x, Eqn.

(6) can be written as follows

L
′ = L+ (x⊗ IM )Γ, (7)

where

Γ ,

[

(

A1 diag(w1)A
T
1

)T
, . . . ,

(

Aβ diag(wβ)A
T
β

)T
]T

.

Similarly, stacking the SNR levels between the ith UE and

the UAV located in any of the candidate positions in the search

grid in the β×1 vector denoted by vi such that SNRi = x
T
vi.

Hence, the optimization problem can be written in terms of

the UAV position index vector x rather than its actual physical

locations, i.e., x-axis, y-axis and z-axis values, as follows

max
x

λ2(L
′(x))

s. t. x
T
vi ≥ γth, ∀i ∈ {1, . . . , N},

x ∈ {0, 1}.

(8)

The combinatorial optimization problem in (8) is non-

deterministic polynomial-time (NP)-hard problem with high

complexity. Therefore, we relax the constraint on the entries

of x and allow them to take any value in the interval [0, 1].
Hence, approximated optimization problem can be written as

standard convex SDP problem as follows [8]

max
x,s

s

s. t. s(I−
1

β
11

T ) � L
′(x),

x
T
vi ≥ γth, ∀i ∈ {1, . . . , N},

0 ≤ x ≤ 1,

(9)



which can be solved using any SDP solver such as CVX

SDPT3 solver [9]. Since the entries of output vector x are

continuous, we choose the maximum entry and set it to 1
while others are set to zero.

Table I. Table of simulation parameters

Parameter Value

h 100 m

M 10

N 2

RSC 40 m

RUAV 30 m

α 4

σ2 -130 dBm

Pi 40 dBm
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Fig. 3. The connectivity of the SCs versus the UEs SNR

constraint for β = 2197, δ ∼= 8 m.

IV. NUMERICAL RESULTS

In this section, we present Monte-Carlo simulation results

to demonstrate the accuracy of the proposed convex approxi-

mation of the UAV positioning problem and show coverage-

connectivity tradeoff. We consider a backhaul network be-

tween M SCs in the presence of N UEs in deep fade situa-

tions. The simulated network’s parameters are listed in Table

I and all our results are averaged over 104 different backhaul

network realizations and UEs dropping. In our numerical
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Fig. 4. The connectivity of the SCs versus the UEs SNR

constraint for β = 3, 375, δ ∼= 6 m.

results, we compare between four different scenarios. First, the

solution of the approximated SDP optimization in (9) to find

the optimal UAV position. Second, we consider UAV random

solution for the UAV positioning in the feasible region in

which the SNR threshold constraints are satisfied for all the

UEs. This is considered as a lower bound on the achieved

performance. Third, unquantized optimization (4), which is

the alternative for exhaustive search in the 3-D search grid.

This is considered as the performance upper bound because

we solve the nonconvex optimization problem in (4) using

fmincon solver in MATLAB with multi-initial point searching

to avoid getting stuck at local minimas. Fourth, to benchmark

the performance gain, we show the original backhaul network

connectivity before the UAV deployment.
The impact of γth on the UAV positioning is shown in Fig.

2, where the UAV position in the 3-D search grid with red

diamond markers is plotted for two extreme cases for the UEs

constraints. In the first case, γth = 20 dB corresponding low

QoS constraints. In this case, the UAV gets closer the SCs to

enhance the backhaul network connectivity. In the other case,

is at γth = 60 dB, which represents a high QoS constraints.

In this scenario, the UAV gets closer to the UEs to satisfy

their constraints with no much improvement for the backhaul

network connectivity.
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Fig. 5. The connectivity of the SCs versus the UAV transmis-

sion range for β = 3, 375, δ ∼= 6 m.

To further investigate the tradeoff between the SCs connec-

tivity and the UEs coverage, in Fig. 3, the Fiedler value of

the SCs backhaul network graph is plotted versus the UEs

SNR threshold γth. We use δ = 8 m in (9) for the quantized

SDP optimization. The figure shows that increasing the γth
decreases the connectivity for the different solving schemes.

At high γth levels, very tight QoS constraints, there is no

enhancement in the SCs backhaul network connectivity. We

notice that the SDP optimization is closer to the upper bound

(unquantized optimization) than the lower bound (random

position), with a loss of 25% from the upper bound and nearly

35% gain from the lower bound for γth = 30 dB. To reduce

the gap between unquantized and the SDP, we reduce the step

size to δ = 6 m, which leads to larger feasible set. In Fig. 4, the

SCs backhaul network connectivity is plotted versus the UEs

SNR threshold γth. We notice that the output from the SDP

optimization is the same as the upper bound (the unquantized

function optimization) for all values of γth, this indicate that

the step size δ = 6 m is convenient to introduce the grid for

the choosen area. The use of δ = 6 m increases the quantized

SDP optimization gain from the random positioning to 60%
for SNR threshold γth = 30 dB, this is nearly double the gain

from using a step size of δ = 8 m.

We demonstrate the SCs backhaul network connectivity

versus the UAV range for δ = 6 m in Fig. 5 by changing

the UAV transmission range RUAV. As the UAV transmission

range increases the connectivity increases until RUAV is

large enough to cover the whole nodes so the connectivity

saturates at its maximum value. Clearly the unquantized

optimization gives a higher performance than the quantized

SDP optimizatation due to the quantization loss, however as

this graph uses a small step size compared to the total area so

the quantization loss is small. We note that the unquantized

function optimization and the quantized SDP optimization

both gives a better performance than the random positioning.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed utilizing a single UAV to

jointly enhance the SCs backhaul network connectivity and

achieve better UEs coverage from network access perspective.

We converted the UAV positioning non-convex optimization

problem to a convex one using 3-D quantized search grid.

Moreover, we approximated it as a SDP problem which can

be efficiently solved using the widely known SDP solvers.

Furthermore, we numerically demonstrated the accuracy of

our approximation and showed performance gain from the

upper and lower bounds. Compared with random positioning

at γth = 30 dB, 35 and 60% connectivity gain were achieved

for δ = 8 m and δ = 6 m, respectively. At δ = 6 m, the

original non-convex and the relaxed SDP solutions gave the

same connectivity metrics.

There are several interesting extensions to our work, for

instance, we will further study the effects of the small-scale

fading reflected in the SNR constraints instead of only

considering the large-scale fading. Also, we will investigate

the multi-user transmission schemes when the UAV is

equipped with multiple antennas and will explore different

beam-forming techniques to suppress the interference between

the scheduled UEs.
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