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Abstract

Ouitlier analysis techniques are extensively used in many domains such as intrusion detection. Today, even with the most
advanced statistical learning techniques, human judgment still plays an important role in outlier analysis tasks due to
the difficulty of defining and collecting outlier examples. This work seeks to tackle this problem by introducing a new
visualization design, “Z-Glyph,” a family of glyphs designed to facilitate human judgment in outlier analysis of multivariate
data. By employing a location-scale transformation, a Z-Glyph represents the “normal” data using regular shapes (e.g.,
straight line and circle), such that the abnormal data can be revealed when deviating from the regular shapes. Extensive
controlled experiment and case studies based on real-world datasets indicate the superior performance of the Z-Glyph
family, compared with the baselines, suggesting the proposed design is able to leverage human perceptional features
with statistical characterization. This study contributes to a more fundamental understanding about designing visual
representations for revealing outliers in multivariate data, which can be applied as a building block in many domain-
specific anomaly detection applications.
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Introduction Z-Glyph Family

Outliers, also referred as anomalies, are patterns in data
that do not conform to expected behavior Chandola et al.
(2009). Outlier and anomaly detection techniques have been
extensively used in a wide range of applications such
as fraud detection in financial transactions, or intrusion ]
detection in cyber-security systems. Statistical methods for bej Z-Linell Lalypin
detecting outliers in data have been proposed since 19 | Hq
Century M.A (1887), and more analysis techniques have ; N :
been studied extensively in the literature Aggarwal (2013); L )— { )
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Chandola et al. (2009). Particularly, a large category of
existing techniques is developed for identifying point outliers S

@n the multi\fafiate d.ata (i.e., data items are shown as poipts (d) Star Glyph (e) Z-Star Glyph
in the multidimensional feature space). However, outlier
detection is still considered as a highly challenging problem
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(f) Z-StarD Glyph

Figure 1. Traditional glyphs and Z-Glyph family for representing

due to factors such as the availability of labeled data. In
this work, we seek to tackle this problem by introducing a
new visualization design, called “Z-Glyph” for point outlier
analysis of multivariate data.

There are two major challenges in outlier detection. First,
defining “normal” (and “anomalous”) behavior in data is
difficult due to the nature of the data (factors including
various data distributions, amount of noise, unknown data
generating process and potential dynamics in data, etc.).
Second, labeled data with a high quality for training and
validating models used by anomaly detection techniques
are often unavailable or difficult to obtain. Hence, in order
to better distinguish actual anomalies and collect sufficient
representatives, human judgement continues to play a critical
role in the process of outlier analysis, even with the most
advanced statistical learning techniques Aggarwal (2013).
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the same multivariate data. (a) Line Glyph; (b) Z-Line Glyph; (c)
Z-LineD Glyph; (d) Star Glyph; (e) Z-Star Glyph; (f) Z-StarD
Glyph. In traditional glyphs (a,d), baseline values are shown in
red. In Z-glyph family (b,c,e,f), data values are transformed and
positioned with respect to the “baseline” values shown in
regular shapes (such as a straight line or a circle). Dichotomous
color encoding is further used to highlight trends deviated from
baseline values (c,f).

There have been domain-specific visualization techniques
designed to facilitate outlier detection in more complex
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datasets or scenarios, such as visualizing outliers in network
traffic data Axelsson (2003); Corchado and Herrero (2011);
Tsai et al. (2009); Teoh et al. (2002), and monitoring
anomalies in social media Cao et al. (2016); Zhao et al.
(2014). However, there is a very limited understanding about
how to generalize these visualization design approaches
to reveal outliers in generic multivariate data. In this
paper, we introduce Z-Glyph, a family of glyphs designed
specifically to support outlier detection in multivariate
data. Fig. 1 showcases four types of Z-Glyphs proposed
and evaluated in this paper, extending a preliminary Z-
Star design first introduced in Cao et al. (2016). This
paper is motivated by seeing the potential usefulness of
this preliminary design as well as the missing of formal
evaluations in the original paper. The Z-Glyph family designs
are developed from a common core idea: that representing
“normal” data using regular shapes (e.g., straight lines or
circles) allows glyphs that depict abnormal data as easily-
detected shape deviations. This design follows the one-
class assumption that is used in many anomaly detection
algorithms Chen et al. (2001); Song et al. (2013). It assumes
that most data items belong to one large normal category
(summarized as the baseline) and only few of them are
outliers (revealed by shape deviations). This design not only
visually differentiate the abnormal items from the normal
ones but also enables a more precise data labeling procedure
guided by analyzers through reading and interpreting the
intuitive visual representation. Our study results verified the
effectiveness of the Z-Glyph design and also revealed that
highlighting value differences by colors (Fig. 1(c,f)) is not
very helpful for identifying outliers as expected.

In particular, the main contribution of this paper includes:

o Extending the Existing Design. We propose the Z-
Glyph family by extending the Z-Star Glyph which
is first introduced in Cao et al. (2016) based on
the same design scheme. Several new glyphs were
proposed in purpose of find out alternative designs and
estimate the original Z-Star glyph, which is missed
in the above paper. The design leverages human
perception features, visual metaphor and statistical
characterization.

o Extensive Controlled Experiment. We propose a
new set of experiments to systematically evaluate
multiple aspects of our design in the context of outlier
detection, and conducted an extensive controlled user
study to understand the strengths and limitations of
the Z-Glyph design, compared with baseline designs
including Line and Star glyphs. The results not only
indicate the proposed design outperforms the baseline
glyphs overall, but also reveal design features that are
suitable for outlier analysis tasks.

e Case studies on Real Datasets. We developed
outlier detection system by applying Z-Glyph design
using two real world datasets where ground-truth
information is available. We conducted system test
and in-depth interview with two expert users using
the prototype system. Their feedback showcases the
effectiveness of the Z-Glyph design and the feasibility
of tackling real-world outlier analysis tasks.
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Related Work

In this section, we discuss the related work from three
aspects: (1) outlier detection with the use of visual analysis
techniques, (2) glyph based visualization, and (3) similar
visual designs.

Outlier Detection

Outlier analysis techniques, including supervised, unsuper-
vised and semi-supervised methods, have been studied exten-
sively in the literature Aggarwal (2013); Angiulli and Pizzuti
(2005); Chandola et al. (2009). Typically, the outputs of an
outlier or anomaly detection technique are either numeric
scores or labels (normal or anomalous) Chandola et al.
(2009). As human judgement is critical in the process of
outlier analysis, how to design better representations to
enable more effective human judgement and interpretation
about outliers in data become an important issue.

Visualization techniques have been applied to assist
in anomaly detection and evaluation. Statistical diagrams,
such as line charts (in particular, time series charts) and
histograms are most commonly used to represent the
anomalous changes in variables Kind et al. (2009); Lin et al.
(2005); Laskov et al. (2005). For spatial data, variogram
clouds and pocket plots have been used in finding abrupt
changes that violate spatial auto-correlations Aggarwal
(2013); Haslett et al. (1991). When dealing with spatial
time series data, it is common to find unusual shapes from
multiple spatial distributions, such as color distributions in
MRI scans Aggarwal (2013).

For multidimensional or multivariate data, various types of
dimension reduction techniques, such as multidimensional
scaling (MDS) Kruskal and Wish (1978) and principle
component analysis (PCA) Jolliffe (2002), can be applied
to create visual mapping in a lower dimensional space.
Scatterplot matrices and parallel coordinates Inselberg and
Dimsdale (1991) are often used to represent data values
across multiple dimensions. Although not designed for
outlier analysis purpose, by depicting overall patterns in
data, these visualizations also reveal outliers to some
extent Kandogan (2001); Mufioz and Muruzabal (1998);
Novotny and Hauser (2006). There have been outlier
visualization techniques proposed in specific domains. For
example, visualizing outliers in computer network traffic
data for intrusion detection Axelsson (2003); Corchado and
Herrero (2011); Teoh et al. (2002); Tsai et al. (2009).
However, these special visualizations are usually not suitable
for broader applications.

Several visualization techniques have been proposed to
facilitate outlier detection in more complex datasets or
scenarios, such as detecting abnormal behaviors in social
media. For example, Thom et al. (2012) introduced a
visual analysis system for monitoring anomalous bursting
of keywords at different times and locations based on a tag
cloud visualization overlaid on top of a map. Zhao et al.
(2014) developed the FluxFlow system for detecting and
visualizing anomalous information propagation processes in
Twitter. Cao et al. (2016) introduced TargetVue, a visual
analysis system for detecting anomalous user behaviors
in online communication systems. These studies showcase
comprehensive visual analysis systems that leverage data



mining and interaction techniques for outlier detection in a
specific application context. Compared with these specific
designs, our work focuses on designing a general visual
representation for discovering outliers in multidimensional
datasets. Our design can be applied to broader application
contexts or used in existing visual analysis systems, making
the development of domain-specific anomaly detection
systems more efficient.

Glyph Based Visualization

In information visualization, a glyph refers to a small
and compact graphic representation that represents a
data point with multidimensional features Borgo et al.
(2013). Compared with other multidimensional visualization
designs, such as multidimensional scaling (MDS) Kruskal
and Wish (1978), parallel coordinates Inselberg and
Dimsdale (1991) and scatterplot matrices, and various
advanced designs for reducing clutter in multidimensional
data Zhou et al. (2013) or for representing data from
heterogeneous dimensions Zhou et al. (2015); Xu et al.
(2013); Cao et al. (2012, 2015); Wu et al. (2010), glyphs
transform multidimensional data features to composite visual
properties (such as shape, color, and size), producing various
“visual signatures” of data points that reveal more complex
data patterns and offer a richer description about data points.
The composite visual form of a glyph also allows it to be
used in small-multiple settings, or to be flexibly combined
with other types of data representation or graphics such as
tables or maps Fuchs et al. (2014).

Glyph based designs have been shown effective for
representing rich data in a wide range of domains. Examples
include visualizing poetry Abdul-Rahman et al. (2014), sport
event Chung et al. (2015), medical data Duffy et al. (2015);
Ropinski et al. (2011); Ropinski and Preim (2008), time
series data Fuchs et al. (2013), workflow data Maguire et al.
(2012), vector fields Hlawatsch et al. (2014); Jarema et al.
(2015), or representing data uncertainty Jéackle et al. (2015)
or sensitivity Chan et al. (2013) and comparing subject
survey data Kachkaev et al. (2014). A glyph’s composite
visual form makes it suitable to be used in distinguishing
some sort of “activities” in a dynamic environment. For
example, Erbacher et al. (2002) introduced a radial glyph
that shows a web server’s activities for connecting to other
servers over time. Fry (2000) introduced a glyph that
summarizes and represents users’ visits to web pages at
a time, and allows comparing changes across time. Xiong
and Donath (1999) developed “PeopleGarden”, a flower
shaped glyph that summarizes a user’s aggregated interaction
histories in a discussion group. These existing glyph designs
can be useful in revealing outlier activities in a particular
setting; however, there is still a lack of understandings about
how to design generic glyphs for supporting outlier analysis.

Similar Visual Designs

Comparing different items in a dataset is a key step for
detecting outliers. Therefore, an effective representation
of multivariate data for outlier detection should facilitate
a fast visual comparison of data features. Gleicher et
al. comprehesively summarized various different types of
visual comparison techniques in their survey paper Gleicher
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et al. (2011). Following their taxonomy, the design of Z-
Glyph falls into the category of “signal substraction”. When
compared to existing techniques in this category, while the
proposed Z-Line design may appear at first glance similar
to the one shown in Fig.1(c) in Gleicher et al. (2011), our
design makes a distinct contribution. The figure in Gleicher’s
survey was used to illustrate the comparison of the value
differences of two variables X, and Y by showing X-Y.
This problem is completely different from our research goal,
which is to identify outliers from a set of multivariate data
items. In Z-Glyph, we show differences between the feature
values of an item using the baseline values across multiple
variables. Here, the goal is not to compare two variables
but to compare multiple data items. In addition, to the best
of our knowledge, little visual comparison technique has
been designed in purpose of supporting outlier detection in
multivariate data.

Another similar design is the horizon graph Saito et al.
(2005); Heer et al. (2009), a variant of the line chart, which
is originally designed to help illustrate multiple time-series
within a compact display area. In this design, the line chart
is divided into layered bands by multiple baselines, each
of which indicates a data value. Different from horizon
graph in which each baseline indicates a single value, the
baseline in Z-glyph indicates the mean values of multiple
different data features. It distorts and visualizes different
mean values onto the same line segment, thus facilitating
a fast comparison between normal and abnormal values
across multiple data dimensions, which cannot be achieved
by a horizon graph. Therefore, Z-glyphs are essentially
generalizations of horizon graphs where the baseline value
(regardless of how it is computed) changes constantly.

Design of Z-Glyphs

In this section, we introduce the visualization design of the
proposed Z-Glyph visualization.

Visual Design and Rationales

The proposed glyphs aim to facilitate human judgment in
the process of outlier analysis. A critical question to be
answered here is how to represent outlier information that
can be easily perceived and recognized by human. Our
design is motivated by the following design guidelines and
data analysis strategies:

Choosing optimal visual channels: A variety of visual
attributes, such as shape, color, size, orientation, closure,
etc., can be incorporated into designing a glyph for outlier
detection purpose. The proposed glyphs should be designed
based on visual channels that are mostly effective for
encoding outlier information. In this study, we investigate
several visual channels that have been shown effective in
glyph based visualizations and further test their effectiveness
in the context of outlier analysis.

Utilizing visual metaphor: Metaphoric visual represen-
tation is a powerful way to establish metaphoric associ-
ation between a visual channel and the concept(s) to be
encoded Maguire et al. (2012). If possible, visual metaphor
should be employed to facilitate establishing an intuitive
mental model for perceiving outliers. The proposed glyphs
are designed based on the metaphor of “compliance versus
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Figure 2. Visual Design. (a) Traditional Line glyph plots data
and baseline values in a re-scaled space limited by the min. and
max. feature values. (b) Z-Line glyph plots data with
location-scale transformation (z-scores), where the location
parameter values are viewed as the baseline. (c) Traditional
Star glyph plots data and baseline values in a re-scaled circle
limited by the max. feature values. (d) Z-Star glyph plots data
with location-scale transformation in a scaled circular band.
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Figure 3. Visualizing normal and abnormal data values.

non-compliance” where normal data pattern are represented
as a regular shape (a straight line or a circle) and outlier pat-
terns are displayed as shapes departed from regular shapes.

Incorporating statistical distribution concept: Outlier
detection methods commonly rely on determining the
statistical estimation of the underlying distribution to
characterize the normal behavior of the data. This common
analysis strategy should be incorporated when designing
the visual encoding of outlier information. The proposed
glyphs leverage the concept of distributions widely studied
in the statistics literature. However, unlike traditional outlier
detection methods that simply output scores or labels to
represent the “outlierness,” our design visually encodes the
statistical information to better support human recognition
and interpretation.

Visual Encoding

Typically, data with multidimensional feature values can be
represented using line glyphs or star glyphs (Fig. 2(a,c)). In
a line glyph, feature axes are parallel arranged and a data
item is shown as a polyline connecting with points indicating
the data item’s feature values of the corresponding feature
dimensions (e.g., the black polyline shown in Fig. 2(a)). In a
star glyph, a data item is shown with feature axes arranged
radially (Fig. 2(c)). A naive way to introduce the outlier-
related information would be to overlay the “normal” feature
values on the same glyph, such as the red polylines shown on
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Fig. 2 (a,c). Such representation, however, does not directly
guide users/viewers to judge or recognize outliers.

We propose a new glyph design for encoding outlier
information. First, we represent the “normal” data using
regular shapes including straight line and circle, such
that abnormal data can be revealed if their feature
representation deviates from the regular shapes (Fig. 2(b,d)).
Second, to enable the visual comparison between shapes,
a data item’s feature values should have common scales
across dimensions, such that certain types of shapes (e.g.,
smoothing or fluctuated lines) can be interpreted in a similar
way regardless of the original feature units. To create
such feature representation, we employ a location-scale
transformation for each feature dimension as follows.

Let X be a feature variable, the transformed feature
variable is defined as Z = (X — a)/b, where a is the
location parameter, and b is the scale parameter. The location
parameter can be chosen to measure the central tendency
of the distribution, such as mean, median and mode. The
scale parameter should measure the dispersion or variation
of the variable X. When a is the mean of X, and b is
the standard deviation of X, the transformation corresponds
to standardization. Z is called standard score or z-score.
The standard score measures the distance from the mean
to the random variable in terms of standard deviations, and
hence it is dimensionless (that is, it has no physical units).
This standard transformation can be applied to arbitrary
distributions.

To simplify the interpretation of visual mapping resulted
from the transformation, we assume the underlying feature
values follow or can be transformed to follow a certain
location-scale distribution such as normal distribution or
exponential distribution. In this way, the standard scores
remain unchanged in the location-scale transformation,
making the visual perception of similar visual mappings
consistent. If the feature values follow a normal distribution,
the outliers can be easily recognized with high absolute z-
scores. Even for arbitrary distributions, the transformation
still provides heuristics to compare the relative “outlierness”
of data and hence has been commonly used in outlier
analysis Aggarwal (2013). In our glyph design, encoding
this outlier information as shapes in a glyph allows users to
visually compare and recognize potential outliers in the data,
which leverage human judgment in better distinguishing
actual anomalies.

We propose Z-Glyph family following the idea of
visually encoding the feature z-scores. Based on different
visual encoding strategies, the Z-Glyph family has four
variants: Z-Line, Z-Star, Z-LineD and Z-StarD (as shown
in Fig. 1(b,c,e,f)). In Z-Line and Z-Star glyphs, feature z-
scores are plotted as polylines or stars against the mean,
shown as the red straight line in Fig. 1(b), or the red circle
in Fig. 1(e), respectively. The mean line/circle forms a stable
visual baseline in the entire dataset which simplifies the
visual detection®. The two design variants utilize different
combination of visual channels for comparison. In Z-
LineD and Z-StarD glyphs, the areas between the feature

*Sometimes, the mean value can be replaced by the baseline values of the
features which are already known. For example, the standard lab test results
in a electronic health records.



polylines/stars and the mean line/circle are filled with two
colors to enhance the dichotomous region — value above the
means are colored in red and values below the mean are
colored in blue. The dichotomous coloring incorporates an
additional visual channel to assist visual comparison across
shapes. Fig. 3 illustrates the normal and abnormal patterns
shown using Z-StarD, where colored area emphasizes the
deviance of feature values. In this study, we will examine
these different design choices and their effectiveness in
supporting outlier analysis.

Discussion

Assumption on Data Distribution. 1t worth mentioning
that, the aforementioned design based on the assumption
of the underlying data following an uni-modal model
based distribution. The underlying rationales for making
this assumption are from multiple aspects: (1) Many
nonparametric methods in outlier detection, e.g., those that
are designed to search for low-density objects in Euclidean
space, are using the same assumption and are verified to
be effective in practice Aggarwal (2013); Chandola et al.
(2009); (2) Even for arbitrary distributions, this assumption
still provides good heuristics that allows for comparing
the relative “outlierness” of data and hence has been
commonly used in outlier analysis Aggarwal (2013); and
(3) the proposed visualization follows three design rationales
with the goal to better support human recognition and
interpretation. Note that we do not assume the data should
follow a normal distribution but instead a broader family
of location-scale distribution (including normal distribution).
Our framework allows users to choose measures for the
central tendency of a distribution, e.g., mean, median and
mode (page 3). We believe this design contributes to
provide a novel linkage to bridge external representation
(visualization) and the statistical distribution concept (users’
conceptual model related to outlier recognition).

Readability of the Design. Another potential constraint
of Z-Glyph design is that scaling data around a baseline
transforms the data into a relative instead of an absolute
scale, which makes it difficult to read actual values from
the visualization. We believe in most of the cases Z-Glyphs
will be used for providing visual cues of outliers in a
multidimensional dataset. Therefore, supporting a precise
reading of the feature values is not the major goal of the Z-
Glyph design as other visualization views that facilitate data
reading can always be used at the same time as shown in Cao
et al. (2016).

Experiment Design

We examine the effectiveness of different glyph design
choices in a controlled user study. In this section, we describe
the design of the experiment and provide rationales for some
of the particular experiment design decisions, which were
made based on prior studies and our pilot studies.

User Task: Outlier Detection

This study focuses on evaluating the glyphs’ capability of
revealing outliers in a multivariate dataset. To this end, we
design a task that simulates a typical outlier detection task in
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the process of outlier analysis, in which a large collection
of data items are considered normal but a small portion
of items are potentially abnormal and requires additional
human inspection. Human evaluators need to be able to find
actual outliers from this small set of potentially abnormal
items. Hence, in our experiment, the user task is:

Determine outlier items (i.e., the items have significant
different feature values compared with that of other
items) from a given small set of multidimensional data
based on their glyph representation.

In this task, the primary factor to be tested is the six
design choices, as shown in Fig. 1 (a—d). Additionally, when
these glyphs are used for representing data in the outlier
detection task, the results are affected by two major factors:
(a) the numbers of data items shown to the users, and (b)
the numbers of features represented by the glyphs. We have
conducted a pilot study with 6 users to determine the proper
conditions for examining how these two factors affect the
study results.

In real-world applications, identifying actual outliers is not
a trivial task and usually requires evaluators to inspect data
with dozens or even hundreds of feature dimensions Cao
et al. (2016). In order to simulate the real-world scenario, we
decided to show data with few dozens of feature dimensions
through glyphs. We tested a wide range of possible feature
dimensions in our pilot study, and selected 25 as the low-
dimensional case and 50 as the high-dimensional case as
the two conditions best differentiated users’ detection ability.
We believe 50 dimensions is also high enough to verify the
Z-Glyph family’s scalability in terms of representing high-
dimensional data as most existing techniques, as shown in
the a recent survey of state-of-the-art parallel coordinates
techniques Heinrich and Weiskopf (2013), are able to
concurrently visualize only a relatively small number of
dimensions (most often less than 20). We also tested a
range of possible numbers of data items shown to users and
determined to use 5 x 5 = 25 items as small-size dataset case
and 10 x 10 = 100 items as large-size dataset case.

Study Hypotheses

The goal of this experimental study is to understand the
strengths and limitations of different glyph designs in terms
of their effectiveness of facilitating human judgment in
outlier analysis. Based on the design rationales provided in
the last section, we hypothesize the core design of the Z-
glyph family — representing the data means as stable visual
baseline — better facilitate the outlier recognition than the
naive strategy.

H1 The Z-Glyph family is more effective than the baseline
glyphs (Line and Star) in assisting outlier detection
task.

These design variants utilize different visual channels.
Since line-based glyphs simply require visual comparison of
positions along vertical direction, and human visual system is
most efficient in position comparison Cornsweet (2012). We
hypothesize that line-based glyphs better facilitate the outlier
recognition than star-based glyphs (which also requires
visual comparison in orientation).



Information Visualization XX(X)

. e f’_“"L ,—_\\1 r"‘”‘"..‘l
(A f h I\__,, ¥ f J !

)
J

L
I’r"
b
1’
£
R |
—

", # "
) Q)L E
£y ‘r{ k'

’{’—j o I .._--“5
'“"- : “'r--f'/

i

) (6

Figure 4. In the study, glyphs are randomly laid out in an N by
N grid.
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H2 The line-based glyphs (Line, Z-Line, and Z-LineD) are
more effective than the star-based glyphs (Star, Z-Star,
and Z-StarD) in assisting outlier detection task.

Furthermore, we hypothesize that adding dichotomous
color encoding help outlier recognition as the dichotomous
colored region highlight the deviation of feature values.

H3 The dichotomous color encoded glyphs, Z-LineD and
Z-StarD, are more effective than Z-Line and Z-Star in
assisting outlier detection task.

Glyph Display

We would like to minimize the influence of other visual
properties irrelevant to the glyph design, such as the
positioning of the glyphs, in the study. To this end, we
randomly position data glyphs in an N by N grid, where the
glyphs’ positions do not encode any information (Fig. 4).

Task Performance Measures and Test Data

To evaluate users’ performance of detecting outliers via
different glyph designs, we quantify the accuracy and the
completion time of performing the task.

There are two alternative ways to measure the task
accuracy Hulleman (2005): “probe one” in which users need
to identify a single item with the highest “outlierness”, and
“select all” in which users need to identify all outlier items
in a given dataset. In our pilot study, we have tested the two
experiment designs. We found that the “probe one” is not
proper in this study as there was no clear way of judging
what “the most” abnormal pattern might be. Thus, instead of
“probe one,” we asked users to select 3 outlier items without
explicitly ranking the most abnormal one. The number of
outliers was chosen because even with many state-of-the-art
anomaly detection techniques (e.g., One-Class SVM Chen
et al. (2001) and OCCREF Song et al. (2013)), the accuracy
may be less than 10% in real-world applications Zhao et al.
(2014), i.e., about 3 out of 25 data items. In addition,
we have chosen to fix this number regardless of dataset
sizes. Fixing target numbers enable a comparison of users’
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task completion time in all cases, as selecting more targets
requires more operations (e.g., mouse clicks) that could
confound the study results.

The task completion time was automatically recorded in
our experimental system. It measures the duration starting at
the time when each testing dataset is loaded and presented to
users as glyphs, and ending at the time when users click the
“next” button to continue the next trial. The duration includes
both the data inspection time and answering time.

Simulated Data. In the experiment, we assumed the
underlying multivariate data were normal deviate, and
users were asked to find three actual outliers from each
of the given datasets. We simulated each of the testing
datasets that contained N data items with D-dimensional
features, as follows. We first produced sufficient amount of
samples following the D-dimensional multivariate normal
distribution and computed the sample mean y and sample
standard deviation 0. We randomly selected 3 sample points
whose distances to the mean were greater than 30, and
randomly selected N — 3 points with distance to the mean
less than 30.

Consideration of Study Baselines

We consider line glyph and star glyph as two design baselines
(Fig. 1(a,d)) as they are the most popular glyph design
choices Fuchs et al. (2013). In terms of star glyph, there exist
several design variants that could influence the study results.
It has been shown in previous study Fuchs et al. (2014) that
a star glyph with data lines outperforms those star glyphs
attached with contours in terms of revealing data similarities.
However, the prior study results cannot be directly applied
in our study for two key reasons. First, previous study only
considered data with relative small dimensions (no more than
10), and our study considers much larger feature dimensions.
Second, previous study focused on evaluating the design
choices for a task of revealing similar patterns with respect
to one target item, and our goal is to evaluate the designs in
terms of how they help reveal a small portion of abnormal
patterns. Thus, we conducted an additional pilot study to
determine a specific star glyph design as the baseline in our
experiment.

Figure 5. Different variations of star glyphs. (a) data line only,
(b) data contour only, (c) data contour with a filling color. In all
these variations, the baseline is visualized as a red contour.

In the pilot study, we compared three types of star glyph
designs shown in Fig. 5. 18 users were asked to select three
outliers out of 100 50-dimensional data items. The results , as
summarized in Fig. 6, suggested that the design (b) performs
the best, both in terms of low completion time and high
accuracy. In particular, accuracy of design (b) is significantly
better (p < .05 when compared to design (a) and p < .05
when compared to design(c)). Therefore, we have chosen
design (b) as the baseline in our main experiment.
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Figure 6. Comparing three different star glyph designs in terms
of task completion time (in second) and number of correct
answers (3 is the max corresponding to 100% accurate).The
label (a), (b), (c) indicate three different types of star glyph
designs illustrated in Fig. 5.

The order of glyph axes is another relevant design factor
that is also investigated in the pilot study. However, we
decide to omit this factor from our final study and paper
for the following two reasons: (1) the pilot study results
suggested that reordering the axes in glyphs did not have a
significant effect on the performance measures when using
Z-Glyphs; (2) Z-glyphs can be extended to visualize time-
series data in which the order of axis represents timestamps
which cannot be reordered; and (3) reordering is a visual
clutter reduction technique which can be apply in Z-Glyph,
but reordering itself is not related to the design of Z-Glyph.

User Study

In this section, we first describe the study procedures that
were followed to realize the above experimental design. We
then present the study’s results and discuss the findings.

Participants and Apparatus

We recruited 18 users (8 female) to participate in our study
with the goal of comparing six distinct glyph designs: Line
Glyph, Z-Line Glyph, Z-LineD Glyph, Star Glyph, Z-Star
Glyph, and Z-StarD Glyph as shown in Fig. 1. The users
were researchers or graduate students in computer science,
art, and psychology. Their ages ranged from 23 to 34 (mean
28, SD = 3.16) and all had normal vision.

Testing environment. The study was performed on a
15.4-inch laptop computer with a display resolution of
1440 x 900 pixels and a 60 Hz refresh rate. Users sat
approximately 50-60cm from the display. The experiment
was conducted within a 960 x 650 pixel window with a
white background. Glyphs were randomly positioned in the
experiment window across a two-dimensional grid with a
cell size of 52 x 52 pixels. The glyphs are re-sized such that
users do not need to scroll the window in any of the varying
conditions.

Procedure

Before the formal study, we organized an one-hour
orientation seminar. During the seminar, we first introduced
the concept of outlier detection and its wide application in
many real-world scenarios. Next, we reviewed in detail the
six different glyph designs and their interpretation in the
context of outlier detection. Finally, we provided a brief
lesson with instructions regarding the use of the prototype
system.

During the instructional lesson portion of the seminar,
users were shown how the study system would display a
set of glyphs (all of the same type) from which the users
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would be asked to identify three outliers. Users were told
to click on the outliers they identify to select them. The
selection, which displays a blue highlight on the glyph, could
be unselected by a second click on the glyph. Users were also
shown the “next” button which was to be clicked when they
considered themselves finished with the task. Clicking next
would record the results and surface the visualization for the
next task.

Following the group lesson, users were asked to practice
using the study system using a sample dataset (24
tasks addressing all 6 glyph designs, 2 data scales, and
2 dimensionality scales). Finally, a question-and-answer
session was held to address any remaining questions.

Once all users had received their orientation, we scheduled
individual study sessions with each user. For each individual
session, the order of the experiment was randomized,
including both the order of the tasks and the order of glyphs.
For each user study task, we used the same dataset with each
type of glyph. The choice to reuse datasets across glyphs was
made to allow a fair comparison of the observed results.

To avoid learning effects, glyph locations were shuffled
when switching glyph designs, resulting in new locations for
the outliers that users were asked to identify. In addition,
the dimension ordering was shifted each time the location
was changed. A shift in order, rather than a randomized
order, was used because sequential relationships between
dimensions can significantly affect the resulting visualized
pattern (e.g., reordering is an important visual clutter
reduction method Ellis and Dix (2007)). Together, these two
techniques ensured that for each of the six glyph types in a
task, the users were looking at the same set of targets using
the same dataset, but were unable to memorize the correct
answer.

The users’ task completion time and answer accuracies
were recorded automatically by the study system and
captured in a quantitative performance report. After
performing the study tasks, the users completed a post-study
questionnaire to gather subjective feedback. From start to
finish, each session lasted approximately 30 to 45 minutes.

Task Conditions

We performed a within-subjects study in which each user
was required to complete 12 tasks using each of the six
glyph designs, resulting in 72 trials per user. As mentioned
above, we considered both large and small scale datasets,
with both high and low dimensionality. We generated three
distinct datasets for each of these configurations, resulting in
2 x 2 x 3 = 12 datasets, one for each task. Considering the
18 users, the design produced 1,296 unique trials:

18  Users
6  Designs
2 Scales of the Data (small (25), large (100))
2 Scales of Dimensions (low (25), high (50))
3 Repetitions
1,296  Trials
Table 1. The design of study tasks.
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Results

In this section, we report the results of our analysis of
both the quantitative and qualitative results gathered during
the study. First, we describe the effect of our two study
variables (data size and dimensionality) on the overall task
performance. Then we focus on a direct comparison of the
glyph designs themselves. Finally, we present the results
from the post-study questionnaire.

Effects of Data Dimensionality and Size We investigate
how the two study variables (dimensionality and data
size) affect the task performances in a series of analysis.
To this end, we separate the study results into four
datasets based on different testing conditions (i.e., low/high
dimension, small/large size). In each dataset, one variable
was fixed and the other was tested based on repeated
measures ANOVA (RM-ANOVA) to take the glyph type
into consideration, while making the comparison. Before the
RM-ANOVA analysis, the data’s normality and homogeneity
were tested and the unsatisfied data were transformed'.
During the test, the assumption of sphericity were verified
based on Mauchly’s test. The degree of freedom was
corrected using Greenhouse-Geisser estimate of sphericity
when the assumption is violated. The following figures and
descriptions summarize the testing results in detail.

According to Fig. 7(a), when the number of dimensions
was low, the task-completion time of the Z-Glyph family was
less sensitive to the change of data size (i.e., time differences
were relatively small) when compared to the baseline glyphs.
However, RM-ANOVA analysis showed that size was a
key factor which significantly affected users’ performance
(F(1,17) = 13.974, p < .05) across all kinds of glyphs with
faster speed for smaller datasets (N25). In terms of task
accuracy (Fig. 7(b)), Z-StarD and Z-LineD both proved most
robust (less sensitive) to changes in dataset size, and RM-
ANOVA test showed that overall there was no significant
change in users’ ability to correctly identify outliers.

As in the low-dimensional case, high-dimensional data
resulted in significantly slower performance (F(1,17) =
84.884,p < .05) over all types of glyph designs (Fig. 8).
In this configuration, the impact on accuracy was
also statistically significant (F(1,17) = 60.472,p < .05).
However, Z-Glyph family showed generally smaller impacts
(i.e., has relatively less difference in accuracy when
dimension is changed as shown in Fig. 8) , with Z-LineD
the least impacted overall.

When the data size was small (Fig. 9), the task-completion
time of the Z-Glyph family was affected less by changes in
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Figure 7. The effect of data size when dimensionality is 25
(low-dim).
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Figure 8. The effect of data size when dimensionality is 50
(high-dim).
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Figure 9. The effect of dimensionality when data size is 25
(small).
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Figure 10. The effect of dimensionality when data size is 100
(large).

dimensionality compared to the baseline glyphs, though the
overall drop in performance was statistically significant for
all glyphs (F(1,17) = 62.813, p < .05). For task accuracy,
the baseline star glyphs suffered a large drop in performance,
while the Z-Star family proved most robust.

Similar to the small data size case, task completion times
for large datasets were significantly impacted (F(1,17) =
62.153,p < .05) by changes in dimensionality (Fig. 10).
Moreover, in contrast to the small data case, task accuracy
was also significantly impacted (F(1,17) = 143.5, p < .05).
However, as Fig. 10, the increase in time and decrease in
accuracy were most strongly felt in the baseline designs.

In summary, both dimensionality and data size are key
factors that may significantly affect task performance for all
types of glyphs. The affection follows an expected pattern,
the larger the data size is or the higher the dimensionality is,
the slower the performance will be. Comparatively speaking,
Z-Glyph designs is performed more robust than that of the
baseline glyphs.

"The Shapiro-Wilk test showed that some of the datasets were non-normally
distributed. The inverse degree of freedom was used to transform the data
into a normal distribution.



Comparison of Glyphs While the results above show that
data size and dimensionality broadly impact performance,
there are also differences between specific designs. To
quantify these differences, we compared the Z-glyph family
to the two baseline glyphs (Star and Line) under different
conditions using Repeated-Measures ANOVA and analyzed
the pairwise comparisons using Bonferroni correction. With
respect to the null hypothesis, we assume that there
is no difference in means between Z-Glyph family and
baseline glyphs in terms of both task completion time and
accuracy. Similar to the above analysis, the normality and
homogeneity assumption were also tested and the data were
transformed or the degree of freedom was corrected when
the corresponding assumptions were violated. The analysis
results are summarized in Fig. 11 and Fig. 12 and described
below in more detail.
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Figure 11. Comparing the mean task-completion time of six
glyph designs under different conditions.
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Figure 12. Comparing the mean of the numbers of correct
answers (maximum is 3, the number of repetitions in our study
design) reported based on different glyphs under different
conditions.

T1 (N25-D25): Finding outliers in 25 25-dimensional
glyphs. The tests of within-subjects effect showed that
these glyphs are significant different in terms of both task
completion time (F(5,85) = 16.746, p < .01) and accuracy
(F(5,85)=14.504, p < .01). When compared to the baseline
Line glyph, the whole Z-Glyph family was significantly
better in terms of both time (p < .05) and accuracy (p < .05),
which rejects the null hypothesis. When compared to the
baseline Star glyph, however, the benefits of the Z-Glyphs
were not significant, where null hypothesis is true.

T2 (N25-D50): Finding outliers in 25 50-dimensional
glyphs. The tests of within-subjects effect showed that
these glyphs are significant different in terms of both task
completion time (F(5,85) = 7.910,p < .01) and accuracy
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(F(5,85) = 30.581,p < .01). When compared to the Line
glyph, the whole Z-Glyph family was significantly better
than the Line glyph in terms of both time (p < .05) and
accuracy (p < .01), but no significance were found between
Z-Glyph family and the Star glyph.

T3 (N100-D25): Finding outliers in 100 25-dimensional
glyphs. The tests of within-subjects effect showed that
these glyphs are significant different in terms of both
task completion time (F(5,85) = 16.741,p < .01) and
accuracy (F(5,85) = 16.741, p < .01). In particular, pairwise
comparisons showed that the following cases reject the
null hypothesis. When compared to the Line glyph, the Z-
Glyph family was significantly better in terms of both task
completion time (with all p < .05) and accuracy (with all
p < .05). When compared to the Star glyph, the Z-StarD
and Z-LineD glyphs were both significantly better in terms
of task completion time (with p < .05). Z-StarD, also had a
significantly better accuracy (with p < .05).

T4 (N100-D50): Finding outliers in 100 50-dimensional
glyphs. The tests of within-subjects effect showed that
these glyphs are significant different in terms of both
task completion time (F(5,85) = 6.519,p < .01) and
accuracy (F(5,85) =22.651, p < .01). In particular, pairwise
comparisons showed that the following cases reject the null
hypothesis. When compared to the Line glyph, the whole Z-
Glyph family produced significantly better task completion
times (with all p < .05) and accuracy (with all p < .05).
When compared to the Star glyph, the whole Z-Glyph family
was significantly better in terms of task completion time
(with all p < .05). The Z-Line and Z-LineD glyphs were
significantly better than the Star glyph (p < .05) in accuracy.

Considering all four configurations, the Z-Glyph family
outperformed the baseline glyphs by a wide margin for
both task completion times and accuracy rates. Moreover,
the effects were stronger as the datasets grew in size
and dimensionality. There was no statistically significant
difference between the different Z-Glyph designs. However,
Z-Line and Z-LineD glyphs performed the best overall,
and they outperformed the baseline glyphs in both time
and accuracy under most conditions. The results suggest
that the Line glyph is the worst option for the studied
outlier detection tasks. However, the baseline Star glyph—
contrary to our initial hypothesis—produced relatively strong
performance results when the data size was small or data
dimension was low. However, its limitations were revealed
in the more complex conditions.

Post-Study Questionnaire Users completed a post-study
questionnaire with 13 questions designed to capture
qualitative feedback.

The first two questions in the survey asked users to choose
which glyph type was most useful and easy-to-use for outlier
detection. The results are shown in Fig. 13(a). Questions 3-
6 asked users to choose the glyph type most effective for
outlier detection under specific conditions (large vs. small
datasets; low vs. high dimensionality). The results are shown
in Fig. 13(b).

The baseline Line and Star glyphs were the least popular,
mapping to the results, mirroring to some extent the
performance measurements for these glyph types. However,
Surprisingly, however, the results show that the Z-Star and
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Z-StarD glyphs were most popular even though the Z-
Line and Z-LineD glyphs generally performed better in our
quantitative evaluation.
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Figure 13. Users’ ratings of different glyphs by considering (a)
their usability and (b) their efficiency under different conditions.
In the figure, x-axis indicates the number of ratings. A user was
allowed to rate multiple glyphs at the same time.
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Figure 14. The usability of the two design factors, (a)
standardization and (b) color enhancement, in Z-Glyphs. In this
figure, y-axis indicates the rating score where 5 score means
very useful or very easy to understand, in opposite, 1 score
means not useful at all or very difficult to understand. x-axis
indicates the number of ratings.

In question 7, we investigated which visual attribute, shape
or color, was considered most useful for detecting outliers.
The results show that all 18 users detected outliers by
comparing glyph shapes of data items, but only 8 (less than
half) reported taking color comparison into consideration.

Questions 8 - 11 focused on the utility and ease-of-use of
the two key elements in the Z-Glyph construction process:
standardization and color enhancement. The results (Fig. 14)
show that standardization was considered very useful by all
users (Fig. 14(a)). Color enhancement, in contrast, received
less support though the responses were still positive overall.

The final two questions were free response questions
asking for feedback as to the advantages and disadvantages
of the Z-Glyph design. The most valuable feedback from
these questions is reported in the discussion section below.

Discussions

Both the user study statistics and the questionnaire results
provide valuable insights into when and how the Z-Glyph
design is useful.
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When should Z-Glyphs be used? The Z-Glyph is
designed to support outlier detection tasks for all types of
multivariate data in which (a) the data are normal deviate,
or (b) the data can be transformed to be close to the
location-scale distributions. The study results showed that
the Z-Glyph family of designs produced faster performance
times with more higher accuracy rates when compared
to the baseline designs. This held true nearly universally
across the evaluated variable space (small vs large; low-
dimensional vs. high-dimensional), with increasing benefits
as the visualized data grew more complex. More specifically,
within the Z-Glyph family of designs, the Z-Line and
Z-LineD glyphs outperformed the others in most cases.
These are recommended as a first choice in most real-world
applications.

Why was the Star glyph family popular? While the Z-
Line and Z-LineD glyphs produced the quantitative results
for speed and accuracy, users reported a preference in their
post-study feedback for the Star family over the Line family
of glyphs (see Fig. 13(b)).

The reasons were found in users’ comments collected in
the questionnaire. Users’ free responses in the questionnaire
help explain this apparent discrepancy in aesthetic terms:
“They [the star glyph family] are in a circular shape, making
the design more compact and also making the eyes more
comfortable when looking at those images for a long time.”

Why did Z-Line(D) outperform Z-Star(D)? Clues to the
benefits of the Line-based version of this glyph were found
in feedback gathered from the study users. In particular, two
users reported a critical problem: the circular shape of the
star-based glyphs produced a “smoothing” of the irregular
shape patterns that serve as a primary encoding for outlier
detection within the Z-Glyph design. Echoing this challenge,
another user said, “when the number of features is very
large, the differences of the shapes are limited in Z-Star
glyphs.”. Yet another user mentioned that “all the zigzag
shapes become unclear in the circular arrangement. Picking
up outliers from a large set of data thus becomes difficult”.
Similarly, another reason by users was the “need to calculate
the area in my mind to figure out the outliers, the circular
ones making this calculation a little bit difficult”.

Why did colors provide little help? The lack of
effectiveness for color-coding was especially surprising.
Using color to highlight differences from the norm was a
major part of the Z-Glyph design, and the expectation was
that it would be valuable for the outlier detection task.

However, as one user said explicitly, the shape is the
dominant feature used to make judgements and the color
often proved distracting: “the shapes come first, then the
color helps. But when there are a large number of features,
the color seems to dazzle the eyes and makes it very tired.
Also, it doesn’t help to distinguish the shape when the
features are too many and each one is too small; the color
makes it harder to distinguish the shape differences. The
Z-Star glyph seems better here.” Another user mentioned
that “focus on colors [meant] I was looking at outliers with
respect to the color distributions of all glyphs, rather than
being able to detect outliers with respect to the provided
baselines in each glyph. I [felt] that this lead to a high false
positive rate.”
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Figure 15. Visualizing Twitter users’ behaviors in Z-Star Glyphs.

Despite these reservations, a majority of users still
believed that using colors was useful, and that it resulted in
a more aesthetically pleasing visualization. There was also a
suggestion that colors would be more useful for larger glyphs
where more pixels were available to depict the graphics.

Domain Expert Interview

We conducted interviews with two domain experts to further
evaluate the proposed Z-Glyph designs. The first is an expert
in information security and the second is a medical doctor
with dual certification in internal medicine and pediatrics.
In this section we report our procedure and present the
interviews’ results.

Procedure. The two interviews were both conducted in
the form of a short-term case study, during which the
expert was asked to identify outliers from a dataset relevant
to their expertise. Each interview started with a tutorial
period. The tutorial explained the outlier detection concept,
described the various glyph designs, presented an overview
of the outlier explorer system, and had the experts begin
interacting with the system on their own. Once the experts
were proficient with the prototype system, they were asked
to find outliers in a prepared dataset appropriate to their area
of expertise. During this procedure, we conducted a semi-
structured interview that included questions about various
aspects of the glyph designs, overall usefulness, ease of
use, and general pros and cons of the approach taken. Each
interview lasted about 1 hour and was recorded and notes
were taken.

Outlier Explorer. To support the interview, we developed
a prototype Outlier Explorer in which data points are
visualized as the glyphs using the designs outlined in this
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paper and arranged using graph layout algorithms or MDS
projection depending on the structure of the data (Fig. 15).
The system is highly interactive, allowing users to zoom in
and out, and to pan their view to focus on specific sections
of the dataset. To prevent occlusions when zooming out,
glyphs are automatically aggregated into meta-glyphs based
on averaged feature values when the boundaries of two or
more glyphs begin to overlap. Similarly, the meta-glyphs
are then split into multiple smaller glyphs when zooming
in provides more room. The expert users were also able to
switch between different glyph styles, with Z-StarD used as
the default.

Interview I: Detecting suspicious users in Twitter. The
first interview was conducted with an expert in information
security. The expert is a male professor at a highly-ranked
US University with more than 20 years of experience in
the field. The dataset for this interview contained statistics
for 500 Twitter accounts, 30 of which were social bots
rather than normal users. These 500 accounts were sampled
from a larger Twitter dataset in which each account was
described by a 58-dimensional feature vector capturing
various social behaviors (for details about the features and
the dataset, see Cao et al. (2016)). The data was rendered
as a graph, with nodes representing user accounts and links
representing communication paths (mentions, retweets, etc.).
A screenshot of the explorer is shown in Fig. 15. The
information security expert was asked to examine this data
to identify the bot accounts.

The expert identified a group of the most suspicious users
with just a first glance at the outlier explorer. “Oh, this
is obvious” he said while identifying the group. “All the
abnormal ones are already highlighted in colors” and the
“shapes also provide some cue”.
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Figure 16. The scatter plot view of the patient dataset. X-Axis
is red blood cell count and Y indicate age.

The expert then zoomed in to view the suspicious group
in more detail. The accounts in this group had many feature
values that were well above average. Hovering the mouse
over each of the accounts, the expert investigated the detailed
feature values which were shown via a tooltip. Focusing on
the account he found most suspicious based on the glyph
design (shown in Fig. 15), he found that the account had
a rather small number of followers (below average) but
had a very high retweeting rate. In addition, the account’s
messages had a high ratio of mentions and contained many
URL links. The expert felt that this appeared to be behavior
typical of a spammer. It was confirmed later that the expert’s
suspicion was correct, and that he had indeed identified a bot.

After comparing views of the data using various glyph
designs, the expert believed that the glyphs without colors
(i.e., Star, Z-Star, Line, Z-Line) were difficult to read. “It is
difficult to see these lines [referring to the polylines shown
feature values in the glyphs] as they intersect with these
graph links”. He stated a preference for the Z-StarD and
Z-LineD glyphs, and believed that both of them were well
designed for the outlier identification task.

Overall, the expert felt that the Z-Glyph designs were
“simple but informative,” and expressed the desire to adopt
the Z-StarD glyph design in some of this own work.
However, he also provided valuable comments regarding
limitations of the prototype explorer, which we present in the
discussion later in this section.

Interview II: Finding high-risk patients. The second
interview was conducted with a medical doctor. The expert
is a female clinician with dual specialty in internal medicine
and pediatrics. The dataset for this interview contained data
from a cohort of patients, some of whom were suffering
from chronic kidney disease (CKD). The remaining patients
were generally healthy. Each patient was represented by
a 24-dimensional feature vector describing factors such as
age, blood pressure, and various medical test results Rubini
(2015). The doctor was asked to examine the patient
population to identify patients most likely to have CKD.

Given the independence between patients (in contrast to
the Twitter accounts, which interacted with each other), the
data for this interview was visualized using a layout based
on the MDS projection. MDS attempts to make distances in
screen space reflect inter-item similarity measures, resulting
in similar items appearing proximate to each other when the
positions are used for visualization. A scatter-plot view was
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also included in the prototype, in which layout was driven by
specific feature values (see Fig. 16).

The doctor was able to immediately identify a number of
suspicious glyphs. “These on the periphery. The ones with
more red, or blue.” She then used the tool-top to inspect the
clinical indicators and verify her initial hypotheses. When
asked her to compare different glyphs, she said “I liked [Z-
StarD] the best.” Continuing, she stated that “the others are
harder to interpret at a glance” and that “Z-StarD is the
easiest.”” Asked to explain why, she simply stated that the
other ones are just harder to look at.” Moreover, in reference
to the baseline glyphs, she suggested that “in a clinical
context, I would worry that I would misinterpret. To get it
wrong, not life or death, but [it] could really mess up the
course of treatment.”

Finally, the doctor felt that the system would be useful for
population management. In particular, she discussed the job
of assigning limited resources to challenging patients, and
that this difficult job often falls on the shoulders of the actual
physicians. She felt that the outlier explorer could help them
figure out which patients were the best ones to select for
special attention when allocating those resources.

Discussion. The two expert interviews described above
reinforced the idea that real-world outlier detection tasks are
quite challenging. Detailed domain knowledge and human
judgement were essential in correct data interpretation.
With this in mind, the Z-Glyphs were designed to help
embed a “human in the loop” within the outlier detection
process to help address the two major challenges mentioned
in the introduction. The current design was mostly well
received by the domain experts. In particular, their feedback
verified that Z-Glyphs are more effective than the baseline
glyphs in assisting outlier detection. Interestingly, however,
the first expert believed Z-Line glyphs were less effective
when compared to Z-Star glyphs for graph visualization,
where the lines may intersect with the graph links. This
potentially introduced visual clutter that could affect users’
judgment. This finding contradicts with our hypothesis and
experimental results, but also provides a useful insight about
how to choose between the different designs given different
conditions. In addition, all of the experts believed that the
glyphs with color enhancement were more helpful. This
verified our hypothesis but contradicted the experimental
results. We believe this is due to the data items in outlier
explorer being laid out according to their similarities. This
approach produced a meaningful placement that proved
helpful in revealing color patterns.

However, the experts also identified limitations. First,
although it is a common practice to use Z-scores to identify
possible outliers, this can be misleading (particularly for
small sample sizes) due to the fact that the maximum Z-
score is at most (n — 1)//n. To overcome this limitation,
we allow users to manually set the baseline values based on
their domain knowledge. For example, a doctor could enter a
normal lab test value as more domain-appropriate baseline.

Second, the visual design highlights is most suitable for
feature which values are normal deviate. If that assumption
does not hold, patterns may not emerge. To address
this issue, data can be transformed to approximate a
normal distribution. We have adopted this approach when
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appropriate by using the Box-Cox transformation Sakia
(1992).

Finally, baselines in the Z-Glyph design represent a single
value where at times a range may be desired. This could
be accomplished replacing the baseline with a “base-belt”
whose thickness represents a value range.

Conclusion and Future Work

In this paper, we introduced the family of Z-Glyphs, the
first set of glyphs that were designed for revealing outliers
in a multivariate dataset. We introduced a design scheme
which converts a traditional glyph into Z-Glyphs in a
procedure of standardization and color enhancement. We
designed and conducted a controlled user study to test their
performances in terms of revealing outliers under different
conditions. Our results showed that the Z-Glyph family
outperforms the baseline glyph designs when the data are
large and dimensions are high. Among all our Z-Glyph
implementations, Z-Line glyph has the best performance and
Z-StarD glyph is the most favorite. We also conducted in-
depth interviews with two domain experts from different
areas. Their feedback further verified the effectiveness of
our designs. The future work includes testing Z-Glyph’s
performance based on more tasks and applying Z-Glyph to
solve real world problems in different application domains
and keep developing the outlier explorer by adding more
interactions as well as advanced active learning based
anomaly detection algorithms.
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