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Abstract

Outlier analysis techniques are extensively used in many domains such as intrusion detection. Today, even with the most

advanced statistical learning techniques, human judgment still plays an important role in outlier analysis tasks due to

the difficulty of defining and collecting outlier examples. This work seeks to tackle this problem by introducing a new

visualization design, “Z-Glyph,” a family of glyphs designed to facilitate human judgment in outlier analysis of multivariate

data. By employing a location-scale transformation, a Z-Glyph represents the “normal” data using regular shapes (e.g.,

straight line and circle), such that the abnormal data can be revealed when deviating from the regular shapes. Extensive

controlled experiment and case studies based on real-world datasets indicate the superior performance of the Z-Glyph

family, compared with the baselines, suggesting the proposed design is able to leverage human perceptional features

with statistical characterization. This study contributes to a more fundamental understanding about designing visual

representations for revealing outliers in multivariate data, which can be applied as a building block in many domain-

specific anomaly detection applications.
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Introduction

Outliers, also referred as anomalies, are patterns in data

that do not conform to expected behavior Chandola et al.

(2009). Outlier and anomaly detection techniques have been

extensively used in a wide range of applications such

as fraud detection in financial transactions, or intrusion

detection in cyber-security systems. Statistical methods for

detecting outliers in data have been proposed since 19th

Century M.A (1887), and more analysis techniques have

been studied extensively in the literature Aggarwal (2013);

Chandola et al. (2009). Particularly, a large category of

existing techniques is developed for identifying point outliers

in the multivariate data (i.e., data items are shown as points

in the multidimensional feature space). However, outlier

detection is still considered as a highly challenging problem

due to factors such as the availability of labeled data. In

this work, we seek to tackle this problem by introducing a

new visualization design, called “Z-Glyph” for point outlier

analysis of multivariate data.

There are two major challenges in outlier detection. First,

defining “normal” (and “anomalous”) behavior in data is

difficult due to the nature of the data (factors including

various data distributions, amount of noise, unknown data

generating process and potential dynamics in data, etc.).

Second, labeled data with a high quality for training and

validating models used by anomaly detection techniques

are often unavailable or difficult to obtain. Hence, in order

to better distinguish actual anomalies and collect sufficient

representatives, human judgement continues to play a critical

role in the process of outlier analysis, even with the most

advanced statistical learning techniques Aggarwal (2013).

Figure 1. Traditional glyphs and Z-Glyph family for representing

the same multivariate data. (a) Line Glyph; (b) Z-Line Glyph; (c)

Z-LineD Glyph; (d) Star Glyph; (e) Z-Star Glyph; (f) Z-StarD

Glyph. In traditional glyphs (a,d), baseline values are shown in

red. In Z-glyph family (b,c,e,f), data values are transformed and

positioned with respect to the “baseline” values shown in

regular shapes (such as a straight line or a circle). Dichotomous

color encoding is further used to highlight trends deviated from

baseline values (c,f).

There have been domain-specific visualization techniques

designed to facilitate outlier detection in more complex
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datasets or scenarios, such as visualizing outliers in network

traffic data Axelsson (2003); Corchado and Herrero (2011);

Tsai et al. (2009); Teoh et al. (2002), and monitoring

anomalies in social media Cao et al. (2016); Zhao et al.

(2014). However, there is a very limited understanding about

how to generalize these visualization design approaches

to reveal outliers in generic multivariate data. In this

paper, we introduce Z-Glyph, a family of glyphs designed

specifically to support outlier detection in multivariate

data. Fig. 1 showcases four types of Z-Glyphs proposed

and evaluated in this paper, extending a preliminary Z-

Star design first introduced in Cao et al. (2016). This

paper is motivated by seeing the potential usefulness of

this preliminary design as well as the missing of formal

evaluations in the original paper. The Z-Glyph family designs

are developed from a common core idea: that representing

“normal” data using regular shapes (e.g., straight lines or

circles) allows glyphs that depict abnormal data as easily-

detected shape deviations. This design follows the one-

class assumption that is used in many anomaly detection

algorithms Chen et al. (2001); Song et al. (2013). It assumes

that most data items belong to one large normal category

(summarized as the baseline) and only few of them are

outliers (revealed by shape deviations). This design not only

visually differentiate the abnormal items from the normal

ones but also enables a more precise data labeling procedure

guided by analyzers through reading and interpreting the

intuitive visual representation. Our study results verified the

effectiveness of the Z-Glyph design and also revealed that

highlighting value differences by colors (Fig. 1(c,f)) is not

very helpful for identifying outliers as expected.

In particular, the main contribution of this paper includes:

• Extending the Existing Design. We propose the Z-

Glyph family by extending the Z-Star Glyph which

is first introduced in Cao et al. (2016) based on

the same design scheme. Several new glyphs were

proposed in purpose of find out alternative designs and

estimate the original Z-Star glyph, which is missed

in the above paper. The design leverages human

perception features, visual metaphor and statistical

characterization.

• Extensive Controlled Experiment. We propose a

new set of experiments to systematically evaluate

multiple aspects of our design in the context of outlier

detection, and conducted an extensive controlled user

study to understand the strengths and limitations of

the Z-Glyph design, compared with baseline designs

including Line and Star glyphs. The results not only

indicate the proposed design outperforms the baseline

glyphs overall, but also reveal design features that are

suitable for outlier analysis tasks.

• Case studies on Real Datasets. We developed

outlier detection system by applying Z-Glyph design

using two real world datasets where ground-truth

information is available. We conducted system test

and in-depth interview with two expert users using

the prototype system. Their feedback showcases the

effectiveness of the Z-Glyph design and the feasibility

of tackling real-world outlier analysis tasks.

Related Work

In this section, we discuss the related work from three

aspects: (1) outlier detection with the use of visual analysis

techniques, (2) glyph based visualization, and (3) similar

visual designs.

Outlier Detection

Outlier analysis techniques, including supervised, unsuper-

vised and semi-supervised methods, have been studied exten-

sively in the literature Aggarwal (2013); Angiulli and Pizzuti

(2005); Chandola et al. (2009). Typically, the outputs of an

outlier or anomaly detection technique are either numeric

scores or labels (normal or anomalous) Chandola et al.

(2009). As human judgement is critical in the process of

outlier analysis, how to design better representations to

enable more effective human judgement and interpretation

about outliers in data become an important issue.

Visualization techniques have been applied to assist

in anomaly detection and evaluation. Statistical diagrams,

such as line charts (in particular, time series charts) and

histograms are most commonly used to represent the

anomalous changes in variables Kind et al. (2009); Lin et al.

(2005); Laskov et al. (2005). For spatial data, variogram

clouds and pocket plots have been used in finding abrupt

changes that violate spatial auto-correlations Aggarwal

(2013); Haslett et al. (1991). When dealing with spatial

time series data, it is common to find unusual shapes from

multiple spatial distributions, such as color distributions in

MRI scans Aggarwal (2013).

For multidimensional or multivariate data, various types of

dimension reduction techniques, such as multidimensional

scaling (MDS) Kruskal and Wish (1978) and principle

component analysis (PCA) Jolliffe (2002), can be applied

to create visual mapping in a lower dimensional space.

Scatterplot matrices and parallel coordinates Inselberg and

Dimsdale (1991) are often used to represent data values

across multiple dimensions. Although not designed for

outlier analysis purpose, by depicting overall patterns in

data, these visualizations also reveal outliers to some

extent Kandogan (2001); Muñoz and Muruzábal (1998);

Novotny and Hauser (2006). There have been outlier

visualization techniques proposed in specific domains. For

example, visualizing outliers in computer network traffic

data for intrusion detection Axelsson (2003); Corchado and

Herrero (2011); Teoh et al. (2002); Tsai et al. (2009).

However, these special visualizations are usually not suitable

for broader applications.

Several visualization techniques have been proposed to

facilitate outlier detection in more complex datasets or

scenarios, such as detecting abnormal behaviors in social

media. For example, Thom et al. (2012) introduced a

visual analysis system for monitoring anomalous bursting

of keywords at different times and locations based on a tag

cloud visualization overlaid on top of a map. Zhao et al.

(2014) developed the FluxFlow system for detecting and

visualizing anomalous information propagation processes in

Twitter. Cao et al. (2016) introduced TargetVue, a visual

analysis system for detecting anomalous user behaviors

in online communication systems. These studies showcase

comprehensive visual analysis systems that leverage data
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mining and interaction techniques for outlier detection in a

specific application context. Compared with these specific

designs, our work focuses on designing a general visual

representation for discovering outliers in multidimensional

datasets. Our design can be applied to broader application

contexts or used in existing visual analysis systems, making

the development of domain-specific anomaly detection

systems more efficient.

Glyph Based Visualization

In information visualization, a glyph refers to a small

and compact graphic representation that represents a

data point with multidimensional features Borgo et al.

(2013). Compared with other multidimensional visualization

designs, such as multidimensional scaling (MDS) Kruskal

and Wish (1978), parallel coordinates Inselberg and

Dimsdale (1991) and scatterplot matrices, and various

advanced designs for reducing clutter in multidimensional

data Zhou et al. (2013) or for representing data from

heterogeneous dimensions Zhou et al. (2015); Xu et al.

(2013); Cao et al. (2012, 2015); Wu et al. (2010), glyphs

transform multidimensional data features to composite visual

properties (such as shape, color, and size), producing various

“visual signatures” of data points that reveal more complex

data patterns and offer a richer description about data points.

The composite visual form of a glyph also allows it to be

used in small-multiple settings, or to be flexibly combined

with other types of data representation or graphics such as

tables or maps Fuchs et al. (2014).

Glyph based designs have been shown effective for

representing rich data in a wide range of domains. Examples

include visualizing poetry Abdul-Rahman et al. (2014), sport

event Chung et al. (2015), medical data Duffy et al. (2015);

Ropinski et al. (2011); Ropinski and Preim (2008), time

series data Fuchs et al. (2013), workflow data Maguire et al.

(2012), vector fields Hlawatsch et al. (2014); Jarema et al.

(2015), or representing data uncertainty Jäckle et al. (2015)

or sensitivity Chan et al. (2013) and comparing subject

survey data Kachkaev et al. (2014). A glyph’s composite

visual form makes it suitable to be used in distinguishing

some sort of “activities” in a dynamic environment. For

example, Erbacher et al. (2002) introduced a radial glyph

that shows a web server’s activities for connecting to other

servers over time. Fry (2000) introduced a glyph that

summarizes and represents users’ visits to web pages at

a time, and allows comparing changes across time. Xiong

and Donath (1999) developed “PeopleGarden”, a flower

shaped glyph that summarizes a user’s aggregated interaction

histories in a discussion group. These existing glyph designs

can be useful in revealing outlier activities in a particular

setting; however, there is still a lack of understandings about

how to design generic glyphs for supporting outlier analysis.

Similar Visual Designs

Comparing different items in a dataset is a key step for

detecting outliers. Therefore, an effective representation

of multivariate data for outlier detection should facilitate

a fast visual comparison of data features. Gleicher et

al. comprehesively summarized various different types of

visual comparison techniques in their survey paper Gleicher

et al. (2011). Following their taxonomy, the design of Z-

Glyph falls into the category of “signal substraction”. When

compared to existing techniques in this category, while the

proposed Z-Line design may appear at first glance similar

to the one shown in Fig.1(c) in Gleicher et al. (2011), our

design makes a distinct contribution. The figure in Gleicher’s

survey was used to illustrate the comparison of the value

differences of two variables X, and Y by showing X-Y.

This problem is completely different from our research goal,

which is to identify outliers from a set of multivariate data

items. In Z-Glyph, we show differences between the feature

values of an item using the baseline values across multiple

variables. Here, the goal is not to compare two variables

but to compare multiple data items. In addition, to the best

of our knowledge, little visual comparison technique has

been designed in purpose of supporting outlier detection in

multivariate data.

Another similar design is the horizon graph Saito et al.

(2005); Heer et al. (2009), a variant of the line chart, which

is originally designed to help illustrate multiple time-series

within a compact display area. In this design, the line chart

is divided into layered bands by multiple baselines, each

of which indicates a data value. Different from horizon

graph in which each baseline indicates a single value, the

baseline in Z-glyph indicates the mean values of multiple

different data features. It distorts and visualizes different

mean values onto the same line segment, thus facilitating

a fast comparison between normal and abnormal values

across multiple data dimensions, which cannot be achieved

by a horizon graph. Therefore, Z-glyphs are essentially

generalizations of horizon graphs where the baseline value

(regardless of how it is computed) changes constantly.

Design of Z-Glyphs

In this section, we introduce the visualization design of the

proposed Z-Glyph visualization.

Visual Design and Rationales

The proposed glyphs aim to facilitate human judgment in

the process of outlier analysis. A critical question to be

answered here is how to represent outlier information that

can be easily perceived and recognized by human. Our

design is motivated by the following design guidelines and

data analysis strategies:

Choosing optimal visual channels: A variety of visual

attributes, such as shape, color, size, orientation, closure,

etc., can be incorporated into designing a glyph for outlier

detection purpose. The proposed glyphs should be designed

based on visual channels that are mostly effective for

encoding outlier information. In this study, we investigate

several visual channels that have been shown effective in

glyph based visualizations and further test their effectiveness

in the context of outlier analysis.

Utilizing visual metaphor: Metaphoric visual represen-

tation is a powerful way to establish metaphoric associ-

ation between a visual channel and the concept(s) to be

encoded Maguire et al. (2012). If possible, visual metaphor

should be employed to facilitate establishing an intuitive

mental model for perceiving outliers. The proposed glyphs

are designed based on the metaphor of “compliance versus
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Figure 2. Visual Design. (a) Traditional Line glyph plots data

and baseline values in a re-scaled space limited by the min. and

max. feature values. (b) Z-Line glyph plots data with

location-scale transformation (z-scores), where the location

parameter values are viewed as the baseline. (c) Traditional

Star glyph plots data and baseline values in a re-scaled circle

limited by the max. feature values. (d) Z-Star glyph plots data

with location-scale transformation in a scaled circular band.

Figure 3. Visualizing normal and abnormal data values.

non-compliance” where normal data pattern are represented

as a regular shape (a straight line or a circle) and outlier pat-

terns are displayed as shapes departed from regular shapes.

Incorporating statistical distribution concept: Outlier

detection methods commonly rely on determining the

statistical estimation of the underlying distribution to

characterize the normal behavior of the data. This common

analysis strategy should be incorporated when designing

the visual encoding of outlier information. The proposed

glyphs leverage the concept of distributions widely studied

in the statistics literature. However, unlike traditional outlier

detection methods that simply output scores or labels to

represent the “outlierness,” our design visually encodes the

statistical information to better support human recognition

and interpretation.

Visual Encoding

Typically, data with multidimensional feature values can be

represented using line glyphs or star glyphs (Fig. 2(a,c)). In

a line glyph, feature axes are parallel arranged and a data

item is shown as a polyline connecting with points indicating

the data item’s feature values of the corresponding feature

dimensions (e.g., the black polyline shown in Fig. 2(a)). In a

star glyph, a data item is shown with feature axes arranged

radially (Fig. 2(c)). A naı̈ve way to introduce the outlier-

related information would be to overlay the “normal” feature

values on the same glyph, such as the red polylines shown on

Fig. 2 (a,c). Such representation, however, does not directly

guide users/viewers to judge or recognize outliers.

We propose a new glyph design for encoding outlier

information. First, we represent the “normal” data using

regular shapes including straight line and circle, such

that abnormal data can be revealed if their feature

representation deviates from the regular shapes (Fig. 2(b,d)).

Second, to enable the visual comparison between shapes,

a data item’s feature values should have common scales

across dimensions, such that certain types of shapes (e.g.,

smoothing or fluctuated lines) can be interpreted in a similar

way regardless of the original feature units. To create

such feature representation, we employ a location-scale

transformation for each feature dimension as follows.

Let X be a feature variable, the transformed feature

variable is defined as Z = (X − a)/b, where a is the

location parameter, and b is the scale parameter. The location

parameter can be chosen to measure the central tendency

of the distribution, such as mean, median and mode. The

scale parameter should measure the dispersion or variation

of the variable X . When a is the mean of X , and b is

the standard deviation of X , the transformation corresponds

to standardization. Z is called standard score or z-score.

The standard score measures the distance from the mean

to the random variable in terms of standard deviations, and

hence it is dimensionless (that is, it has no physical units).

This standard transformation can be applied to arbitrary

distributions.

To simplify the interpretation of visual mapping resulted

from the transformation, we assume the underlying feature

values follow or can be transformed to follow a certain

location-scale distribution such as normal distribution or

exponential distribution. In this way, the standard scores

remain unchanged in the location-scale transformation,

making the visual perception of similar visual mappings

consistent. If the feature values follow a normal distribution,

the outliers can be easily recognized with high absolute z-

scores. Even for arbitrary distributions, the transformation

still provides heuristics to compare the relative “outlierness”

of data and hence has been commonly used in outlier

analysis Aggarwal (2013). In our glyph design, encoding

this outlier information as shapes in a glyph allows users to

visually compare and recognize potential outliers in the data,

which leverage human judgment in better distinguishing

actual anomalies.

We propose Z-Glyph family following the idea of

visually encoding the feature z-scores. Based on different

visual encoding strategies, the Z-Glyph family has four

variants: Z-Line, Z-Star, Z-LineD and Z-StarD (as shown

in Fig. 1(b,c,e,f)). In Z-Line and Z-Star glyphs, feature z-

scores are plotted as polylines or stars against the mean,

shown as the red straight line in Fig. 1(b), or the red circle

in Fig. 1(e), respectively. The mean line/circle forms a stable

visual baseline in the entire dataset which simplifies the

visual detection⇤. The two design variants utilize different

combination of visual channels for comparison. In Z-

LineD and Z-StarD glyphs, the areas between the feature

∗Sometimes, the mean value can be replaced by the baseline values of the

features which are already known. For example, the standard lab test results

in a electronic health records.
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polylines/stars and the mean line/circle are filled with two

colors to enhance the dichotomous region – value above the

means are colored in red and values below the mean are

colored in blue. The dichotomous coloring incorporates an

additional visual channel to assist visual comparison across

shapes. Fig. 3 illustrates the normal and abnormal patterns

shown using Z-StarD, where colored area emphasizes the

deviance of feature values. In this study, we will examine

these different design choices and their effectiveness in

supporting outlier analysis.

Discussion

Assumption on Data Distribution. It worth mentioning

that, the aforementioned design based on the assumption

of the underlying data following an uni-modal model

based distribution. The underlying rationales for making

this assumption are from multiple aspects: (1) Many

nonparametric methods in outlier detection, e.g., those that

are designed to search for low-density objects in Euclidean

space, are using the same assumption and are verified to

be effective in practice Aggarwal (2013); Chandola et al.

(2009); (2) Even for arbitrary distributions, this assumption

still provides good heuristics that allows for comparing

the relative ”outlierness” of data and hence has been

commonly used in outlier analysis Aggarwal (2013); and

(3) the proposed visualization follows three design rationales

with the goal to better support human recognition and

interpretation. Note that we do not assume the data should

follow a normal distribution but instead a broader family

of location-scale distribution (including normal distribution).

Our framework allows users to choose measures for the

central tendency of a distribution, e.g., mean, median and

mode (page 3). We believe this design contributes to

provide a novel linkage to bridge external representation

(visualization) and the statistical distribution concept (users’

conceptual model related to outlier recognition).

Readability of the Design. Another potential constraint

of Z-Glyph design is that scaling data around a baseline

transforms the data into a relative instead of an absolute

scale, which makes it difficult to read actual values from

the visualization. We believe in most of the cases Z-Glyphs

will be used for providing visual cues of outliers in a

multidimensional dataset. Therefore, supporting a precise

reading of the feature values is not the major goal of the Z-

Glyph design as other visualization views that facilitate data

reading can always be used at the same time as shown in Cao

et al. (2016).

Experiment Design

We examine the effectiveness of different glyph design

choices in a controlled user study. In this section, we describe

the design of the experiment and provide rationales for some

of the particular experiment design decisions, which were

made based on prior studies and our pilot studies.

User Task: Outlier Detection

This study focuses on evaluating the glyphs’ capability of

revealing outliers in a multivariate dataset. To this end, we

design a task that simulates a typical outlier detection task in

the process of outlier analysis, in which a large collection

of data items are considered normal but a small portion

of items are potentially abnormal and requires additional

human inspection. Human evaluators need to be able to find

actual outliers from this small set of potentially abnormal

items. Hence, in our experiment, the user task is:

Determine outlier items (i.e., the items have significant

different feature values compared with that of other

items) from a given small set of multidimensional data

based on their glyph representation.

In this task, the primary factor to be tested is the six

design choices, as shown in Fig. 1 (a–d). Additionally, when

these glyphs are used for representing data in the outlier

detection task, the results are affected by two major factors:

(a) the numbers of data items shown to the users, and (b)

the numbers of features represented by the glyphs. We have

conducted a pilot study with 6 users to determine the proper

conditions for examining how these two factors affect the

study results.

In real-world applications, identifying actual outliers is not

a trivial task and usually requires evaluators to inspect data

with dozens or even hundreds of feature dimensions Cao

et al. (2016). In order to simulate the real-world scenario, we

decided to show data with few dozens of feature dimensions

through glyphs. We tested a wide range of possible feature

dimensions in our pilot study, and selected 25 as the low-

dimensional case and 50 as the high-dimensional case as

the two conditions best differentiated users’ detection ability.

We believe 50 dimensions is also high enough to verify the

Z-Glyph family’s scalability in terms of representing high-

dimensional data as most existing techniques, as shown in

the a recent survey of state-of-the-art parallel coordinates

techniques Heinrich and Weiskopf (2013), are able to

concurrently visualize only a relatively small number of

dimensions (most often less than 20). We also tested a

range of possible numbers of data items shown to users and

determined to use 5×5 = 25 items as small-size dataset case

and 10×10 = 100 items as large-size dataset case.

Study Hypotheses

The goal of this experimental study is to understand the

strengths and limitations of different glyph designs in terms

of their effectiveness of facilitating human judgment in

outlier analysis. Based on the design rationales provided in

the last section, we hypothesize the core design of the Z-

glyph family – representing the data means as stable visual

baseline – better facilitate the outlier recognition than the

naı̈ve strategy.

H1 The Z-Glyph family is more effective than the baseline

glyphs (Line and Star) in assisting outlier detection

task.

These design variants utilize different visual channels.

Since line-based glyphs simply require visual comparison of

positions along vertical direction, and human visual system is

most efficient in position comparison Cornsweet (2012). We

hypothesize that line-based glyphs better facilitate the outlier

recognition than star-based glyphs (which also requires

visual comparison in orientation).
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Figure 4. In the study, glyphs are randomly laid out in an N by

N grid.

H2 The line-based glyphs (Line, Z-Line, and Z-LineD) are

more effective than the star-based glyphs (Star, Z-Star,

and Z-StarD) in assisting outlier detection task.

Furthermore, we hypothesize that adding dichotomous

color encoding help outlier recognition as the dichotomous

colored region highlight the deviation of feature values.

H3 The dichotomous color encoded glyphs, Z-LineD and

Z-StarD, are more effective than Z-Line and Z-Star in

assisting outlier detection task.

Glyph Display

We would like to minimize the influence of other visual

properties irrelevant to the glyph design, such as the

positioning of the glyphs, in the study. To this end, we

randomly position data glyphs in an N by N grid, where the

glyphs’ positions do not encode any information (Fig. 4).

Task Performance Measures and Test Data

To evaluate users’ performance of detecting outliers via

different glyph designs, we quantify the accuracy and the

completion time of performing the task.

There are two alternative ways to measure the task

accuracy Hulleman (2005): “probe one” in which users need

to identify a single item with the highest “outlierness”, and

“select all” in which users need to identify all outlier items

in a given dataset. In our pilot study, we have tested the two

experiment designs. We found that the “probe one” is not

proper in this study as there was no clear way of judging

what “the most” abnormal pattern might be. Thus, instead of

“probe one,” we asked users to select 3 outlier items without

explicitly ranking the most abnormal one. The number of

outliers was chosen because even with many state-of-the-art

anomaly detection techniques (e.g., One-Class SVM Chen

et al. (2001) and OCCRF Song et al. (2013)), the accuracy

may be less than 10% in real-world applications Zhao et al.

(2014), i.e., about 3 out of 25 data items. In addition,

we have chosen to fix this number regardless of dataset

sizes. Fixing target numbers enable a comparison of users’

task completion time in all cases, as selecting more targets

requires more operations (e.g., mouse clicks) that could

confound the study results.

The task completion time was automatically recorded in

our experimental system. It measures the duration starting at

the time when each testing dataset is loaded and presented to

users as glyphs, and ending at the time when users click the

“next” button to continue the next trial. The duration includes

both the data inspection time and answering time.

Simulated Data. In the experiment, we assumed the

underlying multivariate data were normal deviate, and

users were asked to find three actual outliers from each

of the given datasets. We simulated each of the testing

datasets that contained N data items with D-dimensional

features, as follows. We first produced sufficient amount of

samples following the D-dimensional multivariate normal

distribution and computed the sample mean µ and sample

standard deviation σ . We randomly selected 3 sample points

whose distances to the mean were greater than 3σ , and

randomly selected N − 3 points with distance to the mean

less than 3σ .

Consideration of Study Baselines

We consider line glyph and star glyph as two design baselines

(Fig. 1(a,d)) as they are the most popular glyph design

choices Fuchs et al. (2013). In terms of star glyph, there exist

several design variants that could influence the study results.

It has been shown in previous study Fuchs et al. (2014) that

a star glyph with data lines outperforms those star glyphs

attached with contours in terms of revealing data similarities.

However, the prior study results cannot be directly applied

in our study for two key reasons. First, previous study only

considered data with relative small dimensions (no more than

10), and our study considers much larger feature dimensions.

Second, previous study focused on evaluating the design

choices for a task of revealing similar patterns with respect

to one target item, and our goal is to evaluate the designs in

terms of how they help reveal a small portion of abnormal

patterns. Thus, we conducted an additional pilot study to

determine a specific star glyph design as the baseline in our

experiment.

Figure 5. Different variations of star glyphs. (a) data line only,

(b) data contour only, (c) data contour with a filling color. In all

these variations, the baseline is visualized as a red contour.

In the pilot study, we compared three types of star glyph

designs shown in Fig. 5. 18 users were asked to select three

outliers out of 100 50-dimensional data items. The results , as

summarized in Fig. 6, suggested that the design (b) performs

the best, both in terms of low completion time and high

accuracy. In particular, accuracy of design (b) is significantly

better (p < .05 when compared to design (a) and p < .05

when compared to design(c)). Therefore, we have chosen

design (b) as the baseline in our main experiment.
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Figure 6. Comparing three different star glyph designs in terms

of task completion time (in second) and number of correct

answers (3 is the max corresponding to 100% accurate).The

label (a), (b), (c) indicate three different types of star glyph

designs illustrated in Fig. 5.

The order of glyph axes is another relevant design factor

that is also investigated in the pilot study. However, we

decide to omit this factor from our final study and paper

for the following two reasons: (1) the pilot study results

suggested that reordering the axes in glyphs did not have a

significant effect on the performance measures when using

Z-Glyphs; (2) Z-glyphs can be extended to visualize time-

series data in which the order of axis represents timestamps

which cannot be reordered; and (3) reordering is a visual

clutter reduction technique which can be apply in Z-Glyph,

but reordering itself is not related to the design of Z-Glyph.

User Study

In this section, we first describe the study procedures that

were followed to realize the above experimental design. We

then present the study’s results and discuss the findings.

Participants and Apparatus

We recruited 18 users (8 female) to participate in our study

with the goal of comparing six distinct glyph designs: Line

Glyph, Z-Line Glyph, Z-LineD Glyph, Star Glyph, Z-Star

Glyph, and Z-StarD Glyph as shown in Fig. 1. The users

were researchers or graduate students in computer science,

art, and psychology. Their ages ranged from 23 to 34 (mean

28, SD = 3.16) and all had normal vision.

Testing environment. The study was performed on a

15.4-inch laptop computer with a display resolution of

1440 × 900 pixels and a 60 Hz refresh rate. Users sat

approximately 50-60cm from the display. The experiment

was conducted within a 960 × 650 pixel window with a

white background. Glyphs were randomly positioned in the

experiment window across a two-dimensional grid with a

cell size of 52×52 pixels. The glyphs are re-sized such that

users do not need to scroll the window in any of the varying

conditions.

Procedure

Before the formal study, we organized an one-hour

orientation seminar. During the seminar, we first introduced

the concept of outlier detection and its wide application in

many real-world scenarios. Next, we reviewed in detail the

six different glyph designs and their interpretation in the

context of outlier detection. Finally, we provided a brief

lesson with instructions regarding the use of the prototype

system.

During the instructional lesson portion of the seminar,

users were shown how the study system would display a

set of glyphs (all of the same type) from which the users

would be asked to identify three outliers. Users were told

to click on the outliers they identify to select them. The

selection, which displays a blue highlight on the glyph, could

be unselected by a second click on the glyph. Users were also

shown the “next” button which was to be clicked when they

considered themselves finished with the task. Clicking next

would record the results and surface the visualization for the

next task.

Following the group lesson, users were asked to practice

using the study system using a sample dataset (24

tasks addressing all 6 glyph designs, 2 data scales, and

2 dimensionality scales). Finally, a question-and-answer

session was held to address any remaining questions.

Once all users had received their orientation, we scheduled

individual study sessions with each user. For each individual

session, the order of the experiment was randomized,

including both the order of the tasks and the order of glyphs.

For each user study task, we used the same dataset with each

type of glyph. The choice to reuse datasets across glyphs was

made to allow a fair comparison of the observed results.

To avoid learning effects, glyph locations were shuffled

when switching glyph designs, resulting in new locations for

the outliers that users were asked to identify. In addition,

the dimension ordering was shifted each time the location

was changed. A shift in order, rather than a randomized

order, was used because sequential relationships between

dimensions can significantly affect the resulting visualized

pattern (e.g., reordering is an important visual clutter

reduction method Ellis and Dix (2007)). Together, these two

techniques ensured that for each of the six glyph types in a

task, the users were looking at the same set of targets using

the same dataset, but were unable to memorize the correct

answer.

The users’ task completion time and answer accuracies

were recorded automatically by the study system and

captured in a quantitative performance report. After

performing the study tasks, the users completed a post-study

questionnaire to gather subjective feedback. From start to

finish, each session lasted approximately 30 to 45 minutes.

Task Conditions

We performed a within-subjects study in which each user

was required to complete 12 tasks using each of the six

glyph designs, resulting in 72 trials per user. As mentioned

above, we considered both large and small scale datasets,

with both high and low dimensionality. We generated three

distinct datasets for each of these configurations, resulting in

2× 2× 3 = 12 datasets, one for each task. Considering the

18 users, the design produced 1,296 unique trials:

18 Users

× 6 Designs

× 2 Scales of the Data (small (25), large (100))

× 2 Scales of Dimensions (low (25), high (50))

× 3 Repetitions

1,296 Trials

Table 1. The design of study tasks.
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Results

In this section, we report the results of our analysis of

both the quantitative and qualitative results gathered during

the study. First, we describe the effect of our two study

variables (data size and dimensionality) on the overall task

performance. Then we focus on a direct comparison of the

glyph designs themselves. Finally, we present the results

from the post-study questionnaire.

Effects of Data Dimensionality and Size We investigate

how the two study variables (dimensionality and data

size) affect the task performances in a series of analysis.

To this end, we separate the study results into four

datasets based on different testing conditions (i.e., low/high

dimension, small/large size). In each dataset, one variable

was fixed and the other was tested based on repeated

measures ANOVA (RM-ANOVA) to take the glyph type

into consideration, while making the comparison. Before the

RM-ANOVA analysis, the data’s normality and homogeneity

were tested and the unsatisfied data were transformed†.

During the test, the assumption of sphericity were verified

based on Mauchly’s test. The degree of freedom was

corrected using Greenhouse-Geisser estimate of sphericity

when the assumption is violated. The following figures and

descriptions summarize the testing results in detail.

According to Fig. 7(a), when the number of dimensions

was low, the task-completion time of the Z-Glyph family was

less sensitive to the change of data size (i.e., time differences

were relatively small) when compared to the baseline glyphs.

However, RM-ANOVA analysis showed that size was a

key factor which significantly affected users’ performance

(F(1,17) = 13.974, p < .05) across all kinds of glyphs with

faster speed for smaller datasets (N25). In terms of task

accuracy (Fig. 7(b)), Z-StarD and Z-LineD both proved most

robust (less sensitive) to changes in dataset size, and RM-

ANOVA test showed that overall there was no significant

change in users’ ability to correctly identify outliers.

As in the low-dimensional case, high-dimensional data

resulted in significantly slower performance (F(1,17) =
84.884, p < .05) over all types of glyph designs (Fig. 8).

In this configuration, the impact on accuracy was

also statistically significant (F(1,17) = 60.472, p < .05).

However, Z-Glyph family showed generally smaller impacts

(i.e., has relatively less difference in accuracy when

dimension is changed as shown in Fig. 8) , with Z-LineD

the least impacted overall.

When the data size was small (Fig. 9), the task-completion

time of the Z-Glyph family was affected less by changes in

Figure 7. The effect of data size when dimensionality is 25

(low-dim).

Figure 8. The effect of data size when dimensionality is 50

(high-dim).

Figure 9. The effect of dimensionality when data size is 25

(small).

Figure 10. The effect of dimensionality when data size is 100

(large).

dimensionality compared to the baseline glyphs, though the

overall drop in performance was statistically significant for

all glyphs (F(1,17) = 62.813, p < .05). For task accuracy,

the baseline star glyphs suffered a large drop in performance,

while the Z-Star family proved most robust.

Similar to the small data size case, task completion times

for large datasets were significantly impacted (F(1,17) =
62.153, p < .05) by changes in dimensionality (Fig. 10).

Moreover, in contrast to the small data case, task accuracy

was also significantly impacted (F(1,17) = 143.5, p < .05).

However, as Fig. 10, the increase in time and decrease in

accuracy were most strongly felt in the baseline designs.

In summary, both dimensionality and data size are key

factors that may significantly affect task performance for all

types of glyphs. The affection follows an expected pattern,

the larger the data size is or the higher the dimensionality is,

the slower the performance will be. Comparatively speaking,

Z-Glyph designs is performed more robust than that of the

baseline glyphs.

†The Shapiro-Wilk test showed that some of the datasets were non-normally

distributed. The inverse degree of freedom was used to transform the data

into a normal distribution.
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Comparison of Glyphs While the results above show that

data size and dimensionality broadly impact performance,

there are also differences between specific designs. To

quantify these differences, we compared the Z-glyph family

to the two baseline glyphs (Star and Line) under different

conditions using Repeated-Measures ANOVA and analyzed

the pairwise comparisons using Bonferroni correction. With

respect to the null hypothesis, we assume that there

is no difference in means between Z-Glyph family and

baseline glyphs in terms of both task completion time and

accuracy. Similar to the above analysis, the normality and

homogeneity assumption were also tested and the data were

transformed or the degree of freedom was corrected when

the corresponding assumptions were violated. The analysis

results are summarized in Fig. 11 and Fig. 12 and described

below in more detail.

Figure 11. Comparing the mean task-completion time of six

glyph designs under different conditions.

Figure 12. Comparing the mean of the numbers of correct

answers (maximum is 3, the number of repetitions in our study

design) reported based on different glyphs under different

conditions.

T1 (N25-D25): Finding outliers in 25 25-dimensional

glyphs. The tests of within-subjects effect showed that

these glyphs are significant different in terms of both task

completion time (F(5,85) = 16.746, p < .01) and accuracy

(F(5,85) = 14.504, p< .01). When compared to the baseline

Line glyph, the whole Z-Glyph family was significantly

better in terms of both time (p < .05) and accuracy (p < .05),

which rejects the null hypothesis. When compared to the

baseline Star glyph, however, the benefits of the Z-Glyphs

were not significant, where null hypothesis is true.

T2 (N25-D50): Finding outliers in 25 50-dimensional

glyphs. The tests of within-subjects effect showed that

these glyphs are significant different in terms of both task

completion time (F(5,85) = 7.910, p < .01) and accuracy

(F(5,85) = 30.581, p < .01). When compared to the Line

glyph, the whole Z-Glyph family was significantly better

than the Line glyph in terms of both time (p < .05) and

accuracy (p < .01), but no significance were found between

Z-Glyph family and the Star glyph.

T3 (N100-D25): Finding outliers in 100 25-dimensional

glyphs. The tests of within-subjects effect showed that

these glyphs are significant different in terms of both

task completion time (F(5,85) = 16.741, p < .01) and

accuracy (F(5,85) = 16.741, p< .01). In particular, pairwise

comparisons showed that the following cases reject the

null hypothesis. When compared to the Line glyph, the Z-

Glyph family was significantly better in terms of both task

completion time (with all p < .05) and accuracy (with all

p < .05). When compared to the Star glyph, the Z-StarD

and Z-LineD glyphs were both significantly better in terms

of task completion time (with p < .05). Z-StarD, also had a

significantly better accuracy (with p < .05).

T4 (N100-D50): Finding outliers in 100 50-dimensional

glyphs. The tests of within-subjects effect showed that

these glyphs are significant different in terms of both

task completion time (F(5,85) = 6.519, p < .01) and

accuracy (F(5,85) = 22.651, p< .01). In particular, pairwise

comparisons showed that the following cases reject the null

hypothesis. When compared to the Line glyph, the whole Z-

Glyph family produced significantly better task completion

times (with all p < .05) and accuracy (with all p < .05).

When compared to the Star glyph, the whole Z-Glyph family

was significantly better in terms of task completion time

(with all p < .05). The Z-Line and Z-LineD glyphs were

significantly better than the Star glyph (p < .05) in accuracy.

Considering all four configurations, the Z-Glyph family

outperformed the baseline glyphs by a wide margin for

both task completion times and accuracy rates. Moreover,

the effects were stronger as the datasets grew in size

and dimensionality. There was no statistically significant

difference between the different Z-Glyph designs. However,

Z-Line and Z-LineD glyphs performed the best overall,

and they outperformed the baseline glyphs in both time

and accuracy under most conditions. The results suggest

that the Line glyph is the worst option for the studied

outlier detection tasks. However, the baseline Star glyph—

contrary to our initial hypothesis—produced relatively strong

performance results when the data size was small or data

dimension was low. However, its limitations were revealed

in the more complex conditions.

Post-Study Questionnaire Users completed a post-study

questionnaire with 13 questions designed to capture

qualitative feedback.

The first two questions in the survey asked users to choose

which glyph type was most useful and easy-to-use for outlier

detection. The results are shown in Fig. 13(a). Questions 3-

6 asked users to choose the glyph type most effective for

outlier detection under specific conditions (large vs. small

datasets; low vs. high dimensionality). The results are shown

in Fig. 13(b).

The baseline Line and Star glyphs were the least popular,

mapping to the results, mirroring to some extent the

performance measurements for these glyph types. However,

Surprisingly, however, the results show that the Z-Star and
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Z-StarD glyphs were most popular even though the Z-

Line and Z-LineD glyphs generally performed better in our

quantitative evaluation.

Figure 13. Users’ ratings of different glyphs by considering (a)

their usability and (b) their efficiency under different conditions.

In the figure, x-axis indicates the number of ratings. A user was

allowed to rate multiple glyphs at the same time.

Figure 14. The usability of the two design factors, (a)

standardization and (b) color enhancement, in Z-Glyphs. In this

figure, y-axis indicates the rating score where 5 score means

very useful or very easy to understand, in opposite, 1 score

means not useful at all or very difficult to understand. x-axis

indicates the number of ratings.

In question 7, we investigated which visual attribute, shape

or color, was considered most useful for detecting outliers.

The results show that all 18 users detected outliers by

comparing glyph shapes of data items, but only 8 (less than

half) reported taking color comparison into consideration.

Questions 8 - 11 focused on the utility and ease-of-use of

the two key elements in the Z-Glyph construction process:

standardization and color enhancement. The results (Fig. 14)

show that standardization was considered very useful by all

users (Fig. 14(a)). Color enhancement, in contrast, received

less support though the responses were still positive overall.

The final two questions were free response questions

asking for feedback as to the advantages and disadvantages

of the Z-Glyph design. The most valuable feedback from

these questions is reported in the discussion section below.

Discussions

Both the user study statistics and the questionnaire results

provide valuable insights into when and how the Z-Glyph

design is useful.

When should Z-Glyphs be used? The Z-Glyph is

designed to support outlier detection tasks for all types of

multivariate data in which (a) the data are normal deviate,

or (b) the data can be transformed to be close to the

location-scale distributions. The study results showed that

the Z-Glyph family of designs produced faster performance

times with more higher accuracy rates when compared

to the baseline designs. This held true nearly universally

across the evaluated variable space (small vs large; low-

dimensional vs. high-dimensional), with increasing benefits

as the visualized data grew more complex. More specifically,

within the Z-Glyph family of designs, the Z-Line and

Z-LineD glyphs outperformed the others in most cases.

These are recommended as a first choice in most real-world

applications.

Why was the Star glyph family popular? While the Z-

Line and Z-LineD glyphs produced the quantitative results

for speed and accuracy, users reported a preference in their

post-study feedback for the Star family over the Line family

of glyphs (see Fig. 13(b)).

The reasons were found in users’ comments collected in

the questionnaire. Users’ free responses in the questionnaire

help explain this apparent discrepancy in aesthetic terms:

“They [the star glyph family] are in a circular shape, making

the design more compact and also making the eyes more

comfortable when looking at those images for a long time.”

Why did Z-Line(D) outperform Z-Star(D)? Clues to the

benefits of the Line-based version of this glyph were found

in feedback gathered from the study users. In particular, two

users reported a critical problem: the circular shape of the

star-based glyphs produced a ”smoothing” of the irregular

shape patterns that serve as a primary encoding for outlier

detection within the Z-Glyph design. Echoing this challenge,

another user said, ”when the number of features is very

large, the differences of the shapes are limited in Z-Star

glyphs.”. Yet another user mentioned that ”all the zigzag

shapes become unclear in the circular arrangement. Picking

up outliers from a large set of data thus becomes difficult”.

Similarly, another reason by users was the “need to calculate

the area in my mind to figure out the outliers, the circular

ones making this calculation a little bit difficult”.

Why did colors provide little help? The lack of

effectiveness for color-coding was especially surprising.

Using color to highlight differences from the norm was a

major part of the Z-Glyph design, and the expectation was

that it would be valuable for the outlier detection task.

However, as one user said explicitly, the shape is the

dominant feature used to make judgements and the color

often proved distracting: “the shapes come first, then the

color helps. But when there are a large number of features,

the color seems to dazzle the eyes and makes it very tired.

Also, it doesn’t help to distinguish the shape when the

features are too many and each one is too small; the color

makes it harder to distinguish the shape differences. The

Z-Star glyph seems better here.” Another user mentioned

that “focus on colors [meant] I was looking at outliers with

respect to the color distributions of all glyphs, rather than

being able to detect outliers with respect to the provided

baselines in each glyph. I [felt] that this lead to a high false

positive rate.”
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Figure 15. Visualizing Twitter users’ behaviors in Z-Star Glyphs.

Despite these reservations, a majority of users still

believed that using colors was useful, and that it resulted in

a more aesthetically pleasing visualization. There was also a

suggestion that colors would be more useful for larger glyphs

where more pixels were available to depict the graphics.

Domain Expert Interview

We conducted interviews with two domain experts to further

evaluate the proposed Z-Glyph designs. The first is an expert

in information security and the second is a medical doctor

with dual certification in internal medicine and pediatrics.

In this section we report our procedure and present the

interviews’ results.

Procedure. The two interviews were both conducted in

the form of a short-term case study, during which the

expert was asked to identify outliers from a dataset relevant

to their expertise. Each interview started with a tutorial

period. The tutorial explained the outlier detection concept,

described the various glyph designs, presented an overview

of the outlier explorer system, and had the experts begin

interacting with the system on their own. Once the experts

were proficient with the prototype system, they were asked

to find outliers in a prepared dataset appropriate to their area

of expertise. During this procedure, we conducted a semi-

structured interview that included questions about various

aspects of the glyph designs, overall usefulness, ease of

use, and general pros and cons of the approach taken. Each

interview lasted about 1 hour and was recorded and notes

were taken.

Outlier Explorer. To support the interview, we developed

a prototype Outlier Explorer in which data points are

visualized as the glyphs using the designs outlined in this

paper and arranged using graph layout algorithms or MDS

projection depending on the structure of the data (Fig. 15).

The system is highly interactive, allowing users to zoom in

and out, and to pan their view to focus on specific sections

of the dataset. To prevent occlusions when zooming out,

glyphs are automatically aggregated into meta-glyphs based

on averaged feature values when the boundaries of two or

more glyphs begin to overlap. Similarly, the meta-glyphs

are then split into multiple smaller glyphs when zooming

in provides more room. The expert users were also able to

switch between different glyph styles, with Z-StarD used as

the default.

Interview I: Detecting suspicious users in Twitter. The

first interview was conducted with an expert in information

security. The expert is a male professor at a highly-ranked

US University with more than 20 years of experience in

the field. The dataset for this interview contained statistics

for 500 Twitter accounts, 30 of which were social bots

rather than normal users. These 500 accounts were sampled

from a larger Twitter dataset in which each account was

described by a 58-dimensional feature vector capturing

various social behaviors (for details about the features and

the dataset, see Cao et al. (2016)). The data was rendered

as a graph, with nodes representing user accounts and links

representing communication paths (mentions, retweets, etc.).

A screenshot of the explorer is shown in Fig. 15. The

information security expert was asked to examine this data

to identify the bot accounts.

The expert identified a group of the most suspicious users

with just a first glance at the outlier explorer. “Oh, this

is obvious” he said while identifying the group. “All the

abnormal ones are already highlighted in colors” and the

“shapes also provide some cue”.
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Figure 16. The scatter plot view of the patient dataset. X-Axis

is red blood cell count and Y indicate age.

The expert then zoomed in to view the suspicious group

in more detail. The accounts in this group had many feature

values that were well above average. Hovering the mouse

over each of the accounts, the expert investigated the detailed

feature values which were shown via a tooltip. Focusing on

the account he found most suspicious based on the glyph

design (shown in Fig. 15), he found that the account had

a rather small number of followers (below average) but

had a very high retweeting rate. In addition, the account’s

messages had a high ratio of mentions and contained many

URL links. The expert felt that this appeared to be behavior

typical of a spammer. It was confirmed later that the expert’s

suspicion was correct, and that he had indeed identified a bot.

After comparing views of the data using various glyph

designs, the expert believed that the glyphs without colors

(i.e., Star, Z-Star, Line, Z-Line) were difficult to read. “It is

difficult to see these lines [referring to the polylines shown

feature values in the glyphs] as they intersect with these

graph links”. He stated a preference for the Z-StarD and

Z-LineD glyphs, and believed that both of them were well

designed for the outlier identification task.

Overall, the expert felt that the Z-Glyph designs were

“simple but informative,” and expressed the desire to adopt

the Z-StarD glyph design in some of this own work.

However, he also provided valuable comments regarding

limitations of the prototype explorer, which we present in the

discussion later in this section.

Interview II: Finding high-risk patients. The second

interview was conducted with a medical doctor. The expert

is a female clinician with dual specialty in internal medicine

and pediatrics. The dataset for this interview contained data

from a cohort of patients, some of whom were suffering

from chronic kidney disease (CKD). The remaining patients

were generally healthy. Each patient was represented by

a 24-dimensional feature vector describing factors such as

age, blood pressure, and various medical test results Rubini

(2015). The doctor was asked to examine the patient

population to identify patients most likely to have CKD.

Given the independence between patients (in contrast to

the Twitter accounts, which interacted with each other), the

data for this interview was visualized using a layout based

on the MDS projection. MDS attempts to make distances in

screen space reflect inter-item similarity measures, resulting

in similar items appearing proximate to each other when the

positions are used for visualization. A scatter-plot view was

also included in the prototype, in which layout was driven by

specific feature values (see Fig. 16).

The doctor was able to immediately identify a number of

suspicious glyphs. “These on the periphery. The ones with

more red, or blue.” She then used the tool-top to inspect the

clinical indicators and verify her initial hypotheses. When

asked her to compare different glyphs, she said “I liked [Z-

StarD] the best.” Continuing, she stated that “the others are

harder to interpret at a glance” and that “Z-StarD is the

easiest.” Asked to explain why, she simply stated that the

other ones are just harder to look at.” Moreover, in reference

to the baseline glyphs, she suggested that “in a clinical

context, I would worry that I would misinterpret. To get it

wrong, not life or death, but [it] could really mess up the

course of treatment.”

Finally, the doctor felt that the system would be useful for

population management. In particular, she discussed the job

of assigning limited resources to challenging patients, and

that this difficult job often falls on the shoulders of the actual

physicians. She felt that the outlier explorer could help them

figure out which patients were the best ones to select for

special attention when allocating those resources.

Discussion. The two expert interviews described above

reinforced the idea that real-world outlier detection tasks are

quite challenging. Detailed domain knowledge and human

judgement were essential in correct data interpretation.

With this in mind, the Z-Glyphs were designed to help

embed a “human in the loop” within the outlier detection

process to help address the two major challenges mentioned

in the introduction. The current design was mostly well

received by the domain experts. In particular, their feedback

verified that Z-Glyphs are more effective than the baseline

glyphs in assisting outlier detection. Interestingly, however,

the first expert believed Z-Line glyphs were less effective

when compared to Z-Star glyphs for graph visualization,

where the lines may intersect with the graph links. This

potentially introduced visual clutter that could affect users’

judgment. This finding contradicts with our hypothesis and

experimental results, but also provides a useful insight about

how to choose between the different designs given different

conditions. In addition, all of the experts believed that the

glyphs with color enhancement were more helpful. This

verified our hypothesis but contradicted the experimental

results. We believe this is due to the data items in outlier

explorer being laid out according to their similarities. This

approach produced a meaningful placement that proved

helpful in revealing color patterns.

However, the experts also identified limitations. First,

although it is a common practice to use Z-scores to identify

possible outliers, this can be misleading (particularly for

small sample sizes) due to the fact that the maximum Z-

score is at most (n − 1)/
√

n. To overcome this limitation,

we allow users to manually set the baseline values based on

their domain knowledge. For example, a doctor could enter a

normal lab test value as more domain-appropriate baseline.

Second, the visual design highlights is most suitable for

feature which values are normal deviate. If that assumption

does not hold, patterns may not emerge. To address

this issue, data can be transformed to approximate a

normal distribution. We have adopted this approach when
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appropriate by using the Box-Cox transformation Sakia

(1992).

Finally, baselines in the Z-Glyph design represent a single

value where at times a range may be desired. This could

be accomplished replacing the baseline with a “base-belt”

whose thickness represents a value range.

Conclusion and Future Work

In this paper, we introduced the family of Z-Glyphs, the

first set of glyphs that were designed for revealing outliers

in a multivariate dataset. We introduced a design scheme

which converts a traditional glyph into Z-Glyphs in a

procedure of standardization and color enhancement. We

designed and conducted a controlled user study to test their

performances in terms of revealing outliers under different

conditions. Our results showed that the Z-Glyph family

outperforms the baseline glyph designs when the data are

large and dimensions are high. Among all our Z-Glyph

implementations, Z-Line glyph has the best performance and

Z-StarD glyph is the most favorite. We also conducted in-

depth interviews with two domain experts from different

areas. Their feedback further verified the effectiveness of

our designs. The future work includes testing Z-Glyph’s

performance based on more tasks and applying Z-Glyph to

solve real world problems in different application domains

and keep developing the outlier explorer by adding more

interactions as well as advanced active learning based

anomaly detection algorithms.

Acknowledgements

We would like to thank all the reviewers for their constructive

comments. We also would like to thank all the users and domain

experts who participated our user study. Special thanks are given

to Dr. Wen-Ting Chung and Ms. Jingjing Ding for their help on

analyzing the user study results. This work is a part of the research

supported from NSFC grant No.61602306, NSF grant No.1637067,

and IBM 2016 SUR Award.

References

Abdul-Rahman A, Maguire E and Chen M (2014) Comparing

three designs of macro-glyphs for poetry visualization. In:

Proceedings of The Eurographics Conference on Visualization.

Aggarwal CC (2013) Outlier analysis. Springer Science & Business

Media.

Angiulli F and Pizzuti C (2005) Outlier mining in large high-

dimensional data sets. IEEE TKDE 17(2): 203–215.

Axelsson S (2003) Visualization for intrusion detection. In:

Proceedings Computer Security. pp. 309–325.

Borgo R, Kehrer J, Chung DH, Maguire E, Laramee RS, Hauser

H, Ward M and Chen M (2013) Glyph-based visualization:

Foundations, design guidelines, techniques and applications.

Eurographics State of the Art Reports : 39–63.

Cao N, Lin YR, Sun X, Lazer D, Liu S and Qu H (2012) Whisper:

Tracing the spatiotemporal process of information diffusion in

real time. IEEE Transactions on Visualization and Computer

Graphics 18(12): 2649–2658.

Cao N, Lu L, Lin YR, Wang F and Wen Z (2015) Socialhelix: visual

analysis of sentiment divergence in social media. Journal of

Visualization 18(2): 221–235.

Cao N, Shi C, Lin S, Lu J, Lin YR and Lin CY (2016)

Targetvue: Visual analysis of anomalous user behaviors in

online communication systems. IEEE TVCG 22(1): 280–289.

Chan YH, Correa CD and Ma KL (2013) The generalized

sensitivity scatterplot. IEEE TVCG 19(10): 1768–1781.

Chandola V, Banerjee A and Kumar V (2009) Anomaly detection:

A survey. ACM computing surveys 41(3): 15.

Chen Y, Zhou XS and Huang TS (2001) One-class svm for learning

in image retrieval. In: IEEE Image Processing, volume 1. pp.

34–37.

Chung DH, Legg PA, Parry ML, Bown R, Griffiths IW, Laramee

RS and Chen M (2015) Glyph sorting: Interactive visualization

for multi-dimensional data. Information Visualization 14(1):

76–90.
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