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Fig. 1. Voila system employs a map visualization to provide an overview of the anomalous information in the form of a heatmap with
visual cues to direct users’ attention to the most “interesting” regions. Two different map modes are designed: the anomaly detection
mode showing the regional anomaly scores and enabling an online anomaly inspection (a), and the context mode showing statistical
context (b) and expected patterns (c). These modes and contexts can be switched by users.

Abstract— The increasing availability of spatiotemporal data continuously collected from various sources provides new opportunities
for a timely understanding of the data in their spatial and temporal context. Finding abnormal patterns in such data poses significant
challenges. Given that there is often no clear boundary between normal and abnormal patterns, existing solutions are limited in their
capacity of identifying anomalies in large, dynamic and heterogeneous data, interpreting anomalies in their multifaceted, spatiotemporal
context, and allowing users to provide feedback in the analysis loop. In this work, we introduce a unified visual interactive system and
framework, Voila, for interactively detecting anomalies in spatiotemporal data collected from a streaming data source. The system is
designed to meet two requirements in real-world applications, i.e., online monitoring and interactivity. We propose a novel tensor-based
anomaly analysis algorithm with visualization and interaction design that dynamically produces contextualized, interpretable data
summaries and allows for interactively ranking anomalous patterns based on user input. Using the ”smart city” as an example scenario,
we demonstrate the effectiveness of the proposed framework through quantitative evaluation and qualitative case studies.

Index Terms—Anomaly Detection, Visual Analysis

1 INTRODUCTION

The increasing availability of spatiotemporal data collected from var-
ious sources provides new opportunities for understanding the data
in their spatial and temporal context. Finding abnormal patterns oc-
curred at some locations and time is of particular interest in many
applications such as aerology, public health surveillance, and urban
computing. For example, urban scientists and analysts are interested
in detecting sudden changes in traffic patterns in a city to help prevent
future accidents [1, 5], likely through better traffic controls and route
planning [6, 14, 20, 59, 60].

Traditionally, the problem of anomaly detection has been approached
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mainly through statistical and machine learning techniques [13, 21, 26].
However, the effectiveness of these techniques are often hinged by two
major inherent challenges in anomaly detection problem: (1) there is
often a lack of clear boundary between normal and abnormal cases,
and (2) labeled data for training and verifying models are usually un-
available or difficult to collect. These challenges are further aggravated
by the proliferation of big data where massive and continuous data
flow in from various sources, likely in a streaming format, such as data
constantly pulled from weather and traffic sensors, mobile devices and
social media sites. On one hand, the various data inputs provide rich,
spatiotemporal context information to inform the anomalous occur-
rences; on the other, the data exhibit very high veracity and volatility
in so-called normal cases. The characteristics of big data stress the
need for flexibly and adaptively identifying and interpreting normal
and abnormal cases along with their rich context information. While
visual analytics opens a new possibility to fulfill the need, existing
solutions (e.g., [12, 33, 38, 49]) so far are not equipped to handle the
large, complex and dynamic data environment.

Anomaly detection is one of the important information processing
tasks where visual analytics can be advantageous. However, most exist-
ing solutions have overlooked two types of information that are external
to the machine analytics and visual mapping processes: (a) the dynamic
inputs that drive the changes in anomaly definition, and (b) the addi-
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tional human knowledge that is either undefined or unavailable to the
machine-centric approach, referred to as the “soft” knowledge [47]. We
identify three technical challenges in anomaly detection with streaming,
spatiotemporal data: (1) Adaptivity toward dynamic, rich context data:
the spatiotemporal data are big, dynamic, heterogeneous, and multidi-
mensional; capturing anomalous patterns in such data and at the same
time adapting to the data changes and human knowledge accumulated
in the system is beyond the capacity of the machine-centric, anomaly
detection approach. (2) Interpretability: representing such data as
well as anomalous patterns intuitively and comprehensively, along with
their spatiotemporal context, is difficult with the off-the-shelf visual-
ization solutions [12, 33, 38, 49] or with the modern spatiotemporal
visualization platforms [2, 9, 14, 22, 55, 61]. (3) Interactivity: while
there exist systems that tailor for monitoring spatiotemporal anomalies,
the needs of supporting online anomaly investigation and incorporating
human judgment to guide a system to produce better results has not
been addressed.

In this paper, we introduce Voila (visual analysis of spatiotemporal
data), a visual analytics system and framework for interactively detect-
ing anomalies in spatiotemporal data collected from a streaming data
source. Our work has the following key contributions:

• System: We formulate the system design requirements and propose an
integrated, visual analytics system that simultaneously tackles adaptiv-
ity, interpretability, and interactivity challenges. The system comprises
an online data processing pipeline that unceasingly connects streaming
data input to the adaptive analysis, visualization, and interaction.

• Algorithm: We propose a novel tensor-based anomaly analysis algo-
rithm that not only adapts to the dynamics in the input data but also
produces descriptive patterns that can be visually presented along with
their spatiotemporal context.

• Visualization and Interaction: We propose a set of novel visualiza-
tion and interaction designs that support users’ interpretability and
interactivity – in particular, the information foraging and the sensemak-
ing of normal and abnormal patterns. Moreover, we propose a unique
interaction framework that enables the system to incorporate users’
judgment with machine analytics to aid their information foraging
based on a Bayesian approach.

2 RELATED WORK

In this section, we review techniques that are most relevant to our work,
including the anomaly detection algorithms, visual anomaly detection,
and visualizations for the spatiotemporal data.

2.1 Anomaly Detection Algorithms
Anomaly detection, given its wide range of applications, has been ex-
tensively studied over the past decades [13, 21, 26]. Various techniques,
including statistic-based methods [27, 44, 56], classification-based al-
gorithms (either supervised [25, 37, 54] or semi-supervised [15, 35]),
distance-based algorithms [7, 8, 17, 24, 40], and spectral-based algo-
rithms [46, 48], have been proposed to tackle the problem in different
situations. All the techniques discussed here are not exhaustive, rather
representative of the different approaches (more comprehensive reviews
can be found in [13, 26]). These techniques are useful in producing
numeric results of anomalies, e.g., the outlierness scores, but are limited
in offering interpretation of the anomalies – that is, what features and
context exhibited in an abnormal case. Furthermore, most of these
techniques lack the capacity to deal with the multi-way or multifaceted
features, such as features over time and space.

The tensor-based methods have been recently proposed to deal with
the multifaceted features [21]. These methods leverage tensor decom-
position to produce compact feature descriptors along multiple facets,
with the advantage to examine features associated with the original, rich
context (such as time or space). Most of the tensor-based methods are
supervised [4,43] or semi-supervised [32,39,50], which rely on training
models based on labeled cases. Almost all these techniques assume
relatively stable patterns in normal cases where the labeled data are
easy to collect, and the decomposition can be done in a batch process.
This assumption makes it difficult to adapt to the online or streaming

situation where the normal patterns may change over time. Most impor-
tantly, the interpretability of the tensor decomposition results has not
been examined. Recently, Fanaee-T and Gama [20] introduced an unsu-
pervised approach to detect events from a traffic tensor; however, like
other methods, the produced feature matrices and their interpretation in
the spatiotemporal context have been overlooked.

There have been techniques specifically designed for detecting
anomalies in spatiotemporal data for various purposes, e.g., monitoring
the sensor networks [53], detecting anomalies in the spatial-temporal
network data [41, 57], and finding the change of climate or environ-
ment [16, 18, 19]. These algorithms are designed specifically for their
applications based on the domain-specific assumptions and knowledge.
More general algorithms without domain-specific assumptions have
also been recently introduced [36]. However, a crucial limitation of
all these approaches is that there has not been a systematic and unified
way that helps interpret the results derived from these techniques. In
this work, we present a unified framework that allows for detecting and
comprehending normal and abnormal cases situated in the streaming,
spatiotemporal data scenarios.

2.2 Visual Anomaly Detection
As discussed earlier, the ability to interpret normal and abnormal cases
are crucial because of the two major inherent challenges in anomaly
detection problem: (1) the lack of clear boundary between normal and
abnormal cases, and (2) the difficulty of obtaining labeled data for
training and verifying models. As a result, human experts’ domain
knowledge and experience need to be involved in judging the cases. An
intuitive, comprehensible visual representation of the data or analysis
results is thus extremely useful for supporting interpretation and facil-
itating a better decision making. Novel visual design [10] and visual
analysis systems for anomaly detection have been proposed recently,
such as systems for detecting spreading of rumors [58] and anoma-
lous user behaviors [11]. Mckenna et al. [38] studied a cybersecurity
dashboard visualization that helps network analysts identify anomalous
patterns. There have been visual analysis systems developed for detect-
ing anomalies in spatiotemporal data [12, 33, 49], e.g., by employing
conventional supervised algorithms [33]. All these systems, however,
are restricted in the way human judgment can be used to guide the
systems to produce comprehensible results more efficiently during the
analysis process.

Different from all the aforementioned systems, we introduce a vi-
sual interactive framework with a novel tensor-based unsupervised
algorithm. Our approach not only achieves an anomaly detection per-
formance better than many existing algorithms but also produces com-
prehensible visual representations that allow human analysts to examine
the cases within the rich spatiotemporal context. Moreover, we provide
a unique, adaptive anomaly investigation mechanism, which incorpo-
rates human judgment to instantly guide the detection algorithm to
produce a refined set of anomalies. The proposed framework allows
for analyzing and monitoring spatiotemporal data in general big data
scenarios – where data are gathered from multiple input streams and
near-real-time analysis and visualization are desirable.

2.3 Visualizing the Spatiotemporal Data
Spatiotemporal visualization is an interdisciplinary topic that involves
techniques from geographic information system (GIS), information
visualization, and urban simulation and computing. Langran and Chris-
man [31] introduced four primary ways to represent spatiotemporal
data in GIS (space-time cubes, sequential snapshots, base-state with
amendments, and space-time composites). Andrienko et al. [3] sum-
marized characteristics of spatiotemporal data and further categorized
the analysis tasks into the elementary tasks (e.g., given a moment,
identifying spatial locations and objects) and the general tasks (e.g.,
comparing behaviors at the same or different time interval). These tasks
have been used to guide the designs for many existing visual analysis
systems, including the space-time cube based visualizations [30,51,52],
visualizations for spatiotemporal analysis and modeling [2], and the
systems designed for exploring and visualizing large trip data [22], traf-
fic data [14], mobile phone data [9], and the telco-data [55, 61]. Some



of these systems are designed to reveal vehicle or human mobility pat-
terns for urban planning purposes [60], including public transportation
optimization [45] and optimal location selection [34].

Inspired by these early design guidelines and visualization designs,
in this work, we propose a novel visual interactive framework, Voila,
that is particularly suitable for tackling the analysis challenges in de-
tecting and interpreting anomalies in big, spatiotemporal data. In our
framework, the data are transformed into a sequence of tensor time
series following both the space-time cube model and the sequential
snapshot models. The proposed analysis algorithm then compares the
current state of the data with the historical states (general tasks) to
detect anomalies, and the visualization represents a snapshot of the data
and enables a detailed exploration of anomalies given a particular time
and user judgment (elementary task). We further consider the sense-
making models for intelligence analysis [28, 42] to guide the design of
our visual analytics components.

3 SYSTEM OVERVIEW

Fig. 2. The system architecture.

The proposed Voila system was designed to meet several real-world
requirements for detecting anomalous patterns in the streaming spa-
tiotemporal data. The design objective is to address the three technical
challenges discussed earlier, whereas the concrete requirements are
formulated through close collaboration with a domain expert whose
expertise was in anomaly detection and spatiotemporal data analysis.
Over the course of approximately nine months, regular meetings were
held in which detailed system design requirements were discussed, and
prototype systems were demonstrated to the expert for the purposes
of gathering feedback. Three prototypes were built and improvements
were made iteratively throughout the process. Below we describe the
most critical design requirements (R1-R3) that were developed during
these discussions, which motivate the design adopted in our work.

R1 Adaptivity: Online monitoring and analysis. The system should be
efficient enough to perform a real-time or near real-time monitoring
and analysis, given streaming data inputs, so that in the real-world
applications the suspicious or abnormal cases detected from the data
could be examined in a timely manner.

R2 Interpretability: Multifaceted pattern discovery and anomaly fil-
tering. The system should create easy-to-understand designs to as-
sist users in discovering abnormal patterns and help them understand
“when and where, what might happen,” with rich, spatiotemporal con-
text. It should also direct users’ attention to more significant anomaly
instances.

R3 Interactivity: Human in the analysis loop. Users should be able to
provide their judgment during the analysis and guide the system to
produce the refined analysis results in real-time.

Based on these system requirements, we developed Voila, an inte-
grated system solution for visual analytics addressing anomaly detec-
tion in spacial-temporal data. The system employs intuitive visual-
ization designs as well as the anomaly detection techniques designed
for multi-way structures to help identify suspicious data patterns in
spatiotemporal data. Figure 2 illustrates the system architecture and
the interactive analysis pipeline that it supports. The system transforms
spatiotemporal data into tensor time series and derives and represents
the abnormal patterns via four major modules: (1) the data preprocess-
ing module, (2) the analysis module, (3) the visualization module, and
(4) the interaction module. In particular, the data preprocessing module

transforms the raw data into a series of multi-way tensors with each
tensor representing multifaceted data in a given time epoch in which the
anomalous patterns will be investigated. As illustrated in Fig. 3, new
tensors capturing data in the later time epochs can be incrementally
added into the series of tensors for analysis. This streaming pipeline
facilitates the online monitoring and analysis (R1). In our implementa-
tion, the data preprocessing module runs in parallel on a spark cluster
and the processed results are stored using the MongoDB1 database
for later retrieval of the results. The analysis module includes a novel,
tensor-based anomaly detection algorithm that derives interpretable,
anomalous patterns from streaming inputs (R1,2). The visualization
module comprises a set of rich-context views that show the spatiotem-
poral patterns and reveal suspicious instances derived from the tensor
analysis (R2). The interaction module provides an on-line, user feed-
back mechanism based on a Bayesian updating rule. With this module,
users can guide the system to re-order the important anomalous patterns
in real-time by incorporating users’ judgment and observations without
the re-computation of the tensor analysis, which makes the system
salable and responsive to the user interactions (R3).

Fig. 3. The system pipeline for data processing and analysis.

As shown in Fig. 3, the system monitors the spatiotemporal data
collected from a streaming data source in a near-real-time. We describe
a system that runs in real-time if it is fast enough to calculate the data
while collecting them, i.e., the computation delay can be ignored. We
note that our system runs in near-real-time as the data analysis and
the visualization of analysis results are lagging slightly behind the
data collection process. In particular, within each time span in the
time series, the system collects and transforms the data into a tensor,
thus producing a tensor time series. When sufficient initial data are
accumulated, the system continues analyzing and visualizing the data
collected at past time epoch (t�1), while keeping the new data arriving
at the current time epoch (t). The historical data, whenever available,
can be analyzed offline through an unsupervised learning procedure
to enhance and calibrate the online analysis. The granularity of the
time epoch can be chosen to be an hour, a day, a week, or a month,
depending on the data input and the computational capacity of the data
preprocessing and analysis modules. Details about the tensor-based
data model and analysis methods will be discussed in the next section.

4 ANOMALOUS PATTERN EXTRACTION

In this section, we introduce a novel tensor-based anomalous pattern
discovery algorithm. Given a streaming input of spatiotemporal data,
the objective of this algorithm is to identify any suspicious regions that
potentially contain anomalies in an investigation space over time. After
transforming the streaming spatiotemporal data into a time series of
tensors, the algorithm produces a set of expected patterns based on the
common distributions captured in the historical data, and identifies the
regions in which the newly observed, empirical patterns are significantly
deviated from what would be expected as anomalies. The analysis
procedure comprises four key steps as shown in Fig. 4(1-4), which are
detailed below.

4.1 Data Model and Transformation
The first step (Fig. 4(1)) is to transform the spatiotemporal data from a
streaming data source (Fig. 4(a)) into a tensor time series as shown in
Fig. 4(b).

A tensor, denoted as X , is a mathematical representation of a
multi-dimensional array, i.e., an extension of concepts such as scalars

1https://www.mongodb.com/



Fig. 4. The visual anomaly detection in the streaming spatiotemporal data consists of four major steps: (1) transforming the streaming spatiotemporal
data into a tensor time series, (2) the expected pattern analysis based on historical data, (3) context analysis based on tensor decomposition, and (4)
online regional anomaly detection in context.

(denoted as x), vectors (denoted as x), and matrices (denoted as X)
to higher dimensions. A tensor is called n-way tensor if it has n-
dimensions or modes. The dimensionality of each mode is determined
by the number of its containing elements. For example, the three-way
tensor X 2 RI1⇥I2⇥I3

+ has three modes with the dimensionality of I1, I2,
and I3, respectively. R+ indicates that all the elements of X contain
non-negative values, which commonly applies to situations when data
represents numbers of observed instances.

The data that capture the spatiotemporal changes in various features
can be modeled using the tensor representation – to reflect the “space-
feature-time” associations. Given a set of K dimensional features,
the data can be represented as a three-way tensor, denoted as X 2
RN⇥K⇥M
+ , where N indicates the number of regions in the space and M

indicates the number of time steps in an epoch to be investigated. Here,
the regions could be chosen as the administrative divisions in a city, or
a set of grid cells that uniformly partition the geographical scope of a
city. Each element of the tensor, Xik j, indicates the value of the k-th
feature in the region i at time j.

Note that there are two notions of temporal resolution: the resolution
of data collection, denoted by time epoch, and the resolution of analysis,
denoted by time step. As shown in Fig. 3, the streaming spatiotemporal
data are collected on the basis of time epoch. For data within a time
epoch, we create a tensor in a finer granularity based on the resolution
of time step.

We illustrate the tensor data representation using a traffic dataset
as an example. The data can be collected and processed on a daily
basis, results in a tensor X in each day capturing the changes of traffic
features (Fig. 4(b)). In this scenario, the spatial granularity of X ,
i.e., a region, could be a grid cell in a set of equal-size grid cells that
uniformly partition the space (i.e., a city) where the data were collected
(Fig. 4(a)). The temporal granularity of X , i.e., a time step, could be
an hour within the scope of a day (time epoch). We construct features
that capture all traffic flows (number of vehicles) in the city within
a day to be represented in a tensor. Specifically, for the i-th region
at the j-th time step, we construct a 2N-dimensional feature vector,
denoted as X [i, :, j]. The first N dimensions capture the numbers of
outgoing traffic flow leaving from the i-th region to every other region,
i.e., X [i,k, j] indicates the traffic flow from the i-th region to the k-th
region at time j. The next N dimensions capture the incoming flow
entering the i-th region from every other region, i.e., X [i,N + k, j]
indicates the flow from the (N + k)-th region to the i-th region at time
j. X [i, i, j] and X [i,N + i, j] are two special cases: both indicate
the internal flows within the i-th grid (one of which is omitted in the
analysis to avoid redundancy).

To better understand the representation, we now describe a real-
world taxi trip dataset that will be used in our experiment.

Dataset. The New York City taxi-trip data2 collected in 2014 and
2015. We extracted a subset of the taxi-trip data containing over 100

2www.nyc.gov/html/tlc/html/about/tri record data.shtml

million taxi trips within the Manhattan area. We partitioned the area
into grids of 311 equal-sized regions (each has an area of 2⇥2 km2).
The data were first processed offline using parallel Spark clusters and
were converted into a time series of tensors to simulate the streaming
input, with time epoch set as a day, and the time step as two hours.
We extracted 622 features for each region, which capture a region’s
in-coming and out-going taxi flows. Thus, the series contain over 720
tensors (spanning two years), each with the shape 311⇥622⇥12. We
employed this time series as the input of the Voila to simulate the
real-time monitoring scenario.

4.2 Extracting Expected Patterns
The second step (Fig. 4(2)) is to extract the expected patterns that
commonly exist in the space based on the historical data given in the
input tensor time series to facilitate capturing the anomalous patterns.

Given spatiotemporal data stored in a tensor, we derive the ex-
pected, latent patterns from the data through tensor decomposition.
Tensor decomposition is an analysis that factorizes a tensor into a su-
perdiagonal core tensor multiplied by a matrix along each mode. For
example, given P, the number of desired latent patterns, the decomposi-
tion of a three-way tensor X 2 RN⇥K⇥M

+ is to optimize the following
objective function:

minkX � [[Z ;A,B,C]]k (1)

where A, B, and C are three factor matrices, and k·k denotes the Frobe-
nius norm of a tensor (as well as a matrix or a vector). [[·]] denotes
a PARAFAC-like decomposition [23], where A, B, and C are respec-
tively in the shapes of N ⇥P, K ⇥P, and M ⇥P, with latent patterns
captured through a reduced dimensionality P, and Z 2 RP⇥P⇥P

+ is the
core tensor whose diagonal elements represent the relative strength
of the corresponding patterns. In particular, each column in A and C
represents the distribution of the latent patterns over different regions
and time, respectively. Each row in A and C is a P-dimensional vector,
denoted as A[i, :] or C[ j, :], which respectively indicates the likelihoods
of the patterns occurred in the region i at time j, referred to as the pat-
terns’ occurrence-likelihoods. B is the latent “feature-pattern” matrix
which provides each latent pattern by a set of co-occurring features.
The analysis is analogous to the topic modeling in which latent topics
interpreted by a set of relevant keywords are extracted from a corpus.
Given the three-way tensor in form of “region-feature-time”, the regions
at a particular time are analogous to the documents, and the features are
analogous to the keywords in documents. Thus latent patterns derived
from the tensor are analogous to the latent topics derived from the
document corpus. Here, a pattern is captured by a distribution over
a set of relevant features as a latent topic captured by a distribution
over a set of relevant keywords. Moreover, our tensor-based analysis
taking into account the richer context information in the data, such as
the temporal dimension, in a unified manner.

We propose the following analysis model to detect latent patterns
from a tensor time series:

w


B⇤ = argmin
n

Â
t=1

(kXt � [[Z ;At ,B,Ct ]]k

+a kAt �At�1k+b kCt �Ct�1k)
(2)

subject to: BT B = I,B � 0,At � 0,Ct � 0, t = 1,2, . . . ,M

in which, we fix B during the analysis to capture the innate patterns
that remain unchanged over time in the investigation space. The con-
straint BT B = I ensures all the patterns captured by B (i.e., B’s column
vectors) are orthogonal to each other, thus making them unique and
distinguishable. The factor matrices At and Ct are smoothed accord-
ing to their preceding matrices (the second and third regularization
terms) to reduce data noises. The degree of smoothness is controlled
respectively by the parameter a and b . All the factor matrices are
constrained to be non-negative, which facilitates the interpretability of
occurrence-likelihood.

We solve the above optimization problem using block coordinate
descent [29] in an offline procedure based on a tensor time series of the
historical data. The resulting matrix B⇤ captures the expected patterns
occurred in the given space (e.g., a city) during the given period of time,
which is used as the basis for calculating the regional anomaly scores.

4.3 Extracting Dynamic Patterns
In the step of context analysis (Fig. 4(3)), the algorithm investigates the
expected patterns’ occurrence-likelihoods in space and time based on a
testing tensor Xt in the series via the following tensor decomposition:

minkXt � [[Z ;At ,B⇤,Ct ]]k (3)
where the expected patterns, i.e., B⇤ are preserved. At and Ct are factor
matrices that respectively represent how the patterns are distributed in
regions and time in the scope given by Xt . In particular, At indicates
the patterns’ occurrence-likelihoods in regions, which is latter used for
calculating the regional anomaly score. Ct captures the time-varying
context information as shown in Fig. 4(e).As the expected patterns,
B⇤, are preserved, At and Ct may vary significantly from the normal
case if the real patterns in the analysis scope, Xt , are different from
the expected ones. In particular, detecting how patterns are varying in
regions based on At will in particular helpful in terms of locating an
anomaly at a given time, which will be discussed next.

4.4 Extracting Anomalous Patterns
Based on the above analysis of expected and dynamics patterns, we
derive measures to quantify the extent to which a region would have
anomalous patterns. We calculate an anomaly score si for each region ri
at a given time t by examining the changes of the patterns’ occurrence-
likelihoods in ri based on At [i, :] where each element At [i,k] indicates
the likelihood of the k-th latent pattern occurring in ri at time t. Then,
by comparing At [i, :] with its historical values {At 0 [i, :]}t 0<t , we can
determine how much the pattern of ri at time t deviates from what would
be expected from the historical data. The deviation can be computed
by leveraging anomaly detection methods such as local outlier factor
(LOF) [8] and One-Class SVM [15]. In our experiment, we find LOF
performs better as it is more robust against false positive cases.

5 VISUALIZATION AND INTERACTION

In this section, we introduce the visualization and interaction com-
ponents. We begin with the design consideration, followed by the
technical details of each component.

5.1 Design Tasks
The design of the visual analytics modules was iteratively refined based
on the discussions with our domain expert. In particular, we discussed
and formulated the key challenges and system requirements for visually
analyzing anomalies in the large streaming spatiotemporal data and
further identified a set of key features to be supported and key informa-
tion to be represented through the visualizations. We then reconsidered
these requirements based on the sensemaking model for intelligence
analysis [28, 42]. One of the most widely used models, proposed by
Pirolli and Card [42], describes two iterative loops in the sensemaking

process: the information foraging loop and the sensemaking loop. The
former involves processes aimed at seeking information, searching and
filtering it, and reading and extracting information, while the latter
involves iterative development of a mental model (a conceptualization
or schematic representation) that best fits the evidence. These pro-
cesses are not necessarily sequential or discrete, but can be parallel [28].
Guided by these characteristics, we organize our design consideration
into seven design tasks (T1-T7). The first three tasks aim to support
information foraging loop – to augment users’ information seeking
through overview (T1), ranking (T2), and linking to the raw data (T3).
The next three tasks aim to support sensemaking loop – to augment
users’ conceptualization of normal and abnormal cases through show-
ing patterns in context (T4), comparing patterns (T5), and external
memorization (T6). The final task (T7) is to incorporate users’ addi-
tional judgment to enhance both information foraging and sensemaking
loops. We summarize the design tasks as follows.

T1 Overview of the investigation scope. Due to the complexity (big,
dynamic, heterogeneous, and multidimensional) of the spatiotempo-
ral data, it is critical to provide a visualization that clearly illustrates
the spatial and temporal scopes in which the anomalies are analyzed
to help narrow down the searching space.

T2 Dynamic visual ranking of suspicious regions. Visualization
should be designed to aid the searching and filtering of anoma-
lous information through visually revealing the suspicious regions
in some order such that users’ information seeking effort can be
directed to more suspicious regions.

T3 Efficient browsing of the raw data. The raw information, for
example, the taxi trips entering or leaving a region in the New York
City, shows evidence of that may be used to confirm or disconfirm
an anomaly case. Therefore, the visualization should enable an
efficient mechanism to extract and explore the raw data.

T4 Interpreting anomaly in their spatiotemporal contexts. A
schematic representation of anomaly patterns helps users develop
a mental model to organize various types of normal and abnormal
cases, which improves the capacity of users to attend to more of
the structure of organized evidence [42]. The interpretation of these
patterns needs to be established through showing the patterns along
with their spatial and temporal occurrences (context), including the
relevant raw data and features, the statistics derived from the histori-
cal data, and the occurrence-likelihood of the expected patterns.

T5 Facilitating visual data comparisons and correlations. The visu-
alization and interaction should be designed to enable users to make
comparisons over patterns or data instances, or provide visual cues
for finding relevant patterns and instances, to help users support,
disconfirm, or re-evaluate their findings of anomalies.

T6 External memorization of anomaly analysis. Once a suspicious
region is attended, or an anomaly is identified, the system should al-
low users to record their analysis statuses and results into snapshots
to facilitate a later review or further examination.

T7 Updating analytics based on human judgment. The system
should provide an interaction mechanism that allows incorporating
human belief or judgment that is missing in machine training [47],
such that all the views can be dynamically updated based on the
human judgment and consequently redirect users’ attention to alter-
native patterns or instances.

5.2 User Interface
Guided by the above design tasks and the expert user feedback, we
develop our visualization and interaction components. The UI of Voila
system, as shown in Fig. 5, consists of key views corresponding to
each of the tasks: (1) the macro map view shows the overview of the
anomaly detection results and within the spatial context (T1); (2) the
micro map view and (3) the history view respectively show the spatial
and temporal context of a focal region and the associated raw informa-
tion, as well as the temporal statistics from the historical data to help
examine the anomaly cases (T3); (4) the temporal pattern view shows
the temporal distributions of the expected patterns (derived from the
factor matrix C) over the current and preceding epochs (T4,5); (5) the



Fig. 5. The user interface of Voila system consists of eight major views: 1) macro and 2) micro map views; 3) history view; 4) temporal pattern view;
5) feature inspection view; 6) ranking list; 7) snapshot panel; and 8) anomaly panel.

snapshot panel and (6) the anomaly panel respectively allow users to
record the suspicious regions and anomaly cases for later retrieval and
further examination (T6); (7) the ranking panel orders the suspicious
regions according to their anomaly scores updated based on the tensor
analysis and user feedback (T2); (8) the feature inspection view allows
for comparing how the regions at a given time are similar in terms of
sharing similar features (T5). In all these views, regions are shown
with colors encoding the anomaly-related information (detailed below)
derived both from the tensor analysis and real-time user feedback (T7).
Different color schemes are designed to illustrate different informa-
tion such as the anomaly scores, the statistical information, the data
difference, and the z-score values as shown in Fig. 5(f). To avoid ambi-
guity, an adaptive color legend is designed (Fig. 5(g)) which illustrates
meaning and scale of colors shown in the corresponding views.

Usage scenario. To understand how Voila’s different views work
together, let us consider the following scenario. Take, for example,
Mike, a security officer in the NYC Public Safety Department, whose
duties are to ensure the safety and security in the city through routinely
monitoring the city’s traffic system, identifying anomalous traffic in-
cidents, and being alert to potential hazard such as civil disorders. To
increase his capacity, he uses the Voila system that takes streaming data
from various sources (e.g. taxi trips, traffic sensors, etc.) as input. The
system produces a near real-time overview of the traffic anomalies in
the macro map view, showing a set of suspicious regions automatically.
To see what happened in those regions, Mike first investigates the highly
anomalous regions identified by the system; he picks such regions from
the macro map view and ranking panel, checks the regions’ raw trip
information and statistics in the micro map view, and compares the
information with historic data by navigating through the history view.
When he confirms that certain regions are indeed anomalous, he clicks
and marks those regions, and the system automatically captures those
regions into the anomaly panel, updating all anomalous information
based on Mike’s input. Alternatively, if he finds suspicious regions
that warrant further examination, he captures them into the snapshot
panel. Later, he can retrieve these suspicious regions, compare them
with other regions using feature inspection view, or explore different
patterns typically seen in the city through temporal pattern view.

5.3 Macro Map View
The macro map view presents a geographical map overlaid with equal-
size grids that uniformly partition the entire space to be investigated
(e.g., a city). It provides an overview of the anomalous information
in the form of a heatmap with visual cues to direct users attention

to the most “interesting” regions. Two different modes are provided:
(1) the anomaly detection mode (Fig. 1(a)) and (2) the context mode
(Fig. 1(b,c)). Users can switch between the two modes based on the
buttons as shown in Fig. 5(b,c).

5.3.1 Anomaly Detection Mode
The tensor-based anomaly detection algorithm identifies a set of sus-
picious regions with high anomaly scores (ref. Section 4). However,
when a user (e.g., Mike) investigates these regions, s/he looks for evi-
dence to support the anomaly identification. Therefore, users need to
consider two types of complementary, contextual information when
manually investigate certain regions: (1) how likely a region contains
anomalies, and (2) how difficult it is to find out the anomaly evidence
in the region. To assist users’ inspection, the visual analysis system
needs to help leverage the two types of information so users can decide
where to pay their attention first, and how much efforts they should
spend at different areas.

Context-guided inspection. To guide users’ analysis with the afore-
mentioned consideration, we associate each region i with two proba-
bilistic quantities: pi indicates the likelihood of the region i containing
an anomaly, and qi indicates the difficulty of finding an anomaly inside
the region. Let si be the anomaly score of this region derived from
the tensor analysis (Section 4.4). Then, pi is given by normalizing the
anomaly scores over the entire space:

pi =
si

ÂN
j=0 s j

(4)

qi should reflect the region’s properties such as the volume of data
and the number of road crossings that may result in the difficulties
of identifying an anomaly. Take the taxi-trip data as an example, an
anomalous event would be hard to detect if the region has many trips
that enter from or head to diverse directions. Formally, let vik be the
total number of trips from the region i to region k, and vi is the total
number of trips leaving (or entering) the region i. The diversity of the
trip directions, di is estimated based on the information entropy:

di =�Â
k 6=i

vik

vi
log2

vik

vi
(5)

qi is thus calculated by considering both the trip volume and the diver-
sity of trip directions:

qi =

s
vi

max0 jN v j
· di

max0 jN d j
(6)



Fig. 6. The anomaly glyphs reveal both anomaly likelihood (saturation of
the background color) and the difficulty of finding an anomaly (the size of
the inner rectangle).

where qi is normalized to [0,1] as it represents probability.
Anomaly glyph. We design an anomaly glyph to show visual cues

for the context-guided inspection. As shown in Fig. 6, an anomaly
glyph for a region is represented as a rectangle corresponding to the
boundary of the region, with the background color representing p,
and the size of the inner rectangle representing p

q, which visually
enhances the value q that is usually too small to be visualized. For
example, Fig. 6(a) illustrates the case in which the region is highly
suspicious (with high p value shown in dark red in its background)
but very easy to examine (with low q value shown with small inner
rectangle). In comparison, Fig. 6(b) indicates the region is highly
suspicious but difficult to examine and Fig. 6(c) indicates the region is
not suspicious (light red in background), but if there is an anomaly, it is
difficult to be found (large inner rectangle). Users usually only need to
focus on those high suspicious ones with large p value.

Updating with user feedback. During the process of interactive
anomaly inspection, users are guided to first inspect one of the most
suspicious regions (one tha has the highest p value shown in an anomaly
glyph with the darkest red color). After inspection, the user labels the
region based on their judgments to indicate whether the region indeed
contains an anomaly or not. To facilitate the succeeding analysis, once
a region is labeled, the anomaly glyphs in the space should be always
automatically updated to highlight the region to be investigated in the
next. To achieve this goal, we propose a Bayesian approach to update
regions’ anomaly scores by incorporating human judgment in real time.

The Bayes’ theorem calculates the probability of an event A given
the prior knowledge of a certain condition B that is relevant to A, which
is formally given as:

P(A|B) = P(B|A)P(A)/P(B) (7)
In our problem, we estimate the probability p0j = P(A j|Bk) of the event
A j (“the anomaly exists in the region j”) occurred in condition of
Bk (i.e., “the user fails to find the anomaly in the region k”) at each
inspection step. Specifically, when the user fails to find the anomaly in
the region k, the probability of another region j containing an anomaly
is calculated as:

p0j = P(A j|Bk) =

8
>><

>>:

P(Bk|Ak)P(Ak)

P(Bk)
= pk

qk

1� pk(1�qk)
( j = k)

P(Bk|A j)P(A j)

P(Bk)
= p j

1
1� pk(1�qk)

( j 6= k)

(8)where P(A j) = p j indicates the probability of an anomaly in region
j. P(Bk|A j) is defined to be 1 for k 6= j to reflect the user’s belief that
s/he cannot find an anomaly in the region k, regardless. P(Bk|Ak) = qk
when k = j as it reflects the probability of “failing to find an anomaly
in the region i even there exist one due to certain difficulty.” P(Bk)
indicates the probability that the user fails to find an anomaly in region
k, which can be calculated in two conditions: P(Bk|Ak)P(Ak) (the user
fails to find an anomaly in the region k given no anomaly exist in it) and
P(Bk|Ak)P(Ak) (an anomaly exists in the region k, but the user fails to
find it due to certain difficulty).

Formula 8 updates the anomaly scores of all the regions in the space
when a region is inspected and labeled by the user. In particular, after
the re-normalization such that Â j p0j = 1, the probabilities of other
regions p0j = pk ·1/(1� pk(1�qk))> p j increase (i.e., when j 6= k),
whereas p0k < pk decreases as the region k is just inspected and the user
fails to find the anomaly in it, which is consistent with users’ intuition.

5.3.2 Context mode
The context mode of the macro map shows the statistical information
derived either from the raw data or the tensor analysis. These different
statistics are shown with corresponding heatmaps as shown in Fig. 1(b).
For example, when analyzing the NYC taxi-trip data, user can choose
to show one of the primary statistic information associated with regions,
including the number of incoming, out-going, and internal trips, as well
as the differences between the number of incoming and out-going trips
(Fig. 1(b-1)) per region. When showing the number of trips, each region
is represented as a flow glyph with the direction given by the gradient of
the statistics with respect to the region’s neighborhood, which captures
the potential traffic flow (Fig. 1(b-2)).

Another important context to be shown in the context mode is the
expected patterns captured in the factor matrix B⇤ as described in Sec-
tion 4.3. When analyzing the NYC taxi-trip data, B⇤ 2 R2N⇥P

+ captures
P expected patterns via the in-coming and out-going trips through a con-
catenated 2N-dimensional features, where N is the number of regions
in the investigation space. In particular, the vectors B⇤[0 : N, j] and
B⇤[N +1 : 2N, j] respectively indicate the quantities of the in-coming
and out-going trips in each region corresponding to the j-th pattern.
This information can be visualized in a heatmap in the context view
as shown in Fig.1(c) in which four different patterns are illustrated
respectively. In particular, in this heatmap, a region’s color is a blend-
ing between red and blue that respectively indicates the quantities of
in-coming and out-going trips. The portions of blue (denoted as a) and
red (denoted as b ) during the blending is determined respectively by
the portion of out-going and in-coming trips calculated as follows:

a =
B⇤[i, j]

B⇤[i, j]+B⇤[N + i, j]
, b = (1�a) (9)

5.4 Micro Map View and History View
When a user chooses to investigate a particular region, the region’s
detailed information, such as the raw data and relevant statistics, will
be shown in the micro map view (Fig. 5(2)) and the history view
(Fig. 5(3)). The micro map view depicts the relationship between the
focal region and the remaining regions. A heatmap is generated on the
map centered on the focal region, with colors reflecting the strength
of the relationships. We show three types of relationships: (i) raw
in-coming or out-going flows at a given time, directly extracted from
the raw data, (ii) expected in-coming or out-going flows derived from
the tensor analysis as described before (i.e., based on the B⇤ matrix),
and (iii) deviated flow with respect to the focal region’s historic data,
which reveals how the flows at a given time deviate from their typical
or normal values.

The history view shows the anomaly scores of the focal region over
time as a time-series chart, from which a user can inspect how the focal
region’s abnormal behavior changes over time.

5.5 Temporal Pattern View
The temporal pattern view (Fig. 5(4)) visualizes the temporal distribu-
tion of the dynamic latent patterns derived from the tensor analysis, as
described in Section 4.3. Specifically, the temporal factor matrix Ct of
the current epoch t is visualized as a list of small multiple charts, where
each row k in the temporal view represents the temporal distribution
of the k-th latent pattern captured by the column vector Ct [:,k], with
background color indicating the degree of anomaly for the correspond-
ing time when compared with the history, which is determined by the
largest regional anomaly score in the investigation space at the given
epoch. While monitoring, the length of the temporal view increases
when a new epoch is added into the system for investigation. The small
multiple time series produced based on Ct of the current epoch are
appended at the right end of the timeline.

5.6 Other Views
The system also provides other views for various purposes. In particu-
lar, Feature Inspection View (Fig. 5(5)) shows the similarity among
regions in terms of sharing similar expected patterns. In this view,
each region is represented as a circle with the color indicating its



anomaly score and size indicating the trip volume at the given time.
The spatial distance between two regions on this view reflects their sim-
ilarity which is calculated based on MDS projection. Ranking Panel
(Fig. 5(6)) shows a list of highly suspicious regions ordered based on
their anomaly scores. Snapshot Panel (Fig. 5(7)) shows the snapshots
of the macro map view manually captured by the users during their
inspection. Anomaly Panel (Fig. 5(8)) shows the snapshots of the
micro map view automatically captured while the users click to inspect
a suspicious region.

5.7 Interactions
The following interactions are designed to help with the data explo-
ration and anomaly inspection. Anomaly Inspection: Users can left
click on the macro-map view to select a region and show its context
details in the micro map view and they can also single/double/ right
click the region to label the cell as an abnormal/normal. The anomaly
list will automatically captures the context of the anomaly shown in
the micro map view into a picture. Snapshot Capturing: User can
click the button shown in Fig. 5(d) to capture a snapshot of the current
macro-map view into the snapshot view (Fig. 5(5)). Context Switch-
ing: Users can switch between different visualization modes to show
different information via buttons shown in Fig. 5(b) (the anomaly detec-
tion mode), and Fig. 5(c) (the context mode). They can also to illustrate
the patterns in the context mode of the macro map view by select a row
in the temporal view via clicking the pattern labels(Fig. 5(h)). Filter-
ing: In the system, a user can filter the regions shown in the macro and
micro map views via a range slider (Fig. 5(e)) respectively based on
their (1) anomaly scores, (2) the volumes of the containing data, and (3)
z-scores. Dynamic Zooming and Panning: Both the macro-map view
and the micro-map view support zooming and panning for exploring
a large set of data items. Analyst can scroll the mouse to zoom and
drag the mouse to pan. Highlight, Link and Brush: All the views are
linked together. For example, when mouse hovers on a region in the
map a tooltip showing the region’s profile information and the z-map
thumbnail centered at the region (Fig. 5(i)) will be displayed and all the
corresponding regions in the list view, distribution view, and micro map
view will be highlighted. Users can also brush to select a set of regions
in the distribution view to highlight them in the macro mapview.

6 EVALUATION

This section reports the evaluation of the proposed approach. We
evaluated the algorithm effectiveness based on a quantitative evaluation,
and studied the usability and usefulness of the system based on a case
study with feedback from a domain expert. Both studies were conducted
based on the New York City taxi-trip data described in Section 4.1.

6.1 Quantitative Evaluation
We evaluated the effectiveness of the proposed algorithm through a
quantitative comparison with baseline methods based on human labeled
ground truths.

Ground-truth labeling. We recruited 12 annotators to manually
label the anomaly incidents within the Manhattan area over a six-month
period (2014/01–2014/06). The annotators were asked to search online
news reports exhaustively and any public information documented
the event occurrence (e.g., the list of the NYC top events3). Over
300 potential anomaly events were first identified, and the annotators
independently verified these events into a golden list of 96 anomaly
incidents. Based on the list, the annotators manually label each region at
each given time as positive if it corresponded to an anomaly occurrence,
and negative otherwise.

Baseline methods and evaluation metrics. Two of the most widely
adopted methods, LOF and One-Class SVM were chosen as the baseline.
As described in Section 4.4, our algorithm augments both methods with
tensor analysis. For brevity, we only report our best-performed method
(tensor analysis with LOF). We compared our algorithm, denoted as
“TA” (tensor-based anomaly detection) with the two baseline methods

3http://www.bizbash.com/new-yorks-top-100-events-2014/new-
york/story/27977/
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Fig. 7. Performance evaluation of anomaly detection. Results indicate
our algorithm (TA) outperforms baseline methods (LOF and One-Class
SVM).

in terms of standard information retrieval metrics: precision, recall, and
ROC. As the ratio between positive and negative instances is extremely
imbalanced, we use the precision-recall curves and ROC curves to
discuss the results.

Evaluation results. As shown in Fig. 7, overall, our algorithm (TA)
outperforms the baseline methods. The ROC plot (Fig. 7(a)) shows that,
compared with LOF and One-Class SVM, TA had higher true positive
rates when the false positive rates remain low (below 0.2). However, TA
can achieve even higher positive rates while the baseline methods suffer
from finding more true anomalies. (The One-Class SVM, for example,
produced very low false positive rates but also could not reach high
true positive rates.) The precision-recall plot (Fig. 7(b)) consistently
reveals that TA can always achieve higher precision at the low recall
conditions, but has the additional flexibility to achieve higher recall
when slightly lower precision (e.g., 0.6–0.8) could be tolerated. This
characteristic is crucial as it enables our system to retrieve a richer set
of highly suspicious events that are otherwise difficult to find through
the alternative algorithms. With the aid of system’s visual analytics,
users can then further investigate the set of suspicious events.

6.2 Case Study & Domain Expert Interview
We qualitatively studied the usability and usefulness of the Voila system
through a semi-structured interview with a domain expert. The study
serves two purposes: (a) to provide real examples to showcase the
capability of the system, and (b) to provide user feedback on the system.
Below, we describe the study set-up, the representative cases, and
summarize the expert feedback on the system.

6.2.1 Study set-up and interview process
We invited an expert who has highly relevant expertise in public safety
and traffic monitoring but has no prior knowledge about the incidences
in our dataset. The expert is both an officer and a data scientist from the
Institute of Public Safety in Shanghai (a city that has a scale comparable
with the NYC). The interview lasted approximately 1.5 hours, which
included two sessions: (1) introduction (30 minutes): an introduction
to the dataset and the key features of the Voila system, followed by a
tutorial and a user-practice sessions, and (2) discovery (60 minutes): a
session where the expert was asked to use the system to identify anoma-
lies, explore patterns, interpret and discuss her findings, and comment
on the system capabilities. During the interview, a moderator was avail-
able to answer questions and record comments from the expert. The
moderator also prompted questions for discussion, e.g., “How would
you (or where did you) find that instance/pattern?” “How do you know
this is an anomaly?” “What does it mean?” “How would this fit into
your work?” “What worked well (or poorly) for you?” In the discovery
session, the expert quickly identified several anomaly incidents and
characteristic patterns. We briefly describe two representative cases in
the following.

6.2.2 Representative cases
Exploring the expected patterns. The first feature that caught the
expert’s attention is the presentation of the city’s expected patterns
as well as the ability to browse these patterns. The expert explored
the expected patterns by clicking each row of the temporal pattern
view, and inspected the patterns on the macro map view using the
context mode. The expert quickly found several interesting patterns (as



shown in Fig. 1(c)) where he can easily make sense. For example, a
pattern (weekend parties; Fig. 1(c1)) captures the traffic flows within the
downtown Manhattan (where the major arts/entertainment regions such
as Broadway located) and between downtown and uptown (residential
areas) that regularly occurred during the midnights in weekends. Other
patterns capture the everyday routines in the city, such as the rush hour
traffics in the mornings and evenings (Fig. 1(c2,c3), and the frequent
travels in midtown in the afternoons (Fig. 1(c4)).

Fig. 8. The anonymous traffic flows during a gas explosion incident
revealed in the system.

Detecting anomalies in Manhattan. After browsing through the
expected patterns, the expert started engaging in finding and discussing
the suspicious events. For example, when looking at the trips from
2014/03/12, a suspicious region in the uptown Manhattan, detected and
highlighted by the system as shown in Fig. 8(a), caught the expert’s
attention. He clicked the region, trying to get the detailed spatial and
temporal contexts from the the micro map view (Fig. 8(b)) and the
history view (Fig. 8(c)). From the z-score based heatmap, he found
anomalous taxi traffic flows between the focal region and two other
regions – in particular, the z-scores are significantly higher compared
with their historical values. He found one of them has the nearest fire
station, and the New York City Fire Department is located in another
region. Based on these, he conjectured a fire incident occurred in the
focal region, which we verified as a gas explosion incident4.

Fig. 9. Context-guided inspection reveals new anomalous region when
receiving user feedback.

When investigating the potential anomalies, the expert also got
very interested in Voila’s context-guided inspection. For example, a
suspicious region located in the Randalls and Wards Island was initially
highlighted by the system (Fig. 9(a)). Based on the region’s contextual
information and the historical anomaly scores shown in the history
view, the expert quickly found it was a park that frequently exhibited
anomalous behaviors due to the frequent fluctuated traffic around the
neighborhood, which we verified as a regular fishing contest5. He
decided to mark the region as normal – based on this human judgment,
the system instantly updated the anomaly scores of other regions. Then,
another region was highlighted and immediately caught the expert’s
attention (Fig. 9(b)), which was verified as an irregular event (a public
concert that attracted many people) happened on the same day.

4https://en.wikipedia.org/wiki/2014 East Harlem gas explosion
5The fishing contests were frequently organized in that area, attracting a

great number of people and resulting in anomalous traffic flows.

6.2.3 User feedback
During the discovery session, the expert provided a wealth of insight-
ful feedback and comments, which we briefly summarize into four
aspects. (1) System: The expert was impressed by the system design
and the overall monitoring capability. “It’s both cool and useful!” He
commented, “especially for monitoring public safety,” “we deal with
the videos and images generated from the security cameras and video
surveillance systems every day but have been struggled with finding
important events from the enormous data; this system makes it possi-
ble to easily identify warning signs from big data.” While he felt the
information presented in the system is “very comprehensive,” “it was a
little overwhelming at first glance.” He suggested that tacit tutorial or
instructions could be added in the system to guide the first-time users.
(2) Visualization: According to the expert’s feedback, most of the visu-
alization components successfully meet our design goals. For example,
the expert felt the temporal pattern view and the heatmap visualization
were fairly easy to comprehend and indeed helped discover many in-
teresting patterns. “The anomaly glyph design is easy to understand;
showing both anomaly scores and the difficulty of finding anomalies
is very useful in real applications, although the updating rules seem
to be complicated . . . ” He commented, “the history view looks quite
simple but very helpful in ruling out false positive cases.” Compared
with these views, “the MDS view seems less useful,” and “the z-map
requires a little more time to grasp the meaning.” He particularly likes
the visualization of expected patterns, “this is very interesting and in-
formative . . . I cannot wait to see the patterns derived from Shanghai
city!” (3) Interaction: He felt that showing the ranking of potential
anomalies is “a new and smart idea.” However, “when dealing with
big data, it would be helpful if the system could tell users when to stop
looking.” Besides, the current system doesn’t support “fact checking,”
and it took time for analysts to verify the detected anomalies, e.g., by
searching events using a search engine; thus, he suggested, “it can be
made even powerful to support the event search in the future.” (4) Use-
fulness and applicability: The expert was confident that the system
could be effectively used in smart city applications. He mentioned the
stampede happened on New Year’s Eve of 2015 in Shanghai, where at
least 36 people died and 49 were seriously injured, “with this system,
we could have seen the anomalous traffic flows a few hours before
the event happened, and the accident might have been prevented.” He
further suggested that in the real city traffic monitoring scenarios, there
is a need to use fine-grained temporal resolutions for data input (e.g.,
on a minute-by-minute basis), to incorporate as many data sources
as possible (e.g., cellphone or other mobility data), and potentially to
forecast or predict future incidents.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce a visual analysis system, Voila, for inter-
actively detecting anomalies in spatiotemporal data from a streaming
source. The system is built based on several real-world requirements,
such as online monitoring and interactivity. We propose a novel tensor-
based anomaly detection algorithm with visualization and interaction
design that dynamically produces contextualized, interpretable data
summaries and allows for interactively ranking anomalous patterns
based on user input. Using the NYC taxi-trip data, we evaluate the
effectiveness and usefulness of Voila through a quantitative compari-
son and an expert interview. Our study results indicate the system’s
strengths and point out several new directions for future work, including
providing tacit tutorials to guide the novice users, offering visual clues
about low-precision instances in the anomaly ranking list, supporting
fact search and checking, adaptively determining the temporal granu-
larity, and developing new algorithms with forecasting and prediction
capability.

ACKNOWLEDGMENTS

We thank all the study participants and reviewers for their comments.
This work is part of the research supported by NFSC Grants #61602306,
the National Grants for the Thousand Young Talents in China, NSF
Grants #1634944 and #1637067, and the CRDF & CIS at the University
of Pittsburgh.



REFERENCES

[1] M. A. Abdel-Aty and A. E. Radwan. Modeling traffic accident occurrence
and involvement. Accident Analysis & Prevention, 32(5):633–642, 2000.

[2] N. Andrienko and G. Andrienko. A visual analytics framework for spatio-
temporal analysis and modelling. Data Mining and Knowledge Discovery,
pp. 1–29, 2013.

[3] N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio-temporal
visualization: an analytical review. Journal of Visual Languages & Com-
puting, 14(6):503–541, 2003.

[4] Y. Bai, J. Tezcan, Q. Cheng, and J. Cheng. A multiway model for predict-
ing earthquake ground motion. In International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, pp. 219–224. IEEE, 2013.

[5] T. C. Bailey and A. C. Gatrell. Interactive spatial data analysis, vol. 413.
Longman Scientific & Technical Essex, 1995.

[6] M. Batty. The Size, Scale, and Shape of Cities. Science, 319(5864):769–
771, Feb. 2008. doi: 10.1126/science.1151419

[7] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near
linear time with randomization and a simple pruning rule. In Proceedings
of SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 29–38. ACM, 2003.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying
density-based local outliers. In ACM SIGMOD Record, vol. 29, pp. 93–
104, 2000.

[9] F. Calabrese, L. Ferrari, and V. D. Blondel. Urban sensing using mobile
phone network data: a survey of research. Acm Computing Surveys,
47(2):25, 2015.

[10] N. Cao, Y.-R. Lin, D. Gotz, and F. Du. Z-glyph: Visualizing outliers in
multivariate data. Information Visualization, p. 1473871616686635, 2017.

[11] N. Cao, C. Shi, S. Lin, J. Lu, Y.-R. Lin, and C.-Y. Lin. Targetvue: Visual
analysis of anomalous user behaviors in online communication systems.
IEEE Transactions on Visualization and Computer Graphics, 22(1):280–
289, 2016.

[12] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and
T. Ertl. Spatiotemporal social media analytics for abnormal event detection
and examination using seasonal-trend decomposition. In IEEE Symposium
on Visual Analytics Science and Technology (VAST), pp. 143–152, 2012.

[13] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):15, 2009.

[14] W. Chen, F. Guo, and F.-Y. Wang. A survey of traffic data visualization.
IEEE Transactions on Intelligent Transportation Systems, 16(6):2970–
2984, 2015.

[15] Y. Chen, X. S. Zhou, and T. S. Huang. One-class svm for learning in
image retrieval. In International Conference on Image Processing, vol. 1,
pp. 34–37. IEEE, 2001.

[16] M. Das and S. Parthasarathy. Anomaly detection and spatio-temporal anal-
ysis of global climate system. In Proceedings of International Workshop
on Knowledge Discovery from Sensor Data, pp. 142–150. ACM, 2009.

[17] T. De Vries, S. Chawla, and M. E. Houle. Finding local anomalies in very
high dimensional space. In International Conference on Data Mining, pp.
128–137. IEEE, 2010.

[18] E. W. Dereszynski and T. G. Dietterich. Spatiotemporal models for data-
anomaly detection in dynamic environmental monitoring campaigns. ACM
Transactions on Sensor Networks, 8(1):3, 2011.

[19] J. H. Faghmous and V. Kumar. Spatio-temporal data mining for climate
data: Advances, challenges, and opportunities. In Data Mining and
Knowledge Discovery for Big Data, pp. 83–116. Springer, 2014.

[20] H. Fanaee-T and J. Gama. Event detection from traffic tensors: A hybrid
model. Neurocomputing, 203:22–33, 2016.

[21] H. Fanaee-T and J. Gama. Tensor-based anomaly detection: An interdisci-
plinary survey. Knowledge-Based Systems, 98:130–147, 2016.

[22] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual exploration
of big spatio-temporal urban data: A study of new york city taxi trips. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2149–2158,
2013.

[23] R. A. Harshman. Foundations of the parafac procedure: Models and
conditions for an” explanatory” multi-modal factor analysis. 1970.

[24] V. Hautamaki, I. Karkkainen, and P. Franti. Outlier detection using k-
nearest neighbour graph. In Proceedings of International Conference on
Pattern Recognition, vol. 3, pp. 430–433. IEEE, 2004.

[25] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using
replicator neural networks. In International Conference on Data Ware-

housing and Knowledge Discovery, pp. 170–180. Springer, 2002.
[26] V. J. Hodge and J. Austin. A survey of outlier detection methodologies.

Artificial Intelligence Review, 22(2):85–126, 2004.
[27] Z. Ju and H. Liu. Fuzzy gaussian mixture models. Pattern Recognition,

45(3):1146–1158, 2012.
[28] Y.-a. Kang and J. Stasko. Characterizing the intelligence analysis process:

Informing visual analytics design through a longitudinal field study. In
IEEE Visual Analytics Science and Technology, pp. 21–30, 2011.

[29] J. Kim, Y. He, and H. Park. Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework. Journal of Global Optimization, 58(2):285–319, 2014.

[30] M.-J. Kraak. The space-time cube revisited from a geovisualization per-
spective. In Proceeding of International Cartographic Conference, pp.
1988–1996, 2003.

[31] G. Langran and N. R. Chrisman. A framework for temporal geographic
information. Cartographica: The International Journal for Geographic
Information and Geovisualization, 25(3):1–14, 1988.

[32] J.-M. Lee, C. Yoo, and I.-B. Lee. On-line batch process monitoring using
a consecutively updated multiway principal component analysis model.
Computers & Chemical Engineering, 27(12):1903–1912, 2003.

[33] Z. Liao, Y. Yu, and B. Chen. Anomaly detection in gps data based on
visual analytics. In IEEE Symposium on Visual Analytics Science and
Technology (VAST), pp. 51–58, 2010.

[34] D. Liu, D. Weng, Y. Li, J. Bao, Y. Zheng, H. Qu, and Y. Wu. Smartadp:
Visual analytics of large-scale taxi trajectories for selecting billboard
locations. IEEE Transactions on Visualization and Computer Graphics,
23(1):1–10, 2017.

[35] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In International
Conference on Data Mining, pp. 413–422. IEEE, 2008.

[36] Y. Liu, B. Zhou, F. Chen, and D. W. Cheung. Graph topic scan statistic
for spatial event detection. In Proceedings of ACM International on
Conference on Information and Knowledge Management, pp. 489–498.
ACM, 2016.

[37] M. V. Mahoney and P. K. Chan. Learning rules for anomaly detection of
hostile network traffic. In International Conference on Data Mining, pp.
601–604. IEEE, 2003.

[38] S. McKenna, D. Staheli, C. Fulcher, and M. Meyer. Bubblenet: A cyber
security dashboard for visualizing patterns. In Computer Graphics Forum,
vol. 35, pp. 281–290. Wiley Online Library, 2016.

[39] P. Nomikos and J. F. MacGregor. Monitoring batch processes using
multiway principal component analysis. AIChE Journal, 40(8):1361–1375,
1994.

[40] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci:
Fast outlier detection using the local correlation integral. In Proceedings
of International Conference on Data Engineering, pp. 315–326. IEEE,
2003.

[41] I. C. Paschalidis and G. Smaragdakis. Spatio-temporal network anomaly
detection by assessing deviations of empirical measures. IEEE/ACM
Transactions on Networking (TON), 17(3):685–697, 2009.

[42] P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proceedings of International Conference on Intelligence Analysis, vol. 5,
pp. 2–4, 2005.

[43] M. A. Prada, M. Dominguez, P. Barrientos, and S. Garcia. Dimensionality
reduction for damage detection in engineering structures. International
Journal of Modern Physics B, 26(25):1246004, 2012.

[44] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection,
vol. 589. John wiley & sons, 2005.

[45] M. L. Sbodio, F. Calabrese, M. Berlingerio, R. Nair, F. Pinelli, et al.
Allaboard: visual exploration of cellphone mobility data to optimise public
transport. In Proceedings of International Conference on Intelligent User
Interfaces, pp. 335–340. ACM, 2014.

[46] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A novel
anomaly detection scheme based on principal component classifier. Tech-
nical report, DTIC Document, 2003.

[47] G. K. L. Tam, V. Kothari, and M. Chen. An Analysis of Machine- and
Human-Analytics in Classification. IEEE Transactions on Visualization
and Computer Graphics, 23(1):71–80, Jan. 2017. doi: 10.1109/TVCG.
2016.2598829

[48] J. Terrell, K. Jeffay, F. D. Smith, L. Zhang, H. Shen, Z. Zhu, and A. Nobel.
Multivariate svd analyses for network anomaly detection. In Proceedings
of ACM SIGCOMM Conference, Poster Session, 2005.

[49] D. Thom, H. Bosch, S. Koch, M. Wörner, and T. Ertl. Spatiotemporal



anomaly detection through visual analysis of geolocated twitter messages.
In IEEE Symposium on Pacific Visualization, pp. 41–48, 2012.

[50] X. Tian, X. Zhang, X. Deng, and S. Chen. Multiway kernel independent
component analysis based on feature samples for batch process monitoring.
Neurocomputing, 72(7):1584–1596, 2009.

[51] C. Tominski, P. Schulze-Wollgast, and H. Schumann. 3d information visu-
alization for time dependent data on maps. In Proceedings of International
Conference on Information Visualization, pp. 175–181. IEEE, 2005.

[52] U. D. Turdukulov, M.-J. Kraak, and C. A. Blok. Designing a visual
environment for exploration of time series of remote sensing data: In
search for convective clouds. Computers & Graphics, 31(3):370–379,
2007.

[53] X. R. Wang, J. T. Lizier, O. Obst, M. Prokopenko, and P. Wang. Spatiotem-
poral anomaly detection in gas monitoring sensor networks. In Wireless
Sensor Networks, pp. 90–105. Springer, 2008.

[54] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner. Bayesian network
anomaly pattern detection for disease outbreaks. In ICML, pp. 808–815,
2003.

[55] W. Wu, J. Xu, H. Zeng, Y. Zheng, H. Qu, B. Ni, M. Yuan, and L. M. Ni.
Telcovis: Visual exploration of co-occurrence in urban human mobility
based on telco data. IEEE Transactions on Visualization and Computer
Graphics, 22(1):935–944, 2016.

[56] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. On-line unsu-
pervised outlier detection using finite mixtures with discounting learning
algorithms. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 320–324. ACM, 2000.

[57] W. C. Young, J. E. Blumenstock, E. B. Fox, and T. H. McCormick. Detect-
ing and classifying anomalous behavior in spatiotemporal network data.
In Proceedings of KDD Workshop on Learning about Emergencies from
Social Information (KDD-LESI 2014), pp. 29–33, 2014.

[58] J. Zhao, N. Cao, Z. Wen, Y. Song, Y.-R. Lin, and C. Collins. #fluxflow:
Visual analysis of anomalous information spreading on social media. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1773–1782,
2014.

[59] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban Computing: Con-
cepts, Methodologies, and Applications. ACM Trans. Intell. Syst. Technol.,
5(3):38:1–38:55, Sept. 2014. doi: 10.1145/2629592

[60] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni. Visual analytics in urban
computing: An overview. IEEE Transactions on Big Data, 2(3):276–296,
2016.

[61] Y. Zheng, W. Wu, H. Zeng, N. Cao, H. Qu, M. Yuan, J. Zeng, and L. M.
Ni. Telcoflow: Visual exploration of collective behaviors based on telco
data. In IEEE International Conference on Big Data, pp. 843–852. IEEE,
2016.


	Introduction
	Related Work
	Anomaly Detection Algorithms
	Visual Anomaly Detection
	Visualizing the Spatiotemporal Data

	System Overview
	Anomalous Pattern Extraction
	Data Model and Transformation
	Extracting Expected Patterns
	Extracting Dynamic Patterns
	Extracting Anomalous Patterns

	Visualization and Interaction
	Design Tasks
	User Interface
	Macro Map View
	Anomaly Detection Mode
	Context mode

	Micro Map View and History View
	Temporal Pattern View
	Other Views
	Interactions

	Evaluation
	Quantitative Evaluation
	Case Study & Domain Expert Interview
	Study set-up and interview process
	Representative cases
	User feedback


	Conclusion and Future Work



