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The rapid expansion of variable renewable energy (e.g., wind and solar) can make it more difficult to bal-
ance electricity supply and demand at a grid-scale. While much attention has focused on the risk of unex-
pected generation shortfalls, periods of oversupply (when supply is greater than demand) also present
challenges that can lead to financial losses for utilities and/or consumers when renewable energy is “cur-
tailed”. A unique form of oversupply occurs in hydro-dominated systems. Although hydropower is
thought to offer a highly flexible resource that can complement variable renewable energy, seasonal vari-
ability in streamflows and the presence of environmental regulations can create complex oversupply con-
ditions if renewable energy is plentiful. In this study, an integrated hydro-economic model is developed
to assess the frequency and severity of financial losses arising from oversupply in the U.S. Pacific
Northwest, a hydro-dominated system with rapidly growing wind power generation. Present value losses
over 25 years (2016-2040) are evaluated under several future scenarios including increased wind capac-
ity, electricity price uncertainty, and expanded transmission capacity for moving excess electricity to
export markets. Results indicate that oversupply losses will increase as a function of installed wind
capacity, with the extent of this increase sensitive to future electricity prices. In the case of adding trans-
mission capacity to alleviate oversupply losses, the cost of this infrastructure is substantially more than
the associated reduction in losses and is therefore difficult to justify.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Wind power capacity worldwide is increasing at a rapid rate,
with installed global capacity having increased roughly 2400%
from 2000 to 2015 [1]. Nonetheless, an ongoing challenge with
increasing wind capacity is managing wind power’s variability
[2,3]. Wind speeds can change dramatically on multiple time
scales, and existing power systems sometimes struggle to accom-
modate these sudden changes [4,5]. One challenge associated with
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the variability of wind is generation “oversupply”. Oversupply
occurs when the total electricity generation in a region exceeds
internal demand [6,7]. In general, generation oversupply happens
due to the presence of some combination of “must run” thermal
generation (e.g., nuclear) and hydropower that cannot be turned
off or sufficiently ramped down, and variable renewable energy.
During oversupply events, excess electricity that cannot be
exported to another region or stored via batteries or pumped stor-
age [8] must be curtailed in order to maintain the integrity of the
electricity grid. Often, renewables like wind and solar power are
curtailed because it is the most economically and/or viable way
to balance load and generation [6,9]. Without significant improve-
ments in transmission capacity, energy storage, and demand side
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management, oversupply is likely to become a greater challenge in
the future as wind and solar capacity increases [7-12].

Many studies have addressed the issue of renewable energy
curtailment from an economic perspective. Some point out that it
wastes energy, leading to economic losses for both utilities and
society [11,13,14]. Others, however, have concluded that, given
the cost of transmission and energy storage options, renewable
energy curtailment may be a socially optimal choice [10]. The
range of conclusions drawn from previous studies suggests that
oversupply problems in different systems can be very distinct.
The financial losses associated with curtailment may depend on a
number of factors, including complex interactions between differ-
ent types of generation, the price of electricity in deregulated mar-
kets, as well as climatic and environmental factors, making for
challenges in both characterizing the problem and solving it.

Power systems in Germany and China, as well as regional
energy systems in the U.S. (e.g., PJM Interconnection and ERCOT
(Electric Reliability Council of Texas) and MISO (Midcontinent
Independent System Operator)) have experienced generation over-
supply due to the combination of must run thermal generation and
greater renewable capacity, in particular wind power [8,9,15].
Another form of generation oversupply can occur in hydropower-
dominated systems, especially in situations where high levels of
renewables are present [9]. Hydropower, due to its operational
flexibility, is often regarded as an ideal resource to compensate
for the intermittency and unpredictability of wind power [16,17].
However, as more wind penetrates the electricity mix, hydroelec-
tric dams may be limited in their ability to dramatically reduce
generation to accommodate increase in wind power, especially if
the operations of dams are constrained by multi-purpose obliga-
tions or environmental regulations.

Oversupply problems in hydropower-dominated systems are
unique because they are a product of both hydrological variability
and wind variability. Study of this issue has been limited, however,
partly because accurately characterizing the frequency and sever-
ity of oversupply losses requires a modeling approach that inte-
grates both the complexity of the reservoir system (accounting
for both watershed hydrology and dam operating rules) and the
larger power system (including alternative thermal sources, vari-
able load and renewable production as well as transmission con-
straints). In order to facilitate exploration of oversupply problems
in hydropower-dominated systems, a transferrable methodological
approach is needed.

The goal of this study is to develop an integrated modeling
framework that couples multi-scale stochastic time series model-
ing with a mass-balance reservoir network model to facilitate a
probabilistic assessment of financial losses from oversupply. This
integrated modeling framework is then applied to a hydropower-
dominated system in the U.S., the Bonneville Power Administration
control area. Losses from oversupply are quantified over an ensem-
ble of 25-year trajectories (2016-2040), and the sensitivity of over-
supply losses to various factors is explored, including: (1) the rate
of wind capacity growth; (2) investment in additional export trans-
mission capacity; and (3) fluctuations in wholesale electricity
prices. The results of this work provide an improved understanding
of the key factors driving financial losses from oversupply in
hydropower-dominated systems. They also inform the develop-
ment of better system planning strategies that accurately value
the economic benefits of oversupply mitigation strategies (i.e., con-
struction of additional export transmission capacity).

2. Methods

A primary goal of this study is to gain a probabilistic under-
standing of financial losses caused by oversupply events in

hydropower-dominated systems. To do so, the following approach
is taken. First, the study area of interest is chosen. Then an inte-
grated modeling framework is developed, and its ability to repli-
cate observed instances of oversupply and accurately estimate
associated financial losses is validated. A sensitivity analysis is per-
formed in order to understand the relative impacts of wind capac-
ity growth and electricity prices on oversupply losses. Finally,
present value losses are evaluated over an ensemble of 25-year tra-
jectories (2016-2040) assuming gradual growth in wind capacity,
and the question of whether investment in additional transmission
capacity represents an economically viable mitigation strategy is
answered.

It should be noted that “financial losses” discussed in this work
differ from “economic losses”. We define financial losses simply as
the monetary value of curtailed wind power production. This value
does not include the broader economic losses that may include
impacts to other system participants (i.e., customers in adjacent
systems) or potential externalities.

2.1. Study area

Perhaps the most prominent example of oversupply in
hydropower-dominated systems is the U.S. Pacific Northwest,
where hydropower meets more than 60% of regional electricity
demand [18]. Most of the Pacific Northwest’s electric power sys-
tem is operated by Bonneville Power Administration (BPA), a fed-
eral power marketing organization that is in charge of power
plant operations, transmission, and grid balancing [18]. Within
BPA's footprint there are 31 federal hydroelectric dams and many
additional non-federal dams, 1 federal nuclear plant and other
non-federal thermal plants [18]. This system has experienced rapid
growth in wind power capacity and is already experiencing over-
supply issues, with two major wind related oversupply events
occurring in 2011 and 2012. Thus, BPA is a logical choice for the
application of the proposed modeling framework.

Oversupply events in the BPA system occur as a result of a com-
plex interaction between snowmelt-driven hydrology, wind power
availability, limited export transmission capacity, and environ-
mental regulations on the operation of hydroelectric dams (see
Fig. 1). During periods of high streamflow (peak summer snow-
melt), hydroelectric dams in BPA’s system, including many found
in the Federal Columbia River Power System (FCRPS), a network
of hydroelectric dams spanning several states, produce massive
amounts of hydropower. In response, thermal power plants are
shut down or ramped down to their operational limits [19-21] in
order to maximize the use of hydropower. Nonetheless, with wind
power capacity in the region growing quickly, the combination of
summer hydropower production and wind power can create peri-
ods of system-wide generation oversupply. With limited transmis-
sion capacity for exporting excess electricity to other systems (i.e.,
California and British Columbia), resolving oversupply issues in the
BPA system is a challenge that ultimately falls to generators within
the system.

As a first recourse, dams reduce hydropower production
(thereby maximizing the use of wind power) and store water for
release at a later time. Ultimately, however, storing inflows drives
reservoir levels higher and exhausts the ability of dam operators to
store any additional water. The next recourse available to dam
operators is to “spill” water (i.e., discharge it from reservoirs with-
out generating electricity). In the FCRPS, however, environmental
regulations on flows downstream of some hydroelectric dams limit
the dams’ ability to spill water in order to accommodate high wind
energy penetration. Specifically, spilling large volumes of water
can cause elevated downstream levels of total dissolved gases
[22], a violation of federal water quality standards. Thus, the com-
bination of high reservoir levels and water quality regulations can,
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Fig. 1. A schematic view of oversupply events faced by BPA. During high flow periods, hydropower producers have two options. Option 1 is spilling more water, which will
lead to the violation of federal law. In Option 2, water is instead passed through turbines, which generates excess electricity and leads to oversupply.

by limiting spilling, effectively turn dams in the FCRPS into “must
run” resources that have no choice but to generate electricity.

As a result, during oversupply events, it is often wind producers
in the region who are ordered to shut down in order to maintain a
system-wide balance between supply and demand. Wind power
curtailment results in the loss of revenues from wind power gener-
ation, which includes the loss of associated renewable energy cred-
its and production tax credits. Since 2012, wind producers have
been compensated by BPA for all oversupply losses, and this bill
is ultimately passed to rate payers [23].

The financial losses caused by these recent oversupply events in
BPA’s system (as well as discussion of strategies for mitigating
future losses) have drawn significant media attention [24]. Wind
power capacity in this region is expected to grow dramatically in
coming decades, potentially leading to more severe financial con-
sequences from oversupply. Installed wind capacity increased from
almost nothing in the year 2000-4782 MW by the end of 2014. An
additional 3000-4000 MW of wind power capacity is projected to
be installed by the end of 2025 [25].

BPA has suggested that annual losses moving forward could be
as much as $50 million U.S. dollars [24]. However, in a preliminary
analysis BPA conducted on potential oversupply losses, only four
non-consecutive sample years from the historical hydrological
record were considered, neglecting large swaths of the distribution
of potential hydrological events and making no effort to project
losses over longer representative time frames. In addition, BPA’s
preliminary analysis also assumed static or very limited changes
in installed wind capacity, transmission availability and electricity
prices over time. Given the projected rapid growth of wind power
in the system, and the uncertainty with respect to these other fac-
tors, a more comprehensive approach is desired to understand how
the challenge of managing oversupply in hydropower-dominated
systems like BPA’s may evolve in the future, and how transmission
planning and electricity price behavior may contribute to either
lessening or worsening the problem.

2.2. Data sources

As a federal power market administration whose system is well
established and monitored, BPA has large amounts of publicly
available operating data. This study makes use of eight years (from
2007 to 2014) of hourly system-wide wind power production, elec-

tricity demand, transmission export and thermal generation data
that are available from BPA [18]. Inflow data at hydroelectric dams
in the FCRPS were obtained from BPA’s modified flow dataset [26].
This dataset provides 80 years of river flow data (from 1928 to
2008) that account for factors such as withdrawals and return
flows from irrigation, evaporation and other water consumption
in the region. Eighty years of daily temperature data, from 1928
to 2008, were obtained from the National Oceanic and Atmo-
spheric Administration [27].

2.3. Integrated modeling framework and scenario development

The integrated modeling framework developed in this study is
composed of several connected modules shown in Fig. 2. Exoge-
nous drivers of the model include unregulated streamflow (i.e.,
inflows at reservoirs that have not been routed by an upstream
dam), electricity demand, wind energy production, and transmis-
sion exports. These processes are represented via stochastic time
series generation, and the resultant synthetic data products then
serve as inputs to the power system ‘“decision making” process,
which includes the daily reservoir operations and hourly power
scheduling modules. The output of the hourly power scheduling
module is then processed to assess financial losses from
oversupply.

2.3.1. Synthetic unregulated streamflow generation

Since excess hydropower production during high flow periods is
a primary driver of oversupply events in hydropower-dominated
systems, estimates of associated financial losses should be based
on as large a sample of hydrological data as possible, and (ideally)
include the potential for years in the future to look different than
years experienced in the past. In many systems, this recommends
use of an expanded, synthetic hydrological dataset.

Two main challenges exist in synthesizing streamflow data for
use in reservoir network models. First, the synthetized streamflow
has to be able to replicate statistical characteristics of the historical
record. Second, the method must be able to generate values that
demonstrate accurate spatial cross-correlations, as well as tempo-
ral autocorrelations. This study makes use of a K-nearest neighbor
(K-NN) resampling method developed by Nowak et al. [28] that
sufficiently addresses both requirements while generating syn-
thetic daily flows for multiple, spatially distributed sites. This
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Fig. 2. Model integration overview. Load, system exports, thermal generation and wind generation are modelled as time series. Synthetic stream flow act as an input to the
daily reservoir operations model, which calculates available hydropower production. This information is then sent to the hourly power scheduling model to determine

spilling and wind curtailment.

approach entails use of a lag-1 auto-regressive (AR) model to sim-
ulate total annual flows, and combines these annual values with
vectors of daily flow fractions, which are conditionally resampled
from the historical record. The results of this synthetic streamflow
generation process are daily time-series of unregulated flows
throughout the reservoir network that replicate key elements of
the historical distribution while also providing for the possibility
of daily streamflows that are lower/higher than any previously
observed value. A detailed explanation of this technique can be
found in the Supplemental Information section.

2.3.2. Air temperature modeling

Electricity demand is heavily influenced by activities that heat
and cool buildings [29], so daily mean air temperatures are used
as a primary input in simulating electricity demand. Air tempera-
tures can also have direct effects on the timing of snowmelt, which
is the main source of stream flow in the BPA system. Thus, it is
important to understand and account for any existing covariance
structures between temperatures and streamflow patterns when
generating both synthetic streamflow and temperature data. To
account for this relationship, when years of flow fractions are con-
ditionally resampled from the historical record, daily mean tem-
peratures are simultaneously resampled from the same year. This
process ensures the sufficient capture of covariance between tem-
perature and streamflow (from snowmelt) in terms of magnitude
and timing.

As one of the dominant drivers of electricity demand, daily air
temperature features prominently in most commonly used
approaches for simulating daily peak electricity demand [2,28].
In this study, the population weighted mean daily temperature is
used to capture the temperature effect on daily peak demand
across BPA’s control area. Population and temperature data are
taken from the most populated city in each of the primary states
in BPA’s footprint, namely Seattle, WA, Portland, OR, and Boise,
ID. The population weighted temperature is calculated as:

2P
Twi =Y —5Ti 1)

i=1 i

where

Tw; = Population weighted temperature
i = index for 3 different cities

P; = Population in the indexed city
T; = Mean daily temperature in the indexed city.

2.3.3. Hourly electricity demand modeling

The method used here to model hourly electricity demand com-
bines empirically derived hourly demand profiles for each day of
the year formed from historical data, with a synthetic record of
peak daily electricity demand.

First, hourly demand profiles are extracted from historical elec-
tricity demand data for the relevant system (in this case, BPA).
Hourly demand profiles for each calendar day are created in a
(24 x 365) matrix S, with elements equal to:

Sha = {L’“’] )

h.d

where

Ly 4 is the demand at hour h in calendar day d
L, is the maximum hourly demand in calendar day d.

Hourly demand profiles are then multiplied by a synthetic time
series of daily peak electricity demand in order to simulate hourly
demand. Given coincident time series of historical daily peak
demand and population weighted temperature, a piecewise linear
relationship is developed. This relationship is then removed from
the daily peak demand data for whitening.

After removing temperature effects, the remaining peak
demand process contains some residual non-temperature related
month effects and day of the week effects. Month effects are
removed by subtracting the monthly mean and dividing by the
standard deviation for each month. Then day of the week effects
are removed using a similar approach (Eq. (3)).

Ly—Fa —
. K dcfmc) udow] 3)
dow

where

M =daily peak demand data, with effects from temperature,
month and day of week removed (MW)

L; = load data with temperature effects removed

U-dp = the expected demand of the month m
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o_d,, = the standard deviation of the month m
Hgow = the expected demand for day-of-the-week (dow)
Ggow = the standard deviation for day-of-the-week (dow).

The remaining process, M is fit to an Auto Regressive Moving
Average (ARMA) model for simulation. The number of AR lags is
selected based on the partial autocorrelation function, and the
number of MA lags is selected by examining the autocorrelation
function.

A synthetic time series of daily data (M*) is simulated by the
ARMA model for a desired duration, then the filtered signals are
added back to the simulated result, now using a synthetic time ser-
ies of population-weighted daily mean temperature.

Lsim = ((M"Gdow + Hgow)O-dm) + ft-dm + f(T") 4)

where

Lsim = simulated peak demand (MW) time series

M* = daily ARMA simulation

f(T") = piecewise linear effects of temperature on peak demand
T* = synthetic population weighted daily mean temperature.

After generating Ly, (simulated daily peak demand data), it is
applied to the hourly profiles for each calendar day taken from his-
torical data (matrix S). Fig. 3 shows a validation of the electricity
demand model. This model accurately preserves both daily and
hourly autocorrelation and seasonality from the observed record.
To reflect the gradual growth of electricity demand in the region
over time under normal economic conditions, an annual growth
rate of 0.9% is incorporated into the final time series [31].

2.3.4. Stochastic wind power modeling

A number of methods exist for modeling wind power produc-
tion, with different methods able to excel under different condi-
tions and study requirements [32-35]. This study uses a similar
approach to the one conducted by Papavasili and Oren [35] that
integrates representation of wind power production across four
temporal scales: annual, seasonal, daily and hourly. Since a large
driver of future oversupply events is expected to be increasing
wind power capacity, this gradual increase of wind power capacity
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production tends to peak between mid-summer to early fall). On
a daily basis, wind power generation demonstrates significant
levels of autocorrelation as a result of memory in meteorological
systems; and on an hourly level, wind power generation demon-
strates a diurnal pattern (e.g., in the BPA system wind speeds
and wind power production is higher during night and lower dur-
ing the day). The approach used accurately reproduces observed
statistical and time series properties of monthly, daily and hourly
wind power production, while also providing an ability to scale
wind power production to any theoretical amount of installed
capacity.

First, the original dataset of hourly wind power production is
log-transformed and then normalized by month and year as
follows:

LOgWind - LOgumy

N_Wind =
Log,,m_y

(3)
where

h = hour of the day

m = month of the year

y = sampling year € {2007, 2008, ..., 2014}

Log_Wind = log transformed hourly wind production

Log_pmy = the mean of log transformed hourly wind production
in month m and year y

Log_omy = standard deviation of log transformed wind produc-
tion in month m and year y.

The above transformation generates the vector N_Wind, which
is the hourly wind generation signal with monthly and annual
(installed capacity effects) removed. We calculate daily mean val-
ues of N_Wind and then subtract these from each discrete 24-h
period. This leaves a residual process, N_Wind’, that is a combina-
tion of autocorrelated hourly noise and diurnal signal. We then fit
the calculated daily mean values to twelve separate ARMA models
Daily_ARMA, one for each calendar month.

Twelve diurnal signals (one for each calendar month) are then
calculated as the mean value of N_Wind' data for each hour of
the day:

A Diurnal,,, = E[N_Wind’ 6
needs to be accounted for on an annual basis. Wind power gener- mh [ ma) 6)
ation can also demonstrate strong seasonality (in the BPA system
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Fig. 3. Historical and simulated electricity hourly average demand in each month (upper panel) and autocorrelation (lower panel).
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Fig. 4. Historical and simulated electricity demand (upper panel) and autocorrelation (lower panel).

These diurnal signals are then subtracted from the N_Wind'
data, leaving an hourly zero-mean ARMA process, that describes
the autocorrelated “noise” around the diurnal signal.

Simulating synthetic wind power data for a given capacity level
then involves “working backwards”. We use a single ARMA model
fitted to the noise around the diurnal signal to simulate this resid-
ual hourly process over any desired length of time, resulting in a
vector called U". To this synthetic time series, the diurnal signals
for each calendar month are then re-applied; then synthetic daily
means are added, simulated using the twelve ARMA models
(Daily_ARMA).

Finally, the resultant hourly time series, which replicates both
hourly and daily autocorrelation in historical wind power produc-
tion, is adjusted to include monthly effects. In order to project the
mean and standard deviation of hourly wind energy for each
month under much greater levels of installed wind capacity than
what exists today, relationships between installed capacity and
the mean and standard deviation of hourly wind power production
are extrapolated from observed data. For example, the gradual
increase of the wind capacity in BPA’s system has led to increased
standard deviation of daily wind production (see Supplementary
Information section).

Synthetic: Wind = (((U" x G3) + ) x Log-Gmmw) + LOZ- Ly ]
(7)

where

Log_,, yw = Mmean hourly generation in month m, given capac-
ity MW

Log_ommw = std. deviation of hourly generation in month m,
given capacity MW.

Fig. 4 compares seasonality and hourly autocorrelation for sim-
ulated and historical observations. Note that observed wind pro-
duction (red' line) does not have error bars. Since wind capacity

! For interpretation of color in Fig. 4, the reader is referred to the web version of
this article.

in BPA’s system has grown each year, one representative year (2014)
has been selected to test seasonality. Thus this comparison provides
a qualitative sense of model accuracy, albeit one that falls a little
short of formal validation. It is also important to note that, the syn-
thetic wind energy model performs best in terms of reproducing sea-
sonal effects during the months most important in driving
oversupply in the BPA system, i.e., June-August.

2.3.5. Daily reservoir operations (modified HYSSR model)

In order to simulate the operations of dams and reservoirs in
the BPA system, this study uses a modified version of the Hydro
System Seasonal Regulation model (HYSSR), a model designed
and built by the US Army Corps of Engineers (USACE). The HYSSR
model is a monthly hydro-regulation model that simulates the
operation of hydroelectric dams in the Federal Columbia River
Power System (FCRPS). It is a deterministic, mass-balance model
that produces monthly results for reservoir storage, hydropower
production, and reservoir outflow [36]. This model has been used
by both BPA and the USACE for planning, operation and regulation
purposes (see Supplemental Information for model schematic).

Since modeling oversupply events requires a time step shorter
than monthly, HYSSR has been modified here to a daily model.
The modified model includes the operations of 48 dams, which
are classified as either storage or run-of-river projects. Storage pro-
jects are those that operate based on a set of rules to regulate
inflows (i.e., adjust the river’s natural flow pattern to adapt to
needs for flood control, water supply, and hydropower production).
Storage projects in the FCRPS typically capture peak runoff from
spring and summer snowmelt and store it for late summer and
autumn release when the natural stream flows are lower. Run-
of-river projects have negligible storage capacity and simply pass
inflows through turbines for hydropower generation purposes.

The modified HYSSR model calculates each project’s end-of-day
storage content, outflow and power generation based on inflows,
minimum/maximum discharge requirements, current storage level
(only applicable for storage projects) and operational rule curves.

Operational rule curves are determined based on projected
inflows, flood control requirements, power generation require-
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ments, and a dam’s design limitations (e.g., maximum turbine
capacity) and regulatory constraints (e.g., minimum environmental
flows, minimum elevation for recreation). Using inputs of synthetic
unregulated streamflow and reservoir rule curves, the modified
HYSSR model yields daily values for reservoir storage and outflow
and available hydropower production. It is important to note that
not all of the dams in BPA system are represented in HYSSR, but
the remaining dams only account for about 12.5% of the total
hydropower capacity in this region (see the complete dam list
and model schematic in Supplemental Information). One key
assumption made is that the un-modelled 12.5% of hydropower
capacity produces electricity proportionally to that produced by
dams in HYSSR.

2.3.6. Transmission exports

Currently, the maximum export capacity for the BPA system is
13,000 MW. Electricity exports are a function of the availability
of surplus power in the BPA system, demand in systems outside
BPA, as well as transmission capacity allocation and scheduling.
Explicitly modeling transmission exports as a function of all these
dynamics is outside of the scope of this current study, but is some-
thing that will be addressed in future work.

This study uses a simplifying assumption that BPA used in its
own preliminary oversupply analysis [23]. Each hour of the day
is classified as either a “high load” hour (6 am-10 pm) or a “low
load” hour (11 pm-5 am). A fixed percentage of transmission usage
is then assumed for high (90%) and low (70%) load hours,
respectively.

2.3.7. Hourly system scheduling

A rolling 7-day planning horizon is used when scheduling
hourly generation. This builds in flexibility on the part of system
operators in scheduling resources to minimize spill at dams, but
it also constrains their ability to incorporate future information
in dam operations beyond one week.

Due to the specific focus of this study on oversupply events in
hydropower-dominated systems, the operations of individual
power plants are not modelled via a traditional unit commitment
program [16,17]. Rather, the hourly generation scheduling model
takes internal system electricity demand, transmission exports,
available hydropower and available thermal generation as inputs,
then schedules hourly generation, with model output adhering to
the following power balance equation:

D+X=H+W+T 8)

where

D = electricity demand

X = electricity export

H = hydropower production
W = wind power production

T = thermal power production.

During the hourly scheduling process, the default assumption is
that all available wind power is dispatched (that is, until oversup-
ply conditions occur). It is also assumed that thermal generation is
always available to meet any electricity demand not provided by
hydropower and wind. This is an assumption that, generally speak-
ing, reflects how thermal generators are used in the BPA system.

During oversupply periods, the hourly scheduling model dis-
places hydropower production first, forcing dams to “spill” water
without generating electricity. This continues until spill discharge
reaches the limits imposed by environmental regulations on dis-
solved gas concentrations (see Supplemental Information section
for details on modeling dissolved gas concentration as a function
of spill discharge). At this point, if electricity supply is still greater

than the quantity (demand + exports), thermal generation must be
ramped down [18]. A minimum thermal operating capacity of
100 MW is assumed for the entire BPA; this number is set empiri-
cally based on the lowest level observed in data from historical
information [18]. As a last resort (i.e., if dams are spilling at max-
imum rates and thermal generation is ramped to its minimum
capacity) wind power is curtailed to maintain a balance between
both sides of Eq. (8).

3. Results and discussion
3.1. Model validation

In order to validate the ability of the integrated modeling
framework to accurately simulate the frequency and severity of
oversupply events in the BPA system, the model’s ability to repro-
duce historical spilling at dams in the FCRPS is verified.

Historical unregulated streamflow data are used to simulate
reservoir releases and available hydropower production. Then con-
current historical records of hourly wind power production, ther-
mal generation and transmission exports are subtracted from
observed hourly electricity demand for the BPA system, leaving a
single hourly time series of net demand. The hourly scheduling
model is used to dispatch hydropower generation to meet this
net demand. In instances where available hydropower production,
as determined by the modified HYSSR model, is greater than net
demand, excess water is assumed to be spilled (released from
dams without generating electricity).

Simulated vs. observed spilling at all hydroelectric dams over
the period 2005-2007 (the only period for which there are overlap-
ping time series of unregulated flow and grid data) is shown in
Fig. 5. The model overestimates spilling somewhat in year 2005,
but is fairly accurate in 2006 (a particularly wet year). This suggests
the model may be more prone to overestimating the occurrence of
oversupply events in moderate or dry years. Compared to a wet
year, dry and moderate years may give dam operators more flexibil-
ity in exercising their own discretion to minimize oversupply
events (e.g., dam operators have more room to draw down the stor-
age level for accommodating occasional high flows), but these deci-
sions are more difficult to model. However, cumulative financial
losses of oversupply, which is the focus of this study, are driven
overwhelmingly by wet years. Thus, overestimating the frequency
of small or moderate oversupply events should not greatly impact
calculated financial losses, relative to system drivers like installed
wind capacity, electricity prices and transmission export capacity.

The model is validated in terms of projected financial losses
from wind curtailment. Under 2012 wind capacity levels, modeling
results suggest that wind producers in the BPA system experience
an average curtailment of 3% of wind power production per year,
with losses occasionally reaching 20% in very wet years (Fig. 6A).
BPA’s own preliminary analysis suggests that associated annual
oversupply losses, given 2012 installed wind capacity and assum-
ing 2012 electricity prices, are an average of $12 million with a
maximum loss of $50 million. Results of this study, which are
based on the same assumptions but also allow for a broader range
of possible wind and hydropower production conditions, suggest
that the expected annual oversupply loss is $15 million with a
maximum loss of $96 million (Fig. 6B).

The difference between these estimates is likely attributable to
a combination of modeling bias (the model overestimates the fre-
quency of small and moderate oversupply events) and modeling
scope. The modeling framework suggests significantly greater vari-
ance than what BPA has identified in the distribution of possible
oversupply losses under 2012, including significantly higher max-
imum annual losses. This is due to the model’s use of expanded
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synthetic records of streamflows, wind production, and electricity
demand, which provide opportunities for the occurrence of values
outside the historical record (but within estimated maximum like-
lihood distributions of each variable).

3.2. Sensitivity analysis: double wind capacity

Before evaluating the impacts of a more incremental, long term
increase in wind power capacity on oversupply losses, there is also
interest in exploring the sensitivity of the BPA system to a doubling
of wind power capacity, a condition projected to occur by 2020
[37].

Under this scenario involving doubled wind capacity, average
wind curtailment increases to 5% and maximum curtailment rises
to 24%. The distribution of financial losses (i.e., the value of cur-
tailed wind power production) under both 2012 and doubled wind
power capacity are displayed in Fig. 6A and B. Financial losses are
calculated as a combination reduced energy sales and reduced
income from renewable energy credits and production tax credits
that accrue to wind producers. If wind capacity is doubled, the dis-

tribution of losses shifts to the right and demonstrates much
greater variance (a wider “tail”). Annual expected losses grow to
$49 million and the maximum loss estimated to be $212 million.

3.3. Sensitivity analysis: electricity prices

Apart from hydrology and installed wind power capacity, a key
driver of financial losses from oversupply events is the price of
electricity. The California Independent System Operator (CAISO)
is the primary electricity market to which BPA exports excess wind
and hydropower [18]. Due to the heavy dependence of California
generators on natural gas, wholesale electricity prices in CAISO
are strongly correlated with natural gas prices [38]. This is impor-
tant, because BPA’s initial analysis of oversupply losses assumes
2012 installed wind power capacity and 2012 electricity prices.
In fact, natural gas prices were near historic lows in 2012. Although
gas prices are projected to remain fairly low for the next several
years [39], BPA’s initial estimates of financial losses from oversup-
ply may reflect a fairly unique circumstance involving low electric-
ity prices.
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Table 1
Summary of results from sensitivity analysis.
Modeling scenario Minimum Average Maximum
Curtailment loss 2012 Wind Level 0 3% 20%
Double 2012 wind level 0 5% 24%
Annual oversupply loss 2012 Wind Level 0 $15 million $96 million
Double 2012 wind level 0 $49 million $212 million
Electricity price 2012 Price 0 $15 million $96 million
Recent 10-years 0 $28 million $550 million
Recent 5-years 0 $20 million $340 million

In order to test the sensitivity of oversupply losses to different
electricity prices, expected annual financial losses from oversupply
using the 2012 electricity price ($/MW h) are compared with losses
resulting from a wider distribution of electricity prices that incor-
porates uncertainty in natural gas prices experienced in CAISO over
the last 10 years. The results of this comparison suggest that using
a wider distribution of electricity prices significantly impacts esti-
mates of the mean annual oversupply loss.

As shown in Table 1, under 10-year price uncertainty, the mean
annual oversupply loss increases from about $15 million to
$28 million, and the maximum oversupply loss dramatically
increases to $550 million (occurring in extremely wet years with
very high natural gas prices). However, when only evaluating
losses with the most recent 5 years of electricity price data (in
which natural gas prices have been low and relatively stable), the
mean loss was estimated at $20 million with a maximum loss of
$340 million.

Overall, this suggests that oversupply losses estimated by BPA
using the 2012 electricity price are likely to be underestimates,
even if relatively low natural gas prices persist into the future. It
is worth noting, however, that a caveat to our sensitivity analysis
with regard to price is that we are assuming hydrology and whole-
sale electricity prices to be independent of one another, when it is
known that they generally are correlated in the CAISO market.
Although developing a CAISO model is outside of the scope of this
study, full analysis of electricity dynamics between BPA and CAISO
will be conducted in a future study.

3.4. Long term present value losses

The present value (PV) of oversupply losses in the BPA system
was also assessed in order to understand these costs from a long
term system planning perspective. In particular, there was interest
in comparing these losses with the net benefits of expanding trans-
mission capacity in order export additional excess power and mit-
igate oversupply losses.

Using an ensemble of 1000 independent 25-year simulations
(2016-2040), present value losses were simulated under three dif-
ferent wind capacity growth scenarios, based on BPA projections:
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low, mid and high, representing annual growth rates of 300, 400,
and 500 MW respectively. Gradual increases in real electricity
price were also assumed as projected by EIA, as well as 0.9% annual
electricity demand growth. A 4% discount rate was assumed, with
all the results presented in 2012 dollars.

In general, the faster wind capacity is added, the greater the PV
loss from oversupply events. Results suggest that the low-wind
scenario brings about PV losses of between $273 million to
$883 million over a 25-year period, with a mean of $529 million.
The mid- and high-wind growth scenarios resulted in similar
shaped distributions for PV losses (Fig. 7) with minimum PV losses
of $368 million and $498 million, maximum losses of $1.06 billion
and $1.25 billion, respectively. The expected 25-year NPV losses for
the mid and high wind growth scenarios are $681 million and
$819 million respectively.

3.5. Assessment of transmission expansion as a mitigation strategy

One potential solution for mitigating the impacts of oversupply
events is building additional transmission capacity to export
excess electricity, in this case to California. This is an option that
has been exploited with great success in other systems experienc-
ing oversupply issues, with Texas being the prime example (i.e.
ERCOT) [6]. Adding new transmission capacity has also been con-
sidered seriously in the BPA system [23].

The impacts of adding transmission capacity on the 25-year
present value financial losses from oversupply using mid wind
growth are shown in Fig. 8. Results suggest that building a
500 MW transmission line would reduce present value oversupply
losses by $50-60 million over 25years, whereas building a
1500 MW transmission line would reduce the present value over-
supply loss by about $100-150 million. Although these savings are
significant, the cost of building transmission lines is extremely
high. On average, building a 500 MW transmission line costs $1-
1.5 million per mile, while 1500 MW transmission lines cost $2-
3 million per mile [40].

In recent years, a 215 mile 1500 MW transmission line was pro-
posed to expand existing connections between BPA and California
in order to alleviate future oversupply issues, but this project was
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Fig. 7. Present value loss of oversupply losses under different wind growth scenarios over 25 years.
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Table 2
Summary of present value losses and the impacts of transmission expansion.

NPV losses Low wind growth (300 MW) Mid wind growth (400 MW) High wind growth (500 MW)
Minimum $273 million $368 million $498 million
Average $529 million $681 million $819 million
Maximum $883 million $1.06 billion $1.25 billion
Transmission expansion 500 MW expansion 1500 MW expansion
Present value avoided losses (mid wind growth) $50-60 million $100-150 million Build year 2016
$60-70 million $150-200 million Build year 2030

Expansion cost $200-300 million

$400-600 million

cancelled in 2015 [41]. The reason for cancellation, according to
Portland General Electric (PGE), the developer of this project, had
to do with the environmental impacts associated with the pro-
posed transmission line crossing a conservation area. Based on pre-
liminary cost estimates from the Western Electricity Coordinating
Council [40], a 215 mile 1500 MW transmission line would cost
$400-600 million. These modeling results suggest that the present
value of oversupply losses avoided with the transmission line in
place, and assuming gradually increasing 2012 electricity prices,
are well below the cost of new transmission capacity even before
considering its potential environmental impacts.

It is possible, however, that this transmission project (or one
like it) may be reconsidered by BPA in the future, and over time
its economic viability may change. The discounting nature of the
present value calculation makes larger oversupply losses that are
likely to occur out in the future as a result of growing wind capac-
ity less impactful.

Therefore, the viability of the proposed (and now cancelled)
transmission line is also assessed for future years (Table 2). Specif-
ically, starting in 2030, the present value of oversupply losses over
25 years (2031-2055) is calculated, with assumptions of continu-
ous growth of wind and steady increases in electricity price (as
projected by the EIA). Under these circumstances, the 500 MW
transmission upgrade project would reduce the 2030 PV loss by
about $70 million and the 1500 MW project would reduce present
value oversupply losses by $160-210 million. This still falls well
short of the cost of developing new transmission capacity, suggest-
ing that such a project is unlikely to be financially attractive in the
foreseeable future.

3.6. Study limitations and future work

This analysis has several of limitations. Key factors not consid-
ered are changes in snowmelt timing and streamflow dynamics
that are projected to occur as a result of climate change. The distri-
bution of total annual precipitation may shift, leading to higher or

lower annual total streamflow. The percentage of precipitation fall-
ing as rain vs. snow may also change, as well as the timing of snow-
melt. All of this would impact the timing and amount of water
spilled during high flow events, and the frequency and severity
of oversupply [42].

It is also worth mentioning that this work does not include con-
sideration of the dynamic nature of electricity pricing in the CAISO
market. This study demonstrates that the wholesale electricity
price can have a major impact on both expected and maximum
oversupply losses. However, it's important to recognize that over-
supply periods alter the wholesale electricity price. Likewise, rules
in CAISO for dealing with periods of oversupply are subject to
change. Currently, the market allows prices to fall below zero to
encourage generators who can ramp down production to do so.
However, the current minimum price (—$20/MW h) does not
impose a sufficient financial penalty on wind producers, as the
combination of tax credits (REC and PTC) pays more than $20/
MW h. In recent years, CAISO has considered lowering the negative
floor to —$1000/MW h [23], a change that could impose signifi-
cantly greater financial penalties on BPA and its customers when
oversupply occurs.

4. Conclusions

As variable renewable energy capacity grows, the potential for
oversupply events and regular curtailment of these sources may
present increasing challenges. Oversupply is occurring with greater
frequency in the hydropower-dominated Pacific Northwest region
of the U.S., where wind energy curtailment is common during wet
years when hydropower is plentiful.

With respect to the BPA system in particular, results suggest
that continued growth of wind power capacity could lead to higher
oversupply-related financial losses in the future. However, these
results are sensitive to assumptions about the wholesale electricity
price. Results also suggest that, while additional transmission
capacity could mitigate a significant portion of oversupply-
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related losses in the BPA system, these avoided losses are unlikely
to justify the substantial cost of developing this infrastructure.
Consequently, curtailment of wind power during oversupply con-
ditions appears to be a more cost effective solution than new trans-
mission capacity, at least for the foreseeable future.

Given expectations of continued growth in renewable energy
capacity, renewable curtailment is expected to happen more often
while imposing ever larger financial losses. Despite the associated
energy waste and financial losses, these results suggest that cur-
tailment can be considered a practical short- to medium-term
solution to manage electrical grid stability in the face of oversupply
in settings such as BPA. However, this study does not consider
other economic benefits of building transmission infrastructure,
such as the potential for reduced carbon emissions and reduced
fuel costs in thermal dominated systems. In many thermal domi-
nated regions in the U.S., systems are actively building addition
transmission lines to help incorporate greater renewable integra-
tion partially because of these additional economic values.

This study demonstrates that a hydro-economic systems model
can be used to characterize the physical (spilling, wind curtail-
ment) and financial consequences of oversupply events. It also
demonstrates the utility of our modeling framework in providing
long term system planning insights under uncertainty, particularly
with respect to installed wind capacity and electricity prices. From
a general perspective, this modeling approach can provide a foun-
dation for developing strategies that mitigate a renewable genera-
tor’s financial risk or be used by planners to make more informed
decisions on future infrastructure investments, such as expanded
transmission capacity. The methodology and analysis presented
in this work can also be used to gain insights on a host of other crit-
ical issues, particularly if it is expanded to capture complex and
convoluted interactions with neighboring systems.
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