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Abstract. Numerical simulations present challenges because they gen-
erate petabyte-scale data that must be extracted and reduced during the
simulation. We demonstrate a seamless integration of feature extraction
for a simulation of turbulent fluid dynamics. The simulation produces on
the order of 6 terabytes per timestep. In order to analyze and store this
data, we extract velocity data from a dilated volume of the strong vorti-
cal regions and also store a lossy compressed representation of the data.
Both reduce data by one or more orders of magnitude. We extract data
from user checkpoints in transit while they reside on temporary burst
buffer SSD stores. In this way, analysis and compression algorithms are
designed to meet specific time constraints so they do not interfere with
simulation computations. Our results demonstrate that we can perform
feature extraction on a world-class direct numerical simulation of turbu-
lence while it is running and gather meaningful scientific data for archival
and post analysis.

1 Introduction

Supercomputing trends toward exascale motivate our research, specifically the
increasing performance gap between processing and I/O. At exascale, simula-
tions will output fewer than one byte for every 105 bytes of system state; they
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will produce 200-300 PB/s in memory [1] and only 1 TB/s [2] will be saved to
persistent storage. Next generation architectures must define meaningful ways
to output data that preserve scientific discovery on reduced data representa-
tions. The Trinity supercomputer at Los Alamos has deployed a burst buffer
architecture [3] to fill the performance gap between cluster memory and disk
filesystems. Burst buffers place the SSD storage on the fast network to catch
I/O bursts that would overwhelm the filesystem. Data on burst buffers are short
lived; they must be discarded or stored to file system in (tens of) minutes. Our
experiments run on a research cluster with nodes designed to mimic the perfor-
mance of Trinity’s burst buffers and reduce data by orders of magnitude while
preserving usable data for visualization and extreme event analysis [4]. Our ex-
periences using the Johns Hopkins Turbulence Databases [5] (JHTDB) inform
the choice of data products that we extract from burst buffers. Specifically, we
create compressed lower precision representations of the full field velocity data
and extract high-resolution velocity data from regions of relatively high vorticity.
JHTDB contains multiple datasets from direct numerical simulations that range
from tens to 150 terabytes. In particular, the isotropic turbulence dataset con-
tains 5028 timesteps of velocity with three components of floating point values
and one component of floating point pressure values on a 10243 spatially dense
regular grid. This dataset provides scientists all over the world an opportunity
to discover many aspects of turbulence without the need to run their own large
simulation. A number of discoveries from the JHTDB have come from the com-
bination of visualization and analysis of high vorticity regions. These include a
vorticity hierarchy that is not evident on smaller scale simulations [6] and that
magnetic flux freezing in high-conductivity plasmas fails in the presence of MHD
turbulence, explaining why solar flares can erupt in minutes or hours rather than
the millions of years predicted by flux freezing [7].

Going forward, the lack of I/O bandwidth to long term storage will slow
down the simulation. Transferring output every few timesteps from a larger
simulation (81923) would slow down the simulation by an order of magnitude;
JHTDB’s isotropic database stores every tenth timestep because the integration
time-step for stably solving the system is smaller than that needed for analyses.
Each timestep serves as a checkpoint which is utilized if a restart is required due
to simulation failure. The I/O needed to checkpoint simulations to file systems
has become the performance limiting workload in scalable HPC [8] and exposure
to failure governs checkpoint frequency; they are taken much less frequently than
needed for time-resolved analysis of the simulated processes of turbulence.

We develop methods that capture and extract relevant scientific data of a
direct numerical simulation as it runs. We propose a model in which checkpoints
are written to burst buffers at the frequency needed for analysis and then we
extract a subset of the data and reduced representations that can be utilized
for scientific analysis in real-time as well as post simulation. The extraction
requires little processing power and it does not disrupt the running simulation.
On Trinity [9], the burst buffers are located on additional nodes that are separate
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from compute nodes. Burst buffers in recent architectures collocate compute and
SSDs [10] and extraction codes can be run within the burst buffer nodes.

In the first part of the process, we extract a subset of velocity data in 3D
space only at points where the vorticity magnitude exceeds a defined threshold.6
Next we dilate the volumes within this 3D space by a kernel size based on
the requirements for post analysis and extract the velocity field in the dilated
regions. The dilation allows us to capture data just outside the high vorticity
regions needed for iso-surface extraction and Lagrangian interpolation in post-
processing. Many filters and derivative equations also rely on this additional
data gained from the dilation for interpolation kernels around the region, which
makes the extracted data useful for scientific analysis.

This method deliberately leaves out regions of low vorticity. Understanding
that we cannot save the entire dataset, we extract a separate dataset that con-
tains full field lower precision data by using lossy compression. We leverage the
zfp algorithm [12], which is specifically designed to compress floating point sci-
entific data in 1D, 2D, or 3D space. zfp’s lossy compression is error-bounded;
it guarantees that the values differ from the original by less than a specified
amount. zfp achieves an order of magnitude or more compression and the loss
of accuracy is indistinguishable when visualizing the data. These characteristics
lend themselves well to capturing exascale simulation data for visualization.

Combining these extraction techniques allows one to visualize the simula-
tion while it runs and create an archival database that is exact in regions of
high-vorticity and error-bounded elsewhere. The data products are an order of
magnitude or more smaller than simulation output and suitable for scientific
post analysis. Although our focus is on vorticity and velocity data from direct
numerical simulation of the single-phase incompressible Navier Stokes equations,
the velocity extraction technique generalizes to richer fluid mechanical simula-
tions that may include magnetic field, magnetic potential and density, to other
governing equations, such as Large Eddy Simulations, and to numerical simula-
tions from other domains that run on regular and irregular grids, such as climate,
material fracture, and combustion.

Our evaluation utilized 32 burst buffer nodes that contained either 4, 10, or
16 cores. For extracting velocity in high vorticity regions, we reduce an 81923 grid
by one order of magnitude in under 10 minutes (the 4 core node was not able to
meet this time constraint). For lossy compression of velocity for the entire grid,
we reduced by one order of magnitude and it took approximately 10 minutes
for a single timestep. These results inform us that having 32 burst buffer nodes
with a minimum of 10 cores each would allow us to execute either extraction task
in under ten minutes for a world-class turbulence Direct Numerical Simulation
(DNS).

6 Thresholds are easy to choose because turbulence has threshold values with physical
meaning derived from the inverse Kolmogorov scale that describes the near absence
of, medium, and high vorticity [11]
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2 Related Work

Supercomputing continues to evolve with speed increases and hardware architec-
ture changes that coincide with application development to leverage these new
architectures. Bent et al. [13] explore burst buffer configurations and demonstrate
that placing SSDs between compute nodes and the storage array allow jitter-free
co-processing of their visualization tasks and reduce total time to completion by
up to thirty percent. We utilize a similar architecture in our work. Ma et al. [14]
discuss in-situ data extraction and visualization. They modify the simulation
code to provide data useful for visualization in-situ, whereas our work performs
feature extraction in-transit via burst buffers without having to modify exist-
ing simulation codes. Ahrens et al. [15] describe and test methods of utilizing
multi-core CPU and GPU based processors in the Roadrunner supercomputer
to perform visualization of an exascale simulation in-situ. Chen et al. [16] utilize
the HemeLB lattice-Boltzmann code for large-scale fluid flow. They discuss pre-
and post-processing along with computational steering to modify simulation pa-
rameters in situ. This work differs from ours in the way the data is saved and
utilized for post-processing. They create a multi-resolution data structure by
storing their simulation output in a hierarchical order. This method allows for
visualization without reading the entire dataset. In our work, we utilize the SSD
burst buffers to read the entire timestep and perform thresholding and extrac-
tion of high-magnitude events on a per-timestep basis. Wang et al. [17] developed
a file system (BurstFS) that aggregates I/O bandwidth from burst buffers and
maintains a distributed key-value store of metadata for the files. This system
allows an application to perform small non-contiguous read operations on the
burst buffer. Because our feature extraction reads of all the data, this file system
would not benefit our work.

We build upon the concept of burst buffers [18] to integrate non-volatile
memory into the supercomputing storage hierarchy. We focus specifically on
using the SSD to capture write bursts, particularly those from checkpoint work-
loads. Other concept papers have discussed using burst buffers more generally
in the HPC memory hierarchy [19].

3 Problem Overview

Extreme scale simulations produce petabyte-scale data that must be read for
feature extraction and/or down-sampling in real time without hindering the
computation of the underlying simulation. This presents a host of challenges
due to the competition for memory resources, bandwidth, I/O, and storage. The
burst buffer architecture adds to the storage hierarchy to enable a temporary
storage area in between permanent storage and resident RAM for fast reading
and writing. Once a timestep is written, a feature extraction application must
read, process, and store the extracted data prior to the simulation overwriting the
burst buffer space with a subsequent timestep. Typically, burst buffer capacity
is chosen to be more than two times cluster memory so that the burst buffer
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will hold two to three consecutive timesteps. In addition, the data reduction and
the simulation must maintain synchrony throughout the simulation. The feature
extraction must process data prior to the simulation writing the next timestep.

The primary problem with world-class numerical simulation data is the sheer
size of the output. Our target fluid simulation has a desired output (not every
solved timestep) with dimension 81923 over 4000 timesteps and produces 4 at-
tributes: 1 component for pressure and 3 for a velocity vector with 4 byte floating
point (single precision) values resulting in total data of

81923 ∗ 4 ∗ 4 ∗ 4000 = 3.518× 1016

bytes, or approximately 31.25 petabytes of data. Although our simulation gen-
erates a pressure field, the remainder of this paper focuses only on storing the
velocity data. Each timestep contains about 6 terabytes of velocity data that
must be read, processed, and written on the order of tens of minutes. This pro-
cess must complete in time in order to maintain synchronization with the simu-
lation to ensure data extraction successfully finishes. Any delay would cause the
simulation to stall.

The data extraction itself presents a complex problem, because it takes com-
putational power to perform the extraction and it must complete in a timely
fashion. If we were to do in-situ analysis, extraction resources compete directly
with the processing required to perform the simulation. Our method leverages
burst buffers in order to perform this extraction in-transit without interfering
with the simulation.

4 Methods of Extraction

We present our two methods of extraction: velocity data in regions of high vor-
ticity and lossy compression of the full field. Extraction produces two datasets,
each an order of magnitude or more smaller than simulation output. Prior to
presenting methods, we motivate our use of Q-criterion for identifying vortices.

4.1 Calculating Highly-Vortical Regions

In turbulent flows, identification of coherent structures, specifically vortices, aids
in scientific understanding of these flows. Inside and around these high vortical
regions, energy dissipation and squared vorticity (enstrophy) are orders of mag-
nitude higher than the mean values, which we refer to as extreme events [20].
There are various methods for identifying vortices. Vortices are defined by the
velocity field that reflects the rotational qualities and there is not a single ap-
proved method to describe vortices. Dubief and Delcayre [21] examine four meth-
ods of vortex identification: pressure, vorticity magnitude, λ2, and Q-criterion.
Because pressure fails to capture fine details in isotropic turbulence [21] and
λ2 appears to be affected by small noise present in all data, we examine vi-
sualizations based on vorticity magnitude and Q-criterion. Each of these two
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methods provide good visualizations of vortical flow structure when utilized to
generate iso-surfaces. However, one particular issue with vorticity magnitude is
that the vorticity criterion does not distinguish between swirling motions and
shearing motions. Thus, vorticity magnitude can also present layered structures
that are vorticity sheets and not vortices [22]. Q-criterion is also not perfect as
it fails to reliably identify Bödewadt vorticies. However note that such vorticies
occur normal to a wall, and our isotropic turbulence dataset is periodic and
does not contain any walls [23]. We chose to compare the performance of the
vorticity magnitude and Q-criterion for generating vortical flow iso-surfaces on
an isotropic turbulence dataset.

In order to compare Q-criterion versus vorticity performance we defined a
threshold that is equivalent for each calculation. The thresholds and resulting
data can be constrained based on either scientific concerns (the loss of accu-
racy when evaluating averages of gradient norms over the entire flow volume)
or system resources that set a target data size. This adjustment allows us to
produce data that fits within available storage in the computing center, while
still gathering useful scientific data to study these high vorticity regions. In
order to determine the threshold, we begin by using a multiple of the root-
mean-square value of the vorticity fluctuations. This value is known a-priori,
based on knowledge of the dissipation rate ε and fluid viscosity ν according to
〈ω · ω〉1/2 =

√
ε/ν [24] where ω is the vorticity vector (curl of the velocity).

For the data from the JHTDB, this value is
√
.0928/.000185 = 22.4, which

is also the inverse Kolomogorov time scale τη. Since we are interested in high
vorticity regions, we scale this low reference threshold to achieve a clear visual
representation of high vorticity regions.

Fig. 1. Vorticity magnitude contour at threshold 22.4 (left) and 55.98 (right)

We tested various multiples of 1/τη and found that a multiple of 2.5 presented
clear vorticity structures without obvious erroneous surfaces. The threshold cho-
sen in this case is 2.5 ∗ 22.4 = 55.98. The visualization of vorticity magnitude
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at this threshold was a much clearer representation of vortices than using a
threshold of 22.4 as seen in Figure 1.

Upon finding a reasonable threshold, we calculated the equivalent threshold
for Q-criterion. In the absence of straining motions, the relationship between the
threshold of vorticity and Q-criterion can be taken to be as follows: Q = 1

4ω
2.

Therefore the threshold value for Q that we chose is Q = .25(55.98)2 = 783.

Fig. 2. Vorticity magnitude (left) and Q-criterion (right)

Figure 2 shows the visualization of vorticity magnitude contour versus the
Q-criterion contour. Though they look very similar, the bottom left corner of
the left image (vorticity magnitude) displays a structure that is not present in
the Q-criterion visualization. This is due to shearing, because the vorticity mag-
nitude does not differentiate between shearing and curl. In the definition of Q,
strain is subtracted from vorticity which results in a lower Q value and filters
out shearing. We performed additional tests at various thresholds and cube di-

Cube Size Vorticity Threshold Q Threshold
64 .257 .222
128 1.597 1.375
192 5.070 4.500
256 11.120 9.522

Table 1. Vorticity vs. Q Thresholding in seconds total time per cube on a single core

mensions (subsets of the full 81923 grid) to determine whether the computation
of Q-criterion or vorticity magnitude has an impact on overall feature extrac-
tion time. Table 1 compares total computation times, which includes reading
from and writing to the burst buffer. Our results show that Q-criterion com-
putes slightly faster than vorticity regardless of cube size. As a result of these
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considerations and tests, we choose to use Q-criterion for all analyses in the re-
mainder of this paper. We also note that Q-criterion is generally accepted in the
turbulence community for vortex identification.

4.2 Thresholded Vorticity Volumes

In order to capture the velocity data, we create a three-dimensional stencil that
encompasses the regions of high-vorticity. This stencil masks out low Q regions
and generates a sparse representation of velocity data within the regions. This
sparse representation is a vtkUnstructuredGrid that consists of floating point
coordinates in real space and the corresponding velocity vector at each point,
thus each point contains six corresponding floating point values. This is not an
ideal method of storage, however it works well enough in this application. Since
the representation of vorticies in isotropic turbulence appear as worms, the goal
is to capture velocities within all points within these worms, while discarding the
velocity data outside of these structures. This data is the losslessly compressed
to preserve the original values.

We begin by creating a stencil that “cuts out” high-vorticity regions from
the full data. This includes points above the Q-criterion threshold. These regions
are then dilated to include nearby points that are below the threshold. Dilating
by four cells allows us to later compute most quantities of interest, including Q-
criterion, vorticity magnitude, marching cubes for iso-surface extraction, velocity
derivatives, and 4th-order Lagrangian interpolation. In order to create the stencil
we create a bitmask dataset of the same dimensions of the original dataset and
set all values above the threshold to one and those below to zero. Next we dilate
this stencil with kernel size of four, meaning that each point that is already set
to one sets all points within four voxels to one. Then we mask the velocity field
with this zero/one data set, which extracts velocity values from the high vorticity
regions and zeros out all other regions. The resultant data set contains a subset of
velocity where each velocity vector retained contains a point coordinate to define
its spatial location. The data can be utilized to reconstruct Q-criterion and iso-
surfaces at or above the specified threshold. Figure 3 illustrates a visualization of
dilated velocity volume utilizing the Q threshold of 783. Figure 4 demonstrates
the ability to extract contours at higher thresholds from the thresholded velocity
volume shown in Figure 3.

4.3 Lossy Compression

While thresholding works well for scientists studying events specifically within
extreme vortical regions, it may be necessary to save information outside those
regions for post analysis. For example, vortex precursors may occur in initially
weak vortical regions, which then act as seeds for subsequent vortex intensifi-
cation. In addition, a researcher may need information about conditions where
velocity may be relatively high, which may not be contained in our thresholded
data due to the fact that vorticity is a measurement of curl or rotation. We
present a method for storing all of the data in a lossy compressed form for post
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Fig. 3. Visualization of a 256 cube of dilated velocity in regions above Q threshold of
783

analysis and visualization. This does not provide exact raw simulation data,
however, it provides data that is within a defined error tolerance. The error
introduced on these data will be shown to be insignificant for the purposes of
visualization, making the data desirable for post visualization analysis.

In order to store the data in a lossy form, we utilize a recent compression al-
gorithm, zfp [12], designed specifically for the compression of multi-dimensional,
floating-point scientific data. It contains various options for compression, one of
which is to specify an absolute error tolerance. Utilizing this method at an error
tolerance of 10−1 on the velocity data (the root-mean-square value of the veloc-
ity fluctuations is 0.686 while its mean is zero), we achieve an effective reduction
of one order of magnitude from the raw velocity data. We note that this reduced
dataset is intended for post analysis and visualization, and cannot be used as
checkpoint data to restart the simulation.

While zfp operates on one scalar component, it contains a striding option
that allows us to compress all three velocity vector components and store them
as separate compressed blocks of data. We extended the Visualization Toolkit
(VTK) [25] compression options to provide dimensions and component sizes to
the compressor in order for zfp to have the information required to compress the
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Fig. 4. Iso-surface extraction from dilated velocity threshold at Q thresholds 1700 (left)
and 2500 (right)

data. Utilizing the striding option, each of the three velocity vector components
(x, y, z) are compressed separately and stored as concatenated binary data. The
data sizes for each axis are stored within the VTK XML file format as metadata
in order for VTK to correctly decompress the data. During decompression, each
component is decompressed into a separate array and interleaved back to their
original representation creating a VTK float array of velocity vector values. If
pressure or another scalar field were added, this could be compressed as well,
and we would expect similar results.

5 Experimental Results

Experiments utilize the Visualization Toolkit version 7.1.0 by Kitware [25]. While
we focus our experiments on finding high-Q vortical regions, VTK provides the
flexibility of performing many other scientific computations on the simulation
data. VTK provides a rich toolset for analysis and visualization. In addition
to VTK, we utilize the zfp compression algorithm [12]. We compiled this na-
tively into VTK in order to provide 3 dimensional lossy compression on VTK
structured grid data.

We conducted all experiments on nodes in the Los Alamos National Lab
development cluster called Darwin. We began by utilizing a partition built to
emulate the performance of burst buffer nodes on Trinity which is used to test
development software, such as the hierarchical input/output library [9]. Each
node is equipped with a 6-core, 12-thread Intel Xeon E5-2630 2.30GHz processor,
128 GB of RAM, and an Intel P3700 400 GB SSD that is rated for 2.8 GB/s of
sequential throughput and up to 460K random read IOPs.

5.1 Dilated Threshold

We perform a threshold and dilation velocity cutout operation on a cluster with
SSD burst buffers that contains a single timestep of raw simulation data. We
vary the cube size into which we decompose the problem in order to find the
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cube size that maximizes throughput. Smaller cubes reduce I/O throughput and
reduce skew and memory pressure. Larger cubes increase I/O throughput, but
reduce the efficacy of caching, particularly on smaller processor caches up the
memory hierarchy. We find that a cube size of 2563 maximizes throughput for
this computation (Table 2). Above 1923, performance is stable and degrades
slightly above 2563, which we attribute to increased cache misses.

Size Read Q Comp Thresh Write Total Throughput
64 .029 .117 .0154 .0266 .222 13.51 MB/s
128 .043 .877 .064 .136 1.34 17.91 MB/s
192 .080 2.83 .206 .542 4.46 19.32 MB/s
256 .136 6.15 .399 1.08 9.522 20.17 MB/s
384 .373 20.68 2.23 5.67 34.337 18.87 MB/s
512 .788 48.76 5.31 13.17 78.86 19.47 MB/s

Table 2. Comparison of I/O and computation times in seconds when processing a
single cube

Averaged over all cubes, the extracted thresholded velocity data is reduced
by a factor of 29 times. The raw size of 2563 of velocity data is 192 MB and the
dilated extraction averages 6.7 MB. As mentioned previously, if we increase the
threshold, the extracted data size will decrease.

Based on the throughput in Table 2, we measured the resources required
to perform a dilated velocity extraction of an 81923 grid on the order of ten
minutes. Our results show that this can be done utilizing 32 nodes with 10 cores
each (320 cores) and 6 TB of SSD storage to achieve a full extraction of the data
within the time constraint.

Next, we performed read tests on the 32 heterogeneous nodes to compare the
local hard drive throughput with the SSD. Of these nodes, 15 did not contain
a spinning hard drive therefore there are no hard disk throughput results for
those nodes. This test demonstrates the performance gains of the burst buffer
by comparing it to the node’s local hard disk. The burst buffer was between 5
to 20 times faster depending on the node as shown in Figure 5.

5.2 Lossy Compression with zfp

The compression algorithm zfp provides an order of magnitude reduction by
compressing scientific floating point data where the values spatially near each
other have low variance. Although it provides many features like in-memory com-
pression, we specifically use it for compressing data for storage with a predefined
lossy tolerance of 10−1. At this tolerance we achieve an order of magnitude of
compression with visually lossless reconstruction, which is far superior to the de-
fault ZLib library utilized in VTK. We also note that while the error threshold
is set at 10−1 our reconstructed data maximum error was .017. Table 3 shows
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Fig. 5. Burst buffer throughput compared to hard disk throughput

the resulting size of compressing different sized cubes of isotropic turbulence
data, along with the amount of time required to compress the cube. Visually the
results of the lossy compression are indistinguishable from the original data as
show in Figure 6.

Cube Size Raw Size zfp Size Total time (s) Reduction Throughput
128 25 MB 2.3 MB .334 x10.9 74.85 MB/s
192 81 MB 8.1 MB 1.05 x10 77.14 MB/s
256 192 MB 18 MB 2.09 x10.7 91.87 MB/s

Table 3. zfp Compression by cube and time

zfp provides the ability to store the entire dataset in a lossy compressed mode.
Each cube is saved as a VTK Image Data file which uses a few lines of XML
for metadata about the object (for example, dimensions and array names), and
a VTK float array that is compressed using zfp and saved as binary appended
data to the XML file. Figure 6 shows a surface representation of a 256 cube
of velocity data. The left figure is the raw velocity magnitude, while the right
figure was compressed by zfp and then decompressed for visual representation.
The two cubes are indistinguishable in this figure and also when viewing at
all zoom levels. Visual equivalence holds when deriving fields of interest from
compressed velocity data, including Q-criterion and vorticity magnitude.

5.3 Compressing Dilated Threshold with zfp

We also evaluate using zfp as a compressor for threshold reduced data as com-
pared with VTK’s default zlib and we conclude that zlib is preferable; it is loss-
less and provides comparable compression. The data output from a threshold is
sparse and best represented by an irregular grid.



Extreme Event Analysis in Next Generation Simulation Architectures 13

Fig. 6. Isosurface of a 256 cube of isotropic turbulence velocity data. Left: Raw velocity.
Right: zfp Compressed at 10−1 tolerance.

While zfp does not work on an unstructured grid, version 0.5 added the
capability of reducing storage of a block of 43 values to one bit if all values within
a block are below the error tolerance, since then the block can be approximated
as all zeros. To test zfp on sparse data, we performed another experiment to
determine if zfp can be used instead of ZLib for our dilated threshold extraction.
In this test, we compress a 2563 block of dilated thresholded data. The data is
stored on a structured grid with zero values where the threshold was not met.
Utilizing ZLib compression, the result is 6.7 MB, and using zfp it was reduced
to 5.8 MB. This compression was performed using a loss threshold of 1× 10−1.
Using a decreased threshold of 1 × 10−2 resulted in a file size of 8.1 MB. Since
the lossy compression did not create a significant reduction in data size, we
recommend using a lossless compressor for dilated velocity extraction.

5.4 Multiprocessing Simulation Outputs

We move from microbenchmarks on individual cubes, to the parallel extraction
of an entire simulation timestep across many nodes in order to demonstrate that
extraction can meet the time constraints of data lifetimes in burst buffers. Our
target is to scale these results to the Trinity supercomputer. However, we have
to use the development cluster as a proxy. We start by examining the amount of
parallelism appropriate for a single burst buffer node. Our treatment examines
the amount of parallelism per node to maximize throughput. We initially utilized
a node for testing that contained 6 cores and an SSD burst buffer. The results
of executing velocity extraction in parallel are shown in Table 4.

The first test labled “Single” in the table displays the times for a single
threaded extraction running on a single core. This test was performed in order
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to benchmark throughput on a single core. Next we performed the extraction in
parallel across six cores. While the overall throughput is the combined speed of
all six cores (approximately 93MB/s), the individual throughput per core is less
than when the extraction is performed on a single thread. Since I/O is shared
on the burst buffer and memory, each core must compete for disk and memory
I/O. The data shows that the resultant per core slowdown is about 25% for disk
I/O and 20% for Q-Criterion computation. These results informs us that adding
more cores to an extraction node will not linearly improve extraction throughput
due to memory I/O contention.

Core Read Q Comp Write Total Speed
Single .136 6.55 1.08 9.522 20.17 MB/s
Core 0 .179 8.28 1.81 12.34 15.56 MB/s
Core 1 .179 8.29 1.82 12.37 15.52 MB/s
Core 2 .181 8.37 1.77 12.38 15.51 MB/s
Core 3 .180 8.35 1.79 12.40 15.48 MB/s
Core 4 .183 8.37 1.79 12.41 15.47 MB/s
Core 5 .179 8.15 1.79 12.42 15.46 MB/s
Multi .180 8.30 1.80 12.39 93 MB/s (total)

Table 4. 256 Cube: Single vs. Multiprocessing I/O by core and averaged (in seconds).
Multi throughput is the sum of throughput for all cores.

In the next step of testing, we utilized 32 burst buffer nodes to perform
the computation in parallel on the number of cubes required to build an entire
81923 timestep. We performed dilated velocity extraction and zfp compression
on 32,768 blocks of 2563 raw velocity data (1024 blocks per node). Figure 7
shows the results of the total extraction time by node and extraction type. Since
the Darwin cluster is heterogeneous, the number of cores per node are specified.
As evidenced by nodes 27 through 32, four cores were not enough to complete
either extraction in under ten minutes. However, nodes 1 through 26 were able
to complete each extraction in less than ten minutes.

For in-transit analysis and visualization, the extracted data could be read in
place by a viewer such as Paraview to monitor the simulation during the run, and
burst buffers provide fast reads in this process. For extracted data that needs
to be saved for long term storage, a secondary process copies the results to a
shared storage. The extracted data is significantly reduced in size, which also
reduces the I/O burden when writing to shared storage. Due to the reduction,
the write would not interfere with the simulation.

6 Recommendations for Exascale Simulations

Prior to performing an exascale simulation with the intent to store significant
data, it is important to determine what data must be extracted to perform the
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Fig. 7. Times per node for extraction and compression

post scientific analysis. Thus far, we have proposed a method to gather velocity
data that contain high vorticity in a scientific dataset, while still capturing a
broad view of the overall simulation utilizing a modern lossy data compression
algorithm. These two methods combined present a state-of-the-art way to ex-
tract useful data from a world class computational fluid dynamics simulation.
The lossy compression method with zfp can be used on virtually any scientific
dataset that is on a dense structured grid. The compression works optimally on
3D data, but also can work on 2D and 1D floating point datasets. Our extraction
techniques present a way forward on how to handle petabyte or even exabyte
scale information. The essential part of these exascale simulations is to have a
method to extract relevant data utilizing the architecture of modern supercom-
puters. Having a plan and understanding the data necessary to make scientific
discoveries in the future is the key to gathering useful data from an exascale
simulation.

7 Conclusion

We have demonstrated the ability to extract scientific data from a world class
simulation using burst buffer SSD technology. We demonstrated a two-pronged
approach that captures velocity in highly vortical regions along with a lossy
compressed representation of the entire velocity dataset for concise storage and
future scientific analysis. We demonstrated that we can reduce data by at least
an order of magnitude for full field lossy compressed form, and nearly 30x reduc-
tion for dilated velocity in high vorticity regions by utilizing the burst-buffer to
read raw data and writing extracted and/or compressed data to shared storage.
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The extracted data can be utilized for various scientific applications from visual-
ization to tracking highly vortical regions. The lossy compression can be utilized
on any dense grid dataset, therefore this method is not limited to turbulence
data.

8 Future Work

Since we have outlined and demonstrated the ability to create a meaningful
dataset of an exascale simulation, we intend to gather data from an exascale
simulation and ingest it into the Johns Hopkins Turbulence Databases a pub-
licly accessible database, providing world-wide access to this compressed and
high-Q velocity region dataset. The two-pronged approach will provide scientists
the ability to query and perform analysis across the entire exascale simulation
result. In addition, we will explore more efficient representations of sparse data.
The vtkUnstructuredGrid primitive we utilized stores real space coordinates
that result in each velocity vector containing three additional floating point co-
ordinates. A custom representation method that more efficiently represents the
points would allow us to even further reduce the space required for this data.
In this work we defined a threshold for the simulation, however this may not be
optimal in detecting all vortex structures. Our methodology could be expanded
to utilize an adaptive threshold for feature extraction as explained in [26]. As
scientific needs emerge and new practices for detecting high-vorticity regions are
introduced, they could be implemented using our approach to feature extraction.
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