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Abstract The problem of modeling the dynamic struc-
ture of human activities is considered. Video is mapped
to a semantic feature space, which encodes activity at-
tribute probabilities over time. The binary dynamic
system (BDS) model is proposed to jointly learn the
distribution and dynamics of activities in this space.
This is a non-linear dynamic system that combines bi-
nary observation variables and a hidden Gauss-Markov
state process, extending both binary principal compo-
nent analysis (PCA) and the classical linear dynamic
systems (LDS). A BDS learning algorithm, inspired by
the popular dynamic texture, and a dissimilarity mea-
sure between BDSs, which generalizes the Binet-Cauchy
kernel, are introduced. To enable the recognition of
highly non-stationary activities, the BDS is embedded
in a bag of words. An algorithm is introduced for learn-
ing a BDS codebook, enabling the use of the BDS as a
visual word for attribute dynamics (WAD). Short-term
video segments are then quantized with a WAD code-
book, allowing the representation of video as a bag-
of-words for attribute dynamics (BoWAD). Video se-
quences are finally encoded as vectors of locally aggre-
gated descriptors (VLAD), which summarize the first-
moments of video snippets on the BDS manifold. Ex-
periments show that this representation achieves state-
of-the-art performance on the tasks of complex activity
recognition and event identification.
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1 Introduction

Understanding human behavior is an important goal
for computer vision (Aggarwal and Ryoo, 2011). While
early solutions mostly addressed the recognition of sim-
ple behavior in controlled environments (Bregler, 1997;
Bobick and Davis, 2001; Schuldt et al, 2004; Gorelick
et al, 2007), recent interest has been in more challeng-
ing and realistic tasks (Laptev et al, 2008; Rodriguez
et al, 2008; Niebles et al, 2010; Kuehne et al, 2011).
In the literature, these tasks are commonly referred
to as “action” or “activity” recognition. In this work,
we adopt the term “action” to denote movements at
the lowest level of the semantic hierarchy, e.g., “run,”
“jump,” or “kick a ball”. The term “activity” is re-
served for behavior of higher level semantics, which can
usually be described as a sequence of actions. For exam-
ple, the Olympic activity “clean and jerk” involves the
actions of “grasping a barbell,” “raising weights over
the athlete’s head,” and “dropping the bar”. Activi-
ties can also be performed by multiple subjects (i.e.,
be “collective”), or composed of “events” rather than
actions (e.g., “wedding ceremony” composed of events
such as “walking the bride,” “exchange of vows,” “open-
ing dance,” etc).

Several of the prior works in action and activity
recognition have proposed variants of the bag of visual
words (BoVW), which represents video as a collection of
orderless spatiotemporal features and serves as the low-
level foundation for many other action analysis frame-
works. This family of representations have been shown
to consistently achieve state-of-the-art performance for
tasks such as action recognition and retrieval (Wang
et al, 2009; Tamrakar et al, 2012; Wang and Schmid,
2013; Peng et al, 2014; Ni et al, 2015; Lan et al, 2015).
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Fig. 1: The actions “move hand into box” (into), “grab
object” (grab), “move hand out of box” (out), and
“drop object” (drop) are consisting with the activities
of “packing a box” and “picking objects from a box”. In
the absence of temporal modeling of event semantics,
these activities can be quite difficult to distinguish.

Picking

Nevertheless, the BoVW has at least two important
limitations. First, it does not account for the fact that
most activities are best abstracted as sequences of ac-
tions or events. This is illustrated by the activity “pack-
ing a box” of Figure 1, which most humans would char-
acterize as a sequence of the actions “move hand out of
box - grab object - move hand into box - drop object.”
In the absence of an explicit representation of these se-
mantics, it is up to the classifier to learn the importance
of concepts such as moving hands, grabbing or dropping
objects for the characterization of this activity. While
these concepts are not impossible to learn from the evo-
lution of low-level features, this is easier when the clas-
sifier is given explicit supervision about the semantics of
interest. In result, semantic video modeling has recently
began to receive substantial attention. For example, the
TRECVID multimedia event detection and recounting
contest (Over et al, 2011), one of the major large-scale
video analysis research efforts, explicitly states the goal
of not only predicting the event category (“detection”)
of a video sequence, but also identifying its semantically
meaningful and relevant pieces (“recounting”).

Second, the BoVW captures little information about
the temporal structure of video. This limits its expres-
siveness, since a single set of actions (or events) can
give rise to multiple activities, depending on the order
with which the actions are performed. This is again il-
lustrated in Figure 1, where the activity of “picking ob-
jects from a box” differs from the activity of “packing a
box” only in terms of the order of the actions described
above, which is now “move hand into box - grab object
- move hand out of box - drop object”. Hence, sophis-
ticated modeling of temporal structure can be critical
for parsing complex activities. This is beyond the reach
of the BoVW.

Recently, there have been various attempts to ad-
dress the two limitations of the BoVW. On one hand,

several authors have proposed richer models of the tem-
poral structure, also known as dynamics, of human ac-
tivity (Niebles et al, 2010; Laxton et al, 2007; Chaudhry
et al, 2009; Gaidon et al, 2011). However, because mod-
eling activity dynamics can be a complex proposition,
it is not uncommon for these models to require features
specific to certain data sets or activity classes (Laxton
et al, 2007; Chaudhry et al, 2009), or non-trivial forms
of pre-processing, such as tracking (Li et al, 2011), per-
class manual annotation (Gaidon et al, 2011), etc. On
the other hand, inspired by recent developments in im-
age classification (Lampert et al, 2009; Rasiwasia and
Vasconcelos, 2012), there has been a move towards the
representation of action in terms of intermediate-level
semantic concepts, such as attributes (Liu et al, 2011;
Fathi and Mori, 2008). This introduces a layer of ab-
straction that improves generalization, enables model-
ing of contextual relationships (Rasiwasia and Vascon-
celos, 2009), and simplifies knowledge transfer across
activity classes (Liu et al, 2011). However, these models
continue to disregard the temporal structure of video.

In this work, we propose an activity representation
that combines all these properties, by modeling the dy-
namics of human activities in the space of attributes.
The idea is to define each activity as a sequence of se-
mantic events, e.g., defining “packing a box” as the
sequence of the action attributes “remove (hand from
box)”, “grab (object)”, “insert (hand in box)”, and
“drop (object)”. This semantic-level representation is
more robust to confounding factors, such as diversity
of grabbing styles, hand motion speeds, or camera mo-
tion, than dynamic representations based on low-level
features. It is also more discriminant than semantic
representations that ignore dynamics, i.e., that simply
record the occurrence (or frequency) of the action at-
tributes “remove”, “grab”, “insert”, and “drop”. We al-
ready saw that, in the absence of information about the
sequence in which these attributes occur, the “packing
a box” activity cannot be distinguished from the “pick-
ing from a box” activity.

To implement this idea, we present novel solutions
to the two major technical challenges of using attribute
dynamics for activity recognition. The first is the mod-
eling of attribute dynamics itself. As usual in semantics-
based recognition (Liu et al, 2011), video is represented
in a semantic feature space, where each feature encodes
the probability of occurrence of an action attribute at
each time step. We introduce a generative model, the
binary dynamic system (BDS), to learn both the distri-
bution and dynamics of different activities in this space.
The BDS is a non-linear dynamic system that combines
binary observations with a hidden Gauss-Markov state
process. It can be interpreted as either 1) a general-
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ization of binary principal component analysis (binary
PCA) (Schein et al, 2003), which accounts for data dy-
namics; or 2) an extension of the classical linear dy-
namic system (LDS) to a binary observation space.

The second is to account for non-stationary video
dynamics. For this, we embed the BDS in the BoVW
representation, modeling video sequences as orderless
combinations of short-term video segments of charac-
teristic semantic dynamics. More precisely, videos are
modeled as sequences of short-term segments sampled
from a family of BDSs. This representation, the bag
of words for attribute dynamics (BoWAD), is applica-
ble to more complex activities, e.g., “moving objects
across two boxes” which combines the event sequences
of “picking objects from a box” and “packing a box,”
with potentially other events (e.g., “inspecting object”)
in between. The BoWAD is shown to cope with the se-
mantic noise, content irregularities, and intra-class vari-
ation that prevail in video of complex activities.

Various tools are introduced to perform learning
and inference with both the BDS and the BoWAD.
We start with an efficient procedure for learning BDS
parameters, inspired by the popular dynamic texture
of (Doretto et al, 2003), combining binary PCA and a
least squares problem. We then derive a dissimilarity
measure between BDSs, which generalizes the Binet-
Cauchy kernel from the LDS literature (Vishwanathan
et al, 2006) and is used to find the nearest-neighbors
of a BDS. Finally, a novel clustering algorithm, explic-
itly designed to cluster attribute sequences in the BDS
domain, is proposed to learn the BDS codebook at the
core of the BOWAD representation.

These learning tools are complemented by a discrim-
inating feature representation for activity classification,
inspired by the recent success of Fisher vectors in image
classification (Perronnin et al, 2010; Krapac et al, 2011;
Cinbis et al, 2012; Simonyan et al, 2013). While the
BoWAD encodes zeroth moments of the cluster assign-
ments of a video sequence to a BDS codebook, Fisher
vectors complement these with first and second (cen-
tral) moments statistics. This improves discrimination
but has higher complexity. The vector of locally aggre-
gated descriptors (VLAD) of (Jegou et al, 2012), based
only on first moments, has most of the advantages of the
Fisher vector but substantially less computation. We
extend the VLAD to the BoWAD by introducing the
vector of locally aggregated descriptors for attribute dy-
namics (VLADAD). This turns out to be computation-
ally intractable, but can be approximated with resort
to variational inference techniques (Jordan et al, 1999).
We derive an implementation of the VLADAD based on
the aggregation of the derivatives of a variational lower-
bound of the log-likelihood over attribute sequences.

Experimentally, the combination of the VLADAD with
a linear classifier outperforms recent approaches to ac-
tivity recognition based on dynamics and attributes.

Preliminary versions of this work were presented
in (Li and Vasconcelos, 2012; Li et al, 2013b). A prelim-
inary discussion of the BDS was presented in (Li and
Vasconcelos, 2012) and a preliminary discussion of the
BoWAD in (Li et al, 2013b). In addition to a unified
development of these representations, the current pa-
per introduces a number of extensions. These include
1) a novel interpretation of the VLAD as an encod-
ing scheme in the model manifold, which enables its
application to dynamic systems; 2) a new variational
framework for BDS inference, which addresses the in-
tractability of exact inference with this model; 3) the
use of this framework to derive the VLAD descriptor
associated with the BDS model; 4) a recounting proce-
dure for the identification of video segments informative
of target activities; and 5) an extensive empirical study
of the performance of the VLADAD descriptor, involv-
ing new baselines, larger benchmarks, updated state of
the art results, and a more in-depth analysis.

2 Related Work

Many approaches to action recognition have been pro-
posed in the last decades (Aggarwal and Ryoo, 2011;
Vrigkas et al, 2015). Early methods aimed to detect
a small number of short-term atomic movements in
distractor-free environments. These methods relied ex-
tensively on operations such as tracking (Niyogi and
Adelson, 1994; Campbell and Bobick, 1995; Moore et al,
1999), or filtering (Bregler, 1997; Pinhanez and Bobick,
1998; Yacoob and Black, 1998; Chomat and Crowley,
1999), that do not generalize well to more complex en-
vironments.

Over the last decade, there has been an increased fo-
cus on effective and scalable automatic analysis of video
involving complicated motion, distractor-ridden scenes,
complex backgrounds, unconstrained camera motion,
etc. Various representations have been proposed to ad-
dress these challenges, including BoVW (Schuldt et al,
2004; Laptev, 2005), spatio-temporal pyramid match-
ing (Laptev et al, 2008; Lan et al, 2014), decompos-
able segments (Niebles et al, 2010; Gaidon et al, 2013),
trajectories (Matikainen et al, 2010; Jiang et al, 2012;
Wang et al, 2013; Wang and Schmid, 2013), attributes (Liu
et al, 2011), fusion with depth-maps (Yu et al, 2015),
holistic volume encoding (Gorelick et al, 2007; Rodriguez
et al, 2008; Shao et al, 2014), neural networks (Ji et al,
2013; Simonyan and Zisserman, 2014; Ng et al, 2015;
Wang et al, 2015), and so forth. In this context, the
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BoVW and its variants have consistently achieved state-
of-the-art performance for tasks like action recognition
and retrieval, specially when combined with informative
descriptors (Laptev, 2005; Wang et al, 2009; Kovashka
and Grauman, 2010; Wang and Schmid, 2013) and ad-
vanced encoding schemes (Laptev et al, 2008; Tamrakar
et al, 2012; Peng et al, 2016; Shao et al, 2015). In fact,
even sophisticated deep learning models, which capture
hierarchical structure and have obliterated the perfor-
mance of the state of the art in areas such as image
and speech analysis (Deng and Yu, 2014; Russakovsky
et al, 2015; Szegedy et al, 2015), have failed to match
the most recent BoVW schemes based on hand-crafted
features (Peng et al, 2016, 2014; Ni et al, 2015; Lan
et al, 2015), in the context of action recognition from
video (Simonyan and Zisserman, 2014; Ng et al, 2015;
Wang et al, 2015). !

The main justification for the robustness of the BoVW,

i.e., that it reduces video to an orderless collection of
spatiotemporal descriptors, also limits the applicability
of this representation to fine-grained activity discrim-
ination, where it is important to account for precise
temporal structure. A number of approaches have been
proposed to characterize this structure. One possibil-
ity is to represent activities in terms of limb or torso
motion, spatiotemporal shape models, or motion tem-
plates (Gorelick et al, 2007; Ikizler and Forsyth, 2008).
Since they require detection, segmentation, tracking, or
3D structure recovery of body parts, these representa-
tions can be fragile.

A more robust alternative is to model the tempo-
ral structure of the BoOVW. This can be achieved with
generalizations of popular still image recognition meth-
ods. For example, Laptev et al (2008) extend pyramid
matching to video, using a 3D binning scheme that
roughly characterizes the spatio-temporal structure of
video. Niebles et al (2010) employ a latent support vec-
tor machine (SVM) that augments the BoVW with
temporal context, which they show to be critical for
understanding realistic motion. These approaches have
relatively coarse modeling of dynamics. More elaborate
models are usually based on generative representations.
For example, Laxton et al (2007) model a combina~

L There is an ongoing debate on how deep architectures
can capture long-term low-level motion information. While
early models failed to achieve competitive performance (Ji
et al, 2013; Karpathy et al, 2014), recent works (Simonyan
and Zisserman, 2014; Ng et al, 2015; Wang et al, 2015) show
promising results, albeit still inferior to those of the best
hand-crafted features (Peng et al, 2014; Ni et al, 2015; Lan
et al, 2015; Peng et al, 2016). It is worth noting that this is-
sue is orthogonal to the contributions of this work, since the
proposed method is built on a space of attribute responses
which could be computed with a convolutional neural net-
work (CNN).

tion of object contexts and motion sequences with a
dynamic Bayesian network, while Gaidon et al (2011)
reduce each activity to three atomic actions and model
their temporal distributions. These methods rely on
activity-class specific features and require detailed man-
ual supervision. Alternatively, several researchers have
proposed to model BoVW dynamics with LDSs. For
example, Kellokumpu et al (2008) combine dynamic
textures (Doretto et al, 2003) and local binary pat-
terns, Li et al (2011) perform a discriminant canonical
correlation analysis on the space of activity dynamics,
and Chaudhry et al (2009) map frame-wise motion his-
tograms to a reproducing kernel Hilbert space, where
they learn a kernel dynamic system (KDS).

Due to their success in areas like handwriting (Graves
and Schmidhuber, 2009) and speech recognition (Graves
et al, 2013), recurrent neural networks (RNN) have re-
cently started to receive substantial attention for activ-
ity recognition. In this context, they are usually learned
from features extracted with a low-level visual repre-
sentation (BoVW, CNN; etc). For example, Baccouche
et al (2010) use an RNN to learn temporal dynamics
of either hand-drafted, or CNN (Baccouche et al, 2011)
features. More recently, Donahue et al (2015) combine
a CNN and the long short-term memory (LSTM) model
of (Hochreiter and Schmidhuber, 1997) to optimize both
the low-level visual activation and dynamic components
of an action recognition system. Alternatively, Ng et al
(2015) study temporal aggregation strategies for video
classification by either pooling over time or using LSTMs
over frame-wise CNN activations. So far, RNN-based
methods for action recognition have failed to outper-
form even approaches without temporal order model-
ing e.g., the convolutional pooling of (Ng et al, 2015)
or the two stream method of (Simonyan and Zisserman,
2014). A major obstacle to these approaches is tem-
poral scalability. Since the temporal depth of a RNN
is linear in the number of input frames, most meth-
ods operate on a small number of video frames, e.g.,
9 frames in (Baccouche et al, 2010), a few seconds in
(Baccouche et al, 2011), 16 and 30 frames for (Don-
ahue et al, 2015) and (Ng et al, 2015), respectively. This
limits discrimination for complex, longer-term, activi-
ties. Finally, current RNNs model the entire content of
a video sequence. This is problematic when the video
contains sub-regions that do not depict the specific ac-
tivity of interest, a common occurrence for open-source
videos of complex activities.

Recent research in image recognition has shown that
various limitations of the BoVW are overcome by repre-
sentations of higher semantic level (Rasiwasia and Vas-
concelos, 2012). The features that underly these repre-
sentations are confidence scores for the appearance of
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Fig. 2: Left: key frames of activities “hurdle race” (top) and “long jump” (bottom); Right: attribute transition
probabilities of the two activities (“hurdle race” / “long jump”) for attributes “run”, “jump”, and “land”.

pre-defined visual concepts in images. These can be ob-
ject attributes (Lampert et al, 2009), object classes (Rasi-
wasia and Vasconcelos, 2008; Quattoni et al, 2007; Jain
et al, 2015), contextual classes (Rasiwasia and Vascon-
celos, 2009), or generic visual concepts (Rasiwasi et al,
2007). Lately, semantic attributes have been used for
action recognition (Liu et al, 2011; Jhuang et al, 2013),
demonstrating the benefits of mid-level semantic repre-
sentations for the analysis of complex human activities.
However, all these representations ignore the temporal
structure of video, representing actions as orderless fea-
ture collections and reducing an entire video sequence
to an attribute vector. For this reason, we denote them
holistic attribute representations.

The evolution of semantic concepts has not been
thoroughly exploited as a clue for activity understand-
ing, although there have been a few efforts in this direc-
tion since our early work of (Li and Vasconcelos, 2012).
For example, hidden Markov models (HMM) have been
employed to capture the temporal structure of the pro-
jection of a video sequence into a space of clusters of
visual features (Tang et al, 2012) or a space of su-
pervised attribute detectors (Sun and Nevatia, 2013).
Bhattacharya et al (2014) have instead proposed to
represent complex activities by the spectrum (or some
other harmonic signature) of a model of attribute dy-
namics derived from the control literature. Finally, Sun
and Nevatia (2014) extract discriminative segments from
the video and characterize them by temporal transitions
of attribute scores.

3 Activity Representation via Attribute
Dynamics

In this section, we discuss the representation of activi-
ties with attribute dynamics.

3.1 Action Attributes

Attribute representations are members of the class of
semantic representations (Rasiwasi et al, 2007; Liu et al,
2011) for image and video. These are representations
defined on feature spaces with explicit semantics, i.e.,
where features are visual concepts, scene classes, etc.
Images or video are mapped into these spaces by clas-
sifiers trained to detect the semantics of interest. For
attribute representations, these are binary detectors of
video attributes {c;}£_, that map a video v € X into
a binary vector

y:[yly"'ayK}Te{Oal}K7 (1)

indicating the presence/absence of each attribute in
v. Classifier output y is a Bernoulli random variable,
whose probability parameter 7 (v) is a confidence score
for the presence of attribute ¢j in v. This is usually an
estimate of the posterior probability of attribute c given
video v, i.e., m(v) = p(c|v). The semantic space S is
the space of such scores, defined by

7 X = S=[0,1]%, w(v) = (m(v), -, 7k (V)T. (2)

The benefits of attribute representations for recogni-
tion, namely a higher level of abstraction (which enables
better generalization than appearance-based represen-
tations), robustness to classification errors, and ability
to account for contextual relationships between con-
cepts, have been previously documented in (Lampert
et al, 2009; Rasiwasia and Vasconcelos, 2009; Palatucci
et al, 2009; Liu et al, 2011; Jhuang et al, 2013).

3.2 Temporal Structure in Attribute Space

Since existing attribute representations do not account
for temporal structure, they have limited applicability
to video analysis. Temporal structure cannot be cap-
tured by representations that are either holistic, such
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Fig. 3: Video sequences of complex activities, such as “wedding ceremony,” are composed by several actions, e.g.,
“walking the bride”, or “cutting cake”). These actions and/or the corresponding durations (indicated by color
boxes/bars in the figure) can differ significantly across sequences and are not always informative (e.g., “couple

traveling”) of the activity class.

as (2), or reduce video to an orderless collection of in-
stantaneous descriptors, such as histograms. We pro-
pose to overcome this problem by introducing models
of the dynamics, i.e., temporal evolution, of video at-
tributes. This relies on the mapping of each video into
a sequence of semantic vectors

IT = {m(v)} C S, 3)

where 7y (v) is the confidence score for presence, in v,
of attribute k£ at time ¢. These scores are obtained by
application of attribute detectors to a sliding video win-
dow. Fig. 2 motivates the modeling of attribute dynam-
ics, by depicting two activity categories (“long jump”
and “hurdle race”) that instantiate the same attributes
with roughly equal probabilities, but span two very dif-
ferent trajectories in S. While hurdle racing involves a
rhythmic transition between short patterns of racing,
jumping, and landing, a long jump starts with a longer
running sequence, followed by a single jump, and ends
with a landing.

It is important to distinguish short- and long-term
dynamics. The characterization of short-term dynamics
can substantially enhance the expressiveness of a video
model. For example, decomposing the activity “long-
jump” into the short term events “run-run”, “run-jump”
and “jump-land”, is sufficient to discriminate it from
the activity “triple-jump”, which is composed of short-

term events “run-jump”, “jump-jump” and “jump-land”.

The presence (or absence) of the “jump-jump” seg-
ment is the essential difference between the two activ-
ities, which are otherwise very similar. In this work,
we capture these short-term dynamics with a dynamic
Bayesian network, the binary dynamic system (BDS),

which extends classical linear dynamical systems (Roweis
and Ghahramani, 1999) to semantic observations.

Long-term temporal structure, on the other hand,
can be less predictable, since attributes of complex ac-
tivities are highly non-stationary. There are at least
three major sources of non-stationarity. First, complex
activities are frequently composed of atomic actions
with different dynamics. For example, the “wedding
ceremony” sequences of Fig. 3 are composed of several
events (e.g., “dancing,” “cutting the cake,” or “bouquet
throwing”). Since the dynamics of these events can be
quite distinct, it is very challenging to capture the long-
term dynamics of the activity with a single model. Sec-
ond, and more importantly, the training data available
is usually too sparse to cover the intra-class variations
of high-level activities. For example, while some wed-
ding videos involve scenes of an honeymoon trip, most
do not. In this case, attempting to model long-range
dynamics is prone to overfitting. Finally, the most dis-
criminant video segments for event recognition are fre-
quently embedded in video that is only marginally in-
formative of the activity class. For example, the dis-
criminant (for weddings) “bouquet toss” sequence can
be surrounded by “dancing” sequences (which appear
equally in wedding and birthday videos). The ability to
identify these discriminant segments, while ignoring the
surrounding “action noise” (non-informative segments)
are critical for robust event recognition.

These observations suggest that the modeling of dy-
namics involves a trade-off between gains in discrimina-
tion v.s. potential for overfitting. Modeling short-term
dynamics increases discrimination with small overfit-
ting potential. However, the latter increases with the
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Fig. 4: BoWAD representation of a video of the activity “diving-springboard”. (Top) video sequence. (Middle)
The classic (holistic) representation of the video on a space of four attributes (represented by four colors) is shown
in the left. The proposed representation of the video as a trajectory in the attribute space (four colored functions)
is shown at the center. The trajectory is split into overlapping sort-term segments. (Bottom) each segment is
assigned to the BDS, in a previously learned dictionary, that best explains it. Dictionary BDS’s, denoted WADs,
are models of short-term behavior, such as “walk-walk-jump”, “walk-jump-jump”, “jump-jump-somersault” and
“jump-somersault-enter water”. The activity is represented by a BoWAD, which is a histogram of assignments of

segments to WADs.

temporal support of the video sequences. In result, there
is an optimal support, beyond which the benefits of dy-
namic models start to vanish. This suggests the combi-
nation of dynamic models, such as the BDS, for short-
term dynamics and representations that may be less
discriminant but more robust, such as the BoVW, for
long-term dynamics. To accomplish this goal, we pro-
pose to encode activity sequences with a BoVW repre-
sentation that uses the BDS as descriptor of short-term
attribute dynamics.

The proposed video representation is illustrated in
Fig. 4. A video v is split into segments {s()}N | of 7;
frames (possibly overlapping in time)2. The attribute
mapping of (3) is then applied to each segment, pro-
ducing an attribute sequence IT = {ﬂt}ii:t:i_l, where
t; is the starting time of the i-th segment. v is finally
represented by the bag of attribute sequences (BoAS)
{TI®} shown in the orange box. This generalizes the
BoVW image representation. A dictionary of represen-
tative BDSs, denoted words for attributes dynamics
(WAD), is learned by clustering a collection of BoAS
from a set of training attribute sequences. The WAD
dictionary is then used to encode the attribute sequences

2 The optimization of the lengths {7;} of the video seg-
ments {s(?)} is left for further research. In this work, we
simply considered segments of equal length {7;} = 7, Vi, cho-
sen from a finite set of segment lengths 7, selected so as to
achieved good empirical performance on the datasets con-
sidered. The specific values of 7 used are discussed in the
experimental section.

extracted from v as a feature vector for final video clas-
sification. This is implemented by either 1) the his-
togram of WAD counts, denoted a bag of words for at-
tribute dynamics (BoWAD), or 2) a descriptor of the
first moments of attribute sequences after clustering
with a WAD mixture, denoted the vector of local aggre-
gated descriptors for attribute dynamics (VLADAD).

4 Models of Attribute Dynamics

In this section, we address the modeling of the dynamics
of attribute sequences. We start by considering binary
attributes and then generalize the discussion to account
for confidence scores.

4.1 Preliminaries

We start by reviewing notation, definitions, and re-
sults used throughout this work. We use boldface (x)
for vectors, capital letters (A) for matrices, MT to de-
note the transpose of M, and tr(M) to denote its trace.
S = {M|M € R™4 M = MT} is the set of d x d sym-
metric matrices, and 8¢, = {M|M € 8% M - 0} the
subset of positive-definite matrices.

The probability density (or mass) function of a ran-
dom vector x, with parameter O, is denoted p(x;O),
po(x), or pe if the argument is clear from context. The
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expectation of function f(x) with respect to x is

Eape) [/ (@)] = / p(;0) f(@)da = (f(2)), g0 (4)

and the Kullback-Leibler (KL) divergence (Kullback,
1997) between distributions p(x; ©1) and p(x; O) is

KL(pe,llpe,) = (Inpe, (®)),, —(npe,(®)),, - (5)
N(p, Y) denotes a Gaussian (or normal) distribu-
tion with probability density function

G, %) = expl—sllz— B}, (©)

1
(2m)4| X
where d is the dimension of x, u € R? and ¥ € Sjir+
are the mean and the covariance, respectively, and

|z~ pllE = (z - n)TS (@ - ) (7)

is the Mahalanobis distance, between  and u, defined
by 2.

It can be shown (Kullback, 1997) that, when pg, =
G(x; 1, 1) and pe, = G(x; py, o),

(Inpe, (), = ®)
~5 (1 = o, + din2r -+ Bl + x5 20)],

and

KL(pe, |lpe,) = )
%[U‘(Zglzl) = poll3, —In | 25050 | - d}'

4.2 Linear Dynamic Systems

Video sequences are frequently modeled as samples of
a linear dynamic system (LDS)

{ Ti+1 =

Yy =
where x; € RL and y, € RX (of mean u) are a hid-
den state and observation variable at time t, respec-
tively; A € REXL a state transition matrix that en-
codes dynamics; C' € RE*L an observation matrix that
maps state to observations; and x*; = @ + vg an ini-
tial condition. Both states and observations have addi-
tive Gaussian noise vg ~ N (0, S), vy ~ N(0,Q) and
w; ~ N(0,R) (t > 1,t € Z). The graphical model of
the LDS is shown in Fig. 5.

LDS parameters can be learned by maximum likeli-
hood (ML), using the expectation-maximization (EM)
algorithm (Shumway and Stoffer, 1982). A simpler ap-
proximate learning procedure was, however, introduced
by (Doretto et al, 2003). This is known as the dynamic
texture (DT) and decouples the learning of observation

A.’I}t —+ V¢,
Cx; +wy + u,

(10a)
(10b)

Fig. 5: Graphical model of the LDS and BDS.

and state variables by interpreting the LDS as the com-
bination of a principal component analysis (PCA) and
a Gauss-Markov process. Under this interpretation, the
columns of C' are principal components of the observed
video data and the hidden state x is a vector of PCA co-
efficients. The observation parameters are first learned
through a PCA of the video frames, and the state pa-
rameters are then learned by least squares. This simple
approximate learning algorithm tends to perform very
well, and is popular in computer vision.

4.3 Binary Dynamic Systems

The LDS is a suitable model for the dynamics of contin-
uous observations, such as features extracted from video
frames or continuous attributes. However, this is not the
common scenario in the attribute literature, where at-
tributes are frequently binary and continuous attributes
are usually scores (numbers between 1 and 100), i.e.,
isomorphic to probabilities. Such attributes clearly vi-
olate the assumption of Gaussian observations that un-
derlies the LDS. To address this more challenging (and
practically relevant) scenario, we start by introducing
an extension of the LDS to sequences {y, } of binary ob-
servation vectors. This is denoted the binary dynamic
system (BDS). The extension to attribute scores is con-
sidered in Section 4.5.
The BDS is defined as

{ Tppr =
Yy ~
where o(0) = [0(0y), - ,0(0K)]T, 0(0) = (1 +e9)7!

is the sigmoid non-linearity, Bern(7) the multivariate
Bernoulli distribution such that y ~ Bern(r),

plysm) = [, w1 —m) o), (12)

Amt + Uy,
Bern(o(Cxy + u)), (11b

z; € RE and u € RY the hidden state variable and
observation bias, respectively; A € REXL a state transi-
tion matrix; and C' € RE*L an observation matrix. The
initial condition is given by €1 = p+vo ~ N(, S); and
the state noise process by vy ~ N (0, Q). Since the BDS
only differs from the LDS in the form of the conditional
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distribution p(y,|x:), its graphical model is identical to
that of the LDS, as noted in Fig. 5.

The BDS can be interpreted as a combination of
PCA and a Gauss-Markov process by noting that a
Bernoulli distribution of parameter 7 is a member of
the exponential family of distributions. Hence, it can
be expressed in terms of the natural parameter log ;"—,
which is mapped to the standard parameter space by
the sigmoid o(-). It follows that the BDS represents
the video data as an LDS-like observation sequence,
Cx; + u, in the natural parameter space. Since this is
similar to the definition of binary PCA (Schein et al,
2003), the BDS of (11) can be interpreted as the combi-
nation of a binary PCA observation component in (11b)
and the Gauss-Markov process of (11a). The state vec-
tor {x;} thus encodes the trajectory of the binary PCA
coefficients of the observed data over time. As is the case
for the LDS, this enables an efficient learning algorithm,
which we discuss in following sections.

4.4 Binary Principal Component Analysis

Binary PCA (Schein et al, 2003) is a dimensionality
reduction technique for binary data, which belongs to
the generalized exponential family PCA (Collins et al,
2002). It fits a linear model to binary observations, by
embedding the natural parameters of Bernoulli distri-
butions in a low-dimensional subspace. Let Y denote a
K x 7 binary matrix (yx: € {0,1}, e.g., the indicator
of occurrence of attribute k at time ¢) where each col-
umn is a vector of K binary observations sampled from
a multivariate Bernoulli distribution Yz; ~ Bern(mg;)
such that

P(Yre; Te) = Tt (L) 70 = 0 (Ope) V0 0 (=)' Y-

(13)
of natural parameters 6y; = log(;Zt). Binary PCA
finds a L-dimensional (L < K) embedding of the natu-

ral parameters, by maximizing the log-likelihood of the
binary matrix Y

L =np({yr}; 0) (14)
=3 [ I (Oh) + (1 = y) I o(~O4s)|
k.t

under the constraint
O=CX +ulT, (15)

where C € REXL X ¢ REX7T 4 € RX and 1 € R”
is the vector of all ones. Each column of C' is a basis
vector of a latent subspace and the t-th column of X
contains the coordinates of the ¢-th binary vector in this
basis (up to a translation by ).

4.5 Soft Binary PCA

By mapping each video into a sequence of vectors {7}
of attribute probabilities, the semantic representation
of (3) is much richer than a sequence of binary attribute
vectors vy,. This, however, prevents the direct applica-
tion of binary PCA. A solution is nevertheless possible
if, instead of the conventional ML criterion, we resort to
the maximization of the expected log-likelihood of the
binary observations y,. This equates parameter learn-
ing to the optimization problem

0" = arg Bmax (In £(0)) (16)

p(y;m)

(17)

= arg ;nax <1np(Y7 0)>p(y;7r) .

Since (y,) ) = ¢, it follows from (14) that

p(y;m

<£>p(y;7r) = Z |:7Tkt In U(th) + (1 — 7Tkt) IHU(*@kt) s
k,t

(18)

and (17) can be solved with the binary PCA algorithm.

It should be noted that this solution is identical to
the ML estimate of binary PCA in the case of infinite
data since, by the law of large numbers,

N

1 i

~ 2 p;0) ——— (p(Y;0)),ym)
i=1

where {y}N | are N independent and identically dis-
tributed (i.i.d.) examples from p(y;7r). The solution
of (17) also minimizes the KL divergence between p(y; )
and the model p(y; @), since

KL(p(y; m)l[p(y; 0)) (19)
= (Inp(Y57m))pryemy — (DY) m) = 0,

and the first term is independent of 6.

4.6 BDS Learning

The discussion above suggests a generalization of the
DT learning procedure to the BDS. The soft binary
PCA basis is learned first, by maximizing the expected
log-likelihood of (18) subject to the constraint of (15).
Since the Bernoulli is a member of exponential family,
(18) is concave in @, but not in C, X and w jointly.
The ML parameters can be found with the procedure
of (Schein et al, 2003), which iterates between the opti-
mization with respect to one of the variables C, X and
u as the other two are held constant. Each iteration is a
convex sub-problem that can be solved efficiently with
a fixed-point auxiliary function (Schein et al, 2003).
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Algorithm 1: BDS learning

Algorithm 2: Bag-of-Models Clustering

Input : a set of n sequences of attribute score vectors

{{‘ngi)}?zl ™ ., state space dimension L.
Soft binary PCA (Schein et al, 2003):
{C. X, u} = BPOA{{m{" Ly Hiy, L);
Assemble state sequences (Xff = (@, 0, @e,])

X3 = [(XD)3, -, (XM,
X7 = (X (X0
Estimate state parameters:
A=XI(XT Y v=X7_-AXT,
1

_ I @
Q‘zi(n—l)V(V)T’ u—ni_zlwly

1 . i 2
§=—> @ -’ - w7
n—lia

Output: 2 ={A,C,Q,u,pn,S}

Once the optimal embedding C*, X* and u* of the
attribute sequence is recovered, the remaining param-
eters are estimated by solving a least-squares problem
for A and @, and using ML estimates for the Gaus-
sian parameters of the initial condition (g, and Sp).
Since this is identical to the least squares procedure
of (Doretto et al, 2003), we omit the details. The learn-
ing procedure, including the least squares equations,
is summarized in Algorithm 1. Since the optimal solu-
tion maximizes the most natural measure of similarity
(KL divergence) between probability distributions, this
extension is conceptually equivalent to the procedure
used to learn the LDS, which finds the subspace that
best fits the observations in the Euclidean sense, the
natural similarity measure for Gaussian data. This is
unlike previous extensions of the LDS, e.g., kernel dy-
namic systems (KDS) that rely on a non-linear kernel
PCA (KPCA) (Scholkopf et al, 1998) of the observation
space but still assume an Euclidean measure (Gaussian
noise) (Chan and Vasconcelos, 2007; Chaudhry et al,
2009). In the experimental section we show that the
BDS is a superior model of attribute dynamics.

5 Bag-of-Words for Attribute Dynamics

In this section, we introduce the bag-of-words for at-
tribute dynamics (BoWAD) representation.

5.1 Clustering Samples in the Model Domain
Clustering identify prototypes in the space of training

examples (e.g., in k-means, a cluster prototype is the
centroid of the samples in the cluster), using a metric

: a set of samples D = {z;}, (z; € Z,Vi),
number of clusters N¢, an initial set of
models {Mi(o)}év:cl.

Input

sett=20 andS§0) =g,2=1,--- ,N¢c;
repeat
t=t+1;

Assignment-Step: Vi, Si(t) ={z€D|Vj#i,
dpa(M(2), M{"™) < dpa(M(2), M)}
Refinement-Step: Vi, Mi(t) = M(Sft));
until Vi, S = Y,

Output: {M{”}Y¢ and {S{V} Y

suited for that space (e.g., Euclidean distance). Clus-
tering BoAS is not straightforward because 1) attribute
sequences can have different length; 2) the space of
these sequences has non-Euclidean geometry; and 3) the
search for optimal prototypes, under this geometry, may
lead to intractable non-linear optimization. This is com-
pounded by the fact that the dynamics of attribute se-
quences are better summarized by a set of prototype
BDSs than a set of prototype sequences.

The problem of learning a set of BDS prototypes is
an instance of the problem of learning a bag-of-models
(BoM). Given a training set D = {z;}¥, (z; € Z,Vi),
the goal is to learn a dictionary of representative models
{M;(2)}Y9 in a Riemannian manifold M of models.
The proposed solution is based on two mappings. The
first

fM:ZQ{Zi}'—)MEM (20)

maps a set of examples {z,} C D into a model M (z).
The second,

MXME(Ml,MQ)i—)dM(Ml,MQ)GRJ,_ (21)

measures the dissimilarity or distance between models
(e.g., geodesic distance in the manifold).

The mapping of (20) is first used to produce a model
M (z;) per training example z;. Training samples are
then clustered, at the model level, by alternating be-
tween two steps. In the assignment step, each z; is as-
signed to the cluster whose model is closest to M(z;),
using the mapping of (21). In the model refinement step,
the model associated with each cluster is relearned from
the training samples assigned to it, via (20). This proce-
dure is summarized in Algorithm 2 and denoted bag-of-
models clustering (BMC). It can be shown that, under
some mild conditions, it converges in a finite number
steps. A sketch of the proof is provided in Appendix A.

BMC generalizes k-means, where z; € R? are fea-
ture vectors, M is the space of Gaussians of identity
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covariance
M={G(z;p,1a) | p€R? }, (22)
(20) selects the model
M({zi}) = G(z: n, 1), (23)
where 1 is the ML estimate of the mean
= arg maxp({z;}; u) Z zi, (24)
" I{Zz}\

and (21) is the symmetric KL divergence derived from (9),

KL(p1|[p2) + KL(p2||p1) = ||ty — mol*- (25)

It should be noted that BMC differs from the bag-
of-systems approach (Ravichandran et al, 2012; Afsari
et al, 2012) in two ways. First, it clusters attribute se-
quences rather than models. While, in the refinement
step of Algorithm 2, models are re-learned from exam-
ples {z;}, the refinement step of (Ravichandran et al,
2012; Afsari et al, 2012) only considers parameters of
the models M(z;) and not the examples z; themselves.
This usually entails loss of information. Second, Algo-
rithm 2 finds the optimal representative for each clus-
ter, according to the model fitting criterion of (20).
In (Ravichandran et al, 2012), the difficult geometry
of the manifold defined by the LDS parameter tuple
(A,C) € GL(n) xST(p,n), where GIL(¢) is the set of in-
vertible matrices of size n and ST(p, n) the Stiefel man-
ifold of p x n orthonormal matrices (p > n), precludes a
simple estimate of the optimal representative. Instead,
this is approximated by model M (z;) closest to the op-
timal representative. Although Afsari et al (2012) intro-
duce an approach to directly cluster LDS’s in parameter
space, its generalization to the BDS is unclear. We will
show, in Section 7, that these differences can lead to
significantly improved performance by Algorithm 2.

5.2 Dissimilarity Measure Between BDSs

Algorithm 2 requires a measure of distance Between
BDSs. For this, we generalize a popular measure of dis-
tance between LDSs, the Binet-Cauchy kernel (BCK)
of (Vishwanathan et al, 2006). Given LDSs £2, and £2,
driven by identical noise processes v; and w; with ob-
servation sequences y(® and y® the BCK is

t=0

Kpc(£24,2) = <Ze“ <“’>TWy<”)> . (26)
p(v,w)

where W is a semi-definite positive weight matrix and
A = 0 a temporal discounting factor. To extend (26) to

BDSs £2, and £2,, we note that (y\*)TWy!" is the in-
ner product of the Euclidean space of metric d2(y!, y{"))
= (yﬁ“’ - ygb))TW(yga) — ygb)). For BDSs, whose ob-
servations y, are Bernoulli distributed with parame-
ters {a(0§“))}, for £2,, and {0(0?))}7 for £2;, this dis-
tance measure is naturally replaced by the symmetric
KL divergence between Bernoulli distributions. This re-
sults in the Binet-Cauchy KL divergence (BC-KLD)

Dpc(824,82y)

(>

t=0

[KL(B@(&E”»|B<o<0£b>>>>

4 KL(B(a(Bib)))IIB(U(9§Q))))] >

p(v)

= <Ze-” o0/ o6™)] " [6" —e§b>}> ,
t=0 p(v)
(21)

where 8; = C'x;+u is the parameter of the multivariate
Bernoulli distribution. > The divergence at time t can
be rewritten as

(o(61") — o (6,"))T(6," —
= (0! — 0T, (0\”

0(b))

- o), (28)

with W; a diagonal matrix whose k-th diagonal element
. s a b) a b H(a,b

is Wer = (o(6;5) — o(00))/ (0 — 017) = o' (63"
(where, by the mean value theorem, ég}ak’b) is some real

value between égak) and ét(blz) This reduces (28) to a form
similar to (26), aithough with a time varying weight ma-
trix W;. It is, nevertheless unclear whether (27) can be
computed in closed-form. We rely on the approximation

Dpc (824, 82y)
S e [o(6i) (0] 0l 01",

t=0
where 0 is the mean of 6.

(29)

5.3 Learning a WAD Vocabulary

Given the BC-KLD distance between BDSs, it is pos-
sible to learn a WAD dictionary from a BoAS P =
(TN by applying Algorithm 2 as follows.
Refinement-Step: The mapping of (20) amounts to
fitting a BDS to a BoAS P’ = {II®W} C P. This is

3 Although the square root of the symmetric KL divergence
is not a metric (since the triangle inequality does not hold), it
has been shown effective for the design of probability distribu-
tion kernels, in the context of various applications (Moreno
et al, 2004; Vasconcelos et al, 2004; Haasdonk, 2005; Chan
and Vasconcelos, 2005).
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done with Algorithm 1. The BDS learned per cluster
jointly characterizes the appearance and dynamics of
all attribute sequences in that cluster.

Assignment-Step: Fach sample BDS is assigned to
the closest centroid BDS, using (29).

To initialize the clustering algorithm, we follow the
strategy of (Chan and Vasconcelos, 2008). This has pro-
duced satisfactory results in all our experiments.

5.4 Quantization of BoAS with WAD Vocabulary

Given a WAD dictionary {Q(i)}yzl, a BoAS {{77,5}?:“;?_1}

is quantized by assigning the i-th attribute sequence to
the k£*-th cluster according to

k* = arg min dpe(2({m 3187, V),
J

(30)

where £2({m;};;7 ") is the BDS learnt from {mr;}; ;7'

using (20). This produces a histogram of WAD counts,
denoted bag-of-words for attribute dynamics (BoWAD),
which can be used to classify video sequences of com-

plex activities with the procedures commonly used for
the BoVW (Laptev et al, 2008; Wang et al, 2009).

6 The VLAD for Attribute Dynamics

In this section, we derive a VLAD encoding for at-
tribute dynamics.

6.1 Bag-of-Models Interpretation of VLAD

The VLAD is an efficient representation of the first mo-
ments of a data sample. It has been shown to outper-
form the BoVW histogram, which only captures zeroth
moments, in many image classification experiments. To
extend the VLAD to the BoM, we start by interpreting
it as an encoding of sample statistics with respect to a
collection of local tensors of a model manifold.
Consider a Riemannian manifold M with geodesic
distance daq (M1, Ms), such as (21), a set of reference
models {M;}N<, embedded in M, and neighborhoods

where R; is the neighborhood of M; under das. To en-
code a collection of examples D = {2}, (z; € Z, Vi),
these are first assigned to the regions R;
D' ={z € D|fm(z) € Ri} (31)

using an assignment mapping faq, such as (20).

Fig. 6: VLAD encoding under the bag of models repre-
sentation. The data points in D! are first mapped into
model manifold M by faq,(2), and then encoded by
their first moments with respect to M; (the red star
in the figure) to approximate the geodesics (e.g., the
geodesic distances in red dotted curves), using the map-
ping Unr, (2) = I]_VgﬂUMi (2) defined by the local tensor
T, , i-e., the metric of the tangent space at M; (the blue
plane in the figure).

VLAD assumes examples z € RP and Gaussian
models M;, i.e., a model manifold

M:{Q(Z;M,E)|ME]RD,EES£+ , (32)

with geodesic distance approximated by the symmetric
KL divergence

dpm(My, Mz) = KL(par, |[par,) + KL(pas, | |par, )

where KL(par, ||par,) is defined in (9). Most VLAD im-
plementations assume that X' = I, reducing (33) to the
Euclidean metric ||p, — po||? (D? assigned to the model
of mean closest to the sample centroid). In this case, the
assignment mapping maps an example z to a Gaussian
of mean p and identity covariance, i.e.,

(33)

fm(z) 2z = Gz, Ip), (34)

where p € {p;} is the mean of one of the reference
Gaussians.

As illustrated in Fig. 6, the idea behind VLAD is to
use the local tensor Ty, defined by distance daq(-,-) at
M; to encode the distribution of D?. A descriptor of D is
then constructed by 1) aggregating the encoding of the
examples in D?, for each region R;, and 2) concatenat-
ing the aggregate encodings from all regions. When M
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is a statistical manifold (of parameter 6), a commonly
used metric tensor is the Fisher kernel (Jaakkola and
Haussler, 1999)

K(z1,22) = U (21)T Uni (22), (35)
where
Unm(z) = Vologpun(z;0) (36)

is the Fisher score and Zy; is the Fisher information
metric at M. * This tensor can be shown to approxi-

mate the KL-divergence in the neighborhood of M (Amari,

1998; Amari and Nagaoka, 2000).
For the manifold of (32), the Fisher score is

_ VulogpM(Z;N’Z)
UM('Z) - |:VE1 lng]VI(Z;IJ'a 2) 7

with

Vilogpu(z) = 71z — p), (37)

Ve-ilogpu(z) = 5| X = (z—p)(z—p)7|. (38)

After the aggregation over the sample D¢, (37) encodes
the relative position of the centroid of this sample w.r.t.
the region center p,; (under the Mahalanobis metric de-
fined by X~ 1). Similarly, (38) encodes the relative shape
of the sample w.r.t. that of the reference distribution,
which is parametrized by Y;. Under the assumption
that X' = I, (37) reduces to z — pu and the second mo-
ments of (38) are usually omitted. This has some loss
but reduces complexity (Jegou et al, 2012).

6.2 Variational Inference for the BDS

The extension of the VLAD to the BDS requires eval-
uating the derivative of the expected log-likelihood of
the sample with respect to the model parameters. This,
however, is intractable, due to the intractability of the
posterior distribution of BDS state given observations.
To overcome this difficulty, we resort to approximate
variational inference (Jordan et al, 1999). A similar
strategy has recently been shown effective for image
analysis (Cinbis et al, 2012).

4 In practice, the Fisher information metric Zy; is often
omitted, since the Fisher kernel is an Euclidean metric in the
range space of the invertible linear transformation by I}VI/Q,
of the tangent space of the manifold at M.

6.2.1 Variational Inference

Given a a model p(Y, X; 6) with parameter 6, observed
variable Y and hidden variable X, there is usually a
need to evaluate the posterior distribution p(X|Y;#).
While this is tractable for some dynamic models, e.g.,
the LDS of (10) where the Gaussian hidden state distri-
bution is a conjugate prior for the Gaussian conditional-
distribution of observations given state, it is intractable
for the BDS of (11), where the state is Gaussian but the
observations are not. Variational inference is a tool for
approximate inference in problems with this type of in-
tractability.

Variational methods are based on the decomposition
of the marginal likelihood of the observed data

In £(6,y) = Inp(y; 0) (39)
= 2(0,y,q) + KL(q(z)|[p(z|y; 0)), (40)

where

Z(0,y,q) = /q(x) 1 P8:7:8)

i ) dx (41)

and ¢(x) some probability distribution. Since the KL
divergence is non-negative, .Z(6,y, q) is a lower bound
of In £(6;y). For a family D, of tractable distributions
of X, the tightest lower bound is achieved at

q,(z) = arg max Z(0,y, q). (42)
q€D,

This also minimizes the distance to the posterior p(z|y; 6),
in the KL sense, since In £(6,y) does not depend on
q(z). Hence, the intractable posterior p(x|y;#) can be
replaced by the variational distribution ¢(z), and the
tighest bound used as a proxy for the log-likelihood
In £(0,y), for the purpose of learning the model param-
eters.

6.2.2 Variational Inference for Ezpected Log-likelihood

The variational setting for learning BDS parameters
is slightly different from the standard variational set-
ting because, in (17), the goal is to maximize the ex-
pected log-likelihood with regards to a reference distri-

bution p(y) = p(y; ), i.e.
(InL(0,)) 5y = (p(y; )5, - (43)
In this case

(InL(0,9)) 5y = £(0,9) + (KL(q(2)[[p(x[y; 0))) 5
= Z(0,q) (44)
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with lower bound
L(0,9) = (Z0.9.0) 5 (45)
— [ o) Anply, w36, do+ H(), - (40)

where Hy(X) = — [ q(x)Ing(z)dz is the entropy of X
under distribution g(x). This bound is tightest at

0 (x) = arg max Z(6.q) (47)
= arg min (KL(a(2) Ip(e13:0)) - (48)

Note that, by Jensen’s inequality,

< <maxf(e7y,q>> (50)
€Dy )

Hence, the tightest bound of the expected log-likelihood
lower bounds the average tightest log-likelihood bounds

across observation sequences. Intuitively, (49) lower bounds ;

the log-likelihood over all samples from p(y) that share

the same hidden variable, distributed according to ¢* ().

On the other hand, (51) uses the distribution g () that
best explains each sample y.

6.2.3 Variational Distribution for the BDS

Under the BDS, the log-probability of the complete
data is

Inp(x7,y7;0)

T—1 T
= lnp(@1) + ) Wp(@enfz) + ) plylz), (52)
t=1 t=1
where
p(@ir1|xe) = G(x41; Az, Q), (54)
Inp(y;|z:) =
K
> | peno(wr) + (1= o) no(—ww)|, (55)
k=1
wit = Cl.y + uy, (56)

and Cj. is the k-th row of C' in (11). The mixture
of quadratic and log-sigmoid terms in (52) makes the
evaluation of p(x7|y7;0) intractable. A family D, of
tractable variational distributions is required to derive
the variational lower bound .Z(0, ¢*) of (49). The most
popular strategy in the literature is to adopt factorized
variational distributions g¢(x) = [[;_, ¢:(x:) (Attias,
1999; Ghahramani and Beal, 2000; Winn and Bishop,

2005) for computational tractability. This, however, fails
to capture the dependency among hidden variables, de-
feating the purpose of dynamic modeling by the BDS.
To avoid this problem, we adopt a multivariate Gaus-
sian distribution of full covariance for g(x),

q(z]) =G(z];m, %), m e RF*! ¥ e SIT, (57)

where m; € RE and X € REXL are the mean of x;
and covariance between x; and x;, respectively,

m; = (x;),, Xij=((®i—m)(x; —my)T) .

qa’ q
Given a reference distribution for the sequence of binary
attribute indicators y7, p(y) = p(y; ™) = p(y; {7mr+})s
it follows from (46) and (52) that

T—1

Z(0,q) = (lnp(z1), + ) {Inp(xefe)),

20 (wplile)py ) +Hy(X).  (59)

These terms pose different complexity challenges for the
inference. The terms that only involve state variables a;
are relatively straightforward to compute. It suffices to
rewrite (54) as

p(xes1]ze) < G(€,;0,1), (59)
where
- [, 1 ATQ TA —ATQ!
P B S S
and define
[ my DI M }

A= L A=t AL 61
’ _mt+1] ’ {Et+1,t 21,41 (61)

and

-Pi,j = <$1$;>q = Ei,j + mim}, 1 < Z,j < T. (62)

From (8) and (53)-(56), the following equalities then
hold, up to constants that do not depend on m and X,

1 —
(tnp(@1)), o =3 [l = mall} + tr(5 ™ Z1,0)]
1 .
=plS tmy — itr(s_lpm)’ (63)
1
(I p(@esafee)), o =3 |IDelF + (I~ 40)|

- —%tr(F_ldSt), (64)

H,(X) = 5|5, (65)

where

ptt pt t+1 }
b=\~ 7 = A+ M AT 66
! [Pt+1,t P14 ¢ e (66)
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These equations are similar to those of the LDS and
can be computed efficiently. The main difficulty is the
evaluation of the term

(np(y,le0)s,)) (67)

q

K
Z [ﬂ'kt (Ino(wet)), + (1 — mke) (1na(—wkt))q},

k=1

due to the non-linearity of the expectations (In o (wgt)),
and (Ino(—wgt)),. Since w (a linear projection of x) is
Gaussian, (Ino(w)), is bounded by

(no(w)), = no((w),) — gvau"(w)7 (68)

q
which results from setting £ = 1/2 in (A.10) of (Saul
and Jordan, 2000). This leads to a new lower bound

2(0,q) of InL(8,y)) .., in (43)

B(y)

2(0.q) - {||uo a3+ (S S0)

1
2
T—1
_ 1
+ Ztr(F 1¢t) + 4Ztr(CZ’t7tCT)}
t=1 t

+ 3 [mre (@) + (1= ) In o ()]
t.k

)

1
+ §ln|2| + const, (69)

where Wy = <wkt>q = Cr.my + uy.
The variational distribution ¢* () is the solution of

{m*, X"} = argmax £(0,q). (70)

LTy SLT
{m,Z}eRLTxSET

This is a convex optimization problem, since all terms
of Z(0,q), depend on either X or m separately (not
on both), have the convex domain (m, X) € RE™ x SET
and are concave - either a) linear functions, b) quadratic
functions of negative definite coefficient matrices, c) neg-
ative log-sum-exp functions, or d) log determinant of X.
Furthermore, (70) can be factorized into

{m*, X"} = arg max  Z(0,q)

LTy SL™
{m,Z}eRLTxSET

= {arg maxf(&q), arg maxj(e, q)}

meRLT ryesit
Consolidating the terms containing 3/,
XY = arg max In|X| — tr(WX),
by

(71)
s.it. X e Sfl,

where W € S_{l is a positive-definite matrix such that

ATQTTA+ S+ 107C, i=j=1,
ATQ'A+Q '+ 1070, 1<i=j<T,

S LR e i=j=r,

QA i=j+1,

—ATQ, i=j—1,

0, otherwise,

with W; ; € REXE as block i,j of W. In Appendix B
we show that this has optimal solution
=Wl (72)
While (72) is conceptually straightforward, the inver-
sion of the matrix W can be too expensive for long
video sequences (large 7). In sections C.1 and C.2 of Ap-
pendix C, we provide an alternative and more efficient
procedure, based on the popular Kalman smoothing fil-
ter (Roweis and Ghahramani, 1999), to compute the pa-
rameters ¥, and X, ., needed to evaluate 2(0,q%),

The optimal variational mean parameter m™* has
no closed form solution, due to the log-sigmoid terms
of (69). In Appendix C.3, we discuss a numerical proce-
dure for determining the stationary point of & (0,q%).
Since the problem is convex, this suffices to guarantee
a global optimum.

6.3 The VLAD for Attribute Dynamics

The VLAD for attribute dynamics (VLADAD) approx-
imates the Fisher score of the BDS by the derivatives of
the variational lower bound of (69) with respect to the
model parameters. In Appendix D we show that, given
attribute sequence 7w and BDS @ = {S~1, u, 4,Q~ 1, C,
u}, ® £(0,¢*) has derivatives

e 2(0,0°) =
%(5 i T = P - pT),(73)
aii?(@,q*) =57 (mj — p), (74)
D 20.0) = Q7 W~ A9), (75)

s 20.47) =

% TAT + AUT — AGAT — @ + (T — 1)Q}, (76)

5 For simplicity, we consider the precision matrices S~1
and Q! instead of the covariances S, @Q in the computation
of Fisher scores.
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o .
7,“:? 07 ) =
Y (6,9%)

1 - O'(C1.bt) — M1t

_ 4{éf+ : b{}, (77)
=1 U(OK.bt)*WKt

where

T T T

D* D * D * .

Y= E Pt,ta ¢ = E Ptfl,tflv U= E Pt,t717
t=2 t=2 t=2

and C = [C,ul, Cy. is the k-th row of C,

_ (M
’ bt — < 1 ) .
The VLADAD is then computed by 1) concatenating
(73)-(77), and 2) aggregating over all attribute sequences
extracted from a query video sequence. To improve dis-
crimination, we apply a power-normalization and then

L2-normalize the VLADAD feature vector, as suggested
in (Jegou et al, 2012).

0 0

7 Experiments

In this section, we discuss experiments designed to eval-
uate the performance of the proposed BDS, BoWAD,
and VLADAD. Three benchmarks from various per-
spectives are adopted to assess the behavior of these
approaches: the Weizmann Complex Activity is a syn-
thetic benchmark with comprehensive simulated chal-
lenges; Olympic Sports contains weakly cropped and
aligned complex sport sequences; and Multimedia Event
Detection features high level events with instances from
open-source repositories.

7.1 Attribute classifiers

The VLADAD can be computed for any implementa-
tion of attribute classifiers. Since the goal was not at-
tribute detection per se, we used two popular meth-
ods to produce attribute sequences. The first attribute
classifier extracted space-time interest points (STIP)
of (Laptev, 2005) and computed at each interest point
a descriptor combining a histogram of oriented gradi-
ents (HoG) and a histogram of optical flow (HoF). The
second classifier was based on the improved trajectory
feature (ITF) of (Wang and Schmid, 2013), using a
descriptor composed of HoG, HoF, frame-wise trajec-
tory (FWT), and motion boundary histogram (MBH),
which has been shown to achieve state-of-the-art perfor-
mance in action recognition even superior than features

by deep learning (Karpathy et al, 2014; Peng et al, 2014;
Simonyan and Zisserman, 2014; Wang et al, 2015). All
features were extracted with the binary or source code
provided by its authors. ©

In all experiments, attribute detection was based on
the BoVW. For each descriptor, a codebook of size V'
was learned by k-means, over the entire training set,
and used to quantize features. Different ITF descrip-
tors were processed separately and merged by averaging
kernel matrices during prediction. The attribute anno-
tations of (Liu et al, 2011) were used for Weizmann
and Olympic Sports and those of (Bhattacharya, 2013)
for MED. Appendix F provides details on attribute
definitions and annotations. On Weizmann, attribute
detectors were implemented with a linear SVM, using
LIBSVM (Chang and Lin, 2011) with probability out-
puts. However, we found this to have scalability prob-
lems for the larger Olympics and MED datasets. On
these datasets attribute classifiers were logistic regres-
sors, implemented with LIBLINEAR, (Fan et al, 2008).
To maximize attribute detection accuracy, while retain-
ing the efficiency of linear classification, we used an
additive kernel mapping of the histogram intersection
kernel (HIK), as suggested in (Vedaldi and Zisserman,
2012). The attribute trajectory {7} of a video sequence
was computed with a sliding window, where attribute
detectors predicted attribute scores at each window an-
choring position. An holistic attribute vector, encoding
the presence of attributes in the entire video sequence,
was also constructed by max-pooling {7} over time.

7.2 Weizmann Complex Activity

The first set of experiments aimed to systematically
compare the ability of different models to capture the
dynamics of attribute sequences. A non-trivial difficulty
of such a study is the need for datasets with classes that
1) differ only in terms of attributes dynamics, and 2)
enable a quantification of these differences. It is critical
that such datasets do not include discriminant informa-
tion beyond attribute dynamics, such as discriminant
scene backgrounds, objects, or scene durations. Unfor-
tunately, these conditions are not met by existing action
datasets. For example, the “making a sandwich” activ-
ity of the MED dataset is the only one to include the
“sandwich” object. This enables the use of object recog-
nition as a proxy for action recognition, an alternative
that would not be viable if the dataset also contained an
“eating a sandwich” activity. To avoid these problems,

6  Binary for STIP available at http://www.di.ens.fr/
~laptev/download; source code for ITF available at http:
//lear.inrialpes.fr/~wang/download.
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motion” attribute. True scores in black, and scores sampled from
BDS (red) and KDS (blue). Also shown is the KL-divergence be-

tween sampled and true scores, for both models.

we assembled a synthetic dataset of complex sequences,
which were synthesized from the atomic actions of the
popular Weizmann dataset (Gorelick et al, 2007).

Weizmann contains 10 atomic action classes (e.g.,
skipping, walking) performed by 9 people and was an-
notated with 30 low-level attributes (e.g., “one-arm-
motion”) by (Liu et al, 2011). Attribute sequences were
computed over 30-frame sliding video windows with 10-
frame stride. STIP features were used with a 1000-word
vocabulary for low-level descriptor quantization. The
availability of attribute ground truth for all atomic ac-
tions enables learning of clean attribute models. Hence,
performance variations can be attributed to the qual-
ity of the attribute-based inference of the different ap-
proaches.

Three subsets of synthetic sequences were created
by concatenating Weizmann actions (see Appendix E
for some examples). These subsets vary in the variabil-
ity and complexity of temporal structure of their video
sequences. They target the study of different hypothe-
ses regarding the role of dynamics in action recognition.
The first, denoted “Syn-4/5/6” evaluates the ability of
different models to capture dynamics of varying com-
plexity, when all video segments are informative of the
action class, i.e., when the dynamics have no noise. The
remaining two evaluate robustness to “noisy dynam-
ics”. “Syn20 x 1”7 consists of actions of homogeneous
dynamics, which are buried in additional video seg-
ments of dynamics uncharacteristic of the action class.
“Syn10x2” consists of discontinuous actions of homoge-
nous dynamics, which are interleaved with segments of
“noisy dynamics”.

inal and reconstructed attribute scores,
v.s. number of PCA components n, on Syn-
4/5/6 for PCA, KPCA, and binary PCA.

7.2.1 Complex Dynamics

In the first subset, “Syn-4/5/6”, a sequence of degree
n (n = 4,5,6) is composed of n atomic actions, per-
formed by the same person. The row of images at the
top of Figure 7 presents keyframes of an activity se-
quence of degree 5, composed by the atomic actions
“walk”, “pjump”, “wavel”, “wave2”, and “wave2”. The
black curve (labeled “Sem. Seq”) in the plot at the
bottom of the figure shows the score of the “two-arms-
motion” attribute over time. 40 activity categories were
defined per degree n (total of 120 activity categories),
and the dataset was assembled per category, contain-
ing one activity sequence per person (9 people, 1080 se-
quences in total). Overall, the activity sequences differ
in the number, category, and temporal order of atomic
actions.

We started by comparing the binary PCA that un-
derlies the BDS to the PCA and KPCA decompositions
of the LDS and KDS. In all cases, a set of attribute score
vectors {m;} was projected into the low-dimensional
PCA subspace, the reconstructed score vectors {7}
were computed and the KL divergence between B(y, m¢)
and B(y, ;) was measured. The logit kernel K (7, 72)
= o~ Y(m)To 1 (my), where 071() is the element-wise
logit function, was used for KPCA. Fig. 8 shows the
average log-KL divergence, over the entire dataset, as a
function of the number of PCA components used in the
reconstruction. Binary PCA outperformed both PCA
and KPCA. The improvements over KPCA are particu-
larly interesting, since the latter uses the logistic trans-
formation that distinguishes binary PCA from PCA.
This is explained by the Euclidean similarity measure
that underlies the assumption of Gaussian noise in KPCA,
as discussed in Section 4.6.
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Table 1: Accuracy on Syn-4/5/6.

method accuracy
BoVW (x1y1t1) 57.8%
(Laptev et al, 2008) (x1y1t3) 78.8%
’ (x1y1t6) 92.5%
holistic attribute 72.6%
DTM (Blei and Lafferty, 2006) 84.6%
ToT (Wang and McCallum, 2006) 88.2%
KDS (Chaudhry et al, 2009) 90.2%
BDS 94.8%

To gain some more insight on the different models, a
KDS and a BDS were learned from the 30 dimensional
attribute score vectors of the activity sequence in Fig-
ure 7. A new set of attribute score vectors were then
sampled from each model. The evolution of the scores
sampled for the “two-arms-motion” attribute are shown
in the figure (in red/blue for BDS/KDS). Note how the
scores sampled from the BDS approximate the orig-
inal attribute scores better than those sampled from
the KDS. This was quantified by computing the KL-
divergences between the original attribute scores and
those sampled from the two models, which are also
shown in the figure.

We next evaluated the benefits of different repre-
sentations of dynamics for activity recognition. Recog-
nition rates were obtained with a 9-fold leave-one-out-
cross-validation (LOOCV), where, per trial, the activ-
ities of one subject were used as test set and those
of the remaining 8 as training set. We compared the
performance of classifiers based on the KDS and BDS
to those of a BoVW classifier with temporal pyramid
(TP) matching (Laptev et al, 2008), a holistic attribute
classifier that ignores attribute dynamics, the dynamic
topic model (DTM) (Blei and Lafferty, 2006) and the
topic over time (ToT) model (Wang and McCallum,
2006) from the text literature. For the latter, topics
were equated to the activity attributes and learned with
supervision (using the SVMs for attribute detection).
Unsupervised versions of the topic models had worse
performance and are omitted. Classification was per-
formed with Bayes’ rule for topic models, and a nearest-
neighbor classifier for the remaining methods. BDS dis-
tances were measured with (27), while for the KDS we
adopted the logit kernel. The dimension of the BDS
state space was 5. The X2 distance was used for all
BoVW and holistic attribute classifiers. In an attempt
to match the pooling mechanism of temporal pyramid
matching to the structure of the synthetic Weizmann
sequences, we considered a variant with 6 temporal
bins. This is denoted BoVW-x1y1t6.

Table 2: Accuracy on Syn20x1 and Syn10x2.

method Syn20x1  Synl0x2
(x1y1tl1) 23.3% 28.9%
(Laptelj’z\t/g joog)  (VLED) 867%  311%
) (x1y1t6) 55.6% 24.4%
holistic attribute 17.8% 16.7%
DTM (Blei and Lafferty, 2006) 49.3% 46.5%
ToT (Wang and McCallum, 2006) 57.2% 55.9%
KDS (Chaudhry et al, 2009) 61.6% 63.1%
BDS 64.4% 65.6%
(BMC) 100% 100%
BoWAD (MDS-kM)  100% 98.9%
(BMC) 100% 100%
VLADAD (MDS-EM)  100% 100%

The accuracy of all classifiers is reported in Ta-
ble 1. BDS achieved the best performance, followed by
BoVW-x1y1t6, KDS, the dynamic topic models, and
BoVW-x1y1t1 and holistic attribute. Note the large dif-
ference between the holistic attribute and the best dy-
namic model (= 22%). This shows that while attributes
are important (14.8% improvement over BoVW with-
out temporal pooling), they are not the whole story.
Problems involving fine-grained activity classification,
i.e., discrimination between activities composed of simi-
lar actions executed in different sequence, requires mod-
eling of attribute dynamics. This is reflected by both the
improvement of BoVW with x1y1t3 and zlylt6 tem-
poral pyramids over naive BoVW, and that of models
of attribute dynamics over the holistic attribute vector.
Among the dynamic models, the BDS outperformed the
KDS, the topic models DTM and ToT, and BoVW with
pyramids x1y1t3/t6. It is also worth noting the sensi-
tivity of pyramid matching to the number of temporal
bins, with performance varying between 57.8% (x1y1t1)
and 92.5% (x1y1t6).

7.2.2 Noisy dynamics

The remaining two datasets evaluated the robustness of
the different methods to noise, poor segmentation, and
alignment. The second dataset, “Syn20x1” was com-
posed of activity classes of large variability. Each activ-
ity was defined as a sequence of 20 consecutive atomic
actions. This sequence was inserted at a random tem-
poral location of a larger sequence of 40 atomic actions.
The remaining 20 actions in the larger sequence were
randomly selected from Weizmann. The third dataset,
“Syn 10x2”, tested the detection of discontinuous ac-
tivities. Each activity was defined by two subsequences,
each with 10 consecutive atomic actions. The two sub-
sequences were randomly inserted at non-overlapping
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Table 3: Mean average precisions on Olympic Sports.

Table 4: Performance on Olympic Sports.

method w/o LA fusion w/ LA fusion method mAP
STIP ITF STIP ITF Todorovic (2012) 82.9%
BoVW (xlyltl)  59.0%  83.7% - - izﬁ f; Zi ggﬁ:g Zg:ggﬁ
(Laptev et al, 2008) (x1y1t3) 53.2%  81.6% - - Li et al (2013a) 84.5%
DMS (Niebles et al, 2010) 62.5% - - - Wang and Schmid (2013) 91 i% @
holistic attribute 62.6% 82.1% 642%  84.9% Jones and Shao (2014) 74'1 6%
VD-HMM (Tang et al, 2012) 66.8% - - - Ni et al (2015) 92,30
HMM-FV (Sun and Nevatia, 2013)  65.3% 84.7% 66.4% 86.7% Lan et al (2015) 92.9%
CTR (Bhattacharya et al, 2014) 64.9%  85.5% 67.1%  87.3% VLADAD 93.1%
BDS 67.8% 86.1% 68.7% 88.6%
BoWAD (BMC) 73.5% 90.3% 74.9% 91.2% @ Result achieved with 1) feature points
© (MDS-kM) 71.2% 88.2% 72.6% 89.8% pruned by human detection, and 2) Fisher
vector encoding of low-level features. With-
VLADAD (BMC) 76.9% 91.7% 77.2% 93.1% out these enhancements, the performance of
(MDS-kM) — 71.7%  90.6%  73.4%  914%  (Wang and Schmid, 2013) is 83.3%.

locations of the larger (40 atomic actions) sequence.
For both sets, 20 activities were synthesized for each of
9 subjects, producing 180 sequences per set.

In addition to the classifiers of Table 1, both the
BoWAD and VLADAD were evaluated on these datasets.
For both, short-term attribute sequences consisted of
attribute vectors from 12 consecutive windows. The di-
mension of the BDS state space was again 5. WAD dic-
tionaries were learned with both BMC and the MDS-
kM algorithm of (Ravichandran et al, 2012). One-versus-
all SVMs were used for BoOVW and BoWAD classifi-
cation, using a x? kernel. VLADAD was implemented
with a linear kernel, KDS and BDS used the kernel
K (024, 82y) = exp(—=d*(£2,,$2y)) where d is the dis-
tance used in Syn-4/5/6. These kernels achieved the
best performance for each of the methods in our pre-
liminary experiments.

Table 2 summarizes the performance of the different
methods. Both BoVW and the holistic attribute vec-
tor performed poorly. Note, in particular, how BoVW-
x1y1t6 now underperformed the two other implemen-
tations of temporal pyramid matching. This highlights
the difficulty of designing universal pooling schemes,
that can withstand significant intra class variability.
This problem also affected the dynamics models, which
performed substantially worse than in Table 1. While
the BDS significantly outperformed the other methods,
its performance was still lackluster. This is explained by
the underlying assumption of a single dynamic process,
a severe mismatch on Syn20x1 and Synl10x3, where
the activities of interest are 1) not temporally aligned
and 2) immersed in irrelevant video content. It is thus
not surprising that the BOWAD and VLADAD achieved
substantially better performance on these datasets, reach-
ing perfect classification. With respect to BoOWAD clus-
tering, both strategies achieved excellent results, with

BMC performing slightly better than MDS-£M. Over-
all, these results demonstrate the robustness of the pro-
posed BoOWAD and VLADAD representations to intra-
class variation and noise.

7.3 Olympic Sports

The second set of experiments was performed on Olympic
Sports (Niebles et al, 2010). This contains YouTube
videos of 16 sport activities, with a total of 783 se-
quences. Some activities are sequences of atomic ac-
tions, whose temporal structure is critical for discrimi-
nation from other classes (e.g., “clean and jerk” v.s.
“snatch”, and “long-jump” wv.s. “triple-jump”). Since
the attribute labels of (Liu et al, 2011) are only available
for whole sequences, the attribute classifiers are much
noisier than in the previous experiment, degrading the
quality of attribute models. We followed the train-test
split proposed by (Niebles et al, 2010) and used per-
category average precision (AP) and mean AP (mAP)
to measure recognition performance. In all cases, low-
level feature quantization was based on 4000-word code-
books, learned with k-means. Attribute sequences were
computed with a 30-frame sliding window, implemented
with a stride of 4 frames.

The proposed approaches were compared to BoVW-
TP, the decomposable motion segments model (DMS)
of (Niebles et al, 2010), the hidden Markov model with
latent states of variable duration (VD-HMM) (Tang
et al, 2012), the holistic attribute, and two recent ap-
proaches that also model attribute dynamics: the HMM
fisher vector (HMM-FV) of (Sun and Nevatia, 2013)
and the combined temporal representation (CTR) of
(Bhattacharya et al, 2014). Classification was performed
with SVMs using a x? or Jensen-Shannon kernel for
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Fig. 9: Average precisions on Olympic Sports with STIP as the low-level feature.

’ account for dynamics (e.g., the holistic attribute vec-
tor) but substantial even over the alternative models
0.9y of attribute dynamics, such as HMM-FV or CTR. This
0.8 is likely due to the richer characterization of the hid-
0.7p den state space by the BDS and its modeling of low-
0.6f dimensional attribute subspaces. An interesting obser-
E(E' 0.5¢ vation is that BoVW-x1y1t3 underperforms the vanilla
0.4} BoVW significantly, reflecting the fact that its rigid
0.3l temporal cells with fixed temporal anchor points 1) are
' -6-BoWAD (STIP) coarse for capturing finer structure within each cell, and

0.2r -©-BoWAD (ITF) 2) t adant to int 1 iati Thi 1
ol ~~VLADAD (STIP)| cannot adapt to intra-class variation. This vulner-
: ~-VLADAD (ITF) ability of BoVW with augmented “rigidity” to over-
05 4 8 16 32 64 128 2565121024 fitting is also confirmed by other works in literature

#WAD (Lan et al, 2014).

Fig. 10: Mean average precision (mAP) v.s. size of Third, the BDS gains are smaller than in Weiz-

WAD dictionary on Olympic Sports.

histogram-based methods (BoVW, holistic attribute,
BoWAD); SVMs using a radial basis function (RBF)
kernel Ko(i,j) = exp(—Zd?(i,j)) for HMM-FV and
CTR; a nearest neighbor classifier or SVM using the
RBF kernel for BDS; and a linear SVM for VLADAD.
For each method, the best classifier parameters were
chosen by 4-fold cross-validation on the training set.
The number of PCA components L of the BDS was se-
lected from {2,4, 6,8}, and the length 7 of the attribute
sequences of BOWAD and VLADAD from {4, 6, 8,10, 12,
16} by cross-validation on the training set.

The performance of the different approaches is sum-
marized in Table 37. Several conclusions can be drawn.
First, all models benefit strongly from the ITF fea-
tures. The increased performance of BDS, BoOWAD, and
VLADAD with these features suggests that a more dis-
criminant set of low-level features, and thus cleaner at-
tributes, can significantly simplify the problem of mod-
eling of attribute dynamics.

Second, the BDS again outperforms all other mod-
els. The gains are larger over methods that do not

7 Note that the version of Olympic Sports used in (Niebles
et al, 2010) is different from that released publicly. DMS per-
formance on the latter was reported in (Tang et al, 2012).

mann. This is due, in part, to the increased difficulty
of modeling dynamics because annotations are noisy
and, in part, to the nature of the dataset. While Weiz-
mann requires fine-grained temporal discrimination for
most classes, this is not the case in Olympic. For exam-
ple, the holistic attribute vector suffices to discriminate
classes that are very distinctive, e.g., that have unique
motion. An example is “diving platform 10m,” which
can be singled out by its distinctive patterns of fast
downward motion. This is visible in the per-category
average-precision plot of Fig. 9, where the holistic at-
tribute vector performs very well for this class. On the
other hand, finer grained temporal analysis is required
to distinguish between similar classes, e.g., “long-jump”
v.s.“triple jump”, or “clean and jerk” v.s.“snatch”. Fig. 9
clearly shows that these classes 1) pose a greater chal-
lenge to previous methods, and 2) lead to the largest
gains by the BDS, BoOWAD, and VLADAD.

Fourth, while the BDS performs quite well for classes
with reasonably well segmented and aligned sequences
(e.g., “long jump”), the assumption of a single dynamic
process again limits its performance for categories with
larger variability (e.g., “snatch”, “clean and jerk”, “ten-
etc). Both BOWAD and VLADAD perform
better in this case, improving BDS performance by 4%
to 9% overall. Fig. 9 shows that this improvement is
particularly significant for categories, such as “clean

nis serve”,
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Table 5: Event list for MED11
0.3 ~6-DEVT: bowad (stip)| |
-©-DEVT: bowad (idtf)
ID Event Name ID Event Name T8 DE vied %
- 0,25/ 0-bEvo bty g g e PO T
attempt a board et a vehicle un- : i
B001 715 P E009 ftuck 3D vacad it O/,&--—o O
E002 feed an animal E010 groom an animal 0.2 i
E003 land a fish E011 make a sandwich @'/ ,:p
E004 wedding ceremony E012 parade o g :
< 0.15¢ b
Eoos  Work onmawood E013  parkour E
project
E006 Dbirthday party E014 repair an appliance o1l |
E007 change a vehicle tyre  E015 wor}( on a sewing
project
E008 flash mob gathering 0.05/ i
7.4 Recounting 2 4 8 16 :13#2\NA6|§ 128 256 512 1024
An interesting property of the BOWAD is that it can be Fig. 12: Mean average precision (mAP) v.s. size of

easily combined with “recounting” procedures to sup-
port semantic video segmentation, summarization, and
activity identification. This follows from the fact that
the contribution of a particular WAD to the score of an
activity classifier can be seen as a measure of the impor-
tance of the corresponding pattern of attribute dynam-
ics for the detection of the target activity. We used the
recounting procedure of (Yu et al, 2012), quantifying
the significance of a video segment (for event detec-
tion) by the weighted sum of the similarities between
the corresponding BoWAD histogram bin and those of
the SVM support vectors. More specifically, let = be
the BoOWAD histogram and consider a prediction rule
based on an additive kernel, e.g., an SVM with HIK. In
this case,

h(z) = Zl aig(z, 29 + (78)

where (" is the i-th support vector, «; the correspond-

WAD dictionary on MED11.

Four examples are illustrated in Fig. 11. In both
instances of “clean and jerk”, the BoWAD discovers
the two signature motion of “lifting barbell to chest
level” and “lifting barbell over head”. Note the varia-
tion in temporal location and duration of these events
in the two sequences. On the other hand, the signature
events discovered for “triple jump” and “tennis serve,”
are “large step forward followed by jump”, and “toss
ball into the air followed by hit,” respectively. These
results illustrate the robustness of the BOWAD to video
uninformative of the target activity, and its ability to
zoom in on the discriminant events. This is critical for
accurate activity recognition from realistic video.

7.5 TRECVID-MED11

ing SVM weight, ¢ a constant, and g(z, 2(0) = 37 g; (x5, 27)

measures the similarity between z; and x. The predic-
tion rule then can be rewritten as

h(z) = ij ;gj(w;,29) + ¢ = Zj hj(x;) + ¢, (79)

where hj(z;) = 3, aigj(zj,2?) is the contribution
of histogram bin z; to the classification score of the
BoWAD histogram. Note that, unlike the holistic at-
tributes of (Yu et al, 2012), for which temporal localiza-
tion intractable, each video segment is associated with
a WAD in the BoWAD, which corresponds to a short-
term pattern of activity. This allows the quantification
of the contribution of the video segment to event detec-
tion by h;(x;), where x; is the bin of the corresponding
WAD. This enables a precise characterization of the
temporal duration and anchor points of different event
evidence.

The third set of experiments used the 2011 TRECVID
multimedia event detection (MED11) open source data-
set (Over et al, 2011). This is one of the most chal-
lenging datasets for activity or event recognition due to
1) the vaguely defined high-level event categories (e.g.,
“birthday party”); 2) the large intra-class variation in
terms of event composition (e.g., temporal duration,
organization), stage setting, illumination, cutting, res-
olution, ete; 3) large negative samples, and so forth. We
followed the protocol suggested by the TRECVID eval-
uation guidelines for performance evaluation. Specifi-
cally, the event collection (EC) set was used for train-
ing. EC contains 2,392 training samples of 15 high-level
events (see Table 5 for the full list), with 100-200 pos-
itive examples per event. Two evaluation sets, DEV-T
and DEV-0O, were used for testing. DEV-T has 10,723
samples (370 hours of video in total), approximately
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0.04 417 83.42 12513 166.83

208.54 250.25 291.96 353.48

Fig. 15: Recounting by BOWAD on MEDI11 for sequences of “attempt a board trick”, “feed an animal”, “wedding
ceremony”, “change a vehicle tyre”, “parade”, and “parkour” (top to bottom). Snapshots from the most significant

clips of each sequence are also shown.

sequence lengths achieved the best performance for all
event classes.

However, there were also some significant differences.

First, the previously proposed models of temporal struc-
ture, either for low-level features (DMS and VD-HMM)
or attributes (BDS, HMM-FV, CTR), performed worse
or, at most, on par with the holistic attribute vec-
tor. This can be justified by the complexity and vari-
ability of the MED events. The BDS was particularly

affected by this problem, performing 1% — 5% worse
than the other models of attribute dynamics. Together
with Section 7.3, these results confirm that, while the
BDS is a better model of dynamics for segmented and
aligned video, it has difficulties for video containing
multiple dynamic processes. The fact that the BoWAD
and VLADAD outperform both the holistic attribute
vector, and the previous models of low-level (DMS, VD-
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HMM) and attribute (HMM-FV, CTR) dynamics shows
that they effectively address this problem.

Second, and more surprising, attribute-based mod-
els underperformed the BoVW. This could be due to
1) noisy attribute classification, or 2) limited attribute
vocabulary. Since, as shown in Fig. 14, attribute-based
approaches handled some events better than the BoVW
we believe that the latter is the main problem. In any
case, since this shows that attribute representations
capture information complementary to that of the Bow,
the fusion of attribute models and the BoVW should
lead to the best performance. Table 6 shows that this is
indeed the case, as all attribute representations improve
on the BoOVW when combined with it by late fusion. In
fact, when fused with BoVW and holistic attribute, the
VLADAD achieves 21.84% mAP on MED11 DEV-O.
In comparison to other benchmarks, this is substan-
tially higher than the 15.69% of (Vahdat et al, 2013),
16.02% of (Lai et al, 2014), 15.35% of (Hajimirsadeghi
et al, 2015), and comparable to 22.13% (best results for
a single low-level feature) by (Xu et al, 2014).

Another important task in TRECVID is recount-
ing of multimedia events, which we implemented as in
Section 7.3. Several BoOWAD recounting examples are il-
lustrated in Fig. 15, again showing that modeling local
signature behavior is sufficient for accurate detection of
complex activities. Specifically, the BOWAD captures a
somersault by a subject riding a skateboard in “attempt
a board trick”, the action of throwing food to dolphins
in “feeding an animal”, the scattered scenes of “danc-
ing”, “cutting cake”, and “bouquet toss” in “wedding
ceremony”, the marching crowd on “parade”, and so
on. On the other hand, as shown in Fig. 16, recount-
ing results also reveal two major reasons for detection
false positives. The first is the existence of visual con-
tent (e.g., motion) confusable with that of the target
event. The top sequence of Fig. 16, a sequence of “at-
tempt a board trick” where a bike rider performs som-
ersaults similar to those executed by skateboard riders
in the background, is an example of this problem. Sim-
ilarly, the second sequence shows a false positive for
“parkour,” where several athletes perform plyometric
activities or other forms of training, which involve run-
ning, jumping over obstacles, and climbing. The second
reason for false positives is the ambiguity of certain
activities, which lead to inconsistent ground-truth on
MED11. For example, the third and fourth sequences
of Fig. 16 are labeled as background events for “groom
an animal” and “parade,” respectively. However, the
recounting results show that both sequences are indeed
instances of these events.

8 Conclusion

In this work, we have proposed a novel representation
for video, based on the modeling of action attribute
dynamics. The core of this representation is the binary
dynamic system (BDS), a joint model for attribute ap-
pearance and dynamics. This model was shown to be
effective for video sequences that display a single ac-
tivity, of homogeneous dynamics. To address the chal-
lenges of complex activity recognition, where video se-
quences can be composed of multiple atomic events
or actions, the BDS was embedded in a BoVW-style
representation, denoted the BoWAD. This is based on
a BDS codebook, representing video as an histogram
of assignments to BDSs that characterize temporally
localized attribute dynamics. To enhance discrimina-
tion, this representation was extended into a Fisher-
like encoding that characterizes the first moments of
local behavior in the BDS manifold. This generalizes
the popular VLAD representation and was denoted the
VLADAD. Experiments have shown that the BDS, the
BoWAD, and the VLADAD have state of the art perfor-
mance for activity recognition in video whose segments
range from precisely segmented and well aligned to un-
segmented and scattered within larger video streams.
The ability of these representations to capture signature
events of different activity classes was demonstrated
through various recounting examples.
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Appendices

A Convergence of Bag-of-Models Clustering

The bag-of-models clustering procedure of Algorithm 2
is a general framework for clustering examples in a Rie-
mannian manifold M of statistical models. The goal is
to find a preset number of models {M;}/<, C M in the
manifold that best explain a corpora D = {z;}}¥ | (z; €
Z,Vi). It is assumed that all models M are parametrized
by a set of parameters 6 and have smooth likelihood
functions (derivatives of all orders exist and are bounded),
and that Algorithm 2 satisfies the following conditions.

Condition 1: the operation faq of (20) consists of es-
timating the parameters 6 of M by the mazimum like-
lihood estimation (MLE) principle.



Fig. 16: Recounting by BoWAD on MED11 false positives (top 0.1% detections) for “attempt a board trick,”
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Condition 2: the Riemannian metric of the manifold
M defined by the Fisher information Zg_ (Jaakkola and
Haussler, 1999; Amari and Nagaoka, 2000) is used as
the dissimilarity measure of (21). More precisely, the
metric of M in the neighbrhood of model M, is

dM(M*y MZ) = ||0* - 0z||%ezv (Al)

where |61 — 03]|%2 = (01 — 62)TZ(0; — 62), and the
Fisher information Zg, is defined as (Amari, 1998)

Igz = —EmNP(w;‘gz) [Vg lnp(ili; 9)|9:gz] . (AQ)

Given the similarity between Algorithm 2 and k-
means, the convergence of the former can be studied
with the techniques commonly used to show that the
latter converges. This requires the definition of a suit-
able objective function to quantify the quality of the fit
of the set {MZ}JK:1 to the corpora D. We rely on the
objective

CHUMYIS {8 HS) =D ) Inpu, (2),

J ZGSj

(A.3)

where py(-) is the likelihood function of model M, and
S; a subset of D, containing all examples assigned to j-
th model. Note that this implies that Vi # j, S; () S; =

groom an animal,” and “parade” (top to bottom).

@ and |J;S; = D. From the assumption of smooth
models M (i.e., Vz € Z,M € M, py(z) < o00) and
the fact that there is only a finite set of assignments
{S;}1<,, the objective function of (A.3) is upper bounded.
Since the refinement step of Algorithm 2 updates the
models so that

= fM(SJ(.t+1)) = arg max E Inpy(2),
MeM T
z€S;

M;t-&-l)
the objective either increases or remains constant after
each refinement step. It remains to prove that the same
holds for each assignment step. If that is the case, Algo-
rithm 2 produces a monotonically increasing and upper-
bounded sequence of objective function values. By the
monotone convergence theorem, this implies that algo-
rithm converges in a finite number of steps. Note that,
as in k-means, there is no guarantee on convergence to
the global optimum.

It thus remains to prove that the objective of (A.3)
increases with each assignment step. The Riemannian
structure of the manifold M, makes this proof more
technical than the corresponding one for k-means. In
what follows, we provide a sketch of the proof. Let M*
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be the model (of parameters 8*) to which example z is
assigned by the assignment step of Algorithm 2, i.e.,
M* = argmin dy(My, M)
Me{MP}E

(A4)

and M° (of parameter 6°) the equivalent model of the
previous iteration. It follows from Condition 2 that

du(M*, M) =|6" - 0.|[7,

. . ) (A.5)
< dm(M®, M) = ||6° - 6|z, -

Note that, M, is the model p(z;0.) onto which z is

mapped by (20). From Condition 1, 8, = arg max, p(z;0)

and, using a Taylor series expansion,
Inp(z;0) ~Inp(2;0,) + (Vg lnp(2;0)|e=g.,0 — 6.)
1
+3110 - 021, (A.6)

1
zlnp(z;Oz)+§||0—0zH%,9z, (A7)

where Hg_ = V3 Inp(z;0)|e—e, is the Hessian of In p(z; 6)

at 0. Since p(z; 0) is the model obtained from a single
example z, it is a heavily peaky distribution centered at
z. Hence, the expectation of (A.2) can be approximated
by

(A.8)
Combining (A.5), (A.7), and (A.8) then results in

* 1 *
Inp(z;0%) ~ Inp(z;0,) + §||0 - 0z||?qez

1.
~lnp(z:6.) - 516" - 613,

1 (e} o
>Inp(z;0,) — §||0 — 0z||%gz ~Inp(z;0°).

It follows that the objective of (A.3) increases after
each assignment step. This is intuitive in the sense that,
the closer a model M is to an example’s representative
model, the better M can explain that example.

B Optimization

In this appendix, we derive (72), by considering the
optimization problem

X* = arg max bIn|X| — tr(AX),
XeS,4

s.t. A S S++, b > 0.

(B.1)

Since 1) both b1n | X | and —tr(AX) are smooth and con-
cave functions in X (Boyd and Vandenberghe, 2004),
and 2) the domain S;; is an open convex set, the

supremum of (B.1) is achieved at either 1) its station-
ary point(s) (if any), or 2) the boundary of its domain.
The derivative of the objective function of (B.1) is

o) _
a—X{bln | X| —tr(AX)} =b(X )T — A, (B.2)
Setting (B.2) to zero leads to
X*=bA"teS,,. (B.3)

Applying this result to (71), with b = 1, X = X and
A=W, leads to (72).

C Variational Inference for BDS

The key computation of the variational inference pro-
cedure of Section 6.2.3 is to determine

m; = <33t>qa
Et,t = <($t - mt)(wt - mt)T>q ,

Dier1 = ((@e — M) (Teg1 — mey1)7), -

In this appendix, we derive an efficient method for this
computation, which draws on the solution of the iden-
tical variational inference problem for the LDS of (10).
We start by discussing the LDS case.

C.1 Inference for Linear Dynamic Systems

Consider the LDS of (10) with parameters O1ps =
{S,pu, A, C,Q, R,u}, an observation sequence {y]} (y, €
RX), and the variational distribution g(z) of (57). Sim-
ilarly to the derivation of Section 6.2.3, the variational
lower bound of (41) for the log-likelihood of the LDS
can be shown to be

T—1

Z(0,y,9) = (Inp(21)), + Y (p(@eilz.),

t=1
+> " (Inp(y,lz)), + Hy(X),
t=1

with (Inp(z1)), , (Inp(xi41|@)), » and Hy(X) as in (63)-
(65). Furthermore, defining g, = y, — u,
<1np(yt‘wt)>q = <1ng(@t;cwt7R)>q(mt)
(InG(Czy; 9y, R)>g(wt;mt,2t,t)
= <1ng($t§¥~!taR)>g(mt;cm“cxt,tcr)

and, from (8),

(C.1)

(C.2)

17, . _
(np(y, o)), o — (15— Cmelf + (R 05,,07)).
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It follows that

|
20.3.0) x 3 {lIn—ml + (571 50)
T—1 T
+ 3 () + Y te(RTIO5,,0T)
t=1 t=1

.
+ 30l - Ol f + 5151,
t=1
where I' and @, are defined in Section 6.2.3.

As was the the case with (69), the optimization
of (C.3) with respect to the variational distribution ¢
can be factorized into two optimization problems

Z(0,y,q)

(C.3)

{m*, X"} =  arg max

L LT
{m,Z}eRLTxSET

= {arg max.%(0,y,q),arg max £ (0,y, q)}

LT LT
meR ZGS_H_

In fact, the dependence of (C.3) on X is identical to
that of (69), up to the replacement of R by 41. Hence,
the optimal X' is still the solution of (71), i.e.,
=W (C.4)
but with a matrix W € S, which is slightly different
from (71), namely

ATQ YA+ S~V +CTR7IC, i=j=1,
ATQ'A+Q '+ C™RIC, 1<i=j<T,
W Q'+CTR71C, i=7=T,
Y —Q A, i=j41,
—ATQ™, =71,
0, otherwise,
(C.5)

where W; ; € REXL is the block in row-i, column-j of
w.

In summary, the algorithm for learning the covari-
ance of the variational distribution of the BDS is iden-
tical to the learning algorithm for the covariance of the
variational distribution of a LDS with R = 41. Further-
more, since all random variables  and y (as well as all
marginal or conditional distributions) of the LDS are
Gaussian, the variational inference is exact in this case
and

q"(z) = p(z|y;0LDs)-

It thus follows that the standard algorithms for exact
inference of p(x|y; 01 ps) with the LDS can be used to
compute the covariance X* of the variational distribu-
tion of the BDS. In the following section, we briefly
review the Kalman smoothing filter, which is the most
popular such algorithm.

The situation is, however, different for the mean of
the variational distribution. In this case, the LDS con-
tinues to have a simple closed-form solution, namely

m* =Wy, (C.6)
where W is as in (C.5) and
vy
. Sil/‘l’+CR71gla = 15
vV = . y Vt = ~
: CR 'y, 1<t<T.
VT
(C.7)

However, because the dependence of (C.3) on m is no
longer identical to that of (69), the LDS solution is not
informative for learning the BDS. A different procedure
is thus required to learn the variational mean of the
BDS. This is discussed in Section C.3.

C.2 Inferring the variational covariance X of the BDS

Note that, m* and X* have size linear and quadratic,
respectively, in 7, the length of the sequence {y7 }. This
makes the direct solution of (C.6) and (C.4) expensive
for long sequences - complexity O(LP7*) with p ~ 2.4.
Furthermore, this solution is unnecessary, since infer-
ence with both the LDS and BDS only requires X} ; and
Xt ii1- A popular efficient alternative is the Kalman
smoothing filter (Shumway and Stoffer, 1982; Roweis
and Ghahramani, 1999), which is commonly use to es-
timate the posteriors p(x:|yT) and p(xs, @111|yT) of the
LDS, i.e., m* of (C.6), Xy, and X}, ., of (C.4).

Defining expectations conditioned on the observed
sequence from time t =1tot =1 as

(C.8)
(C.9)

Tr = L) p(alyy )
Vz‘k = <(wt - ﬁj:)(ajk - :i};)T>p(mt,mk\yl,u.,yr) ’

the estimates are calculated via the forward and back-
ward recursions:

— In the forward recursion, for t = 1,---
pute

, T, COm-

Vtt,;1 = A‘A/tt:f,thT +Q, ( )
K, =V/7ICT(CVTICT + Ry) T (C.11)
Vi =V - KOV (C.12)

& = AwlT], (C.13)
@b =&+ Ky(g, - Ca, ), (C.14)

with initial conditions &) = p and Vfl =5.
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— In the backward recursion, fort =7,--- |1,
Ji—1 = ‘A/;tillt 1AT(VZ;1)_1 (C.15)
N } + i (@] — AzyTY), (C.16)
thmfl = Vt 1,t—1 + Ji- l(Vtt Vttt l)JtT 1y (C 17)

and for t =7,---,2,

t—
‘/t 1,t— 2*‘/t 1t IJt72

(C.18)
+ thl(‘/;tfl -

A‘Zﬁ:{tq)Jtsz

with initial condition VT 1=

(I_KTC)AVTT:I{Tfl’

This algorithm can be used to efficiently compute the
variational covariance parameters X}, and Xf,.; of

the BDS, which are exactly the matrices Vft of (C.17)

and V{t_l of (C.18), respectively. This has complex-
ity O(LPT), with p = 2.4.

C.3 Infering the variational mean m of the BDS

The variational mean m is the solution of

*

m* = arg max £(6,q) (C.19)

= arg max{p,gs_lml —-m]S™'m,

m
1 T7—1
—§§:ﬁr*&
t=1
+ Z [Wkt Ino(@ge) + (1 — 7)) In O’(*(:}kt)i| }
tk

This can be rewritten as

1
m* = arg max{ - imTWm +bIm,y (C.20)

m

+ Z |:7Tkt Ino (@) + (1 — mge) lng(iwkt)} }’

t,k
where
ATQ7 A+ 87 i=4=1,
ATQ7 1A+ Q™Y 1<i=j<m,
W, =1 A (c21)
_QilAu =] + ]-v
—ATQ, i=j—1,
0, otherwise,

Wt = Cy + uy, and by = 25y Since £(0,q) is a
concave function of m € R™", gradient-based methods
can be applied to search for the stationary point where
global optimum is guaranteed.

The gradient of £(8, q) is

CcT B
2 90,q)= —Wm+ D -] :
am ) q - 0 b
cTl B,
(C.22)
where
o(Wre) — e
/Bt =

o(Wkt) — TKt
The second-order partial derivatives of % (0,q) is
cT=.C
82
om?2

2(0,q) = —W — . (C.23)

CT=.C
where

Z; = diag(o(Wir)o(—w1e), -+, 0(@re)o(—wke)).
Given the concavity and smoothness of .% (0, q), many
popular numerical optimization algorithms can be uti-
lized to search for its optimum, e.g., gradient descent,
Newton-Raphson method, Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, etc.

D The Fisher Vector for BDS

In this section, we present the derivation of the Fisher
vector for BDS using the tightest variational lower bound
2(6,q%) of (69). This consists of computing partial
derivatives of 2(0, q*) w.r.t. each of the BDS parame-
ters @ = {S™ 1 u, A,Q71,C,u}.

D.1 Derivative w.r.t. S—!

We have

0 Y, *
55-12(0.4)
0

= 55T 2[ln|S 1\—tr( Py —2mipT + ppt)S” 1)}

=5 (s +2umi” — P - ), (D.1)

where Pt*ht2 is defined in (62). Note that, S™' € S,
thus the derivative of (D.1) needs to be projected into
the space of symmetric matrices S”. Since an orthonor-
mal basis of S” is {1(E; ;+E;;),1 <i < j < L}, where
E;; € RE*E with the (i, j)-element equal to one and
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all the rest elements being zero, it can be shown that
after the projection, (D.1) becomes
o X
—Z(0,q"
55-1-2(0,7)

1 * * P*
=5 (S +umiT +mipT - Py - HHT)~ (D.2)

D.2 Derivative w.r.t. p

‘We have
0 *
0 1
_ To—-1,*  —, TQ—1
78u{u5 ™ 2“5 “}
— 57\ (m} — p). (D.3)
D.3 Derivative w.r.t. A
We have
9 *
o T—1 . . 1A* B
=51 > tr( P Q A- P ATQTA
t=1
0 1
- TO-1A_ ZATO1
94 [tr(@ QA 2¢>A Q A)}
1
= (FTQ7T — 5[Q 7T AT + Q' A
— Q7 - Ag), (D.4)

where

T T
_ * _ D *
o= E Py, U= E Py 4.
t=2 t=2

D.4 Derivative w.r.t. Q1

We have
0 Y, *
Wﬁ(&q )
- 0
=501

T7—1
D * — 1 * —
{Ztr (APt,t+1Q 't iAPmATQ !
t=1

1., _ T—1 _
- §Pt+1,t+1Q 1) + (T)IH‘Q 1‘]

[tr (AIIITQ_l - %A¢ATQ_1 - ;pQ—l)

0
=501
T—1

2

+ )ln|Q1|]

— WAT ¢ % [(T —1)Q — AGAT — 47 (D.5)

where

Y= Z Pty:t-
t=2

Again, since Q! € S, ,, the partial derivative of (D.5)

is projected into S, giving

o .
2017
- %[!I/AT FAUT — AGAT — o+ (r—1)Q|. (D7)

(D.6)

(0,97)

D.5 Derivative w.r.t. C

Assuming C' = [C u], we have

0
=2(0,q"
26210.4)
0 ~ .
_ { 3 [m Ino(Cr.by) + (1 — me) lna(—C’k.bt)}
oC
1 e n
_ 8tr(CTC’T)}
1 r O'(él.bt) — Tt
= - 3CT : b} D.
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Table 7: Examples for Syn-4/5/6
Syn-4 skip-run-walk-wavel
Syn-5 jack-wavel-bend-walk-walk
Syn-6 wave2-run-walk-wavel-jump-wave2

Table 8: Examples for Syn20x1

wavel-wavel-wave2-walk-walk-wavel-
walk-wave2-wave2-walk-jack-skip-
wave2-bend-bend-jump-run-skip-jack-
wavel

Ground-truth
Activity

side-wave2-walk-skip-run-wavel-bend-
bend-walk-walk-wavel-wavel-wave2-
walk-walk-wavel-walk-wave2-wave2-
walk-jack-skip-wave2-bend-bend-jump-
run-skip-jack-wavel-side-bend-side-

. walk-run-side-walk-jack-bend-walk;
Noisy

Instances

1 jump-run-wavel-wavel-wave2-walk-

walk-wavel-walk-wave2-wave2-walk-
jack-skip-wave2-bend-bend-jump-
run-skip-jack-wavel-wavel-walk-side-
jump-side-jump-jump-run-jack-side-
wavel-run-run-skip-wavel-jack-side-
bend;

1 ground-truth activities are composed of actions in red.
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Table 9: Examples for Syn10x2

Ground-truth

jack-jump-side-jump-pjump-run-jack-side-bend-wavel;

Activity run-side-side-skip-run-jump-walk-jack-run-skip
wave2-run-wavel-bend-jump-wavel-skip-side-jack-jump-side-jump-pjump-run-jack-side-bend-wavel-walk-
wave2-wave2-wavel-side-pjump-wave2-run-side-side-skip-run-jump-walk-jack-run-skip-jack-pjump-pjump-

Noisy pjump-pjump;
Instances? jump-jack-jump-side-jump-pjump-run-jack-side-bend-wavel-jump-side-skip-jack-run-side-bend-jump-

pjump-side-run-side-side-skip-run-jump-walk-jack-run-skip-side-pjump-wave2-walk-run-pjump-wave2-

wave2-walk;

2 ground-truth activities are composed of actions in red.

where Cy,. is the k-th row of C, and

= 250
T = t; t,t

5 bt: (Trft>
0 0

E Weizmann Complex Activity
E.1 Synthetic Datasets

The synthetic dataset contains three sets: Syn-4/5/6,
Syn20x1 and Synls0x2, which are generated using the
10 atomic actions (per person) from the original Weiz-
mann dataset by Gorelick et al (2007). Exemplar activ-
ities in Syn-4/5/6, Syn20x1, and Synl0x2 are shown

in Table 7, Table 8, and Table 9, respectively. For Syn20x 1,

and Syn10x2, two of the 9 instances for an activity (each
instance is assembled from each of the 9 people’s atomic
actions).

F Attribute Definition
F.1 Weizmann Complex Activity

Attribute definitions from (Liu et al, 2011) on Weiz-
mann complex activity are shown in Table 10.

F.2 Olympic Sports

Attribute definitions from (Liu et al, 2011) on Olympic
Sports dataset (Niebles et al, 2010) are shown in Ta-
ble 11.

F.3 TRECVID MED11

Attribute definitions from (Bhattacharya, 2013) on TREC-

VID MED11 dataset (Over et al, 2011) are shown in Ta-
ble 12.
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Table 11: Attributes for Olympic Sports
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Table 12: Attribute List for TRECVID MED11*
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