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Abstract

The problem of quantizing the activations of a deep neu-
ral network is considered. An examination of the popu-
lar binary quantization approach shows that this consists
of approximating a classical non-linearity, the hyperbolic
tangent, by two functions: a piecewise constant 𝑠𝑖𝑔𝑛 func-
tion, which is used in feedforward network computations,
and a piecewise linear hard tanh function, used in the back-
propagation step during network learning. The problem of
approximating the widely used ReLU non-linearity is then
considered. An half-wave Gaussian quantizer (HWGQ) is
proposed for forward approximation and shown to have ef-
ficient implementation, by exploiting the statistics of of net-
work activations and batch normalization operations. To
overcome the problem of gradient mismatch, due to the use
of different forward and backward approximations, several
piece-wise backward approximators are then investigated.
The implementation of the resulting quantized network, de-
noted as HWGQ-Net, is shown to achieve much closer
performance to full precision networks, such as AlexNet,
ResNet, GoogLeNet and VGG-Net, than previously avail-
able low-precision networks, with 1-bit binary weights and
2-bit quantized activations.

1. Introduction

Deep neural networks have achieved state-of-the-art per-
formance on computer vision problems, such as classifica-
tion [21, 33, 34, 11, 12], detection [7, 31, 1], etc. How-
ever, their complexity is an impediment to widespread de-
ployment in many applications of real world interest, where
either memory or computational resource is limited. This
is due to two main issues: large model sizes (50MB for
GoogLeNet [34], 200M for ResNet-101 [12], 250MB for
AlexNet [21], or 500M for VGG-Net [33]) and large com-
putational cost, typically requiring GPU-based implemen-
tations. This generated interest in compressed models with
smaller memory footprints and computation.

Several works have addressed the reduction of model
size, through the use of quantization [3, 26, 24], low-rank

matrix factorization [18, 6], pruning [10, 9], architecture de-
sign [25, 16], etc. Recently, it has been shown that weight
compression by quantization can achieve very large mem-
ory savings, reducing each weight to as little as 1 bit, at a
marginal cost in classification accuracy [3, 26]. It is, how-
ever, less effective along the computational dimension, be-
cause the core network operation, implemented by each of
its units, is the dot-product between a weight and an acti-
vation vector. Complementing binary or quantized weights
with quantized activations would enable the replacement of
expensive dot-products by logical and bit-counting opera-
tions. Substantial speed ups should thus be possible if, in
addition to weights, the inputs of each unit were binarized
or quantized to low-bit.

However, the quantization of activations is more diffi-
cult than that of weights. For example, [4, 30] have shown
that, while it is possible to binarize weights with a marginal
cost in model accuracy, additional quantization of activa-
tions incurs nontrivial losses for large-scale classification,
such as on ImageNet [32]. The difficulty is that binariza-
tion or quantization of activations requires their process-
ing with non-differentiable operators that create problems
for the backpropagation algorithm. This iterates between
a feedforward step that computes network outputs and a
backpropagation step that computes the gradients required
for learning. The difficulty is that binarization or quantiza-
tion operators have step-wise responses that produce very
weak gradient signals during backpropagation, compromis-
ing learning efficiency. So far, the problem has been ad-
dressed by using continuous approximations of the operator
used in the feedforward step to implement the backpropa-
gation step. This, however, creates a mismatch between the
model that implements the forward computations and the
derivatives used to learn it, leading to a sub-optimal model.

In this work, we view the quantization operator, used
in the feedforward step, and the continuous approxima-
tion, used in the backpropagation step, as two functions
that approximate the activation function of each network
unit. We refer to these as the forward and backward ap-
proximation of the activation function. We start by consid-
ering the binary ±1 quantizer, used in [4, 30], for which



these two functions can be seen as a discrete and a contin-
uous approximation of a non-linear activation function, the
hyperbolic tangent, frequently used in classical neural net-
works. This activation is, however, not commonly used in
recent deep learning literature, where the ReLU nonlinear-
ity [28, 36, 11] has achieved much greater preponderance.
This is exactly because it produces much stronger gradient
magnitudes. While the hyperbolic tangent or sigmoid non-
linearities are squashing non-linearities and mostly flat, the
ReLU is an half-wave rectifier, of linear response to posi-
tive inputs. Hence, while the derivatives of the hyperbolic
tangent are close to zero almost everywhere, the ReLU has
unit derivative along the entire positive range of the axis.

To improve the learning efficiency of quantized net-
works, we consider the design of forward and backward ap-
proximation functions for the ReLU. To discretize its linear
component, we propose to use an optimal quantizer. By
exploiting the statistics of network activations and batch
normalization operations that are commonly used in the lit-
erature, we show that this can be done with an half-wave
Gaussian quantizer (HWGQ) that requires no learning and
is very efficient to compute. While some recent works have
attempted similar ideas [4, 30], their design of a quantizer is
not sufficient to guarantee good deep learning performance.
We address this problem by complementing this design with
a study of suitable backward approximation functions that
account for the mismatch between the forward model and
the back propagated derivatives. This study suggests op-
erations such as linearization, gradient clipping or gradi-
ent suppression for the implementation of the backward ap-
proximation. We show that a combination of the forward
HWGQ with these backward operations produces very effi-
cient low-precision networks, denoted as HWGQ-Net, with
much closer performance to continuous models, such as
AlexNet [21], ResNet [12], GoogLeNet [34] and VGG-Net
[33], than other available low-precision networks in the lit-
erature. To the best of our knowledge, this is the first time
that a single low-precision algorithm could achieve success
for so many popular networks. Using the arguments of [30],
the HWGQ-Net (1-bit weights and 2-bit activations) could
theoretically achieve ∼32× memory and ∼32× convolu-
tional computation savings. This suggests that the HWGQ-
Net can be very useful for the deployment of state-of-the-art
neural networks in real world applications.

2. Related Work

The reduction of model size is a popular goal in the deep
learning literature. One strategy is to exploit the widely
known redundancy of neural network weights [5]. For ex-
ample, [6, 18] proposed low-rank matrix factorization as a
way to decompose a large weight matrix into several separa-
ble small matrices. An alternative procedure, known as con-
nection pruning [10, 9], consists of removing unimportant

connections of a pre-trained model and retraining, show-
ing considerable model reduction without noticable loss in
accuracy. Another model compression strategy is to con-
strain the model architecture itself, e.g. by removing fully
connected layers, using convolutional filters of small size,
etc. Many state-of-the-art deep networks, such as NIN
[25], GoogLeNet [34] and ResNet [12], rely on such design
choices. For example, SqueezeNet [16] has been shown to
achieve a parameter reduction of ∼50 times, for accuracy
comparable to that of AlexNet. Moreover, hash functions
have also been used to compress model size [2].

Another branch of approaches for model compression is
weight binarization [3, 30, 4] or quantization [26, 24, 8].
[35] used a fixed-point representation to quantize weights of
pre-trained neural networks. [8] showed that vector quan-
tization enables 4∼8 times compression with minimal ac-
curacy loss. [24] proposed a method for fixed-point quan-
tization based on the optimal bit-width allocations across
network layers. [22, 26] have shown that ternary weight
quantization into levels {−1, 0, 1} can achieve 16× or 32×
model compression with slight accuracy loss, even on large-
scale classification tasks. Finally, [3] has shown that filter
weights can be quantized to ±1 without noticeable loss of
classification accuracy on CIFAR-10 [20].

Since quantization of activations enables further speed-
ups and reduces training memory requirements, it has at-
tracted some attention [35, 24, 4, 30, 37, 23, 26]. [35, 24]
performed the quantization after network training, avoid-
ing the issues of nondifferentiable optimization. Recently,
[4, 30, 37] tried to tackle the nondifferentiable optimization
issue by using a continuous approximation to the quantizer
function in the backpropagation step. [23] proposed sev-
eral potential solutions to the problem of gradient mismatch
and [26, 37] showed that gradients can be quantized with
a small number of bits during the backpropagation step.
While some of these methods have produced good results
on CIFAR-10, none has produced low precision networks
competitive with full-precision models on large-scale clas-
sification tasks, such as ImageNet [32].

3. Binary Networks

We start with a brief review of the issues involved in the
binarization of a deep network.

3.1. Goals

Deep neural networks consist of layers of units that
roughly model the computations of neurons in the mam-
malian brain. Each unit computes an activation function

𝑧 = 𝑔(w𝑇 x), (1)

where w ∈ ℝ
𝑐⋅𝑤⋅ℎ is a weight vector, x ∈ ℝ

𝑐⋅𝑤⋅ℎ an in-
put vector, and 𝑔(⋅) a non-linear function. A convolutional



Figure 1. Forward and backward functions for binary 𝑠𝑖𝑔𝑛 (left)
and half-wave Gaussian quantization (right) activations.

network implements layers of these units, where weights
are usually represented as a tensor W ∈ ℝ

𝑐×𝑤×ℎ. The di-
mensions 𝑐, 𝑤 and ℎ are defined by the number of filter
channels, width and height, respectively. Since modern net-
works have very large numbers of these units, the structure
of (1) is the main factor in the complexity of the overall
model. This complexity can be a problem for applications
along two dimensions. The first is the large memory foot-
print required to store weights w. The second is the compu-
tational complexity required to compute large numbers of
dot-products w𝑇 x. Both difficulties are compounded by the
requirement of floating point storage of weights and float-
ing point arithmetic to compute dot-products, which are not
practical for many applications. This has motivated interest
in low-precision networks [4, 30, 37].

3.2. Weight Binarization

An effective strategy to binarize the weights W of con-
volutional filters, which we adopt in this work, has been
proposed by [30]. This consists of approximating the full
precision weight matrix W, used to compute the activations
of (1) for all the units, by the product of a binary matrix
B ∈ {+1,−1}𝑐×𝑤×ℎ and a scaling factor 𝛼 ∈ ℝ

+, such
that W ≈ 𝛼B. A convolutional operation on input I can
then be approximated by

I ∗ W ≈ 𝛼(I ⊕ B), (2)

where ⊕ denotes a multiplication-free convolution. [30] has
shown that an optimal approximation can be achieved with
B∗ = 𝑠𝑖𝑔𝑛(W) and 𝛼∗ = 1

𝑐𝑤ℎ∥W∥1. While binary weights
tremendously reduce the memory footprint of the model,
they do not fully solve the problem of computational com-
plexity. Substantial further reductions of complexity can
be obtained by the binarization of I, which enables the im-
plementation of dot products in (2) with logical and bit-
counting operations [4, 30].

3.3. Binary Activation Quantization

The use of binary activations has been suggested in [30,
4, 37]. It is usually implemented by replacing 𝑔(𝑥) in (1)
with the 𝑠𝑖𝑔𝑛 non-linearity

𝑧 = 𝑠𝑖𝑔𝑛(𝑥) =

{
+1, if 𝑥 ≥ 0,
−1, otherwise

(3)

shown in Figure 1. This creates difficulties to the backprop-
agation algorithm used to learn the neural network, by min-
imizing a cost 𝐶 with respect to the weights w. Consider
the unit of (1). The derivative of 𝐶 with respect to w is

∂𝐶

∂w
=

∂𝐶

∂𝑧
𝑔′(w𝑇x)x. (4)

When 𝑔(𝑥) is replaced by (3), the derivative 𝑔′(w𝑇x) is
zero almost everywhere and the gradient magnitudes tend to
be very small. In result, the gradient descent algorithm does
not converge to minima of the cost. To overcome this prob-
lem, [4] proposed to use an alternative function, hard tanh,
which we denote by 𝑠𝑖𝑔𝑛, in the backpropagation step. This
function is shown in Figure 1, and has derivative

𝑠𝑖𝑔𝑛
′
(𝑥) =

{
1, if ∣𝑥∣ ≤ 1
0, otherwise.

(5)

In this work, we denote (3) as the forward and (5) as
the backward approximations of the activation non-linearity
𝑔(𝑥) of (1). These approximations have two main problems.
The first is that they approximate the hyperbolic tangent
(tanh), which is a squashing non-linearity. The saturating
behavior of squashing non-linearities (such as the tanh or
the sigmoid) emphasizes the problem of vanishing deriva-
tives, compromising the effectiveness of backpropagation.
The second is that the discrepancy between the approxi-
mation of 𝑔(𝑥) by the forward 𝑠𝑖𝑔𝑛 and by the backward
𝑠𝑖𝑔𝑛 creates a mismatch between the feedforward model
and the derivatives used to learn it. In result, backpropaga-
tion can be highly suboptimal. This is called the “gradient
mismatch” problem [23].

4. Half-wave Gaussian Quantization

In this section, we propose an alternative quantization
strategy, the approximation of the ReLU non-linearity.

4.1. ReLU

The ReLU is the half-wave rectifier defined by [28],

𝑔(𝑥) = max(0, 𝑥). (6)

It is now well known that, when compared to squashing
non-linearities, its use in (1) significantly improves the ef-
ficiency of the backpropagation algorithm. It thus seems
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Figure 2. Dot-product distributions on different layers of AlexNet with binary weights and quantized activations (100 random images).

more sensible to rely on ReLU approximations for network
quantization than those of the previous section. We propose
a quantizer 𝑄(𝑥) to approximate (6) in the feedforward step
and a suitable piecewise linear approximation �̃�(𝑥) for the
backpropagation step.

4.2. Forward Approximation

A quantizer is a piecewise constant function

𝑄(𝑥) = 𝑞𝑖, 𝑖𝑓 𝑥 ∈ (𝑡𝑖, 𝑡𝑖+1], (7)

that maps all values of 𝑥 within quantization interval
(𝑡𝑖, 𝑡𝑖+1] into a quantization level 𝑞𝑖 ∈ ℝ, for 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.
In general, 𝑡1 = −∞ and 𝑡𝑚+1 = ∞. This generalizes the
𝑠𝑖𝑔𝑛 function, which can be seen as a 1-bit quantizer. A
quantizer is denoted uniform if

𝑞𝑖+1 − 𝑞𝑖 = Δ, ∀𝑖, (8)

where Δ is a constant quantization step. The quantization
levels 𝑞𝑖 act as reconstruction values for 𝑥, under the con-
straint of reduced precision. Since, for any 𝑥, it suffices to
store the quantization index 𝑖 of (7) to recover the quan-
tization level 𝑞𝑖, non-uniform quantization requires log2 𝑚
bits of storage per activation 𝑥. However, more than log2 𝑚
bits are needed to represent 𝑥 in arithmetic operations, since
these use 𝑞𝑖, not the index 𝑖. For a uniform quantizer, where
Δ is a universal scaling factor that can be placed in evi-
dence, log2 𝑚 bits are enough for both storage and arith-
metic computation.

Optimal quantizers are usually defined in the mean-
squared error sense, i.e.

𝑄∗(𝑥) = argmin
𝑄

𝐸𝑥[(𝑄(𝑥)− 𝑥)2] (9)

= argmin
𝑄

∫
𝑝(𝑥)(𝑄(𝑥)− 𝑥)2𝑑𝑥

where 𝑝(𝑥) is the probability density function of 𝑥. Hence,
the optimal quantizer of the dot-products of (1) depends on
their statistics. While the optimal solution 𝑄∗(𝑥) of (9) is
usually non-uniform, a uniform solution 𝑄∗(𝑥) is available
by adding the uniform constraint of (8) to (9). Given dot
product samples, the optimal solution of (9) can be obtained
by Lloyd’s algorithm [27]. This, however, is an iterative al-
gorithm. Since a different quantizer must be designed per

network unit, and this quantizer changes with the backprop-
agation iteration, the straightforward application of this pro-
cedure is computationally intractable.

This difficulty can be avoided by exploiting the statisti-
cal structure of the activations of deep networks. For ex-
ample, [15, 17] have noted that the dot-products of (1) tend
to have a symmetric, non-sparse distribution, that is close
to Gaussian. Taking into account the fact that the ReLU is
a half-wave rectifier, this suggests the use of the half-wave
Gaussian quantizer (HWGQ),

𝑄(𝑥) =

{
𝑞𝑖, if 𝑥 ∈ (𝑡𝑖, 𝑡𝑖+1],
0, 𝑥 ≤ 0,

(10)

where 𝑞𝑖 ∈ ℝ
+ for 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 and 𝑡𝑖 ∈ ℝ

+ for
𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 + 1 (𝑡1 = 0 and 𝑡𝑚+1 = ∞) are the optimal
quantization parameters for the Gaussian distribution. The
adoption of the HWGQ guarantees that these parameters
only depend on the mean and variance of the dot-product
distribution. However, because these can vary across units,
it does not eliminate the need for the repeated application of
Lloyd’s algorithm across the network.

This problem can be alleviated by resorting to batch nor-
malization [17]. This is a widely used normalization tech-
nique, which forces the responses of each network layer to
have zero mean and unit variance. We apply this normaliza-
tion to the dot-products, with the result illustrated in Figure
2, for a number of AlexNet units of different layers. Al-
though the distributions are not perfectly Gaussian and there
are minor differences between them, they are all close to
Gaussian with zero mean and unit variance. It follows that
the optimal quantization parameters 𝑞∗𝑖 and 𝑡∗𝑖 are approx-
imately identical across units, layers and backpropagation
iterations. Hence, Lloyd’s algorithm can be applied once,
with data from the entire network. In fact, because all distri-
butions are approximately Gaussian of zero mean and unit
variance, the quantizer can even be designed from samples
of this distribution. In our implementation, we drew 106

samples from a standard Gaussian distribution of zero mean
and unit variance, and obtained the optimal quantization pa-
rameters by Lloyd’s algorithm. The resulting parameters 𝑡∗𝑖
and 𝑞∗𝑖 were used to parametrize a single HWGQ that was
used in all layers, after batch normalization of dot-products.



4.3. Backward Approximation

Since the HWGQ is a step-wise constant function, it has
zero derivative almost everywhere. Hence, the approxima-
tion of 𝑔(𝑥) by 𝑄(𝑥) in (4) leads to the problem of vanish-
ing derivatives. As in Section 3, a piecewise linear function
�̃�(𝑥) can be used during the backpropagation step to avoid
weak convergence. In summary, we seek a piece-wise func-
tion that provides a good approximation to the ReLU and to
the HWGQ. We next consider three possibilities.

4.3.1 Vanilla ReLU

Since the ReLU of (6) is already a piece-wise linear func-
tion, it seems sensible to use the ReLU itself, denoted
the vanilla ReLU, as the backward approximation function.
This corresponds to using the derivative

�̃�′(𝑥) =
{

1, if 𝑥 > 0,
0, otherwise

(11)

in (4). The forward and backward approximations 𝑄(𝑥)

and �̃�(𝑥) of the ReLU are shown in Figure 1. Note that,
while the backward approximation is exact, it is not equal to
the forward approximation. Hence, there is a gradient mis-
match. For 𝑥 > 0, the approximation of 𝑄(𝑥) by the ReLU
has error ∣𝑄(𝑥)− 𝑥∣. This is upper bounded by (𝑡𝑖+1 − 𝑞𝑖)
for 𝑥 ∈ (𝑡𝑖, 𝑡𝑖+1] but unbounded when 𝑥 ∈ (𝑡𝑚,∞).
Hence, the mismatch is particularly large for large values of
𝑥. Since these are the values on the tail of the distribution
of 𝑥, the ReLU is said to have a large mismatch with 𝑄(𝑥)
“on the tail.” When the ReLU is used to approximate 𝑔′(𝑥)
in (4), it can originate very inaccurate gradients for large
dot-products. In our experience, this can make the learning
algorithm unstable.

This is a classical problem in the robust estimation liter-
ature, where outliers can unduly influence the performance
of a learning algorithm [14]. For quantization, where 𝑄(𝑥)
assumes that values of 𝑥 beyond 𝑞𝑚 have very low probabil-
ity, large dot-products are effectively outliers. The classical
strategy for outlier mitigation is to limit the growth rate of
the error function, in this case ∣𝑄(𝑥)−𝑥∣. Hence, the prob-
lem is the monotonicity of the ReLU beyond 𝑥 = 𝑞𝑚. To
address it, we investigate alternative backwards approxima-
tion functions of slower growth rate.

4.3.2 Clipped ReLU

The first approximation, denoted the clipped ReLU, is iden-
tical to the vanilla ReLU in (−∞, 𝑞𝑚] but constant beyond
𝑥 = 𝑞𝑚,

�̃�𝑐(𝑥) =

⎧⎨
⎩

𝑞𝑚, 𝑥 > 𝑞𝑚,
𝑥, 𝑥 ∈ (0, 𝑞𝑚],
0, otherwise.

(12)

Figure 3. Backward piece-wise activation functions of clipped
ReLU and log-tailed ReLU.

Its use to approximate 𝑔′(w𝑇x) in (4) guarantees that there
is no mismatch on the tail. Gradients are non-zero only for
dot-products in the interval (0, 𝑞𝑚]. As illustrated in Fig-
ure 3, the clipped ReLU is a better match for the HWGQ
than the vanilla ReLU. In our experiments, ReLU clipping
proved very useful to guarantee a stable optimization. This
is similar to previous observations that gradient clipping ro-
bustifies the learning of very deep networks [29].

4.3.3 Log-tailed ReLU

Ideally, a network with quantized activations should ap-
proach the performance of a full-precision network as the
number of quantization levels 𝑚 increases. The sensitiv-
ity of the vanilla ReLU approximation to outliers limits the
performance of low precision networks. While the clipped
ReLU alleviates this problem, it can impair network perfor-
mance due to the loss of information in the clipped interval
(𝑞𝑚,∞). An intermediate solution is to use, in this inter-
val, a function whose growth rate is in between that of the
clipped ReLU (zero derivative) and the ReLU (unit deriva-
tive). One possibility is to enforce logarithmic growth on
the tail, according to

�̃�𝑙(𝑥) =

⎧⎨
⎩

𝑞𝑚 + log(𝑥− 𝜏), 𝑥 > 𝑞𝑚,
𝑥, 𝑥 ∈ (0, 𝑞𝑚],
0, 𝑥 ≤ 0,

(13)

where 𝜏 = 𝑞𝑚−1. This is denoted the log-tailed ReLU and
is shown in Figure 3. It has derivative

�̃�
′
𝑙(𝑥) =

⎧⎨
⎩

1/(𝑥− 𝜏), 𝑥 > 𝑞𝑚,
1, 𝑥 ∈ (0, 𝑞𝑚],
0, 𝑥 ≤ 0.

(14)

When used to approximate 𝑔′(𝑥) in (4), the log-tailed ReLU
is identical to the vanilla ReLU for amplitudes smaller than
𝑞𝑚, but gives decreasing weight to amplitudes larger than
this. It behaves like the vanilla ReLU (unit derivative) for
0 < 𝑥 ≤ 𝑞𝑚 but converges to the clipped ReLU (zero
derivative) as 𝑥 grows to infinity.

5. Experimental Results

The proposed HWGQ-Net was evaluated on ImageNet
(ILSVRC2012) [32], which has ∼1.2M training images



Table 1. Full-precision Activation Comparison for AlexNet.
Full FW+˜𝑠𝑖𝑔𝑛 FW+ ˜𝑄 BW+˜𝑠𝑖𝑔𝑛 BW+ ˜𝑄

Top-1 55.7 46.7 55.7 43.9 53.9
Top-5 79.3 71.0 79.3 68.3 77.3

Table 2. Low-bit Activation Comparison.
Model Full BW FW+𝑄 BW+𝑠𝑖𝑔𝑛 BW+𝑄

AlexNet
Top-1 55.7 52.4 49.5 39.5 46.8
Top-5 79.3 75.9 73.7 63.6 71.0

ResNet-18
Top-1 66.3 61.3 37.5 42.1 33.0
Top-5 87.5 83.6 61.9 67.1 56.9

VGG-Variant
Top-1 68.6 65.5 48.3 50.1 44.1
Top-5 88.9 86.5 72.3 74.3 68.7

from 1K categories and 50K validation images. The eval-
uation metrics were top-1 and top-5 classification accu-
racy. Several popular networks were tested: AlexNet
[21], ResNet [12], a variant of VGG-Net [33, 11], and
GoogLeNet [34]. Our implementation uses Caffe [19], see
source code at https://github.com/zhaoweicai/hwgq.

5.1. Implementation Details

In all experiments, training images were resized to
256×256, and a 224×224 (227×227 for AlexNet) crop
was randomly sampled from an image or its horizontal flip.
Batch normalization [17] was applied before each quan-
tization layer, as discussed in Section 4.2. The ratio of
dropout [13] was set as 0.1 for networks with binary weights
and full activations, but no dropout was used for networks
with quantized activations. All networks were learned from
scratch with SGD. No data augmentation was used other
than standard random image flipping and cropping. No bias
term was used for binarized weights. As in [30], networks
with quantized activations used max-pooling before batch
normalization. This is denoted “layer re-ordering”. As in
[30, 37], the first and last network layers had full precision.
Evaluation was based solely on central 224×224 crops.

On AlexNet [21] experiments, the mini-batch size was
256, weight decay 0.0005, and learning rate started at 0.01.
For ResNet, we used the parameters of [12]. For the vari-
ant of VGG-Net, denoted VGG-Variant, a smaller version
of model-A in [11], only 3 convolutional layers were used
for input size of 56, 28 and 14, and the “spp” layer was
removed. The mini-batch size was 128, and learning rate
started at 0.01. For GoogLeNet [34], the branches for side
losses were removed, in the inception layers, max-pooling
was removed and the channel number of the “reduce” 1×1
convolutional layers was increased to that of their follow-
ing 3×3 and 5×5 convolutional layers. Weight decay was
0.0002 and the learning strategy was similar to ResNet [12].
For all networks tested, momentum was 0.9, and when
mini-batch size was 256 (128), the learning rate was divided
by 10 after every 50K (100K) iterations, 160K (320K) in
total. Only AlexNet, ResNet-18 and VGG-Variant were ex-
plored in the following ablation studies. In all tables and fig-
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Figure 4. The error curves of training (thin) and test (thick) for
𝑠𝑖𝑔𝑛(𝑥) and 𝑄(𝑥) (HWGQ) activation functions.

ures, “FW” indicates full-precision weights, “BW” binary
weights, and “Full” full-precision weights and activations.

5.2. Full-precision Activation Comparison

Before considering the performance of the forward quan-
tized activation functions 𝑠𝑖𝑔𝑛(𝑥) and 𝑄(𝑥), we compared
the performance of the continuous 𝑠𝑖𝑔𝑛(𝑥) (hard tanh) and
�̃�(𝑥) (ReLU) as activation function. In this case, there is no
activation quantization nor forward/backward gradient mis-
match. AlexNet results are presented in Table 1, using iden-
tical settings for 𝑠𝑖𝑔𝑛(𝑥) and �̃�(𝑥), for fair comparison.
As expected from the discussion of Sections 3 and 4, �̃�(𝑥)

achieved substantially better performance than 𝑠𝑖𝑔𝑛(𝑥), for
both FW and BW networks. The fact that these results up-
per bound the performance achievable when quantization
is included suggests that 𝑠𝑖𝑔𝑛(𝑥) is not a good choice for
quantization function. 𝑄(𝑥), on the other hand, has a fairly
reasonable upper bound.

5.3. Low-bit Activation Quantization Results

We next compared the performance achieved by adding
the 𝑠𝑖𝑔𝑛 and HWGQ 𝑄(𝑥) (backward vanilla ReLU) quan-
tizers to the set-up of the previous section. The results of
AlexNet, ResNet-18 and VGG-Variant are summarized in
Table 2. Notice, first, that BW has weaker performance than
BW+𝑄 of AlexNet in Table 1, due to the impact of the layer
re-ordering [30] introduced in Section 5.1. Next, compar-
ing BW to FW+𝑄, where the former binarizes weights only
and the latter quantizes activations only, it can be seen that
weight binarization causes a minor degradation of accuracy.
This is consistent with the findings of [30, 4]. On the other
hand, activation quantization leads to a nontrivial loss. This
confirms that the latter is a more difficult problem.

When weight binarization and activation quantization
were combined, recognition performance dropped even fur-
ther. For AlexNet, the drop was much more drastic for
BW+𝑠𝑖𝑔𝑛 (backward hard tanh) than for BW+𝑄 (back-
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Figure 5. The error curves of training (thin) and test (thick) for alternative backward approximations.

Table 3. Backward Approximations Comparison.
Model BW no-opt vanilla clipped log-tailed

AlexNet
Top-1 52.4 30.0 46.8 48.6 49.0
Top-5 75.9 53.6 71.0 72.8 73.1

ResNet-18
Top-1 61.3 34.2 33.0 54.5 53.5
Top-5 83.6 59.6 56.9 78.5 77.7

VGG-Variant
Top-1 65.5 42.8 44.1 60.9 60.6
Top-5 86.5 68.3 68.7 83.2 82.9

ward vanilla ReLU). These results support the hypotheses
of Section 3 and 4, as well as the findings of Table 1. The
training errors of BW+𝑠𝑖𝑔𝑛 and BW+𝑄 for AlexNet are
shown in Figure 4. Note the much lower training error of
𝑄(𝑥), suggesting that it enables a much better approxima-
tion of the full precision activations than 𝑠𝑖𝑔𝑛(𝑥). Nev-
ertheless, the gradient mismatch due to the use of 𝑄(𝑥)
as forward and the vanilla ReLU as backward approxima-
tors made the optimization somewhat instable. For exam-
ple, the error curve of BW+𝑄 is bumpy during training.
This problem becomes more serious for deeper networks.
In fact, for the ResNet-18 and VGG-Variant, BW+𝑄 per-
formed worse than BW+𝑠𝑖𝑔𝑛. This can be explained by
the fact that the 𝑠𝑖𝑔𝑛 has a smaller gradient mismatch prob-
lem than the vanilla ReLU. Substantial improvements are
possible by correcting the mismatch between the forward
quantizer 𝑄(𝑥) and its backward approximator.

5.4. Backward Approximations Comparison

We next considered the impact of the backward approxi-
mators of Section 4.3. Table 3 shows the performance under
the different approximations. In all cases, weights were bi-
narized and the HWGQ was used as forward approximator
(quantizer). “no-opt” refers to the quantization of activa-
tions of pre-trained BW networks. This requires no non-
differentiable approximation, but fails to account for the
quantization error. We attempted to minimize the impact
of cumulative errors across the network by recomputing the
means and variances of all batch normalization layers. Even
after this, “no-opt” had significantly lower accuracy than the
full-precision activation networks.

Substantial gains were obtained by training the activa-

Table 4. Bit-width Comparison of Activation Quantization.
quantization type non-uniform uniform none

# levels 2 3 7 15 3∗ 7∗ BW

AlexNet
Top-1 48.6 50.6 52.4 52.6 50.5 51.9 52.4
Top-5 72.8 74.3 75.8 76.2 74.6 75.7 75.9

ResNet-18
Top-1 54.5 57.6 60.3 60.8 56.1 59.6 61.3
Top-5 78.5 81.0 82.8 83.4 79.7 82.4 83.6

tion quantized networks from scratch. Although the vanilla
ReLU had reasonable performance as backwards approxi-
mator for AlexNet, much better results were achieved with
the clipped ReLU of (12) and the log-tailed ReLU of (13).
Figure 5 shows that the larger gradient mismatch of the
vanilla ReLU created instabilities in the optimization, for
all networks. However, these instabilities were more seri-
ous for the deeper networks, such as ResNet-18 and VGG-
Variant. This explains the sharper drop in performance of
the vanilla ReLU for these networks, in Table 3. Note, in
Figure 5, that the clipped ReLU and the log-tailed ReLU
enabled more stable learning and reached a much better
optimum for all networks. Among them, the log-tailed
ReLU performed slightly better than the clipped ReLU
on AlexNet, but slightly worse on ResNet-18 and VGG-
Variant. To be consistent, “clipped ReLU” was used in the
following sections.

5.5. Bit-width Impact

The next set of experiments studied the bit-width impact
of the activation quantization. In all cases, weights were bi-
narized. Table 4 summarizes the performance of AlexNet
and ResNet-18 as a function of the number of quantiza-
tion levels. While the former improved with the latter, there
was a saturation effect. The default HWGQ configuration,
also used in all previous experiments, consisted of two non-
uniform positive quantization levels plus a “0”. This is de-
noted as “2” in the table. For AlexNet, this very low-bit
quantization sufficed to achieve recognition rates close to
those of the full-precision activations. For this network,
quantization with seven non-uniform levels was sufficient to
reproduce the performance of full-precision activations. For
ResNet-18, however, there was a more noticeable gap be-



Table 5. HWGQ implementation of various popular networks.
Model Reference Full HWGQ

AlexNet
Top-1 57.1 58.5 52.7
Top-5 80.2 81.5 76.3

ResNet-18
Top-1 69.6 67.3 59.6
Top-5 89.2 87.9 82.2

ResNet-34
Top-1 73.3 69.4 64.3
Top-5 91.3 89.1 85.7

ResNet-50
Top-1 76.0 71.5 64.6
Top-5 93.0 90.5 85.9

VGG-Variant
Top-1 - 69.8 64.1
Top-5 - 89.3 85.6

GoogLeNet
Top-1 68.7 71.4 63.0
Top-5 88.9 90.5 84.9

tween low-bit and full-precision activations. These results
suggest that increasing the number of quantization levels is
more beneficial for ResNet-18 than for AlexNet.

Table 4 also shows the results obtained with uniform
quantization, with superscript “∗”. Interestingly, for the
same number of quantization levels, the performance of
the uniform quantizer was only slightly worse than that of
its non-uniform counterpart. This is, however, not a com-
pletely fair comparison since, as discussed in Section 4.2,
non-uniform quantization requires more bits for arithmetic
operations. For the same bit width, e.g. both “2” and “3∗”
require a 2-bit representation for arithmetic computation,
the uniform quantizer was noticeably superior to the non-
uniform quantizer.

5.6. Comparison to the state-of-the-art

Table 51 presents a comparison between the full preci-
sion and the low-precision HWGQ-Net of many popular
network architectures. In all cases, the HWGQ-Net used
1-bit binary weights, a 2-bit uniform HWGQ as forward
approximator, and the clipped ReLU as backwards approxi-
mator. Comparing to the previous ablation experiments, the
numbers of training iterations were doubled and polynomial
learning rate annealing (power of 1) was used for HWGQ-
Net. Table 5 shows that the HWGQ-Net approximates well
all popular networks, independently of their complexity or
depth. The top-1 accuracy drops from full- to low-precision
are similar for all networks (5∼9 points), suggesting that
low-precision HWGQ-Net will achieve improved perfor-
mance as better full-precision networks become available.

Training a network with binary weights and low-
precision activations from scratch is a new and challeng-
ing problem, only addressed by a few previous works
[4, 30, 37]. Table 6 compares the HWGQ-Net with the re-
cent XNOR-Net [30] and DOREFA-Net [37], on the Ima-
geNet classification task. The DOREFA-Net result is for
a model of binary weights, 2-bit activation, full precision

1The reference performance of AlexNet and GoogLeNet
is at https://github.com/BVLC/caffe, and of ResNet is at
https://github.com/facebook/fb.resnet.torch. Our worse ResNet im-
plementations are probably due to fewer training iterations and no further
data augmentation.

Table 6. Comparison to state-of-the-art low-precision methods.
Top-1 gap to the corresponding full-precision network is also re-
ported.

Model
AlexNet ResNet-18

XNOR DOREFA HWGQ XNOR HWGQ
Top-1 44.2 47.7 52.7 51.2 59.6
Top-5 69.2 - 76.3 73.2 82.2

Top-1 gap -12.4 -8.2 -5.8 -18.1 -7.7

gradient and no pre-training. For AlexNet, the HWGQ-Net
outperformed the XNOR-Net and the DOREFA-Net by a
large margin. Similar improvements over the XNOR-Net
were observed for the ResNet-18, where DOREFA-Net re-
sults are not available. It is worth noting that the gaps be-
tween the full-precision networks and the HWGQ-Net (-
5.8 for AlexNet and -7.7 for ResNet-18) are much smaller
than those of the XNOR-Net (-12.4 for AlexNet and -18.1
for ResNet-18) and the DOREFA-Net (-8.2 for AlexNet).
This is strong evidence that the HWGQ is a better activa-
tion quantizer. Note that, in contrast to the experimentation
with one or two networks by [4, 30, 37], the HWGQ-Net
is shown to perform well for various network architectures.
To the best of our knowledge, this is the first time that a
single low-precision network is shown to successfully ap-
proximate many popular networks.

6. Conclusion

In this work, we considered the problem of training high
performance deep networks with low-precision. This was
achieved by designing two approximators for the ReLU
non-linearity: a half-wave Gaussian quantizer in the feed-
forward computations, and a piece-wise continuous func-
tion in the backpropagation step. This design overcomes
the learning inefficiency of the popular binary 𝑠𝑖𝑔𝑛 quanti-
zation procedure. To minimize the problem of gradient mis-
match, we have studied several backwards approximation
functions, including clipped ReLU and log tailed ReLU ap-
proximators. The proposed network, denoted HWGQ-Net,
was shown to significantly outperform previous efforts at
deep learning with low precision, for various state-of-the-art
networks. These promising results suggest that the HWGQ-
Net can be very useful for the deployment of state-of-the-art
neural networks in real world applications.
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