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Abstract— Cloud storage is vulnerable to advanced persistent
threats (APTs), in which an attacker launches stealthy, contin-
uous, and targeted attacks on storage devices. In this paper,
prospect theory (PT) is applied to formulate the interaction
between the defender of a cloud storage system and an APT
attacker who makes subjective decisions that sometimes deviate
from the results of expected utility theory, which is a basis of
traditional game theory. In the PT-based cloud storage defense
game with pure strategy, the defender chooses a scan interval for
each storage device and the subjective APT attacker chooses his
or her interval of attack against each device. A mixed-strategy
subjective storage defense game is also investigated, in which each
subjective defender and APT attacker acts under uncertainty
about the action of its opponent. The Nash equilibria (NEs) of
both games are derived, showing that the subjective view of an
APT attacker can improve the utility of the defender. A Q-
learning-based APT defense scheme that the storage defender
can apply without being aware of the APT attack model or the
subjectivity model of the attacker in the dynamic APT defense
game is also proposed. Simulation results show that the proposed
defense scheme suppresses the attack motivation of subjective
APT attackers and improves the utility of the defender, compared
with the benchmark greedy defense strategy.

Index Terms— Cloud storage, advanced persistent threats,
game theory, prospect theory, Q-learning.

I. INTRODUCTION

CLOUD storage is vulnerable to advanced persistent
threats (APTs), in which an attacker launches sophisti-

cated, stealthy, continuous, and targeted attacks. By applying
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multiple sophisticated attack methods, APT attackers aim
to steal information from a target cyber system including
cloud storage over an extended period of time without being
noticed. APT attackers usually take multiple attack phases
and study the defense policy of the target system in advance,
making it challenging to detect APTs and estimate the attack
duration. According to [1], more than 65% of the organizations
responding to the survey in 2014 witnessed an increase of APT
attacks, and the current doctrine against APTs is to detect them
as early as possible [2].

Game theory is an important tool for studying APT attacks.
In the seminal work in [3], the interaction between an APT
attacker and a defender was formulated as a stealthy takeover
game. Most existing game theoretic studies of APT attacks
are based on expected utility theory (EUT), in which each
player chooses its strategy to maximize the expected utility.
However, as human beings, APT attackers are not always
rational as assumed in traditional game theoretic models and
they sometimes make subjective decisions under uncertainties
that deviate from the results of expected utility theory, such
as risk seeking, loss aversion and the nonlinear weighting
of gains and losses [4], as illustrated by Allais paradox
described in [5]. Similarly, the defenders also are subject to
such subjective traits in decision-making, thus making the
model here amenable to use of prospect theory (PT).

By using the probability weighting function and value
function, prospect theory can model the subjective decision-
making processes of end-users and successfully explain the
deviations of their decisions from EUT-based results [6].
Prospect theory has been successfully applied to study the
interactions between people in many areas, such as social
sciences [7], [8], communication networks [9]–[15], and smart
energy management [16], [17].

In this paper, prospect theory is applied to study cloud stor-
age defense against advanced persistent threats and investigate
the impact of end-user subjectivity on storage defense. More
specifically, we formulate a cloud storage defense game, in
which a subjective attacker chooses his or her interval to
launch APT attacks to compromise storage devices and a
defender chooses its scan interval to recapture the compro-
mised storage devices. Prelec’s probability weighting func-
tion [18] is applied to model the subjective decision-making
of the attacker and defender under uncertain attack durations
in the pure-strategy game or uncertain action of their opponent
in the mixed-strategy game. The Nash equilibria (NEs) of
both subjective games are derived to investigate the impact of
end-user subjectivity on the APT defense games.

0733-8716 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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XIAO et al.: CLOUD STORAGE DEFENSE AGAINST ADVANCED PERSISTENT THREATS 535

A Q-learning based APT defense strategy is proposed for
the cloud storage defender who is unaware of the attack model
or the subjectivity model of the APT attacker to derive the
optimal storage scan policy via trials in a dynamic form of the
game. Based on the iterative Bellman equation, the Q-learning
algorithm, as a model-free reinforcement learning technique,
is convenient to implement and can achieve the optimal
policy in the Markov decision process (MDP). Simulations
are performed to evaluate the performance of the Q-learning
based APT defense scheme, showing that it can suppress the
attack motivation of subjective APT attackers and improve the
utility of the defender.

The main contributions of this work can be summarized as
follows:
• We formulate a PT-based cloud storage defense game, in

which both the APT attacker and the storage defender
hold subjective views to choose their attack or scan
interval at each cloud storage device under uncertain
attack durations in the pure-strategy game or action of the
opponents in the mixed-strategy game. We derive the NEs
of the PT-based storage defense games and provide the
conditions under which the equilibria exist, showing that
a subjective APT attacker tends to attack less frequently.

• We propose a Q-learning based APT defense scheme for
the cloud storage defender to derive the optimal scan
interval policy without knowing the APT attack model or
subjectivity model in the dynamic storage defense games
against subjective APT attackers.

The remainder of the paper is organized as follows. We
review related work in Section II and present the system model
in Section III. We present a static subjective storage defense
game with pure-strategy in Section IV and investigate the
mixed-strategy PT-based game in Section V. We propose the
Q-learning based APT defense schemes in dynamic storage
defense games in Section VI. We provide simulation results
in Section VII and conclude in Section VIII.

II. RELATED WORK

Game theoretic approaches for modeling and studying APT
attacks have received considerable attention. In the seminal
work of [3], a Flipit game was proposed to formulate the
stealthy and continuous attacks of APT. The game between
an overt defender and a stealthy attacker was investigated
in [19], showing that the periodic defense strategy is the best
response against a non-adaptive attacker. A cyber-physical
signaling game among an APT attacker, a cloud defender
and a mobile device was formulated in [20], in which the
mobile device decides whether to trust the commands from
the cloud under APTs. The defense based on the dynamic
programming algorithm proposed in [21] provides a nearly
optimal solution against APT attacks. The two-layer APT
defense game formulated in [22] studies the joint threats from
an APT attacker and insiders in the cyber system.

Prospect theory has been applied to study wireless com-
munications and network security. For instance, a random
access game formulated in [9] applies prospect theory to
study channel access between two subjective end-users in
wireless networks. The impact of user subjectivity on both the

Fig. 1. Illustration of a cloud storage defense game, in which the defender
scans storage device i at xk

i interval, while the APT attacker takes a
duration zk

i to complete the k-th attack against device i after attack interval yk
i ,

with 1 ≤ i ≤ S and k > 0.

wireless random access and data pricing games was identified
in [10] based on prospect theory. The spectrum investment
of subjective secondary operators was investigated in [11],
and a PT-based sensing and leasing method was derived. The
PT-based pricing and resource allocation scheme proposed in
[15] improves the revenue of service providers in presence of
subjective users. A PT-based anti-jamming transmission game
formulated in [23] investigates the impact of the subjectivity
of end-users and jammers on the throughput in cognitive radio
networks.

Game theory can help develop security mechanisms for
cloud computing. For example, the game theoretic study of
coresident attacks in [24] develops a semi-supervised learning
based defense strategy to increase the attack costs. In the
PT-based storage defense game against subjective APT attacks
as presented in [25], we derived the NE of the game under
uncertain APT attack durations. In this paper, we consider
the generic APT scenarios with multiple storage devices and
multiple attack duration levels, instead of the special case with
a single device as assumed in [25]. We also present a dynamic
storage defense game with mixed-strategy and present a
Q-learning based defense strategy to resist subjective APT
attacks under uncertain device scan intervals.

III. SYSTEM MODEL

We consider a cloud storage system consisting of S storage
devices that are threatened by a subjective APT attacker (A)
and are protected by a storage defender (D), as shown in
Fig. 1. The defender chooses the time interval to perform the
k-th detection at storage device i against APT attacks, denoted
by xk

i , with 1 ≤ i ≤ S. It is clear that xk
i > 0, because

the defender has to take time to scan a storage device to
detect APT attacks. Upon detecting APT attacks, the defender
restores a compromised storage device and provides privacy
for the data stored on the device. The defender is unaware of
whether a storage device is compromised unless the device is
monitored.

According to the APT model as given in [21], the APT
attacker can apply advanced and sophisticated methods and
inject multiple types of malware to estimate the defense
strategy of the target system. The attacker can also determine
whether the attack successfully controls the target storage
device according to the data stolen from the device, and
observe the size of the stolen data to determine when the attack
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TABLE I

SUMMARY OF SYMBOLS AND NOTATION

is detected and stopped by the defender. The attacker waits
yk

i time before launching the k-th APT attack against storage
device i , once the defender detects attacks and restores that
storage device. The duration for the attacker to complete its
k-th attack at storage device i , denoted by zk

i , is in general
a positive random variable that is unknown to both players.
The defender is assumed to take charge of all the S storage
devices at the beginning.

We use the Prelec function in [18] to explain how a
subjective attacker or defender over-weighs low-probability
events and under-weighs outcomes having a high probability.
Being easy to analyze, the Prelec function has been used to
explain the human decision deviations from EUT results in
network security [12], [16]. Therefore, we apply this proba-
bility weighting function to model the subjective probability
of the attacker (or defender), denoted by wA (or wD), and
given by

wr (p) = exp
(− (− ln p)αr

)
, (1)

where αr ∈ (0, 1] as the objective weight of player r represents
the distortion that subjectivity causes in making decisions. For
example, if αA = 1, the attacker is objective and wA(p) = p.
Table 1 summarizes the notation used in the paper.

IV. SUBJECTIVE STORAGE DEFENSE

GAME WITH PURE-STRATEGY

The interaction between an APT attacker and a storage
defender over S storage devices is formulated as a subjective
cloud storage defense game with pure-strategy, denoted by G.
In this game, the storage defender chooses the scan interval xi

for storage device i , and the attacker decides his or her attack
interval yi against storage device i . The defense interval and
the attack interval are normalized for simplicity of analysis.
According to the maximum scan interval of the defender
denoted by T , the attacker and defender compete to take
charge of the S storage devices, with 0 < xi ≤ 1 and
0 ≤ yi ≤ 1, ∀1 ≤ i ≤ S. If the attack interval denoted by Ta

is greater than T , the game can be divided into K = �Ta/T �
interactions, with yi = 1,∀i < K and yK = mod (Ta, T ),
where �� is the ceiling function.

The gain of the defender for a longer scan interval at storage
device i is denoted by Gi , and the attack cost against device i
is denoted by Ci . As shown in Fig. 1, the time interval during
which storage device i is not compromised and the data is safe

is min ((yi + zi ) /xi , 1). Therefore, the attack rate denoted by
R is defined as the normalized "bad" interval during which
data privacy is at risk averaged over S storage devices, and is
given by

R = 1− 1

S

S∑

i=1

min

(
yi + zi

xi
, 1

)
. (2)

The utility of the defender depends on the normalized
“good” interval during which each storage device is protected
by the defender, i.e., min ((yi + zi )/xi , 1), and the gain of a
longer defense interval. Similar to the game model presented
in [21], the utility of the defender denoted by u D is defined
as

u D(x, y) =
S∑

i=1

(
min

(
yi + zi

xi
, 1

)
+ xi Gi

)
. (3)

The utility of the attacker denoted by u A is defined as

u A(x, y) = −
S∑

i=1

(
min

(
yi + zi

xi
, 1

)
+ I(yi < xi )Ci

)
, (4)

where the indicator function I(ξ) = 1 if ξ is true and 0
otherwise. The desire of the attacker to steal information from
the storage device is modeled by −min

(
(yi + zi )/xi , 1

)
.

The time interval for the attacker to successfully launch
an APT attack against storage device i zi is difficult to
estimate and is quantized into L non-zero levels following the
distribution [Pi

l ]0≤l≤L , where Pi
l = Pr(zi = l/L), ∀0 ≤ l ≤ L

and 1 ≤ i ≤ S. By definition, we have Pi
l ≥ 0 and∑L

l=0 Pi
l = 1. The expected utilities of the defender and the

attacker over the realizations of attack duration zi , denoted by
U EU T

D and U EU T
A , respectively, are given by (3) and (4) as

U EU T
D (x, y) =

S∑

i=1

(
L∑

l=0

Pi
l min

(
yi L + l

xi L
, 1

)
+ xi Gi

)

(5)

U EU T
A (x, y) = −

S∑

i=1

( L∑

l=0

Pi
l min

(
yi L + l

xi L
, 1

)

+ I(yi < xi )Ci

)
. (6)

The Prelec probability weighting function in (1) is used
to model the subjective decision-making of the players under
uncertain attack durations. The PT-based utilities of the sub-
jective defender and the attacker, denoted by U PT

D and U PT
A ,

respectively, are given by replacing the objective probabil-
ity Pi

l in (5) and (6) with the subjective probability w(Pi
l ),

i.e.,

U PT
D (x, y) =

S∑

i=1

(
L∑

l=0

wD(Pi
l ) min

(
yi L + l

xi L
, 1

)
+ xi Gi

)

(7)

U PT
A (x, y) = −

S∑

i=1

( L∑

l=0

wA(Pi
l ) min

(
yi L + l

xi L
, 1

)

+ I(yi < xi )Ci

)
. (8)
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A Nash equilibrium of the PT-based storage defense game
G, denoted by (x∗, y∗), consists of the best response of the
player in terms of the PT-based utility, if the opponent uses
the NE strategy. By definition, we have

x∗ = arg max
x

U PT
D (x, y∗), ∀x (9)

y∗ = arg max
y

U PT
A (x∗, y), ∀y. (10)

The objective weight of the attacker αA can be estimated
by the defender according to the defense history or provided
by security agents. Similarly, the attacker can obtain both
αD and αA according to the attack history against the target
storage system. On the other hand, if αA and αD are unknown,
the defender can apply the Q-learning based defense strategy
to derive its best defense policy which converges to the NEs,
as described in Section VI.

We first evaluate the NE of the static cloud storage defense
game G with a single storage device and two non-zero attack
duration levels, i.e., the probability mass function of z is given
by [P0, P1, 1 − P0 − P1]. The index i in the superscript is
omitted when no confusion occurs.

Theorem 1: The subjective storage defense game G with
S = 1 and L = 2 has an NE (x∗, y∗) = ( 1

2 , 0), if

I1 :

⎧
⎪⎪⎨

⎪⎪⎩

G ≤ exp

(
− (− ln P1)

αD

)
(11a)

C ≤ exp

(
− (− ln P0)

αA

)
; (11b)

(x∗, y∗) = (1, 0), if

I2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G > exp

(
− (− ln P1)

αD

)
(12a)

C < exp

(
− (− ln P0)

αA

)

+ 0.5exp

(
− (− ln P1)

αA

)
; (12b)

and (x∗, y∗) = (1, 1), if

I3 : C > exp

(
− (− ln P0)

αA

)

+ 0.5 exp

(
− (− ln P1)

αA

)
. (13)

Proof: By (1) and (8), we see that if 0 ≤ y < 1
2 ,

U PT
A

(1

2
, 0

) = −wA(P1)−wA(1− P0 − P1)− C

≥ −2ywA(P0)−wA(P1)

−wA(1− P0 − P1)− C

= U PT
A

(1

2
, y

)
. (14)

Similarly, if (11b) holds, ∀ 1
2 ≤ y ≤ 1, we have

U PT
A

(1

2
, 0

) = −wA(P1)− wA(1− P0 − P1)− C

≥ −wA(P0)−wA(P1)−wA(1− P0 − P1)

= U PT
A (

1

2
, y). (15)

Fig. 2. Performance of the static PT-based storage defense game G at the
NEs, with C = 0.62, G = 0.6, P0 = 0.46, P1 = 0.5, αD = 1 and L = 2.

Thus, (10) holds for (x∗, y∗) = ( 1
2 , 0). By (7), if

0 < x ≤ 1
2 , we have

U PT
D (x, 0) = wD(P1)+wD(1− P0 − P1)+ xG, (16)

which increases linearly with x and is maximized at x = 1
2 .

Similarly, if 1
2 < x ≤ 1, we have

U PT
D (x, 0) = 1

2x
wD(P1)+ wD(1− P0 − P1)+ xG, (17)

and
∂2U PT

D

∂x2

∣
∣
∣
∣
y=0
= 1

x3 wD(P1) ≥ 0, (18)

indicating that U PT
D (x, 0) is concave and maximized at x = 1

2
or 1.

If (11a) holds, by (7), we have

U PT
D

(1

2
, 0

) = wD(P1)+wD(1− P0 − P1)+ 1

2
G

≥ 1

2
wD(P1)+wD(1− P0 − P1)+ G

= U PT
D (1, 0). (19)

Thus, (9) holds for (x∗, y∗) = (1/2, 0), which is an NE of
the game G. Similarly, we can prove (1, 0) and (1, 1) are also
NEs of the game.

Under a low attack cost, as shown in (11b) and (12b), the
APT attack is launched immediately and the scan interval is
maximized to save energy, as shown in (12a). Otherwise, if
the attack cost is high, as shown in (13), a subjective APT
attacker has no motivation to launch attacks against the storage
device. As a concrete example, we evaluate the performance
of the storage defense game G with C = 0.62, G = 0.6,
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P0 = 0.46, P1 = 0.5, αD = 1 and L = 2. As shown in
Fig. 2, the attack rate has a sharp increase from 0 to 0.7,
as the attacker’s objective weight αA changes at around 0.42,
because a subjective APT attacker tends to overweigh his or
her attack cost. The objective weight of attacker αA = 0.42 is
a turning point from Condition I3 to I2, i.e., the utility of the
defender decreases sharply from 1.6 to 0.89.

Next, we consider the storage defense game with a single
storage device and three non-zero attack duration levels,
i.e., the distribution of the attack duration follows
[P0, P1, P2, 1 − P0 − P1 − P2].

Theorem 2: The subjective storage defense game G with
S = 1 and L = 3 has an NE (x∗, y∗) = (1/3, 0), if

I4 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G < min

{
3

2
exp

(
− (− ln P1)

αD

)
,

exp

(
− (− ln P1)

αD

)

+1

2
exp

(
− (− ln P2)

αD

)}
(20a)

C < exp
(− (− ln P0)

αA
); (20b)

(x∗, y∗) = (2/3, 0), if

I5 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

2
exp

(− (− ln P1)
αD

)
< G <

1

2
exp

(− (− ln P1)
αD

)

+ exp
(− (− ln P2)

αD
)

(21a)

C < exp
(− (− ln P0)

αA
)

+1

2
exp

(− (− ln P1)
αA

); (21b)

(x∗, y∗) = (1, 0), if

I6 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G > max
(
exp

(− (− ln P1)
αD

)

+1

2
exp

(− (− ln P2)
αD

)
,

1

2
exp

(− (− ln P1)
αD

)

+ exp
(− (− ln P2)

αD
))

(22a)

C < exp
(− (− ln P0)

αA
)+ 2

3
exp

(− (− ln P1)
αA

)

+1

3
exp

(− (− ln P2)
αA

); (22b)

and (x∗, y∗) = (1, 1), if

I7 : C > exp
(− (− ln P0)

αA
)+ 2

3
exp

(− (− ln P1)
αA

)

+ 1

3
exp

(− (− ln P2)
αA

)
. (23)

Proof: The proof is given in the appendix.
Under a low attack cost, as shown in (20b), (21b) and (22b),

the attacker launches an attack immediately against the storage
device and the defender maximizes its detection interval to
save energy, as shown in (22a). If the attack cost is high, as
in (23), the attacker has no motivation to launch an attack.

Now we consider the case with two storage devices that
have the same detection gain, i.e., G1 = G2 = G, and the
same attack duration distribution, i.e., P1

l = P2
l = Pl .

Theorem 3: If S = 2 and L = 2, then the subjective storage
defense game G has an NE (x∗, y∗) = (1/2, 0), if

I8 :
{

G ≤ exp
(− (− ln P1)

αD
)

(24a)

max (C1, C2) ≤ exp
(− (− ln P0)

αA
); (24b)

(x∗, y∗) = (1, 0), if

I9 :

⎧
⎪⎪⎨

⎪⎪⎩

G > exp
(− (− ln P1)

αD
)

(25a)

max (C1, C2) ≤ exp
(− (− ln P0)

αA
)

+1

2
exp

(− (− ln P1)
αA

); (25b)

(x∗, y∗)=([1, 1
2 ], [1, 0]), if

I10 :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G ≤ exp
(− (− ln P1)

αD
)

(26a)

C1 > exp
(− (− ln P0)

αA
)

+1

2
exp

(− (− ln P1)
αA

)
(26b)

C2 ≤ exp
(− (− ln P0)

αA
); (26c)

(x∗, y∗)=(1, [1, 0]), if

I11 :

⎧
⎪⎪⎨

⎪⎪⎩

G > exp
(− (− ln P1)

αD
)

(27a)

C2 < exp
(− (− ln P0)

αA
)

+1

2
exp

(− (− ln P1)
αA

)
< C1; (27b)

and (x∗, y∗) = (1, 1), if

I12 : min (C1, C2) > exp
(− (− ln P0)

αA
)

+1

2
exp

(− (− ln P1)
αA

)
. (28)

Proof: By (8), if 0 ≤ y1, y2 < 1
2 , we have

U PT
A

(1
2
, 0

) = −2wA(P1)− 2wA(1− P0 − P1)

−C1 − C2 ≥ − (2y1 + 2y2) wA(P0)− 2wA(P1)

− 2wA(1− P0 − P1)− C1 − C2 = U PT
A

(1
2
, y

)
. (29)

If 0 ≤ y2 < 1
2 ≤ y1 ≤ 1, and C1 < wA(P0), we have

U PT
A

(1
2
, 0

) = −2wA(P1)− 2wA(1− P0 − P1)− C1 − C2

≥ − (1+ 2y2) wA(P0)− 2wA(P1)− 2wA(1− P0 − P1)

−C2 = U PT
A

(1
2
, y

)
. (30)

Similarly, (10) also holds, if 0 ≤ y1 < 1
2 ≤ y2 ≤ 1. Thus, (10)

holds for (x∗, y∗) = ( 1
2 , 0

)
.

By (7), if 0 < x1, x2 ≤ 1
2 , we have

U PT
D (

1
2
, 0) = 2wD(P1)+ 2wD(1− P0 − P1)+ G

≥ 2wD(P1)+ 2wD(1− P0 − P1)+ (x1 + x2)G

= U PT
D (x, 0). (31)

If 0 ≤ x2 < 1
2 ≤ x1 ≤ 1, and G ≤ wD(P1), we have

U PT
D

(1
2
, 0

) = 2wD(P1)+ 2wD(1− P0 − P1)+ G

≥
(

1

2x1
+ 1

)
wD(P1)+ 2wD(1− P0 − P1)

+ (x1 + x2)G = U PT
D (x, 0). (32)

Similarly, (9) holds for the other cases, indicating that ( 1
2 , 0)

is an NE of the game. We can prove the other NEs of the
game similarly.

If the attack cost is low, i.e., (24b), the attacker launches
APT attacks and the defender scans the two devices at the
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same frequency. If (28) holds with a high attack cost, the attack
motivation is suppressed and the defender maximizes the scan
interval.

Theorem 4: An NE of the subjective storage defense game
G with S storage devices and L non-zero attack duration levels
is given by (x∗, y∗) = (1, 1), if

Ci >

L∑

l=0

L − l

L
exp

(−
(
− ln Pi

l

)αA )
, ∀1 ≤ i ≤ S. (33)

Proof: If (33) holds, by (8), ∀0 ≤ yi ≤ 1 we have

U PT
A (1, 1) = −

S∑

i=1

L∑

l=0

exp
(−

(
− ln Pi

l

)αA )

≥ −
S∑

i=1

L∑

l=0

exp
(−

(
− ln Pi

l

)αA )
min

(
yi L + l

L
, 1

)

−
S∑

i=1

Ci = U PT
A (1, y). (34)

Thus, (10) holds for (x∗, y∗) = (1, 1).
By (7), ∀0 < xi ≤ 1, we have

U PT
D (1, 1) =

S∑

i=1

L∑

l=0

exp
(−

(
− ln Pi

l

)αA )+
S∑

i=1

Gi

≥
S∑

i=1

L∑

l=0

exp
(−

(
− ln Pi

l

)αA )+
S∑

i=1

xi Gi

= U PT
D (x, 1). (35)

Thus, (9) holds for (x∗, y∗) = (1, 1), indicating that (1, 1) is
an NE of the game.

The subjective attacker has no motivation to launch an attack
and the scan interval is maximized if (33) holds for a high
attack cost.

V. SUBJECTIVE PT-BASED STORAGE DEFENSE

GAME WITH MIXED-STRATEGY

In the subjective cloud storage defense game with mixed-
strategy, denoted by G

′, the defender quantizes the scan
interval into M levels, i.e., xi ∈ {m/M}1≤m≤M , and
chooses xi according to the mixed strategy denoted by p =
[pi

m]1≤m≤M,1<i≤S , where pi
m = Pr(xi = m/M). The APT

attacker quantizes his or her non-zero attack interval into
N non-zero levels, i.e., yi ∈ {n/N}0≤n≤N , and determines
the mixed strategy denoted by q = [qi

n]0≤n≤N,1<i≤S , where
qi

n = Pr(yi = n/N). By definition, we have pi
m ≥ 0, qi

n ≥
0,

∑M
m=1 pi

m = 1 and
∑N

n=0 qi
n = 1.

For simplicity, we assume a known and constant time zi in
the mixed-strategy game G′ to focus on the impact of uncertain
opponent actions. The expected utilities of the defender and
the attacker in the mixed-strategy game G′ are given by (3)
and (4) as

U EU T
D (p, q) =

S∑

i=1

M∑

m=1

N∑

n=0

pi
mqi

n

×
(

min

(
nM + zi M N

m N
, 1

)
+ mGi

M

)
(36)

U EU T
A (p, q) =

S∑

i=1

M∑

m=1

N∑

n=0

pi
mqi

n

×
(
−min

(
nM + zi M N

m N
, 1

)

−I
( n

N
<

m

M

)
Ci

)
. (37)

In the PT-based game G′, the subjective defender and the
attacker make decisions to maximize their PT-based utilities,
given by

U PT
D (p, q) =

S∑

i=1

M∑

m=1

N∑

n=0

pi
mwD(qi

n)

×
(

min

(
nM + zi M N

m N
, 1

)
+ mGi

M

)
(38)

U PT
A (p, q) =

S∑

i=1

M∑

m=1

N∑

n=0

wA(pi
m)qi

n

×
(
−min

(
nM + zi M N

m N
, 1

)

−I
( n

N
<

m

M

)
Ci

)
. (39)

By definition, an NE of the PT-based mixed-strategy storage
defense game G′, denoted by (p∗, q∗) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∗ = arg max
p

U PT
D (p, q∗) (40a)

q∗ = arg max
q

U PT
A (p∗, q) (40b)

M∑

m=1

pi
m = 1, p 
 0 (40c)

N∑

n=0

qi
n = 1, q 
 0, 1 ≤ i ≤ S. (40d)

Theorem 5: The NE of the subjective storage defense
game G′ is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ui

D(
m

M
,

n

N
)
]

1≤m≤M,0≤n≤N

[
wD

(
qi∗

k

)]T

0�k�N

= λi
D1N+1 (41a)

[
ui

A(
m

M
,

n

N
)
]T

1≤m≤M,0≤n≤N

[
wA

(
pi∗

k

)]T

1�k�M

= λi
A1M (41b)

M∑

m=1

pi∗
m = 1, p 
 0, 1 ≤ i ≤ S (41c)

N∑

n=0

qi∗
n = 1, q 
 0, 1 ≤ i ≤ S (41d)

λi
D ≥ 0, λi

A ≤ 0, (41e)

if the solution exists, where 1η is the η-dimensional all-1
column vector, and

ui
D(

m

M
,

n

N
) = min

(
nM + zi M N

m N
, 1

)
+ mGi

M
(42)

ui
A(

m

M
,

n

N
) = −min

(
nM + zi M N

m N
, 1

)
− I

( n

N
<

m

M

)
Ci.

(43)
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Proof: The Karush-Kuhn-Tucker (KKT) conditions
of (40) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L D = U PT
D (p, q∗)− ϕ

(
M∑

m=1

pi
m − 1

)

+
M∑

m=1
μi

m pi
m

∂L D

∂pi
m
= 0

−pi
m ≤ 0, μi

m ≥ 0, μi
m pi

m = 0, 1 ≤ m ≤ M
M∑

m=1

pi
m − 1 = 0.

(44)

According to (38), we apply the complementary slackness
for (44) to obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N∑

n=0

ui
D

(
k

M
,

n

N

)
wD(qi∗

n )− λi
D = 0, 1 ≤ k ≤ M

M∑

m=1

pi
m = 1

λi
D ≥ 0,

(45)

and yield (41a). Similarly, we have (41b).
Corollary 1: If S = 1, M = 2, N = 1,

u D( 1
2 , 0)− u D(1, 0)

u D(1, 1)− u D( 1
2 , 1)

> 1, (46)

u A( 1
2 , 1)− u A( 1

2 , 0)

u A(1, 0)− u A(1, 1)
> 1, (47)

the subjective storage defense game G′ has a unique NE given
by

ln

(
u A( 1

2 , 1)− u A( 1
2 , 0)

u A(1, 0)− u A(1, 1)

)

+
(
− ln

(
1− p∗1

)
)αA

−
(
− ln

(
p∗1

) )αA

= 0 (48)

ln

(
u D( 1

2 , 0)− u D(1, 0)

u D(1, 1)− u D( 1
2 , 1)

)

+
(
− ln

(
1− q∗0

) )αD

−
(
− ln

(
q∗0

)
)αD

= 0. (49)

Proof: According to (1), (41a) and (46), we have (49).
Similarly, we can obtain (48) by (1), (41b) and (47). Next,
we prove the uniqueness of q∗0 . As f (x) = (− ln (x))α

monotonically decreases with x , by (46) and (49) we have
f (q∗0 ) > f (1− q∗0 ), yielding 0 < q∗0 < 1− q∗0 < 1. Thus we
have 0 < q∗0 < 1/2. If 0 < x < 1/2, we have

d
(

f (1− x)− f (x)
)

dx
= f ′(1− x)− f ′(x) > 0, (50)

indicating that f (1 − x) − f (x) increases with x . Therefore,
(49) has a unique solution. Similarly, (48) has a unique
solution.

According to Corollary 1, the NE of the EUT-based storage
defense game is given by

(p∗1, q∗0 ) =
(

1− z − C

min(2z, 1)− z
,

G

2 min(2z, 1)− 2z

)
. (51)

Fig. 3. Performance of the static subjective storage defense game with
mixed-strategy G

′ at the NE, with C = 0.5, G = 0.1 and z = 0.2.

As shown in Fig. 3, the attack rate of the subjective storage
defense game G′ decreases with αD , e.g., it decreases by
1.04%, as αD changes from 0.5 to 1, because a subjective
defender scans less frequently. Consequently, the utility of
the defender increases from 0.66 to 0.69, if αD changes from
0.5 to 1. In addition, the scan frequency decreases by 15% as
αA changes from 0.5 to 1, and thus the utility of the defender
decreases from 0.7 to 0.69.

VI. DYNAMIC PT-BASED STORAGE DEFENSE GAME

If the defender is unaware of the APT attack model and the
subjective view model in the dynamic subjective cloud storage
defense game, the storage defender can apply the Q-learning
technique, a model-free and widely-used reinforcement
learning technique, to derive an optimal action-selection
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Algorithm 1 APT Defense in a Dynamic Game With
Pure-Strategy

Initialize γ = 0.7, δ = 0.7, y0, z0, Q(s, x) = 0, V (s) =
0,∀x, s.
For k = 1, 2, 3, ...

sk = yk−1 + zk−1

Choose xk via (54)
Scan the storage device after time xk

Observe u D and yk + zk

Update Q(sk, xk) via (52)
Update V (sk) via (53)

End for

policy in the Markov decision process. The Q-learning based
defense strategy updates the quality function, denoted by
Q(s, x), which is the expected long-term discounted reward
with action x at system state s, which consists of the action
of the opponent and the parameters of the environment.

A. Dynamic Storage Defense Game with Pure-Strategy

The dynamic PT-based game with pure-strategy, denoted
by G, consists of a storage defender and a subjective APT
attacker under uncertain attack duration against a storage
device.

The system state observed at time k is the total attack
duration in the last slot zk−1+ yk−1. The value function V (s)
provides the maximum expected reward of the defender at
system state s. The defender updates the Q-function based on
the immediate utility u D and the value function as follows:

Q
(

sk, xk
)
← (1− γ )Q

(
sk, xk

)

+γ
(

u D

(
sk , xk

)
+ δV

(
sk+1

))
(52)

V
(

sk
)
= max

x∈x
Q

(
sk , x

)
, (53)

where δ ∈ [0, 1] is the discount factor regarding the future
reward, and γ ∈ (0, 1] is the learning rate of the current
experience.

By applying the ε-greedy policy, the defender chooses its
scan interval xk to maximize its current Q-function as

Pr(xk = x̃) =
⎧
⎨

⎩

1− ε, x̃ = arg maxx Q(sk , x)
ε

M − 1
, o.w.

(54)

The Q-learning based storage defense algorithm is summarized
in Algorithm 1.

B. PT-Based Dynamic Game With Mixed-Strategy

In the dynamic PT-based storage defense game with mixed-
strategy, denoted by G′, the defender chooses the detection
interval distribution p = [pm]1≤m≤M , while the attacker
determines the attack interval distribution q = [qn]0≤n≤N ,
where pm and qn are quantized into ζ levels, with 1 ≤ m ≤ M ,
and 0 ≤ n ≤ N .

The system state at time k is defined as the total attack
duration distribution in the last time slot, denoted by �k−1.

Algorithm 2 APT Defense in a Dynamic Game With
Mixed-Strategy

Initialize γ = 0.7, δ = 0.7, �0, Q(s, p) = 0, V (s) =
0,∀s, p.
For k = 1, 2, 3, ...

Update sk = �k−1

Choose pk with the ε-greedy algorithm
Scan the storage device according to strategy pk

Observe u D and �k

Update Q(sk, pk) via (55)
Update V (sk) via (56)

End for

Fig. 4. Performance of the dynamic storage defense game with pure-
strategy G averaged over 1000 runs, with L = 5, C = 0.4 and αA = 0.8
in Case 1, and L = 2, C = 0.62 and αA = 0.3 in Case 2.

Let Q(s, p) denote the Q-function with mixed-strategy p, and
V (s) be the value function. Based on the iterative Bellman
equation, the Q-function can be updated with

Q
(

sk, pk
)
← (1− γ )Q

(
sk, pk

)
+ γ

(
u D + δV

(
sk+1

))

(55)

V
(

sk
)
= max

p
Q

(
sk, p

)
. (56)

The mixed-strategy is chosen based on the ε-greedy algorithm
in terms of the Q-function in (55). The algorithm is summa-
rized in Algorithm 2.

VII. SIMULATION RESULTS

Simulations have been performed to evaluate the perfor-
mance of the Q-learning based APT detection scheme in the
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Fig. 5. Performance of the dynamic storage defense game with pure-
strategy G averaged over 4000 time slots, with L = 5, C = 0.4, G = 0.6 and
ε = 0.1.

PT-based dynamic games G and G′. If not specified otherwise,
we set αD = 1 to maximize the utility of the defender,
αA = 0.8 to represent a typical subjective attacker, γ = 0.7,
δ = 0.7, and ε = 0.1 to achieve good performance. We
chose typical attack and defense parameters, G = 0.6 and
z = 0.3, and used a greedy detection strategy as a benchmark,
in which the scan interval is chosen to maximize the estimated
immediate utility based on the previous attack interval. The
attack strategy is chosen to maximize the PT utility of the
attacker according to the attack history in the last time slot.

The performance of the PT-based dynamic game with pure-
strategy G is shown in Fig. 4, with L = 5, C = 0.4 and
αA = 0.8 in Case 1, and L = 2, C = 0.62 and αA = 0.3
in Case 2. The attack rate decreases over time, from 8% at
the beginning of the game to 0.5% after 6000 time slots in
Case 1, about 93.7% lower than the convergent attack rate of
the benchmark strategy. Consequently, as shown in Fig. 4 (b),
the utility of the defender increases over time from 1.29 at
the beginning to 1.43 after 6000 time slots at convergence,
about 10.9% higher than the benchmark strategy. In Case 2,
the utility of the defender converges to 1.6 after 8000 times
slots, which matches the result of the NE given by Theorem 1.

As shown in Fig. 5, the attack rate increases with the objec-
tive weight of the attacker, e.g., R increases about four times
if αA changes from 0.5 to 1. The attack rate at convergence is
4.4%, which is 70.6% lower than the benchmark strategy, with
αA = 1. Consequently, the utility of the defender decreases
from 1.39 to 1.27, if αA changes from 0.5 to 1. The utility

Fig. 6. Performance of the dynamic storage defense game with mixed-
strategy G′ averaged over 1000 runs, with z = 0.3, C = 0.6, G = 0.25,
M = 2, N = 1, αD = 1, αA = 0.8 and ε = 0.1.

Fig. 7. Performance of the dynamic storage defense game with mixed-
strategy G′ averaged over 2500 time slots, with z = 0.3, C = 0.6, G = 0.25,
M = 2, N = 1 and ε = 0.1.

changes most significantly if αA changes between 0.7 and 0.9,
because the attack interval changes most significantly due to
the probability distortion of the subjective attacker, and the
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turning points at αA = 0.64 and 0.94 match the results in
Theorem 1.

The performance of the PT-based mixed-strategy game G′
in Fig. 6 shows that the attack rate decreases with time from
15% at the beginning of the game to 6% after 500 time slots,
which is only half of that of the benchmark strategy if αA = 1.
Thus, the utility of the defender increases over time, e.g., from
1 to around 1.1 after 500 time slots, and is 10% higher than
that of the benchmark strategy at time slot 500.

As shown in Fig. 7, the attack rate R increases from 3%
to 6.5% , if αA changes from 0.2 to 1, and the attack rate
is only half of that of the benchmark strategy at αA = 1.
Consequently, the utility of the defender decreases from 1.15
to 1.095, if αA changes from 0.2 to 1.

VIII. CONCLUSION

In this work, we have formulated PT-based cloud storage
defense games to investigate the impact of the subjective view
of APT attackers under uncertain attack durations in the pure-
strategy game or uncertain scan interval of the defender in
the mixed-strategy game. The NEs of the PT-based games
have been provided, showing that a subjective attacker tends
to overweight his or her attack cost and thus increases the scan
interval, yielding a higher utility of the defender. A Q-learning
based APT resistance scheme has been proposed to improve
the performance of the dynamic storage defense game, e.g., in
our simulation examples, the attack rate decreases by 50% and
the utility of the defender increases by 10% against subjective
APT attackers compared with the benchmark greedy strategy.

APPENDIX

PROOF OF THEOREM 2

By (8), if 0 ≤ y < 1/3, we have

U PT
A

(
1

3
, 0

)
= −wA(P1)−wA(P2)

−wA(1− P0 − P1 − P2)− C ≥ −3ywA(P0)−wA(P1)

−wA(P2)−wA(1− P0 − P1 − P2)− C

= U PT
A

(
1

3
, y

)
. (57)

If (20b) holds, by (8), ∀1/3 ≤ y ≤ 1, we have

U PT
A

(
1

3
, 0

)
= −wA(P1)−wA(P2)

−wA(1− P0 − P1 − P2)− C ≥ −wA(P0)

−wA(P1)

−wA(P2)− wA(1− P0 − P1 − P2)

= U PT
A

(
1

3
, y

)
. (58)

Thus, (10) holds for (x∗, y∗) = (1/3, 0).
By (7), if 0 < x < 1/3, we see that U PT

D (x, 0) increases
linearly with x and is maximized at 1/3.

According to (7), if 1/3 < x < 2/3, we have

U PT
D (x, 0) = 1

3x
wD(P1)+wD(P2)

+wD(1− P0 − P1 − P2)+ xG, (59)

and

∂2U PT
D

∂x2

∣∣
∣
∣
y=0
= 2

3x3 wD(P1) ≥ 0, (60)

indicating that U PT
D (x, 0) is concave and is maximized

at 1/3 or 2/3.
Similarly, if 2/3 < x < 1, we see that U PT

D (x, 0) is concave
and is maximized at 2/3 or 1.

By (7), if (20a) holds, we have

U PT
D (1/3, 0) = wD(P1)+wD(P2)

+wD(1− P0 − P1 − P2)+ 1

3
G

≥ max

{
1

3
wD(P1)+ 2

3
wD(P2)+wD(1−P0−P1−P2)+ G,

1

2
wD(P1)+ wD(P2)+wD(1− P0 − P1 − P2)+ 2

3
G

}

= max
{

U PT
D (1, 0), U PT

D (2/3, 0)
}

. (61)

Thus, (9) holds for (x∗, y∗) = (1/3, 0). Similarly, we can
prove the other NEs in the subjective APT game.
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