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Abstract—Physical security of power networks under
power injection attacks that alter generation and loads is
studied. The system operator employs Phasor Measure-
ment Units (PMUs) for detecting such attacks, while at-
tackers devise attacks that are unobservable by such PMU
networks. It is shown that, given the PMU locations, the
solution to finding the sparsest unobservable attacks has a
simple form with probability one, namely, κ(GM) + 1, where
κ(GM) is defined as the vulnerable vertex connectivity of an
augmented graph. The constructive proof allows one to find
the entire set of the sparsest unobservable attacks in poly-
nomial time. Furthermore, a notion of the potential impact
of unobservable attacks is introduced. With optimized PMU
deployment, the sparsest unobservable attacks and their
potential impact are evaluated numerically for the IEEE 30,
57, 118 and 300-bus systems and the Polish 2383, 2737 and
3012-bus systems. It is observed that, as more PMUs are
added, the maximum potential impact among all the spars-
est unobservable attacks drops quickly until it reaches the
minimum sparsity.

Index Terms—Cyber physical system, phasor measure-
ment units (PMUs), power networks, power system security.

I. INTRODUCTION

M odern power networks are increasingly dependent on
information technology in order to achieve higher ef-

ficiency, flexibility and adaptability [1], [2], [3]. The develop-
ment of more advanced sensing, communications and control
capabilities for power grids enables better situational aware-
ness and smarter control. However, security issues also arise as
more complex information systems become prominent targets
of cyber-physical attacks: not only can there be data attacks on
measurements that disrupt situation awareness [4], but also con-
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trol signals of power grid components including generation and
loads can be hacked, leading to immediate physical misbehav-
ior of power systems [5]. Furthermore, in addition to hacking
control messages, a powerful attacker can also implement phys-
ical attacks by directly intruding upon power grid components.
Therefore, to achieve reliable and secure operation of a smart
power grid, it is essential for the system operator to minimize
(if not eliminate) the feasibility and impact of physical attacks.

There are many closely related techniques that can help
achieve secure power systems. Firstly, coding and encryption
can better secure control messages and communication links
[6], and hence raise the level of difficulty of cyber attacks. To
prevent physical attacks, grid hardening is another design choice
[7]. However, grid hardening can be very costly, and hence may
only apply to a small fraction of the components in large power
systems. On the other hand, power systems are subject to a
variety of faults and outages [8]–[10], which are in a sense un-
intentional physical attacks. As such outages are not inflicted by
attackers, they are typically modeled as random events, and de-
tecting outages is often modeled as a hypothesis testing problem
[11]. However, this event and detection model is not necessarily
accurate for intentional physical attacks, which are the focus
of this paper. Indeed, an intelligent attacker would often like to
strategically optimize its attack, such that it is not only hard to
detect, but also has low implementation complexity as well as
high impact.

Recently, there has been considerable research concerning
data injection attacks on sensor measurements from supervi-
sory control and data acquisition (SCADA) systems. A central
goal among these works is to pursue the integrity of network
state estimation, that is, to successfully detect the injected data
attack and recover the correct system states. The feasibility
of constructing data injection attacks to pass bad data detec-
tion schemes (cf. Chapter 5 of [12]) and alter estimated system
states was first shown in [4]. There, a natural question arises as
to how to find the sparsest unobservable data injection attack,
as sparsity is used to model the complexity of an attack, as well
as the resources needed for an attacker to implement it. How-
ever, finding such an optimal attack requires solving an NP-hard
l0 minimization problem. While efficiently finding the sparsest
unobservable attacks in general remains an open problem, inter-
esting and exact solutions under some special problem settings
have been developed in [13]–[15]. Another important aspect of
a data injection attack is its impact on the power system. As state
estimates are used to guide system and market operation of the
grid, several interesting studies have investigated the impact of
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data attacks on optimal power flow recommendation [16] and lo-
cation marginal prices in a deregulated power market [17], [18].
Furthermore, as Phasor Measurement Units (PMUs) become
increasingly deployed in power systems, network situational
awareness for grid operators is significantly improved compared
to using legacy SCADA systems only. However, while PMUs
provide accurate and secure sampling of the system states, their
high installation costs prohibit ubiquitous deployment. Thus,
the problem of how to economically deploy PMUs such that
the state estimator can best detect data injection attacks is an
interesting problem that many studies have addressed (see, e.g.
[19]–[21] among others.)

Compared to data attacks that target state estimators, physical
attacks that directly disrupt power network physical processes
can have a much faster impact on power grids. In addition to
physical attacks by hacking control signals or directly intruding
upon grid components, several types of load altering attacks
have been shown to be practically implementable via Internet-
based message attacks [5]. Topological attacks are another type
of physical attack that have been considered in [22]. Dynamic
power injection attacks have also been analyzed in several stud-
ies. For example, in [23], conditions for the existence of unde-
tectable and unidentifiable attacks were provided, and the sizes
of the sets of such attacks were shown to be bounded by graph-
theoretic quantities. Alternatively, in [24], state estimation is
considered in the presence of both power injection attacks and
data attacks.

In this paper, we investigate a specific type of physical at-
tack in power systems called power injection attacks, which
alter generation and loads in the network. A linearized power
network model—the DC power flow model—is employed for
simplifying the analysis of the problem and obtaining a sim-
ple solution that yields considerable insight. We consider a grid
operator that employs PMUs to (partially) monitor the network
for detecting power injection attacks. Since power injection at-
tacks disrupt the power system states immediately, the timeli-
ness of PMU measurement feedback is essential. Furthermore,
our model allows for the power injections at some buses to be
“unalterable”. This captures the cases of “zero injection buses”
with no generation and load, and buses that are protected by the
system operator.

Under this model we study the open l0 minimization problem
of finding the sparsest unobservable attacks given any set of
PMU locations. We start with a feasibility problem for unob-
servable attacks. We prove that the existence of an unobservable
power injection attack restricted to any given set of buses can be
determined with probability one by computing a quantity called
the structural rank. Next, we prove that the NP-hard problem of
finding the sparsest unobservable attacks has a simple solution
with probability one. Specifically, the sparsity of the optimal
solution is κ(GM) + 1, where κ(GM) is the “vulnerable ver-
tex connectivity” that we define for an augmented graph of
the original power network. Meanwhile, the entire set of glob-
ally optimal solutions (there can be many of them) are found
in polynomial time. We further introduce a notion of potential
impacts of unobservable attacks. Accordingly, among all the
sparsest unobservable attacks, an attacker can efficiently find

the one with the greatest potential impact. Finally, given opti-
mized PMU placement, we evaluate the sparsest unobservable
attacks in terms of their sparsity and potential impact in the
IEEE 30, 57, 118 and 300-bus, and the Polish 2383, 2737 and
3012-bus systems.

The remainder of the paper is organized as follows. In
Section II, models of the power network, power injection at-
tacks, PMUs and unalterable buses are established. In addition,
the minimum sparsity problem of unobservable attacks is for-
mulated. In Section III we provide the feasibility condition for
unobservable attacks restricted to any subset of the buses. In
Section IV we prove that the minimum sparsity of unobservable
attacks can be found in polynomial time with probability one.
In Section V, a PMU placement algorithm for countering power
injection attacks is developed, and numerical evaluation of the
sparsest unobservable attacks in IEEE benchmark test cases and
large-scale Polish power systems are provided. Conclusions are
drawn in Section VI.

II. PROBLEM FORMULATION

A. Power Network Model

We consider a power network with N buses, and denote the set
of buses and the set of transmission lines by N = {1, 2, . . . , N}
and L = {1, 2, . . . , L} respectively. For a line l ∈ L that con-
nects buses n and m, denote its reactance by xl as well as xnm ,
and define its incidence vector ml as follows:

ml(i) =

⎧
⎪⎨

⎪⎩

1, if i = n,

−1, if i = m,

0, otherwise.

Based on the power network topology and line reactances, we
construct a weighted graph G = {N ,L,w} where the edge
weight wl � 1

xl
,∀l = 1, . . . , L. The power system is generally

modeled by nonlinear AC power flow equations [25]. In this
paper, a linearized model—the DC power flow model—is em-
ployed as an approximation of the AC model, which allows us to
find a simple closed-form solution to the problem from which
we glean significant insights. Under the DC model, the real
power injections P ∈ RN and the voltage phase angles θ ∈ RN

satisfy P = Bθ, where B =
∑L

l=1
1
xl

mlm
T
l ∈ RN ×N is the

Laplacian of the weighted graph G. We assume that xl is pos-
itive which is typically true for transmission lines (cf. Chapter
4 of [25]). Furthermore, the power flow on line l from bus n to
bus m equals Pnm = 1

xn m
(θn − θm ).

We consider attackers inflicting power injection attacks that
alter the generation and loads in the power network. We denote
the power injections in normal conditions by P , and denote
a power injection attack by ΔP ∈ RN . Thus the post-attack
power injections are P + ΔP .

B. Sensor Model and Unobservable Attacks

We consider the use of PMUs by the system operator
for monitoring the power network in order to detect power
injection attacks. With PMUs installed at the buses, we con-
sider the following two different sensor models:
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1) A PMU securely measures the voltage phasor of the bus
at which it is installed.1

2) A PMU securely measures the voltage phasor of the bus
at which it is installed, as well as the current phasors on
all the lines connected to this bus2.

We denote the set of buses with PMUs by M (⊆ N ), and
let M � |M| be the total number of PMUs, where | · | denotes
the cardinality of a set. Without loss of generality (WLOG), we
choose one of the buses in M to be the angle reference bus.
We say that a power injection attack ΔP is unobservable if
it leads to zero changes in all the quantities measured by the
PMUs. With the first PMU model described above, we have the
following definition:

Definition 1 (Unobservability Condition): An attack ΔP �=
0 is unobservable if and only if

∃Δθ, such that ΔP = BΔθ and ΔθM = 0, (1)

where ΔθM denotes the M × 1 sub-vector of Δθ obtained by
keeping its M entries whose indices are in M.3

With the second PMU model described above, for any bus n ∈
N , it is immediate to verify that the following three conditions
are equivalent:

1) There are no changes of the voltage phasor at n and of
the current phasors on all the lines connected to n.

2) There are no changes of the voltage phasor at n and of
the power flows on all the lines connected to n.

3) ∀n′ ∈ N [n], there is no change of the voltage phasor at
n′, where N [n] is the closed neighborhood of n which
includes n and its neighboring buses N(n).

Thus, for forming unobservable attacks, the following two
situations are equivalent to the attacker:

1) The system operator monitors the set of buses M with
the second PMU model;

2) The system operator monitors the set of buses N [M] with
the first PMU model,

where N [M] is the closed neighborhood of M which includes
all the buses in M and their neighboring buses N(M). Thus,
the unobservability condition with the second PMU model is
obtained by replacingMwith N [M] in (1). WLOG, we employ
the first PMU model in the following analysis, and based on the
discussion above all the results can be directly translated to the
second PMU model.

C. Sparsest Unobservable Attacks

In forming an unobservable attack, an attacker generally
has two objectives: minimize execution complexity and max-
imize its impact on the grid. Note that these two objectives can
be competing interests that are not simultaneously achievable.
We will first focus on finding the minimum execution complex-
ity for an attack to be unobservable, which constitutes the main
part of this work. Among attacks with the minimum complexity,
we then find the one with the maximum impact.

1 The voltage phase angles at all the buses are defined to be relative to a
common reference—the phase angle at the angle reference bus in the network.

2 In practice, the second PMU measurement model is achieved by installing
PMUs on all the lines connected to a bus.

3 Since B is a weighted Laplacian matrix, the elements of ΔP sum to 0.

For an attack vector ΔP , we use its zero norm ‖ΔP ‖0
to model its execution complexity. This is because attackers
are typically resource-constrained, and can choose only a lim-
ited number of buses to implement attacks. For minimizing at-
tack complexity, an attacker is interested in finding the sparsest
attacks that satisfy the unobservability condition (1):

min
Δθ

‖ΔP ‖0

s.t. ΔP = BΔθ, ΔθM = 0, Δθ �= 0. (2)

Since ΔθM = 0, Δθ �= 0 ⇒ BΔθ = BNMc ΔθMc ,ΔθMc

�= 0, a more compact form of (2) is as follows:

(2) ⇔ min
ΔθMc �=0

‖BNMc ΔθMc ‖0 , (3)

whereMc = N\M denotes the complement of M , and BNMc

is the submatrix of B formed by choosing all its rows and a set
of columns Mc .

We now note that problem (3) is NP-hard: Specifically, as a
special case of the cospark problem of a matrix [26] problem
(3) resembles a security index problem discussed in [15], which
has been proven to be NP-hard. Under some special problem
settings for data injection attacks, problems of this type have
been shown to be solvable exactly in polynomial time [13]–[15].
In general, low complexity heuristics have been developed for
solving l0 minimization problems (e.g., l1 relaxation).

We now generalize our model to allow a subset of buses to be
“unalterable buses”, meaning that their nodal power injection
cannot be changed by attackers. This allows us to model the
following scenarios:

1) A “zero injection” bus that simply connects multiple lines
without nodal generation or load, and hence its power
injection is always zero and cannot be changed.

2) A “protected” bus by the system operator, and its power
injection is not accessible by the attacker.

We denote the set of unalterable buses by U . The other buses
U c are termed “alterable” buses. Generalizing (2), the sparsest
unobservable attack problem is established as follows:

min
Δθ

‖ΔP ‖0

s.t. ΔP = BΔθ, ΔθM = 0, ΔP U = 0, Δθ �= 0. (4)

When U = ∅, (4) reduces to (2). Generalizing (3), Eq. (4) has
the following equivalent form:

(4) ⇔ min
ΔθMc �=0,

(BNMc ΔθMc )U=0

‖BNMc ΔθMc ‖0 . (5)

D. Graph Augmentation

Given the locations of the sensors M, we now introduce a
variation of the graph G that will prove key to developing the
main results later.

Definition 2: Given a set of buses M ⊆ N , GM is defined
to be the following augmented graph based on G:

1) GM includes all the buses in G, and has one additional
unalterable dummy bus.



ZHAO et al.: MINIMUM SPARSITY OF UNOBSERVABLE POWER NETWORK ATTACKS 3357

2) Define an augmented set M̄ that contains M and the
unalterable dummy bus.

3) GM includes all the edges of G, and an edge is added
between every pair of buses in M̄, and its weight can be
chosen arbitrarily as any positive number.

We note that the dummy bus is only connected to the set
of sensors M. We observe the following key facts. First, an
unobservable attack in the original graphG leads to zero changes
in all the voltage phase angles in M. Thus, any line between a
pair of buses in M would see a zero change of the power flow
on it. It is then clear that the added dummy bus and lines in GM

do not lead to any power flow changes in the network under any
unobservable attack. We thus have the following lemma:

Lemma 1: An attack is unobservable by M in G if and only
if it is unobservable by M in GM.

This allows us to work with the augmented graph GM instead
of G. It is clear that the weights of the added edges in GM do
not matter for Lemma 1 to hold.

III. FEASIBILITY CONDITION OF UNOBSERVABLE ATTACKS

In this section, we address the following question whose so-
lutions will be useful in solving the minimum sparsity problem
(5): Assuming that the attacker can only alter the power injec-
tions at a subset of the buses, denoted by A ⊆ U c , does there
exist an attack that is unobservable by a set of PMUs M? For
any given A, a feasible non-zero attack ΔP (�= 0) must satisfy
ΔPAc = 0. In other words, it must not alter the power injections
at the buses in Ac .

From (1), there exists an unobservable non-zero attack if and
only if

∃ΔP ,Δθ �= 0, s.t.

ΔP = BΔθ, ΔPAc = 0, ΔθM = 0. (6)

Since

{
ΔθM = 0
Δθ �= 0 ⇒ ΔθMc �= 0,ΔP �= 0, we have that (6)

is equivalent to

∃ΔθMc �= 0, s.t. (ΔPAc =)BAc Mc ΔθMc = 0, (7)

where BAc Mc is the submatrix of B formed by its rows Ac and
columns Mc . An illustration of (7) is depicted in Fig. 1, where
the submatrix formed by the shaded blocks represents BAc Mc .
From (7), we have the following lemma on the feasibility con-
dition of unobservable attacks.

Lemma 2: Given A and M, there exists an unobservable
non-zero attack if and only if BAc Mc is column rank deficient.

To analyze when this column rank deficiency condition,
rank (BAc Mc ) < |Mc |, is satisfied, we start with the following
observations based on the fact that B is the Laplacian of the
weighted graph G.

Fig. 1. An illustration of (7) where the submatrix formed by the shaded
blocks represents BAc Mc .

1) The signs (+1, −1, or 0) of the entries of B are fully
determined by the network topology:

Bij > 0, if i = j,

Bij < 0, if node (bus) i and node j (i �= j)

are connected by an edge (transmission line),

Bij = 0, if node (bus) i and node j (i �= j) are

not connected.

2) The values of the non-zero entries of B are determined
by the line reactances {xij}:

Bii =
∑

j �=i

wij =
∑

j �=i

1
xij

,

Bij = −wij = − 1
xij

, if i �= j and Bij �= 0.

When all the line reactances in the power network are known,
so are the entries of the submatrix BAc Mc , and it is immedi-
ate to compute whether rank (BAc Mc ) < |Mc |. Without know-
ing the exact values of any line reactances, we will show
that whether rank (BAc Mc ) < |Mc | can be determined almost
surely by computing the structural rank of BAc Mc , defined as
follows [27].

Definition 3 (Set of Independent Entries): A set of indepen-
dent entries of a matrix H is a set of nonzero entries, no two of
which lie on the same line (row or column).

Definition 4 (Structural Rank): The structural rank of a ma-
trix H , denoted by sprank(H), is the maximum number of
elements contained in at least one set of independent entries.

A basic relation between the structural rank and the rank of a
matrix is the following [27],

sprank(BAc Mc ) ≥ rank(BAc Mc ). (8)

In the literature, structural rank is also termed “generic rank”
[28].

Specifically, we consider generic power grid parameters,
i.e., we assume that the line reactances xl (l = 1, 2, . . . , L) are
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independent, but not necessarily identical random variables
drawn from continuous probability distributions. We assume
that the reactances are bounded away from zero from below
(as lines do not have zero reactances in practice). As such, the
analysis in this work is along the line of structural properties
as in [27] and [28], and we will develop results that hold with
probability one. We believe the independence (but not identi-
cally distributed) assumption is sufficiently general in practice.
In particular, there are uncertainties in factors that influence the
reactance of a line (e.g. the distance that a line travels, the degra-
dation of a line over time). These uncertainties can be modeled as
independent (but not identically distributed) random variables,
leading to the model employed in this paper.

Clearly BAc Mc is always column rank deficient when |Ac | <
|Mc |. Next, we discuss the case of |Ac | ≥ |Mc |. We begin
with the special case A = M, for which we have the following
lemma whose proof is relegated to Appendix A.

Lemma 3: Let B ∈ RN ×N be the Laplacian of a connected
graph G with strictly positive edge weights. For any set of node
indices I ⊂ {1, 2, . . . , N}, denote by BII the submatrix of B
formed by its rows I and columns I. Then ∀I, |I| ≤ N − 1,
BII is of full rank.

Note that Lemma 3 holds deterministically without assuming
generic edge weights of the graph. For the case of A = M, we
let I = Ac = Mc , and Lemma 3 proves that rank (BAc Mc ) =
|Mc |. This implies the intuitive fact that there exists no attack
restricted to A that is unobservable by a set of PMUs M = A.

Now, we address the general case of arbitrary A and
M. We have the following theorem demonstrating that
having sprank(BAc Mc ) = |Mc | almost surely guarantees
rank(BAc Mc ) = |Mc |. The proof is relegated to Appendix B.

Theorem 1: For a connected weighted graph G =
{N ,L,w}, assume that the edge weights are independent con-
tinuous random variables strictly bounded away from zero from
below, and denote the Laplacian of G by B ∈ RN ×N . Then, any
N ′ × N ′′ submatrix of B, with min(N ′, N ′′) ≤ N − 1, has a
rank of min(N ′, N ′′) with probability one if it has a structural
rank of min(N ′, N ′′).

From Theorem 1, with |Ac | ≥ |Mc |, if sprank(BAc Mc ) =
|Mc | ≤ N − 1, we have with probability one that
rank(BAc Mc ) = |Mc |, and there exists no attack restricted to
A that is unobservable by a set of PMUs M.

Remark 1: It has been known in the literature that (see e.g.,
[27]), a full structural rank of a matrix leads to a full rank matrix
with probability one, as long as the nonzero entries in the matrix
are drawn independently from continuous probability distribu-
tions. However, it is worth noting that this is not sufficient for
proving Theorem 1. This is because, as in Theorem 1, we are
interested in matrices that are submatrices of a graph Laplacian:
even with the edge weights of the graph drawn independently,
the entries in these submatrices are correlated due to the special
structure of a graph Laplacian. Such correlation leads to techni-
cal difficulties for the proof, which can be overcome as shown
in Appendix B.

We note that the structural rank of a matrix can be computed
in polynomial time by finding the maximum bipartite matching
in a graph [27]. Since whether an entry of B is non-zero is

solely determined by the topology of the network, we have the
following corollary.

Corollary 1: GivenA andM, whether a non-zero unobserv-
able attack exists can be determined with probability one based
solely on the knowledge of the grid topology.

IV. SOLVING THE SPARSEST UNOBSERVABLE ATTACKS

In this section, we study the problem of finding the sparsest
unobservable attacks given any set of PMUs M (cf. (5)). As
remarked in Section II-C, l0 minimization such as (5) is NP-
hard. We will show that the sparsest unobservable attack can in
fact be found in polynomial time with probability one. We first
introduce a key concept—a vulnerable vertex cut. We then state
our main theorem that yields an explicit solution for the sparsest
unobservable attack problem (5). We prove that this solution
both upper and lower bounds the optimum of (5), hence proving
the theorem.

A. Vulnerable Vertex Cut and Vulnerable Vertex
Connectivity

We start with the following basic definitions:
Definition 5 (Vertex Cut): A vertex cut of a connected graph

G is a set of vertices whose removal renders G disconnected.
Definition 6 (Vertex Connectivity): The vertex connectivity

of a graph G, denoted by κ(G), is the size of the minimum
vertex cut of G, i.e., it is the minimum number of vertices that
need to be removed to make the remaining graph disconnected.

From the definition of the augmented graph GM in
Section II-D, since all the buses in M̄ (containing M and the
dummy bus) are pair-wise connected, we have the following
lemma:

Lemma 4: For any vertex cut of the augmented graph GM,
there is no pair of the buses in M̄ that are disconnected by this
cut.

Accordingly, we introduce the following notations which will
be used later on:

Notation 1: Given a vertex cut of GM, we denote the set of
buses disconnected from M̄ after removing the cut set by S.
The cut set itself is denoted by N(S).

With the vertex cut N(S), GM is partitioned into three sub-
graphs:

1) S, which does not contain any bus in M̄, i.e., S ⊆ M̄c .
2) N(S), which is the vertex cut set itself, and may contain

buses in M̄.
3) N\N [S], which contains (not necessarily exclusively) all

the remaining buses in M̄ after removing the cut set.
An illustrative example with a cut N(S) of size 2 is depicted

in Fig. 2(b) in Section IV-C. We note that there is a slight abuse
of notation in N(S): In general, a cut set does not necessarily
consist of exactly all the neighboring nodes of S. Nonetheless,
as will be shown in the remainder of the paper, we need only
care about the minimum cut set, which indeed consists of exactly
all the neighboring nodes of S, namely, N(S). Leveraging the
above notation, we now introduce a key type of vertex cut on
GM.
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Fig. 2. Sparse attacks with voltage phase angle changes restricted
to buses 1, 2, . . . |S|. (a) Block representation of BNS . (b) A 3-sparse
unobservable power injection attack.

Definition 7 (Vulnerable Vertex Cut): A vulnerable vertex
cut of a connected augmented graph GM is a vertex cut N(S)
for which |U c ∩ N [S]| ≥ |N(S)| + 1.

In other words, the number of alterable buses in N [S] is
no less than the cut size plus one. The reason for calling such a
vertex cut “vulnerable” will be made exact later in Section IV-C.
The basic intuition is the following. In order to have ΔθM = 0
(unobservability), the key is to have the phase angle changes on
the cut N(S) be zero, with power injection changes (which can
only happen on the alterable buses) restricted in N [S]. As will be
shown later, this can be achieved if a cut N(S) is “vulnerable”
as defined above. We note that it is possible that no vulnerable
vertex cut exists (e.g., in the extreme case that all buses are
unalterable).

Accordingly, we define the following variation on the vertex
connectivity.

Definition 8 (Vulnerable Vertex Connectivity): The vulnera-
ble vertex connectivity of an augmented graph GM, denoted by
κ̄(GM), is the size of the minimum vulnerable vertex cut of
GM. If no vulnerable vertex cut exists, κ̄(GM) is defined to be
infinite.

We note that the concepts of vulnerable vertex cut and vul-
nerable vertex connectivity do not apply to the original graph G.
We immediately have the following lemma.

Lemma 5: If a vulnerable vertex cut exists, then κ̄(GM) ≤
M = |M|.

Proof: Suppose a vulnerable vertex cut exists, and κ̄(GM) ≥
M + 1. Denote the minimum vulnerable vertex cut by N(S) (cf.

Notation 1). Now consider the set M: it is a vertex cut of GM

that separates the dummy bus and M̄c . Because there are at
least κ̄(GM) + 1 ≥ M + 2 alterable buses in N [S] ⊆ N [M̄c ],
M is also a vulnerable vertex cut. This contradicts the minimum
vulnerable vertex cut having size at least M + 1. �

B. Main Result

We now state the following theorem that gives an explicit
expression of the solution of the sparsest unobservable attack
problem in terms of the vulnerable vertex connectivity κ̄(GM).

Theorem 2: For a connected grid G = {N ,L,w}, assume
that the line reactances xl (l ∈ L) are independent continuous
random variables strictly bounded away from zero from below.
Given any M and U , the minimum sparsity of unobservable
attacks, i.e., the global optimum of (5), equals κ̄(GM) + 1 with
probability one.

We note that finding the minimum vulnerable vertex connec-
tivity of a graph is computationally efficient. For polynomial
time algorithms we refer the readers to [29] and [30]. In particu-
lar, vertex cuts are enumerated [30] starting from the minimum
and with increasing sizes, until a minimum vulnerable vertex
cut is identified. We now prove Theorem 2 by upper and lower
bounding the minimum sparsity of unobservable attacks in the
following two subsections.

C. Upper Bounding the Minimum Sparsity of
Unobservable Attacks

We show that any vulnerable vertex cut N(S) provides an
upper bound on the optimum of (5) as follows.

Theorem 3: For a connected grid G and a set of PMUs M,
for any vulnerable vertex cut of GM denoted by N(S) (cf.
Notation 1), there exists an unobservable attack of sparsity no
higher than |N(S)| + 1.

Proof: A vulnerable vertex cut N(S) partitions GM into
S, N(S) and N\N [S], with S ⊆ Mc . Similarly to the range
space interpretation of the sparsest unobservable attack (5), it
is sufficient to show that there exists a non-zero vector in the
range space of BNS such that i) it has a sparsity no higher than
|N(S)| + 1, and ii) non-zero power injections occur only at the
alterable buses.

By re-indexing the buses, WLOG, i) let S = {1, 2, . . . , |S|},
and ii) let BNS have the following partition as depicted in
Fig. 2(a):

1) The top submatrix BSS is an |S| × |S| matrix.
2) The middle submatrix (which will be shown to be

BN (S)S ) consists of all the remaining rows, each of which
has at least one non-zero entry.

3) The bottom submatrix is an all-zero matrix.
In particular, from the definition of the Laplacian, the mid-

dle submatrix of BNS , as described above, is exactly BN (S)S
because its row indices correspond to those buses not in S but
connected to at least one bus in S.

From the definition of the vulnerable vertex cut, |U c ∩
N [S]| ≥ |N(S)| + 1. Now, pick any set of |N(S)| + 1 alter-
able buses in U c ∩ N [S], denote this set by A, and denote the
other buses in N [S] by Ũ � N [S]\A. Clearly, |Ũ | = |S| − 1.
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Therefore, BŨS (which is a submatrix of BN [S]S ) has |S|
columns but only |S| − 1 rows, and is hence column rank
deficient.

Now, we let ΔθS be a non-zero vector in the null space of
BŨS :

BŨSΔθS = 0. (9)

Then, we construct an attack vector ΔP = BNSΔθS : it has
some possibly non-zero values at the indices that correspond to
A, and has zero values at all other indices. Thus,

‖ΔP ‖0 ≤ |A| = |N(S)| + 1. (10)

�
Theorem 3 explains our terminology of a “vulnerable vertex

cut”, since if a vertex cut is vulnerable, it leads to an unobserv-
able attack. If a vulnerable vertex cut of GM exists, applying
Theorem 3 to the minimum one, we have that the optimum of
(5) is upper bounded by κ̄(GM) + 1. If no vulnerable vertex cut
exists, κ̄(GM) + 1 = ∞ is a trivial upper bound.

We now provide a graph-theoretic interpretation of Theo-
rem 3. As shown in Fig. 2(a) and 2(b), all the buses can be
partitioned into three subsets S, N(S) and N\N [S], corre-
sponding to the row indices of the top, middle and bottom
submatrices of BNS , respectively. N(S) is a vulnerable ver-
tex cut of GM that separates S from N\N [S]. The sparse at-
tack ΔP (cf. (10)) is formed by injecting/extracting power at
|N(S)| + 1 alterable buses in N [S], such that the phase angle
changes at N\S are all zero. Note that (N\S) ⊇ M. The ex-
ample with |N(S)| = 2 in Fig. 2(b) illustrates a 3-sparse attack
with power injection/extractions at (assumed alterable) buses 1,
3 and |S| + 1, such that the phase angle changes at N\S are all
zero.

We end this subsection by introducing a notion of “poten-
tial impact” of unobservable attacks. We make the following
observation: As long as an attacker takes control of all the
power injections in a vulnerable vertex cut N(S) (assuming
they are alterable), it can always cancel out the effects of any-
thing that happens within N [S] on the measurements taken in
M (⊆ N\S). Thus, by taking control of all the buses in N(S),
an attacker can successfully hide from the system operator a
power injection attack with a zero norm as large as

|N [S]| = |N(S)| + |S| (� |N(S)| + 1). (11)

Accordingly, we introduce the following definition.
Definition 9: The potential impact of unobservable attacks

associated with a vulnerable vertex cut N(S) is defined as
|N [S]|.

Remark 2: Definition 9 is one characterization of attack im-
pact based solely on graph theoretic properties. In practice, there
are many different notions of attack impact depending on, e.g.,
the interpretation of the attacks and the operating objective of
the system.

Employing Definition 9, we can differentiate the potential
impacts of multiple sparsest unobservable attacks with the same
sparsity. An illustration is depicted in Fig. 3. In this example, two
vulnerable vertex cuts both of size two, N(S1) = {V1A , V1B }

Fig. 3. An illustration of two vulnerable vertex cuts with the same size
but different potential impacts.

and N(S2) = {V2A , V2B }, are enclosed by solid ovals. Ac-
cordingly, both cuts enable 3-sparse unobservable attacks.
However, their potential impacts are significantly different. Cut
N(S2) only disconnects one other bus, namely S2 = {V2C }
from the set of PMUs M, and hence its potential impact equals
|N [S2 ]| = 3. In comparison, cut N(S1) disconnects all the ver-
tices above N(S1) from M, and hence its potential impact
equals |N [S1 ]| � 3. With this definition of potential impact, it
is then natural for an attacker to seek the sparsest unobservable
attack with the greatest potential impact.

As an immediate byproduct of the analysis of potential im-
pact, by letting S = Mc , we obtain the maximum potential im-
pact of all unobservable attacks in a power network, as captured
in the follow corollary.

Corollary 2: For a connected power grid G = {N ,L,w},
given any M denoting the PMU locations, the maximum poten-
tial impact among all the unobservable attacks equals |N [Mc ]|.

D. Lower Bounding the Sparsity of Unobservable Attacks

We first define the following property of a matrix H ∈
RN ×N , which will be shown to be equivalent to having
sprank(H) = N .

Property 1: (An equivalent condition for having a full struc-
tural rank).

∀n = 1, 2, . . . , N, and for any n × N submatrix of H,

the submatrix has at least n columns each with at least

one non-zero entry.

We have the following lemma whose proof is relegated to
Appendix C.

Lemma 6: Property 1 is equivalent to having sprank
(H) = N .

We now prove the lower bounding part of Theorem 2, namely,
with probability one, all unobservable power injection attacks
ΔP must have ‖ΔP ‖0 ≥ κ̄(GM) + 1. The key idea is in show-
ing that the equivalence between Property 1 and a full structural
rank (cf. Lemma 6) implies a connection between the vulnerable
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vertex connectivity and the feasibility condition of unobservable
attacks (cf. Lemma 2).

Proof of ‖ΔP ‖0 ≥ κ̄(GM) + 1 for Unobservable ΔP ,
w.p.1:

We focus on GM and consider its corresponding Laplacian
B. Suppose there exists a power injection attack ΔP �= 0 such
that

ΔθM = 0 and ‖ΔP ‖0 ≤ κ̄(GM). (12)

Denote the buses with non-zero power injection changes
by A ⊆ U c , and hence ΔPAc = 0. From (12), |A| ≤
κ̄(GM),ΔθMc �=0, and 0=ΔPAc =BAc Mc ΔθMc , implying
that BAc Mc is column rank deficient. We first consider the case
that a vulnerable vertex cut exists, i.e., κ̄(GM) < ∞. The proof
for the case of κ̄(GM) = ∞ follows similarly. For notational
simplicity, we will use κ̄ instead of κ̄(GM) in the remainder of
the proof.

a) If a Vulnerable Vertex Cut Exists, i.e., κ̄ < ∞: We will
prove that, for all A ⊆ U c with |A| ≤ κ̄, BAc Mc is of full
column rank with probability one, i.e., (12) can only happen
with probability zero. From Lemma 5, κ̄ ≤ M . It is then suf-
ficient to prove for the “worst cases” with |A| = κ̄ = M , i.e.,
|Ac | = |Mc | = N − κ̄ and BAc Mc is a square matrix. From
Theorem 1 and Lemma 6, it is sufficient to show that BAc Mc

satisfies Property 1, and hence is of full rank with probability
one. Recall from the definition of the Laplacian B that, for any
column (or row) of B, bi , (i = 1, . . . , N), its non-zero entries
correspond to bus i and those buses that are connected to bus i.
With this, we now prove that BAc Mc satisfies Property 1.

Consider any set of n (≤ N − κ̄) buses in Ac , denoted by Ñ .
i) If Ñ ⊆ Mc : Based on the definition of the Laplacian B, the

n columns of BÑMc that correspond to the buses Ñ themselves
each has at least one non-zero entry.

ii) If Ñ ∩M �= ∅: We prove that N(Ñ ) must contain at least
κ̄ buses. This is because, otherwise, |N(Ñ )| ≤ κ̄ − 1, contra-
dicting that κ̄ is the minimum size of vulnerable vertex cuts for
the following reasons:

1) A ⊆ Ñ c , and thus Ñ c has at least |A| = κ̄ alterable
buses.

2) |N(Ñ )| ≤ κ̄ − 1 implies that Ñ c\N(Ñ ) �= ∅, and thus
N(Ñ ) is a vertex cut that separates Ñ and Ñ c\N(Ñ ).

3) Because Ñ ∩M �= ∅ and M are pairwise connected in
GM, M ⊆ N [Ñ ]. Thus, Ñ c\N(Ñ ) and M are disjoint.

From 1), 3), and the fact that |N(Ñ )| ≤ κ̄ − 1, we observe
that N(Ñ ) is a vulnerable vertex cut of size κ̄ − 1, contradicting
κ̄ being the vulnerable vertex connectivity.

Now, based on the definition of the Laplacian B, the n × N
submatrix BÑN must have at least n + κ̄ columns each of which
has at least one non-zero entry for the following reasons:

1) The n columns of BÑN that correspond to the buses Ñ
themselves each has at least one non-zero entry.

2) As Ñ are connected to at least κ̄ other buses, each one
of these κ̄ neighbors of Ñ corresponds to one column of
BÑN that has at least one non-zero entry.

Accordingly, the n × (N − κ̄) submatrix BÑMc has at least
n columns each of which has at least one non-zero entry.

Summarizing i) and ii), BAc Mc satisfies Property 1, and is
thus of full column rank with probability one. Therefore, (12)
can only happen with probability zero.

b) If No Vulnerable Vertex Cut Exists, i.e., κ̄ = ∞: If
M = N , i.e., all buses have PMUs, then clearly no unob-
servable attack exists. We now focus on M ≤ N − 1. Sup-
pose |A| ≥ M + 1. Consider the set M̄ containing M and the
dummy bus. ΔθM = 0 (cf. (12)) implies that A ⊆ N [M̄c ], and
thus N [M̄c ] has at least |A| ≥ M + 1 alterable buses. Since
M (= N(M̄c)) separates the dummy node and N\M, M is
a vulnerable vertex cut. This contradicts the nonexistence of
a vulnerable vertex cut. Therefore, |A| ≤ M . In this case, the
same proof as in the above case i) when a vulnerable vertex
cut exists applies, and (12) can only happen with probability
zero. �

With the proofs of upper and lower bounds, we have now
proved Theorem 2. In addition, from the proof of Theorem 3, we
have a constructive solution of the sparsest unobservable attack
in polynomial time. We conclude this section by noting the
following fact similar to that in Section III: the minimum sparsity
of unobservable attacks is fully determined with probability one
by the network topology, the locations of the alterable buses,
and the locations of the PMUs.

V. NUMERICAL EVALUATION

In this section, we evaluate the sparsest unobservable at-
tacks and their potential impacts when the system operator de-
ploys PMUs at optimized locations. We first provide an efficient
algorithm for optimizing PMU placement by the system opera-
tor. Next, we provide comprehensive evaluation of our analysis
and algorithms in multiple IEEE power system test cases as well
as large-scale Polish power systems. Our MATLAB codes are
openly available for download.4

A. Optimization of PMU Placement for Attack Detection

We have seen in Section IV that the minimum sparsity and
potential impacts of unobservable attacks are determined fully
by the network topology, the locations of the alterable buses, and
the PMU placement. Note that, unlike network states and pa-
rameters which can vary over short and medium time scales, the
transmission network topology and the alterable buses typically
stay the same over relatively long time scales. This motivates
the system operator to optimize the PMU placement according
to this information.

For the best performance in countering power injection at-
tacks, the system operator wants to raise the minimum sparsity
of unobservable attacks, as well as mitigate the maximum po-
tential impact of unobservable attacks. Algorithm 1 (cf. Table I)
is developed for the system operator to greedily place PMUs to
pursue both objectives. In this algorithm, we have assumed that
the second PMU model in Section II-B is employed, and the
algorithm can be adapted to the first PMU model by replacing
N [M] with M.

4The codes can be found at http://www.ece.sunysb.edu/∼yzhao/pubs
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TABLE I
ALGORITHM 1

Greedy algorithm for PMU placement for countering power injection attacks
Place the 1s t PMU at bus 1.
Repeat

If no unobservable attack exists given the current set of PMUs M, stop.
Step 1: Find all the minimum vulnerable vertex cuts of GN [M] ;

among them, find the cut with the greatest potential impact, denoted by C (GN [M] ).
Step 2: Among all the buses disconnected from N [M] by C (GN [M] ) as well as those

in the cut set C (GN [M] ), place the next PMU at the bus such that the resulting
maximum potential impact among all the remaining unobservable attacks is minimized.

Algorithm 1 is essentially a successive cut/attack elimination
procedure. The purpose of Step 1 is to identify the sparsest unob-
servable attack with the greatest potential impact. Specifically,
Step 1 can be performed as follows:

1) Assign arbitrarily one of the buses in M as the source
node;

2) For each of the buses in N\N [M], assign it as the des-
tination node, and compute all the minimum vulnerable
vertex cuts that separate such a source-destination pair.

3) Among all the computed source-destination vertex cuts
that have the same minimum size, compute their cor-
responding potential impacts, and select the minimum
vertex cut with the greatest potential impact, denoted by
C(GN [M]).

We note that all the minimum vulnerable vertex cuts can
be enumerated in polynomial time (c.f. [30]). In our numeri-
cal evaluation using MATLAB on a laptop with Intel Core i7
3.1-GHz CPU and 8 GB of RAM, it takes less than 0.2 seconds
on average for every PMU placed for the IEEE 300 bus systems.
This per-PMU time increases to about 50 seconds for the Polish
3012 bus system. In Step 2, our primary goal is to ensure that the
cut set C(GN [M]) found in Step 1 does not remain a legitimate
vertex cut after placing the next PMU. This can be achieved
by placing the next PMU among the buses disconnected from
N [M] by C(GN [M]) as well as those in C(GN [M]). Among such
candidate buses, we choose the one that renders the minimum
maximum potential impact among all the remaining unobserv-
able attacks (cf. Corollary 2) had the next PMU been placed
at it.

B. Numerical Evaluation of Unobservable Attacks vs.
Number of PMUs

We evaluate our results in the IEEE 30-bus, IEEE 57-bus,
IEEE 118-bus, IEEE 300-bus, Polish 2383-bus, Polish 2737-
bus, and Polish 3012-bus systems. The evaluation is performed
based on the software toolbox MATPOWER [31]. In each
of these systems, we apply Algorithm 1 to generate a set of
PMU locations greedily, with the number of PMUs M increas-
ing from one until all attacks become observable. Moreover,
from Algorithm 1, for all M , the minimum sparsity of un-
observable attacks as well as the maximum potential impact
among the sparsest unobservable attacks are found (cf. Step 1 in
Algorithm 1). We assume that all buses are alterable in the test
cases.

Fig. 4. Minimum sparsity of unobservable attacks and maximum poten-
tial impacts of 2, 3, 4, 5-sparse attacks as functions of M , IEEE 30-bus
system.

In general, for a given set of PMUs, one can also search for
the maximum potential impact among all s-sparse unobservable
attacks for any given sparsity s, (as opposed to evaluate that
among the sparsest attacks only as in Algorithm 1). However,
this problem is NP-hard in s. In light of this, we selectively
focus on some level of sparsity of unobservable attacks that
is not minimally sparse, and evaluate their maximum potential
impacts.

Specifically, the minimum sparsity of unobservable attacks
and the maximum potential impact among these sparsest attacks
both as functions of the number of PMUs M are plotted for the
IEEE 30 and 118-bus power systems and the Polish 3012-bus
system, in Figs. 4, 5 and 6 respectively. In addition,

1) For the IEEE 30-bus system, the maximum potential im-
pact among all 2-sparse, 3-sparse, 4-sparse and 5-sparse
unobservable attacks for the entire range of M are plotted.
(Note that the minimum sparsity of unobservable attacks
does not exceed 3 for all M ).

2) For the IEEE 118-bus system, the maximum potential im-
pact among all 3-sparse attacks when M ≥ 7 is plotted.
(Note that for M = 7 the minimum sparsity of unobserv-
able attacks is 2).

We make the following observations which appear in all seven
of the evaluated systems:

1) All the attacks become observable with less than a third
of the buses installed with PMUs (assuming the second
PMU model). The average percentage of the number
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Fig. 5. Minimum sparsity of unobservable attacks and the maximum
potential impacts of the sparsest attacks as functions of M , IEEE 118-
bus system.

Fig. 6. Minimum sparsity of unobservable attacks and the maximum
potential impacts of the sparsest attacks as functions of M , Polish 3012-
bus system.

of PMUs needed to have full network observability is
31.1%. This demonstrates the efficacy of Algorithm 1 in
PMU placement.

2) The topologies of the tested power systems tend to allow
sparse power injection attacks. In other words, the ver-
tex connectivity of these power networks is often small.
Furthermore, there are often many unobservable attacks
with the same minimum sparsity: this is why even af-
ter adding a lot more PMUs into the network, with each
addition eliminating the previous sparsest attack, the min-
imum sparsity of an unobservable attack can still remain
the same.

3) While there are many unobservable attacks with the
same sparsity, the potential impacts among them can
vary significantly. Moreover, as more PMUs are added,
the maximum potential impact among all the sparsest

unobservable attacks drops quickly until it reaches the
minimum sparsity. Similar behavior is demonstrated for
all the s-sparse unobservable attacks (s = 2, 3, 4, 5) for
the IEEE 30-bus system as shown in Fig. 4.

VI. CONCLUSION

We have studied physical attacks that alter power generation
and loads in power networks while remaining unobservable un-
der the surveillance of system operators using PMUs. Given a
set of PMUs, we have first shown that the existence of an unob-
servable attack that is restricted to any subset of the buses can
be determined with probability one by computing the structural
rank of a submatrix of the network Laplacian B. Next, we have
provided an explicit expression of the solution to the open prob-
lem of finding the sparsest unobservable attacks: the minimum
sparsity among all unobservable attacks equals κ(GM) + 1 with
probability one. The constructive solution allows us to find all
the sparsest unobservable attacks in polynomial time. We have
then introduced a notion of potential impacts of unobservable
attacks. For the system operator to raise the minimum sparsity
while also mitigating the maximum potential impact of all un-
observable attacks, we have devised an efficient algorithm of
greedily placing the PMUs. With optimized PMU deployment,
we have evaluated the sparsest unobservable attacks and their
potential impacts in the IEEE 30, 57, 118, 300-bus systems
and the Polish 2383, 2737, 3012-bus systems. Finally, while
this work has studied a static system model and power injec-
tion attacks, extension to dynamic systems, measurements and
power injection attacks remains an interesting future direction,
for which we expect that similar insights will apply.

APPENDIX A
PROOF OF LEMMA 3

Proof of Lemma 3: First, we denote the Laplacian of the in-
duced subgraph G[I] by LI . Denote the number of connected
components of the induced subgraph G[I] by c. By properly
re-indexing the nodes, we have

BII = LI + DI , (13)

where LI is a block-diagonal matrix whose each block Lj
I (1 ≤

j ≤ c) is positive semidefinite and corresponds to one connected
component of G[I],

LI =

⎡

⎢
⎢
⎣

L1
I

L2
I

· · ·
Lc

I

⎤

⎥
⎥
⎦, (14)

and DI is diagonal, which we write in a block diagonal form
whose each block Dj

I (1 ≤ j ≤ c) is itself a diagonal matrix
with non-negative entries,

DI =

⎡

⎢
⎢
⎣

D1
I

D2
I

· · ·
Dc

I

⎤

⎥
⎥
⎦. (15)
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Since the original graph G is connected, each connected com-
ponent of the induced subgraph G[I] must be connected to at
least one node in N\I. This implies the following fact:

Fact 1: Each diagonal submatrix Dj
I (1 ≤ j ≤ c) has at least

one strictly positive diagonal entry.
Now, for any non-zero vector xI ∈ RI , we write it as a con-

catenation of c sub-vectors:

xI = [[x1
I ]

T [x2
I ]

T . . . [xc
I ]

T ]T , (16)

where the length of each sub-vector xj
I(1 ≤ j ≤ c) follows the

size of the sub-matrix Lj
I .

As LI is positive semidefinite, xT
I LIxI ≥ 0:

1) If xT
I LIxI > 0, then immediately xT

I BIIxI > 0.
2) If xT

I LIxI = 0, then LIxI = 0, which implies

Lj
Ix

j
I = 0, ∀j = 1, 2, . . . , c. (17)

Namely, xj
I is in the null space of Lj

I . Note that as Lj
I

corresponds to a single connected component of G[I],
the dimension of the null space of Lj

I is one, and is
spanned by the all one vector 1 = [1, 1, . . . , 1]T with the
appropriate length. Thus, xj

I must be in the form of αj · 1,
for some αj > 0. From Fact 1, Dj

I has non-negative
diagonal entries with at least one of them strictly positive,
and we have [xj

I ]
T Dj

Ix
j
I > 0, and hence xT

I (BII)xI =
xT
I (LI + DI)xI > 0.

Therefore, BII is positive definite, and hence of full rank. �

APPENDIX B
PROOF OF THEOREM 1

First, for a matrix H ∈ RN1 ×N2 with a full structural rank,
we define an equivalent term, “a non-zero permuted diagonal”,
for a set of min(N1 , N2) independent entries (cf. Definition 3).
This term is based on the following intuition: For example,
for H ∈ RN ×N , a non-zero permuted diagonal (i.e., a set of
N independent entries) corresponds to a permutation function
π(i), i = 1, 2, . . . , N , such that H i,π (i) �= 0,∀i = 1, 2, . . . , N .

Proof of Theorem 1: It is sufficient to prove for the case of
N ′ = N ′′ ≤ N − 1. We use induction as follows.

i) Clearly, any non-zero 1 × 1 submatrix of B is of full
rank.

ii) Assume that all t × t (t ≤ N − 2) submatrices of B with
a non-zero permuted diagonal are of full rank with prob-
ability one.

For a (t + 1) × (t + 1) submatrix of B with a non-zero
permuted diagonal, we denote it by B′. We denote the
set of row indices of B that are selected in forming B′

by R = {r(1), r(2), . . . , r(t + 1)}, and similarly the set of
selected column indices by C = {c(1), c(2), . . . , c(t + 1)}:
B′

i,j = Br(i),c(j ) ,∀1 ≤ i, j ≤ t + 1. Clearly, if R = C, B′ is
of full rank from Lemma 3.

Now, consider the case that R = I ∪ J , C = I ∪ K, where
I ∩ J = I ∩ K = ∅,J ∩ K = ∅,J ,K �= ∅. In other words, I
denotes the common indices that appear in both the row indices
R and the column indices C,J denotes the indices that appear in

Fig. 7. Proof of Theorem 1. (a) Partition of the matrix B′. (b) Case 1,
B′

t+1 , t+1 ∈ BJK is on a non-zero permuted diagonal of B′.

R but not in C, and K denotes the indices that appear in C but not
in R. WLOG, B′ has the form as in Fig. 7(a), in which the com-
mon row and column indices I are located in the upper left part
of B′, and B′ consists of four blocks BII ,BJ I ,BIK,BJK.

Since B′ has a non-zero permuted diagonal, there exists a per-
mutation function π(i), i = 1, 2, . . . , t + 1, such that B′

i,π (i) >
0,∀i = 1, . . . , t + 1. In other words, the mapping r(i) →
c(π(i)), i = 1, 2, . . . , t + 1 forms a bijection between I ∪ J
and I ∪ K, such that Br(i),c(π (i)) > 0,∀i = 1, 2, . . . , t + 1. We
now consider the following two cases:

Case 1: ∃r(i) ∈ J , s.t. c(π(i)) ∈ K. In other words, one of
the entries in BJK is on a non-zero permuted diagonal of B′.

WLOG, assume that the entry B′
t+1,t+1 in BJK is on a

non-zero permuted diagonal of B′, i.e., π(t + 1) = t + 1. As in
Fig. 7(b), we partition B′ into B′

[1:t],[1:t],B
′
t+1,[1:t],B

′
[1:t],t+1

and B′
t+1,t+1 . Because B′

t+1,t+1 is on a non-zero permuted
diagonal of B′, the t × t submatrix B′

[1:t],[1:t] has a non-zero
permuted diagonal.

From the induction assumption, B′
[1:t],[1:t] is of full rank with

probability one. When B′
[1:t],[1:t] is of full rank, let

α = B′−1
[1:t],[1:t]B

′
[1:t],t+1 . (18)

Thus, B′
[1:t],t+1 = B′

[1:t],[1:t]α. Then, B′ is rank-deficient if
and only if

B′
t+1,t+1 = B′

t+1,[1:t]α (19)
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Fig. 8. Proof of Theorem 1. (a) Case 2, B′
1 , t+1 ∈ BIK is on a non-zero

permuted diagonal of B′. (b) Case 2, B′
i , i depends on B′

i ,1 , B′
i , t+1 only

via the sum B′
i ,1 + B′

i , t+1 .

Note that, except for Br(t+1),c(t+1) = B′
t+1,t+1 itself, there

are only three other entries in the Laplacian B that are correlated
with B′

t+1,t+1 :

Bc(t+1),r(t+1) = Br(t+1),c(t+1) = B′
t+1,t+1 , (20)

Br(t+1),r(t+1) = −
∑

j �=r(t+1)

Br(t+1),j , (21)

Bc(t+1),c(t+1) = −
∑

i �=c(t+1)

Bi,c(t+1) . (22)

However, as r(t + 1) ∈ J ⇒ r(t + 1) /∈ I ∪ K, c(t + 1) ∈
K ⇒ c(t + 1) /∈ I ∪ J , none of the above three entries is se-
lected into the submatrix B′. Therefore, B′

t+1,t+1 is indepen-
dent to all other entries in B′, and is hence independent to
B′

t+1,[1:t]α. Because B′
t+1,t+1 is drawn from a continuous dis-

tribution, the probability that (19) is satisfied is zero. As a result,
B′ is of full rank with probability one.

Case 2: ∀r(i) ∈ J , c(π(i)) /∈ K. Thus, ∃r(i) ∈ I, s.t.
c(π(i)) ∈ K. In other words, one of the entries in BIK is on
a non-zero permuted diagonal of B′.

WLOG, assume that the entry B′
1,t+1 in BIK is on a

non-zero permuted diagonal of B′, i.e., π(1) = t + 1. As in
Fig. 8(a), we partition B′ into B′

1,[1:t],B
′
[2:t+1],[1:t],B

′
1,t+1

and B′
[2:t+1],t+1 . Because B′

1,t+1 is on a non-zero permuted
diagonal of B′, the t × t submatrix B′

[2:t+1],[1:t] has a non-zero
permuted diagonal.

From the induction assumption, B′
[2:t+1],[1:t] is of full rank

with probability one. When B′
[2:t+1],[1:t] is of full rank, let

α = B′−1
[2:t+1],[1:t]B

′
[2:t+1],t+1 . (23)

Thus, B′
[2:t+1],t+1 = B′

[2:t+1],[1:t]α. Then, B′ is rank-deficient
if and only if

B′
1,t+1 = B′

1,[1:t]α (24)

Note that r(1) = c(1) ∈ I. We have

B′
1,1 = Br(1),c(1) = Br(1),r(1) = −

∑

j �=r(1)

Br(1),j

= −B′
1,t+1 − C1 , (25)

where B′
1,t+1 = Br(1),c(t+1) , and C1 =

∑
j �=r(1),j �=c(t+1)

Br(1),j is independent to B′
1,t+1 . Substitute (25) for B′

1,1 in
(24), we have

B′
1,t+1 = α1B

′
1,1 +

t∑

j=2

αjB
′
1,j

= −α1B
′
1,t+1 +

⎛

⎝−α1C1 +
t∑

j=2

αjB
′
1,j

⎞

⎠ .

⇔ (1 + α1)B′
1,t+1 = −α1C1 +

t∑

j=2

αjB
′
1,j . (26)

Note that B′
1,t+1 is independent to α1 , and independent to the

right hand side of (26). Because B′
1,t+1 is drawn from a contin-

uous distribution, if α1 �= −1, the probability (conditioned on
α1 �= −1) that (26) is satisfied is zero.

Next, we prove that the probability of α1 = −1 is zero. From
(23), if α1 = −1,

B′
[2:t+1],t+1 =

t∑

j=1

αjB
′
[2:t+1],j

⇔ B′
[2:t+1],1 + B′

[2:t+1],t+1 =
t∑

j=2

αjB
′
[2:t+1],j . (27)

Thus, α1 = −1 implies that B′
[2:t+1],1 + B′

[2:t+1],t+1 is in the
range space of B′

[2:t+1],[2:t] . Note that, all the entries in the two
vectors B′

[2:t+1],1 and B′
[2:t+1],t+1 are mutually independent

non-diagonal entries of B.
Now, consider that we make the following change of distri-

butions of certain entries in B′ (and also B correspondingly):
1) ∀i = 2, . . . , t + 1, let B′

i,1(= Br(i),c(1)) be drawn from
the distribution of the sum B′

i,1 + B′
i,t+1 .

2) Let every entry of B′
[2:t+1],t+1 to be a deterministic zero,

i.e., ∀i = 2, . . . , t + 1,B′
i,t+1(= Br(i),c(t+1)) = 0.

Observe that,
1) As in Fig. 8(b), ∀i, s.t. r(i) ∈ I, the only entry in

B′
[2:t+1],[2:t] that is correlated with B′

i,1 and B′
i,t+1 is

B′
i,i = −(B′

i,1 + B′
i,t+1) − C2 , (28)
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Fig. 9. A matrix that satisfies (29), (30) and (31) as in Lemma 7.

where C2 =
∑

j �=c(1),j �=c(t+1) Br(i),j . Note that B′
i,i de-

pends on B′
i,1 ,B

′
i,t+1 only via the sum B′

i,1 + B′
i,t+1 .

2) ∀i, s.t. r(i) ∈ J ,B′
i,1 and B′

i,t+1 are independent to all
the entries in B′

[2:t+1],[2:t] .
This implies the following fact:
Fact 2: The joint distribution of B′

[2:t+1],1 and B′
[2:t+1],[2:t]

after the change of distributions is equal to the joint distribution
of B′

[2:t+1],1 + B′
[2:t+1],t+1 and B′

[2:t+1],[2:t] before the change.
We now note that, after the change of distributions, the

t × t matrix B′
[2:t+1],[1:t] = [B′

[2:t+1],1B
′
[2:t+1],[2:t] ] still sat-

isfies the induction assumption, and is hence of full rank
with probability one. Thus, before the change of distributions,
B′

[2:t+1],1 + B′
[2:t+1],t+1 falls in the range space of B′

[2:t+1],[2:t]
with probability zero. Therefore, α1 = −1 with probability zero,
hence the probability that (24) is satisfied is zero. As a result,
B′ is of full rank with probability one. �

APPENDIX–C
PROOF OF LEMMA 6

We first prove the following lemma in preparation for proving
Lemma 6:

Lemma 7: For a matrix H ∈ RN ×N , if the following condi-
tions are satisfied,

H1,1 �= 0, (29)

∀i = 2, . . . , N,H i,i−1 �= 0, (30)

∀i = 2, . . . , N, the sub-column H [1,i],i has at least one

non-zero entry, (31)

then H satisfies Property 1.
A depiction of a matrix satisfying (29), (30) and (31) is given

in Fig. 9, in which the entries with an “x” are known to be non-
zero, and the shaded sub-columns each has at least one non-zero
entry.

Proof: We use induction as follows.
i) The lemma is true for N = 1.

ii) Assume that the lemma is true for all N = 1, . . . , t. For
N = t + 1:

First, because the upper left (N − 1) × (N − 1) submatrix
of H satisfies the induction assumption, each of H’s first left
N − 1 columns must contain at least one non-zero entry. From
(31), the last column of H has at least one non-zero entry. Thus,
the case of n = N in Property 1 holds for H .

Next, ∀1 ≤ n ≤ N − 1, for any n × N submatrix of H ,
denote it by H ′, and its corresponding row indices in H by
r(1) < r(2) < . . . < r(n).

1) If the last n rows of H are selected to form H ′, (i.e.
r(i) = i + N − n, i = 1, . . . , n), from (30), the columns
N − n, . . . , N − 1 each has one non-zero entry, namely,
HN −n+1,N −n , . . . ,HN,N −1 .

2) Otherwise, there exists a row r∗, r∗ ≥ N − n + 1,
which is not selected in H ′ (cf. Fig. 9). In this
case, the row indices of H ′ can be partitioned into
two subsets: ∃i(∈ {1, 2, . . . , n}), r(1) < . . . < r(i) ≤
r∗ − 1 and r∗ + 1 ≤ r(i + 1) < . . . ≤ r(n). On the
one hand, note that the upper left (r∗ − 1) × (r∗ − 1)
submatrix of H satisfies the induction assumption.
Thus, among the first r∗ − 1 columns of the rows
r(1), . . . , r(i), there exists i columns each of which
has one non-zero entry. On the other hand, from (30),
Hr(i+1),r(i+1)−1 , . . . ,Hr(n),r(n)−1 are all non-zero, and
none of these non-zero entries appears in the first r∗ − 1
columns. Therefore, there exist n columns of H ′ such
that each of them has at least one non-zero entry. �

We now prove Lemma 6.
Proof of Lemma 6: Clearly, Property 1 is implied by the non-

zero diagonal property.
To prove that the non-zero diagonal property is also implied

by Property 1, we use induction on N as follows.
i) For N = 1, the non-zero diagonal property is implied by

Property 1.
ii) Assume that ∀N ≤ t, (t ≥ 1, ) the non-zero diagonal

property is implied by Property 1.
For N = t + 1, we use another induction on the number of

rows n of submatrices of H in proving a non-zero permuted
diagonal property.

a) For n = 1, directly from Property 1, any n × N subma-
trix of H (i.e., any row of H) has at least one non-zero
entry.

b) Assume that ∀n ≤ t < N , ∀n × N submatrix of H , de-
noted by H ′, it has the following property:

∃π(i) (i = 1, . . . , n) that satisfies π(i) �= π(j),∀i �= j,

s.t. H ′
i,π (i) �= 0. (32)

For n = t + 1, from the induction assumption b), there ex-
ists a non-zero permutated diagonal for the (n − 1) × N sub-
matrix H ′

[2:n ],[1:N ]: WLOG, assume that it corresponds to
∀i = 2, . . . , n,H ′

i,i−1 �= 0 (cf. Fig. 10.)
Now, we use proof by contradiction, and assume that H ′

does not have a non-zero permuted diagonal. Then, the sub-row
H ′

1,[n,N ] must be all zero, because otherwise any non-zero entry
within H ′

1,[n,N ] will form a non-zero permuted diagonal of H ′

with H ′
i,i−1(i = 2, . . . , n). From Property 1, the 1st row of

H ′ must have at least one non-zero entry. WLOG, assume that
H ′

1,1 is non-zero. Then, the sub-row H ′
2,[n,N ] must be all-zero,

because otherwise any non-zero entry within H ′
2,[n,N ] will form

a non-zero permuted diagonal of H ′ with H ′
1,1 and H ′

i,i−1(i =
3, . . . , n). From Property 1, the first two rows of H ′ must have
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Fig. 10. The matrix H′ in the proof of Lemma 6.

at least two columns each of which has at least one non-zero
entry. Since H ′

2,1 �= 0, there is at least one more column of
H ′

[1,2],[1,N ] that has at least one non-zero entry. WLOG, assume
that the sub-column H ′

[1,2],2 has at least one non-zero entry, (cf.
the shaded area in Fig. 10).

Similarly, consider the rth row of H ′. Note that the sub-
matrix H ′

[1:r−1],[1:r−1] satisfies (29), (30) and (31), and hence
satisfies Property 1 by Lemma 7. From the induction assump-
tion ii), H ′

[1:r−1],[1:r−1] has a non-zero permuted diagonal.
Then, the sub-row H ′

r,[n,N ] must be all-zero, because other-
wise any non-zero entry within H ′

r,[n,N ] will form a non-zero
permuted diagonal of H ′ with the non-zero permuted diagonal
of H ′

[1:r−1],[1:r−1] and H ′
i,i−1(i = r + 1, . . . , n).

Therefore, the submatrix H ′
[1,N ],[n,N ] must be all-zero. This

implies that there are only n − 1 (instead of n) columns of
H ′ each of which has at least one non-zero entry, and hence
contradicts with Property 1.
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