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Abstract—A nonparametric anomalous hypothesis testing
problem is investigated, in which there are totally n observed
sequences out of which s anomalous sequences are to be detected.
Each typical sequence consists of m independent and identically
distributed (i.i.d.) samples drawn from a distribution p, whereas
each anomalous sequence consists of m i.i.d. samples drawn from
a distribution q that is distinct from p. The distributions p and
q are assumed to be unknown in advance. Distribution-free tests
are constructed by using the maximum mean discrepancy as the
metric, which is based on mean embeddings of distributions into
a reproducing kernel Hilbert space. The probability of error is
bounded as a function of the sample size m, the number s of
anomalous sequences, and the number n of sequences. It is shown
that with s known, the constructed test is exponentially consistent
if m is greater than a constant factor of log n, for any p and q,
whereas with s unknown, m should have an order strictly greater
than log n. Furthermore, it is shown that no test can be consistent
for arbitrary p and q if m is less than a constant factor of log n.
Thus, the order-level optimality of the proposed test is established.
Numerical results are provided to demonstrate that the proposed
tests outperform (or perform as well as) tests based on other
competitive approaches under various cases.

Index Terms—Anomalous hypothesis testing, consistency,
distribution-free tests, maximum mean discrepancy (MMD).
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Fig. 1. Anomalous hypothesis testing with data sequences generated by typi-
cal distribution p and anomalous distribution q.

I. INTRODUCTION

I
N THIS paper, we study an anomalous hypothesis testing

problem (see Fig. 1), in which there are totally n sequences

out of which s anomalous sequences need to be detected. Each

typical sequence consists of m independent and identically dis-

tributed (i.i.d.) samples drawn from a distribution p, whereas

each anomalous sequence contains i.i.d. samples drawn from a

distribution q that is distinct from p. The distributions p and q are

assumed to be unknown. The goal is to build distribution-free

tests to detect the s anomalous data sequences generated by q

out of all data sequences.

Solutions to this problem are very useful in many applications.

For example, in cognitive wireless networks, channel measure-

ments follow different distributions p or q depending on whether

the channel being measured is busy or vacant. A major issue in

such networks is to identify vacant channels out of a large num-

ber of busy channels that can then be used to improve spectral

efficiency. This problem was studied in [2] and [3] under the

assumption that p and q are known, whereas in this paper, we

study the problem with unknown p and q. Other applications

include detecting anomalous events in sensor monitoring net-

works [4], distinguishing diseased groups with aberrant genetic

markers [5], identifying differently expressed genes from gene

expression profiles [6], distinguishing virus infected comput-

ers from other virus free computers [7], detecting rare objects

from astronomical data that might lead to scientific discover-

ies [8], and distinguishing slightly modified images from other

untouched images.

The parametric model of this problem has been well studied,

e.g., [2], [3], in which it is assumed that p and q are known in

advance. However, the nonparametric model is less explored,

in which it is assumed that p and q are unknown and can be

arbitrary. Recently, Li, Nitinawarat and Veeravalli proposed the

nonparametric divergence-based generalized likelihood tests in

[9], and characterized the error decay exponents of these tests.
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However, only the case when p and q are discrete with finite

alphabets was studied in [9], and their tests utilize empirical

probability mass functions of p and q.

In this paper, we study the fully nonparametric model, in

which p and q are arbitrary, i.e., not necessarily discrete. The

major challenges to solve this problem (compared to the discrete

case studied in [9]) lie in: (1) accurately estimating distributions

that may be continuous with limited numbers of samples for

further anomalous hypothesis testing; (2) designing low com-

plexity tests with distributions that may be continuous; and (3)

building distribution-free consistent tests and further guarantee-

ing exponential error decay for arbitrary distributions.

Our approach adopts the maximum mean discrepancy (MMD)

introduced in [10] as the distance metric between two distribu-

tions. The idea is to map probability distributions into a repro-

ducing kernel Hilbert space (RKHS) (as proposed in [11], [12])

such that the distance between the two probability distributions

can be measured by the distance between their corresponding

embeddings in the RKHS. MMD can be easily estimated based

on samples, and hence yields low-complexity tests. In this paper,

we apply MMD as a metric to construct our tests for detecting

anomalous data sequences. In contrast to consistency analysis

in classical theory as in [9], which assumes that the problem

dimension (i.e., the number n of sequences and the number s of

anomalous sequences) is fixed and the sample size m increases,

our focus is on the regime in which the problem dimension (i.e.,

n and s) increases. This is motivated by those applications, in

which anomalous sequences are required to be detected out of a

large number of typical sequences. It is clear that as n becomes

larger (even with fixed s), there is a greater chance that some

typical sequences generated by p exhibit statistical behavior de-

viating from p and may be mistakenly classified as anomalous

sequences. The situation with increasing s makes it even more

challenging to consistently detect all anomalous sequences. It

then requires that the sample size m increase correspondingly in

order to guarantee accurate detection. Hence, we are interested

in characterizing how the sample size m should scale with n

and s in order to guarantee consistent detection.

In this paper, we adopt the following notation to express

asymptotic scaling of quantities with n:
r f(n) = O(g(n)): there exist k, n0 > 0 s.t. for all n > n0 ,

|f(n)| ≤ k|g(n)|;
r f(n) = Ω(g(n)): there exist k, n0 > 0 s.t. for all n > n0 ,

f(n) ≥ kg(n);
r f(n) = Θ(g(n)): there exist k1 , k2 , n0 > 0 s.t. for all n >

n0 , k1g(n) ≤ f(n) ≤ k2g(n);
r f(n) = o(g(n)): for all k > 0, there exists n0 > 0 s.t. for

all n > n0 , |f(n)| ≤ kg(n);
r f(n) = ω(g(n)): for all k > 0, there exists n0 > 0 s.t. for

all n > n0 , |f(n)| ≥ k|g(n)|.

A. Main Contributions

We summarize our main contributions as follows.

1) We construct MMD-based distribution-free tests, which

enjoy low computational complexity and are proven to be

powerful for nonparametric detection.

2) We analyze performance guarantees for the proposed

MMD-based tests. We bound the probability of error as a

function of the sample size m, the number s of anoma-

lous sequences, and the total number n of sequences.

We then show that with s known, the constructed test is

exponentially consistent if m scales at the order Ω(log n)
for any p and q, whereas with s unknown, m should scale

at the order ω(log n) (i.e., strictly larger than Ω(log n)).
Thus, the lack of the information about s results in an

order-level increase in sample size m needed for consis-

tent detection.

3) We further derive a necessary condition which states that

for any test to be consistent for arbitrary p and q, m needs

to scale at the order Ω(log n), and further establish the

order-level optimality of the MMD-based test.

4) We provide an interesting example study, in which the

distribution q is the mixture of the typical distribution p

and an anomalous distribution q̃. In this case, anomalous

sequences contain only sparse samples from the anoma-

lous distribution. Our results for this model quantitatively

characterize the impact of the sparsity level of anomalous

samples on the scaling behavior of the sample size m to

guarantee consistency.

5) We provide numerical results to demonstrate our theo-

retical assertions and compare our tests with other com-

petitive approaches. Our numerical results demonstrate

that the MMD-based test has better performance than the

divergence-based generalized likelihood test proposed in

[9] when the sample size m is not very large. We also

demonstrate that the MMD-based test outperforms (or

performs as well as) other competitive tests including the

t-test, FR-Wolf test [13], FR-Smirnov test [13], Hall test

[14], kernel density ratio (KDR) test [15], kernel Fisher

discriminant analysis (KFDA) test [16], one-class support

measure machine (OCSMM) [8] and k-means clustering

[17].

B. Related Work

In this subsection, we review relevant problems and explain

their differences from our model.

The parametric model of our problem with known p and q

has been studied, e.g., in [2] and [3]. In fact, in [2] and [3], this

problem was studied under a sequential setting which allows

adaptive sampling to achieve an optimal tradeoff between the

false alarm rate and the expected sample size. In this paper, we

focus on the case with fixed and equal number of samples for

each data stream. It is also of interest to generalize our current

results to the sequential setting. As noted above, the nonpara-

metric model with unknown p and q was studied recently in

[9], where p and q are assumed to be discrete distributions. Our

study addresses the general scenario in which p and q can be

arbitrary (not necessarily discrete) and unknown. Furthermore,

we allow the sample size to scale with the total number n of se-

quences (which goes to infinity), whereas [9] studies the regime

in which n is fixed and only the sample size goes to infinity.

As a generalization of the classical two-sample problem,

which tests whether two sets of samples are generated from the

same distribution, our problem involves much richer ingredients

and more technical challenges. Our problem involves the inter-

play of the number n of sequences, the number s of anomalous

sequences, and the sample size m to guarantee test consistency,

whereas the two sample problem involves only the sample com-
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plexity. Furthermore, test consistency in our problem depends on

the knowledge of the number of anomalous sequences, whereas

the two sample problem does not have such an issue. These new

issues naturally require considerably more technical effort such

as analysis of the MMD estimator via samples from mixed dis-

tributions, bounding the asymptotic behavior of the difference

between two MMD estimators, and development of necessary

condition on sample complexity.

A type of outlier detection problem that has been widely stud-

ied in data mining, e.g., [18], [19], is that in which a number of

data samples are given and outliers that are far away from other

samples (typically in Euclidean distance) need to be detected.

This formulation typically does not assume underlying statistic

models for data samples, whereas our problem assumes that data

are drawn from either p or q. Thus, our problem is to detect an

outlier distribution rather than an outlier data sample.

Another related but different model has been studied in [20]–

[22], which tests whether a new sample is generated from the

same distribution as a given set of training samples. This prob-

lem is a binary composite hypothesis testing problem, whereas

our problem involves multi-hypothesis testing, detecting anoma-

lous sequences out of a set of sequences that contain both typical

and anomalous sequences. Furthermore, this problem assumes

availability of a training set of (typical) samples, whereas our

problem does not assume that any sample is known to be typical

in advance.

Our problem is also closely related to the group anomaly

detection problem [8], [22]–[24], which is a generalization of

the outlier detection problem [18], [19] with each sample being

a group of data. The goal is to detect groups of data that do

not conform to the behavior of the majority data samples, i.e.,

to detect anomalous aggregated behavior of data points out of

several groups of data. This problem is related to ours in the

sense that the anomaly refers to certain behavior captured by a

group of data.

C. Organization of the Paper

The rest of the paper is organized as follows. In Section II,

we describe the problem formulation. In Section III, we present

our tests and theoretical analysis of these tests. In Section IV,

we present a necessary condition to guarantee test consistency.

In Section V, we provide numerical results. Finally in Section

VI, we conclude the paper.

II. PROBLEM STATEMENT

We study an anomalous hypothesis testing problem (see

Fig. 1), in which there are in total n data sequences denoted

by Yk for 1 ≤ k ≤ n. Each data sequence Yk consists of m i.i.d.

samples yk1 , . . . , ykm drawn from either a typical distribution

p or an anomalous distribution q, where p 6= q. In the sequel,

we use the notation Yk := (yk1 , . . . , ykm ). We assume that the

distributions p and q are arbitrary and unknown in advance. Our

goal is to build distribution-free tests to detect data sequences

generated by q. In fact, in practice, it is quite common that typical

sequences follow a single distribution p, but outlier sequences

can follow multiple distributions q1 , . . . , qk . In this paper, we

focus on the simple case with only a single q to present the major

approach for this type of nonparametric detection problem. The

tests and analysis developed here can be naturally extended to

more general situations with multiple anomalous distributions.

We assume that s out of n data sequences are anomalous,

i.e., are generated by the anomalous distribution q. We study

both cases with s known and unknown. We are interested in the

asymptotic regime, in which the number n of data sequences

goes to infinity. We assume that the number s of anomalous

sequences satisfies s
n
→ α as n → ∞, where 0 ≤ α ≤ 1. This

includes the following three cases: (1) s is fixed, and nonzero

as n → ∞; (2) s → ∞, but s
n
→ 0 as n → ∞; and (3) s

n
ap-

proaches a positive constant, which is less than or equal to 1.

Some of our results are also applicable to the case with s = 0,

i.e., the null hypothesis in which there is no anomalous se-

quence. We will comment on this case when the corresponding

results are presented.

We next define the probability of detection error as the per-

formance measure of tests. We let I denote the set that contains

indices of all anomalous data sequences. Hence, the cardinal-

ity |I| = s. We let În denote a sequence of index sets that

contain indices of all anomalous data sequences claimed by a

corresponding sequence of tests.

Definition 1: A sequence of tests is consistent if

lim
n→∞

Pe ≡ lim
n→∞

P{În 6= In} = 0. (1)

We note that the above definition of consistency is with re-

spect to the number n of sequences instead of the number m

of samples. However, as n becomes large (and possibly as s

becomes large), it is increasingly challenging to consistently

detect all anomalous data sequences. This then requires that the

number m of samples become large enough in order to more

accurately detect anomalous sequences. Therefore, the limit in

the above definition in fact refers to the asymptotic regime, in

which m scales fast enough as n goes to infinity in order to

guarantee asymptotically small probability of error.

Furthermore, for a consistent test, it is also desired that the

error probability decays exponentially fast with respect to the

number m of samples.

Definition 2: A sequence of tests are exponentially consis-

tent if

lim inf
m→∞

[
−

1

m
log Pe

]
≡ lim inf

m→∞

[
−

1

m
log P{În 6= In}

]
> 0.

(2)

In this paper, our goal is to construct distribution-free tests

to detect anomalous sequences, and characterize the scaling

behavior of m with n (and possibly s) so that the developed

tests are consistent (and possibly exponentially consistent).

Example with sparse anomalous samples: In this paper, we

also study an interesting example, in which the distribution q is a

mixture of the typical distribution p with probability 1 − ǫ and an

anomalous distribution q̃ with probability ǫ, where 0 < ǫ ≤ 1,

i.e., q = (1 − ǫ)p + ǫq̃. It can be seen that if ǫ is small, the

majority of samples in an anomalous sequence are drawn from

the distribution p, and only sparse samples are drawn from the

anomalous distribution q̃. The value of ǫ captures the sparsity

level of anomalous samples. Here, ǫ can scale as n increases,

and is hence denoted by ǫn . We will study how ǫn affects the

number of samples needed for consistent detection.
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III. TEST AND PERFORMANCE GUARANTEE

We adopt the MMD introduced in [10] as the distance metric

to construct our tests. More specifically, suppose each distri-

bution p belonging to P (a set of probability distributions) is

mapped to an element in the RKHS H as follows:

µp(·) = Ep [k(·, x)] =

∫
k(·, x)dp(x),

where k(·, ·) is the kernel function associated with H. It was

shown in [25] and [26] that the above mean embedding map-

ping is injective for characteristic kernels such as Gaussian and

Laplace kernels. The MMD between p and q is defined to be the

distance between µp and µq in the RKHS given by

MMD[p, q] := ‖µp − µq‖H. (3)

Due to the reproducing property of the kernel, it can be shown

that

MMD2 [p, q] = Ex,x ′ [k(x, x′)] − 2Ex,y [k(x, y)]

+ Ey ,y ′ [k(y, y′)], (4)

where x and x′ are independent and have the same distribution

p, and y and y′ are independent and have the same distribution

q. An unbiased estimator of MMD2 [p, q] based on l1 samples of

X and l2 samples of Y is given as follows:

MMD2
u [X,Y ] =

1

l1(l1 − 1)

l1∑

i=1

l1∑

j 6=i

k(xi , xj )

+
1

l2(l2 − 1)

l2∑

i=1

l2∑

j 6=i

k(yi , yj ) −
2

l1 l2

l1∑

i=1

l2∑

j=1

k(xi , yj ). (5)

In this section, we design and analyze MMD-based tests for

both cases with s known and unknown, respectively. We then

study an example with sparse anomalous samples.

A. Known s

In this subsection, we consider the case with s known. We

start with a simple case with s = 1, and then extend to the

general case, in which s
n
→ α as n → ∞, where 0 ≤ α ≤ 1.

Consider the case with s = 1. For each sequence Yk , we use

Y k to denote the (n − 1)m dimensional sequence that stacks

all other sequences together, as given by

Y k = {Y1 , . . . , Yk−1 , Yk+1 , . . . , Yn}.

We then compute MMD2
u [Yk , Y k ] for 1 ≤ k ≤ n. If Yk is

the anomalous sequence, then Y k is fully composed of typi-

cal sequences. Hence, MMD2
u [Yk , Y k ] is a good estimator of

MMD2 [p, q], which is a positive constant. On the other hand, if

Yk is a typical sequence, Y k is composed of n − 2 sequences

generated by p and only one sequence generated by q. As n in-

creases, the impact of the anomalous sequence on Y k is negligi-

ble, and MMD2
u [Yk , Y k ] is asymptotically close to zero. Based

on this understanding, we construct the following test when

s = 1. Sequence k∗ is claimed to be anomalous if

k∗ = arg max
1≤k≤n

MMD2
u [Yk , Y k ]. (6)

The following proposition characterizes conditions under

which the above test is consistent.

Proposition 1: Consider the anomalous hypothesis testing

model with one anomalous sequence, i.e., s = 1. Suppose

the test (6) applies a bounded characteristic kernel with 0 ≤
k(x, y) ≤ K for any (x, y). Then, the probability of error is

upper bounded as follows:

Pe ≤ exp

(
log n −

mMMD4 [p, q]
(
1 − 1

n−1

)

16K2

)
. (7)

Furthermore, the test (6) is exponentially consistent if

m ≥
16K2(1 + η)

MMD4 [p, q]
log n, (8)

where η is any positive constant that does not depend on any

other parameters of the model.

Proof: See Appendix A. �

Proposition 1 implies that for the scenario with one anoma-

lous sequence, Ω(log n) samples are sufficient to guarantee test

consistency.

As we can see from Proposition 1, the choice of kernel af-

fects the upper bound on the error probability. And the kernel

should be chosen such that
MMD2 [p,q ]

K
is maximized. A heuristic

approach is to maximize the following quantity using meth-

ods analogous to those in [27] and [28]: maxi,j MMD2
u [Yi , Yj ],

which can be viewed as an empirical estimate of MMD2 [p, q]. In

practice, we need a train-test split of the samples, i.e., splitting

each sequence of samples into two groups, and then using the

first group as training samples to choose the kernel and using

the second group as testing samples to detect anomalous data

streams.

We next consider the case with s ≥ 1. We consider the case

with s
n
→ α as n → ∞, where 0 ≤ α < 1

2 . Although we focus

on the case with α < 1
2 , the case with α > 1

2 is similar, with

the roles of p and q being exchanged. Our test is a natural

generalization of the test (6) except that now the test chooses the

sequences with the s largest values of MMD2
u [Yk , Y k ], which is

given by

Î = {k : MMD2
u [Yk , Y k ] is among the s largest

values of MMD2
u [Yi , Y i ] for i = 1, . . . , n}. (9)

The following theorem characterizes conditions under which

the above test is consistent.

Theorem 1: Consider the anomalous hypothesis testing

model with s anomalous sequences, where s
n
→ α as n → ∞

and 0 ≤ α < 1
2 . Assume the value of s is known. Further as-

sume that the test (9) applies a bounded characteristic kernel

with 0 ≤ k(x, y) ≤ K for any (x, y). Then the probability of

error is upper bounded as follows:

Pe ≤ exp



log((n − s)s) −
m
(
1 − 2s

n

)2
MMD4 [p, q]

16K2
(
1 + 4n−5

(n−1)2

)



 .

(10)



ZOU et al.: NONPARAMETRIC DETECTION OF ANOMALOUS DATA STREAMS 5789

Furthermore, the test (9) is exponentially consistent for any p

and q if

m ≥
16K2(1 + η)

(1 − 2α)2MMD4 [p, q]
log(s(n − s)), (11)

where η is any positive constant that does not depend on any

other parameters of the model.

Proof: See Appendix B. �

We note that log((n − s)s) = Θ(log n), for 1 ≤ s < n.

Hence, Theorem 1 implies that even with s > 1 anomalous se-

quences, the test (9) requires only Ω(log n) samples in each data

sequence in order to guarantee test consistency. Hence, increas-

ing s does not affect the order-level requirement on the sample

size m. We further note that Theorem 1 is also applicable to the

case α > 1
2 with the roles of p and q exchanged.

Remark 1: The computational complexity of (9) can be re-

duced significantly by caching the intermediate results. Consider

the matrix G defined as

Gk,k =

m∑

i=1

m∑

j = 1

j 6=i

k(Yk,i , Yk,j ) and Gk,l =

m∑

i=1

m∑

j=1

k(Yk,i , Yl,j ),

for 1 ≤ k ≤ n and 1 ≤ l ≤ n, where Gk,k is the scaled self-

similarity term in (5), and Gk,l is the scaled cross-similarity

term in (5). It can be easily verified that MMD2
u [Yk , Y k ] is a

linear combination of Gk,k ,
∑

i 6=k Gk,i and
∑

i 6=k

∑
j 6=k Gi,k .

Hence, the complexity of computing MMD2
u [Yk , Y k ] for every

1 ≤ k ≤ n is O(m2n2), which is reduced substantially.

A more computationally efficient test can be constructed us-

ing the distance metric proposed in [29] which is based on using

a J-dimensional vector to represent each of the n sequences,

which can be computed in O(nmJ3) time, with J typically be-

ing small. Then using the same idea as in designing (9), the total

computational complexity is O(nmJ3), which is a significant

improvement compared to O(m2n2). The techniques used in

this paper can also be applied to analyze the consistency and

scaling behavior of this test.

We note that Theorem 1 (which includes Proposition 1 as a

special case) characterizes conditions that guarantee test con-

sistency for a pair of fixed but unknown distributions p and q.

Hence, the condition (11) depends on the underlying distribu-

tions p and q. In fact, this condition further yields the following

condition that guarantees that the test will be universally con-

sistent for arbitrary p and q.

Proposition 2 (Universal Consistency): Consider the anom-

alous hypothesis testing problem with s anomalous sequences.

Assume that s is known. Further assume that the test (9) applies

a bounded characteristic kernel with 0 ≤ k(x, y) ≤ K for any

(x, y). Then the test (9) is universally consistent for any arbitrary

pair p and q if

m = ω(log n). (12)

Proof: This result follows from (11), log((n − s)s) =
Θ(log n) and the fact that MMD[p, q] is constant for any given

p and q. �

B. Unknown s

In this subsection, we consider the case in which s is un-

known, and we focus on the scenario in which s
n
→ 0 as n → ∞.

This includes two cases: (1) s is fixed, and (2) s → ∞ and s
n
→ 0

as n → ∞. Without the knowledge of s, the test in (9) is not

applicable, because it depends on the value of s.

In order to build a test for this case, we first observe that for

each k, although Y k contains mixed samples from p and q, it

is dominated by samples from p due to the above assumption

on s. Thus, for large enough m and n, MMD2
u [Yk , Y k ] should

be close to zero if Yk is drawn from p, and should be far away

enough from zero (in fact, close to MMD2 [p, q]) if Yk is drawn

from q. Based on this understanding, we construct the following

test:

Î = {k : MMD2
u [Yk , Y k ] > δn} (13)

where δn → 0 and s2

n2 δn
→ 0 as n → ∞. The reason for the

condition s2

n2 δn
→ 0 is to guarantee that δn converges to 0 more

slowly than MMD2
u [Yk , Y k ] with Yk drawn from p so that as n

goes to infinity, δn asymptotically falls between MMD2
u [Yk , Y k ]

with Yk drawn from p and MMD2
u [Yk , Y k ] with Yk drawn from

q. We note that the scaling behavior of s as n increases needs

to be known in order to choose δn . In practice the scale of

anomalous data sequences can be estimated based on domain

knowledge.

The following theorem characterizes the condition under

which the test (13) is consistent.

Theorem 2: Consider the anomalous hypothesis testing

problem with s anomalous sequences in which s
n
→ 0 as

n → ∞. Assume that s is unknown in advance. Further as-

sume that the test (13) adopts a threshold δn such that δn → 0

and s2

n2 δn
→ 0, as n → ∞, and the test applies a bounded char-

acteristic kernel with 0 ≤ k(x, y) ≤ K for any (x, y). Then the

probability of error is upper bounded as follows:

Pe ≤ exp



log s −
m((1 − s

n−1 )2MMD2 [p, q] − δn )2

8K2
(
1 + 1

(n−1)2

)





+ exp


log(n − s) −

m
(
δn − s2 MMD2 [p,q ]

(n−1)2

)2

8K2
(
1 + 1

(n−1)2

)


 .

(14)

Furthermore, the test (13) is consistent if

m ≥ 8(1 + η)K2 max

{
log(max{1, s})

MMD4 [p, q]
,
log(n − s)

δ2
n

}
,

(15)

where η is any positive constant that does not depend on any

other parameters of the model.

Proof: See Appendix C. �

We note that Theorem 2 is also applicable to the case

with s = 0, i.e., the null hypothesis when there is no anoma-

lous sequence. We further note that the test (13) is not ex-

ponentially consistent. However, if MMD[p, q] can be esti-

mated from domain knowledge, we can choose the threshold

δn = MMD2 [p,q ]
2 . In this case, the test (13) is exponentially con-

sistent if m = Ω(log n), which can be shown similarly to The-

orem 2. And it does not require knowledge of s, nor even of the

scaling behavior of s.
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In fact when there is no null hypothesis (i.e., s ≥ 1), an ex-

ponentially consistent test can be built similarly as in [30]. The

basic idea is to reformulate the anomalous data stream detection

problem as a problem of clustering the data streams based on

their generating distributions. Using this idea, we first construct

two clustering centers by choosing the two data streams with

the largest MMD, then assign the remaining data streams by

comparing the distances to the two clustering centers. It can be

shown that this test is exponentially consistent if m = Ω(log n).
This test does not require knowing s, nor even of the scaling

behavior of s. However, this test depends on the assumption that

s ≥ 1 such that the two clustering centers constructed are from

the typical and anomalous distributions, respectively. Hence,

this test does not work if s = 0.

Theorem 2 implies that m should be of the order ω(log n)
to guarantee test consistency, because s

n
→ 0 and δn → 0 as

n → ∞. Compared to the case with s known (for which it is

sufficient for m to scale at the order Θ(log n)), the threshold on

m has an order-level increase due to the lack of knowledge of

s. Furthermore, the above understanding about the order-level

condition on m also yields the following sufficient condition for

universal test consistency.

Proposition 3 (Universal Consistency): Consider the anom-

alous hypothesis testing problem in which s
n
→ 0 as n → ∞.

Assume that s is unknown in advance. Further assume that the

test (13) adopts a threshold δn such that δn → 0 and s2

n2 δn
→ 0,

as n → ∞, and the test applies a bounded characteristic kernel

with 0 ≤ k(x, y) ≤ K, ∀(x, y). Then the test (13) is universally

consistent for any p and q, if

m = ω(log n). (16)

A comparison of Proposition 3 and Proposition 2 indicates

that the knowledge of s does not affect the order-level sample

complexity to guarantee universal consistency.

C. Example with Sparse Anomalous Samples

We study the example with the anomalous distribution q =
(1 − ǫn )p + ǫn q̃ as introduced in Section II. The following re-

sult characterizes the impact of the sparsity level ǫn on the

scaling behavior of m to guarantee consistent detection.

Corollary 1: Consider the model with the typical distribution

p and the anomalous distribution q = (1 − ǫn )p + ǫn q̃, where

0 < ǫn ≤ 1. If s is known, then the test (9) is consistent if

m ≥
16K2(1 + η)

(1 − 2α)2ǫ4
n MMD4 [p, q̃]

log(s(n − s)), (17)

where η is any positive constant that does not depend on any

other parameters of the model.

If s is unknown, then the test (13) is consistent if

m ≥ 16(1 + η)K2 max

{
log(max{1, s})

(ǫ2
n MMD2 [p, q̃] − δn )2

,

log(n − s)

(δn − E
[
MMD2

u [Y, Y ]
]
)2

}
, (18)

where η is any positive constant that does not depend on any

other parameters of the model,
s2 ǫ2

n

n2 δn
→ 0 and δn

ǫ2
n
→ 0 as n →

∞, Y is a sequence generated by p, and Y is a stack of (n − 1)

sequences with s sequences generated by q̃ and the remaining

sequences generated by p.

Proof: The proof follows from Theorems 1 and 2 by substi-

tuting as follows:

MMD2 [p, q]

= Ex,x ′ [k(x, x′)] − 2Ex,y [k(x, y)] + Ey ,y ′ [k(y, y′)]

= Ex,x ′ [k(x, x′)] − 2(1 − ǫn )Ex,x ′ [k(x, x′)]

− 2ǫnEx,ỹ [k(x, ỹ)] + (1 − ǫn )2
Ex,x ′ [k(x, x′)]

+ 2ǫn (1 − ǫn )Ex,ỹ [k(x, ỹ)] + ǫ2
nEỹ ,ỹ ′ [k(ỹ, ỹ′)]

= ǫ2
n MMD2 [p, q̃], (19)

where x and x′ are independent with the same distribution p, y

and y′ are independent with the same distribution q, and ỹ and

ỹ′ are independent with the same distribution q̃. �

Corollary 1 implies that if ǫn is a constant, then the scaling

behavior of m needed for consistent detection does not change.

However, if ǫn → 0 as n → ∞, i.e., anomalous sequences con-

tain more sparse anomalous samples, then m needs to scale

faster with n in order to guarantee consistent detection. This

is reasonable because the sample size m should have a higher

order to offset the impact of the increasingly sparse anomalous

samples in each anomalous sequence. Corollary 1 explicitly cap-

tures the tradeoff between the sample size m and the sparsity

level ǫn of anomalous samples in addition to n and s.

IV. NECESSARY CONDITION AND OPTIMALITY

In this section, we provide a necessary condition for any test

to be consistent.

Proposition 4: Consider the anomalous hypothesis testing

problem with s anomalous sequences. For any test to be consis-

tent for arbitrary p and q, the sample size m must satisfy

m ≥
log n − log 2 − 1

D(p||q) + D(q||p)
. (20)

Furthermore, for any test to be universally consistent, the sample

size m must satisfy

m = ω(log n). (21)

Proof: See Appendix D. �

The sufficient and necessary conditions on sample complexity

that we have derived thus far establish the following optimality

of the MMD-based test.

Theorem 3 (Optimality): Consider the nonparametric anom-

alous hypothesis testing problem with s ≥ 1. For s being known

and unknown, the MMD-based test (9) (under the conditions

in Propositions 2) and the test (13) (under the conditions in

Proposition 3) are order-level optimal in sample complexity

required to guarantee universal consistency for any p and q.

Proof: The proof follows by comparing Propositions 2 and

3 with Proposition 4. �

V. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate

our theoretical assertions, and compare our MMD-based tests

with other approaches. We also apply our test to real datasets.
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Fig. 2. Performance of the MMD-based test vs. the bandwidth parameter σ
of the Gaussian kernel.

Fig. 3. The performance of the MMD-based test.

We note that although the following experiments are performed

for chosen distributions p and q, our tests are nonparametric and

do not exploit the information about p and q.

Previous works in kernel-based anomaly detection have

shown that the Gaussian kernel is more suitable than some other

kernels such as polynomial kernels [31]. Thus, we will focus on

the Gaussian kernel given by k(x, x′) = exp(− ‖x−x ′‖2

2σ 2 ), where

σ > 0 is the bandwidth parameter. We first study how changing

σ affects the performance of our tests. We choose the distri-

butions p = N (0, 1) and q = N (1.2, 1), and set s = 2, n = 10
and m = 20. We plot the probability of error as a function

of σ in Fig. 2. We also plot the analytically-derived value of

MMD2 [p, q] as a function of σ in Fig. 2. It can be observed

that if σ is chosen such that the analytical value of MMD2 [p, q]
is maximized, the corresponding probability of error is almost

minimized. This suggests that a good choice of σ can be set by

maximizing the empirical estimate max1≤i,j≤n MMD2
u [Yi , Yj ]

of MMD2 [p, q].
We also note that as σ increases, the probability of error ap-

proaches a constant. This is consistent with the result in [32]

that for the two-sample test between distributions with different

means, any bandwidth higher than a certain threshold yields

equal asymptotic power. This fact will not hold for other distri-

butions p and q. For example, if p is the Laplace distribution with

mean 0 and variance 1, and q = N (0, 1), then the probability of

error increases when σ becomes very large.

We then demonstrate our theorems on the sample complex-

ity. We choose the distribution p to be N (0, 1), and choose

the anomalous distribution q to be the Laplace distribution with

mean one and variance one. In the experiment, we use the Gaus-

sian kernel, and choose the bandwidth parameter σ by maximiz-

ing max1≤i,j≤n MMD2
u [Yi , Yj ]. We set s = 1. We run the test for

cases with n = 40 and 100, respectively. In Fig. 3, we examine

how the probability of error changes with m. For illustrational

Fig. 4. Comparison of the MMD-based test with the divergence-based gener-
alized likelihood test.

convenience, we normalize m by log n, i.e., the horizontal axis

represents m
log n

. It is clear that when m
log n

is above a certain

threshold, the probability of error converges to zero, which is

consistent with our theoretical results. Furthermore, for these

two values of n, the two curves drop to zero at almost the same

threshold. This observation confirms Proposition 1, which states

that the threshold on m
log n

depends only on the bound K of the

kernel and MMD of the two distributions. Both quantities are

constant for the two values of n.

We next compare the MMD-based test with the divergence-

based generalized likelihood test developed in [9]. Since the

test in [9] is applicable only when the distributions p and q are

discrete and have finite alphabets, we set the distributions p and q

to be Bernoulli distributions with p having probability 0.3 to take

“0” (and probability 0.7 to take “1”), and q having probability

0.7 to take “0” (and probability 0.3 to take “1”). We let s = 1 and

assume that s is known. We let n = 50, and use the Gaussian

kernel, again choosing the bandwidth parameter σ using the

same method as in Fig. 3. In Fig. 4, we plot the probability of

error as a function of the sample size m. It can be seen that the

MMD-based test outperforms the divergence-based generalized

likelihood test. We note that it has been shown in [9] that the

generalized likelihood test converges at an optimal rate in the

limiting case when n is infinite. Our numerical comparison, on

the other hand, demonstrates that the MMD-based test performs

as well as or even better than the generalized likelihood test for

moderate n.

We then compare the performance of the MMD-based test

with two other tests using kernel mean embedding. We choose

p = N (0, 1), q = N (1.2, 1), n = 20, s = 2, and for a fair com-

parison, we fix the kernel to be a Gaussian kernel with σ = 1 for

all three tests. We plot the probability of error as a function of

the sample size m in Fig. 5 for the three algorithms: OCSMM,

k-means using kernel mean embedding and our MMD-based

approach.

It can be observed from Fig. 5 that MMD outperforms OC-

SMM and k-means. More specifically, the probability of error

of OCSMM is one. This can be explained as follows. First,

OCSMM does not fully exploit the knowledge of the number

s of anomalous data streams. The number of anomalous data

streams detected by OCSMM is not necessarily equal to the

true s. Second, OCSMM detects only a subset of the anomalous

sequences, and mislabels some typical sequences as anoma-

lous ones. A possible explanation is that OCSMM is trained

on the dataset in which both typical and anomalous sequences
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Fig. 5. Comparison of the MMD-based test with k-means and OCSMM.

Fig. 6. Comparison of the MMD-based test with four other tests on the
Syracuse-Hawaii temperature dataset.

are mixed together, and the trained hyperplane is further used

to detect the anomaly in the training data. Although it can la-

bel a large fraction of data streams correctly, it cannot detect all

the anomalous sequences correctly (which is counted as an error

event under our definition of the error). The k-means approach is

implemented by first mapping the distributions into the RKHS,

and then running the k-means algorithm using the distance in

the RKHS. The k-means algorithm is usually used to solve

the clustering problem and it is well-known that the k-means

algorithm only performs well on balanced clusters [17].

We then compare the performance of the MMD-based test

with a few other competitive tests on a Syracuse-Hawaii tem-

perature dataset. We choose the collection of daily maximum

temperatures in Syracuse (New York, USA) in July from 1993

to 2012 as the typical data sequences, and the collection of daily

maximum temperatures in Makapulapai (Hawaii, USA) in May

from 1993 to 2012 as anomalous sequences. Here, each data se-

quence contains daily maximum temperatures of a certain day

across twenty years from 1993 to 2012. In our experiment, the

dataset contains 32 sequences in total, including one tempera-

ture sequence from Hawaii and 31 sequences from Syracuse.

The probability of error is averaged over all cases with each

using one sequence from Hawaii as the anomalous sequence.

Although it seems easy to detect the sequence from Hawaii out

of the sequences from Syracuse, the temperatures we compare

for the two places are in May for Hawaii and July for Syracuse,

during which the two places have approximately the same mean

temperature. Thus, it may not be easy to detect the anomalous

sequence (in fact, some tests do not perform well as shown in

Fig. 6).

Fig. 7. Comparison of the MMD-based test with kernel-based tests on the
Syracuse-Hawaii temperature dataset.

Fig. 8. Comparison of the MMD-based test with other tests on the climate-
type dataset.

We first compare the performance of the MMD-based test

with the t-test, FR-Wolf test, FR-Smirnov test, and Hall test on

the above Syracuse-Hawaii temperature dataset. For the MMD-

based test, we use the Gaussian kernel with σ = 1. In Fig. 6, we

plot the probability of error as a function of the sequence length

m for all tests. It can be seen that the MMD-based test, Hall test,

and FR-wolf test have the best performances, and all three tests

are consistent with the probability of error converging to zero as

m goes to infinity. Furthermore, comparing to the Hall and FR-

wolf tests, the MMD-based test has the lowest computational

complexity.

We further compare the performance of the MMD-based test

with the kernel-based tests KFDA, KDR, OCSMM and k-means

for the same dataset. For all the tests, we choose the Gaussian

kernel with σ = 1 for a fair comparison. In Fig. 7, we plot the

probability of error as a function of the sequence length for all

tests. It can be seen that for all the tests the probability of error

decreases as m increases, and the MMD-based test has the best

performance among these tests.

We then compare the performance on a climate-type dataset.

We obtained data taken at various weather statinos from the

National Center for Atmospheric Research data archive [33].

The climate type of each station is labeled according to the

Köppen-Geiger climate classification [34]. For each station, we

extract the average temperate and precipitation of each month

from the dataset, i.e., the dimension of each data point is two.

The data at each station across months forms a sequence. We

randomly choose 18 stations in southeast China and southeast

North America to construct the typical sequences (191 stations

in total in the chosen temperate area), and randomly choose

two stations in north Africa and central Australia (13 stations
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in total in the chosen tropical area) to construct the anomalous

sequences. We randomly choose m months from 1987 till now,

and let m vary. We plot the probability of error as a function

of m in Fig. 8. It can be seen that the MMD-based approach

outperforms the other approaches.

VI. CONCLUSION

In this paper, we have investigated a nonparametric anoma-

lous hypothesis testing problem. We have built MMD-based

distribution-free tests to detect the anomalous sequences. We

have characterized the scaling behavior of the sample size m

as the total number n of sequences goes to infinity in order to

guarantee consistency of the developed tests. We have further

provided a necessary condition for any test to be consistent, and

thus established that our proposed tests are order-level optimal.

Our study of this problem demonstrates a useful application of

the mean embedding of distributions and MMD, and we be-

lieve that this approach can be applied to solving various other

nonparametric problems.

APPENDIX

A. Proof of Proposition 1

We first introduce McDiarmid’s inequality which is useful in

bounding the probability of error in our proof.

Lemma 1 (McDiarmid’s Inequality): Let f : Xm → R be a

function such that for all i ∈ {1, . . . , m}, there exist ci < ∞ for

which

sup
X ∈Xm,x̃∈X

|f(x1 , . . . , xm )

− f(x1 , . . . xi−1 , x̃, xi+1 , . . . , xm )| ≤ ci . (22)

Then for all probability distributions p and every ǫ > 0,

PX

(
f(X) − EX (f(X)) > ǫ

)
< exp

(
−

2ǫ2

∑m
i=1 c2

i

)
, (23)

where X denotes (x1 , . . . , xm ), EX denotes the expectation

over the m random variables xi ∼ p, and PX denotes the prob-

ability over these m variables.

In order to analyze the probability of error for the test (6),

without loss of generality, we assume that the first sequence is

the anomalous sequence generated by the anomalous distribu-

tion q. Hence,

Pe = P (k∗ 6= 1)

= P

(
∃k 6= 1 : MMD2

u [Yk , Y k ] > MMD2
u [Y1 , Y 1 ]

)

≤
n∑

k=2

P

(
MMD2

u [Yk , Y k ] > MMD2
u [Y1 , Y 1 ]

)
. (24)

For notational convenience, we stack Y1 , . . . , Yn into an nm

dimensional row vector Y = {yi , 1 ≤ i ≤ nm}, where Yk =
{y(k−1)m+1 , . . . , ykm}, and we define n′ = (n − 1)m. We then

have,

MMD2
u [Y1 , Y 1 ] =

1

m(m − 1)

m,m∑

i,j=1
i 6=j

k(yi , yj )

+
1

n′(n′ − 1)

nm∑

i,j=m+1
i 6=j

k(yi , yj ) −
2

mn′

m,nm∑

i=1
j=m+1

k(yi , yj ).

(25)

For 2 ≤ k ≤ n, we have,

MMD2
u [Yk , Y k ] =

1

m(m − 1)

km,km∑

i,j=(k−1)m+1
i 6=j

k(yi , yj )

+
1

n′(n′ − 1)

( m,m∑

i,j=1
i 6=j

k(yi , yj ) + 2

m,(k−1)m∑

i=1
j=m+1

k(yi , yj )

+ 2

m,nm∑

i=1
j=km+1

k(yi , yj ) +

(k−1)m,(k−1)m∑

i,j=m+1
i 6=j

k(yi , yj )

+

nm,nm∑

i,j=km+1
i 6=j

k(yi , yj ) + 2

(k−1)m,nm∑

i=m+1
j=km+1

k(yi , yj )

)

−
2

mn′

( m,km∑

i=1
j=(k−1)m+1

k(yi , yj ) +

(k−1)m,km∑

i=m+1
j=(k−1)m+1

k(yi , yj )

+

km,nm∑

i=(k−1)m+1
j=km+1

k(yi , yj )

)
. (26)

We define

∆k = MMD2
u [Yk , Y k ] − MMD2

u [Y1 , Y 1 ].

It can be shown that,

E[MMD2
u [Y1 , Y 1 ]] = MMD2 [p, q],

and

E[MMD2
u [Yk , Y k ]] = Ex,x ′k(x, x′)

+
1

(n − 1)m((n − 1)m − 1)

(
m(m − 1)Ey ,y ′k(y, y′)

+ 2m2(n − 2)Ex,yk(x, y)

+ ((n − 2)m − 1)(n − 2)mEx,x ′k(x, x′)

)

−
2

(n − 1)m2

(
m2

Ex,yk(x, y) + (n − 2)m2
Ex,x ′k(x, x′)

)

=
m − 1

(n − 1)((n − 1)m − 1)
MMD2 [p, q]
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where x and x′ are independent but have the same distribution

p, and y and y′ are independent but have the same distribution

q.

We next divide the entries in {y1 , . . . , ynm} into three groups:

Y1 = {y1 , . . . , ym}, Yk = {y(k−1)m+1 . . . , ykm}, and Ŷk that

contains the remaining entries. We define Y−a as Y with the

a-th component ya being removed.

For 1 ≤ a ≤ m, ya affects ∆k through the following terms:

2

n′(n′ − 1)

( m∑

j=1
j 6=a

k(ya , yj ) +

(k−1)m∑

j=m+1

k(ya , yj )

+

nm∑

j=km+1

k(ya , yj )

)
−

2

mn′

km∑

j=(k−1)m+1

k(ya , yj )

−
2

m(m − 1)

m∑

j=1
k 6=a

k(ya , yj ) +
2

mn′

nm∑

j=m+1

k(ya , yj ). (27)

Hence, for 1 ≤ a ≤ m, we have

|∆k

(
Y−a , ya

)
− ∆k

(
Y−a , y′

a

)
| ≤

4K

m

(
1 +

1

n − 1

)
. (28)

For (k − 1)m + 1 ≤ a ≤ km, ya affects ∆k through

2

m(m − 1)

km∑

j=(k−1)m+1
j 6=a

k(ya , yj ) −
2

mn′

( m∑

i=1

k(yi , ya)

+

(k−1)m∑

i=m+1

k(yi , ya) +
nm∑

j=km+1

k(ya , yj )

)

−
2

n′(n′ − 1)

nm∑

j=m+1
j 6=a

k(ya , yj ) +
2

mn′

m∑

i=1

k(ya , yi). (29)

Hence, for (k − 1)m + 1 ≤ a ≤ km, we have

|∆k

(
Y−a , ya

)
− ∆k

(
Y−a , y′

a

)
| ≤

4K

m

(
1 +

1

n − 1

)
. (30)

For m + 1 ≤ a ≤ (k − 1)m and km + 1 ≤ a ≤ nm, ya af-

fects ∆k through

2

n′(n′ − 1)

( m∑

i=1

k(yi , ya) +

(k−1)m∑

i=m+1
i 6=a

k(yi , ya)

+

nm∑

j=km+1

k(ya , yj )

)
−

2

mn′

km∑

j=(k−1)m+1

k(ya , yj )

−
2

n′(n′ − 1)

nm∑

j=m+1
j 6=a

k(ya , yj ) +
2

mn′

km∑

i=(k−1)m+1

k(yi , ya).

(31)

Hence, for m + 1 ≤ a ≤ (k − 1)m or km + 1 ≤ a ≤ nm, we

have

|∆k

(
Y−a , ya

)
− ∆k

(
Y−a , y′

a

)
| ≤

8K

(n − 1)m
. (32)

We further derive the following probability:

P

(
MMD2

u [Yk , Y k ] > MMD2
u [Y1 , Y 1 ]

)

= P

(
MMD2

u [Yk , Y k ] − MMD2
u [Y1 , Y 1 ] + MMD2 [p, q]

− E[MMD2
u [Yk , Y k ]]>MMD2 [p, q] − E[MMD2

u [Yk , Y k ]]

)
.

(33)

Combining (28), (30) and (32), and applying McDiarmid’s

inequality, we have,

P
(
MMD2

u [Yk , Y k ] > MMD2
u [Y1 , Y 1 ]

)

≤ exp

(
−

mMMD4 [p, q](1 − m−1
(n−1)((n−1)m−1) )

2

16K2(1 + 4n−5
(n−1)2 )

)

≤ exp

(
mMMD4 [p, q](1 − 1

n−1 )

16K2

)
. (34)

Hence,

Pe ≤ exp

(
log n −

mMMD4 [p, q](1 − 1
n−1 )

16K2

)
. (35)

We then conclude that if

m ≥
16K2(1 + η)

MMD4 [p, q]
log n, (36)

where η is any positive constant, then Pe → 0 as n → ∞. It is

also clear that if the above condition is satisfied, Pe converges

to zero exponentially fast with respect to m. This completes the

proof.

B. Proof of Theorem 1

We analyze the performance of the test (9). Without loss of

generality, we assume that the first s sequences are anomalous

and are generated from distribution q. Hence, the probability of

error can be bounded as,

Pe = P

(
∃k > s : MMD2

u [Yk , Y k ] > min
1≤l≤s

MMD2
u [Yl , Y l ]

)

≤
n∑

k=s+1

s∑

l=1

P

(
MMD2

u [Yk , Y k ] > MMD2
u [Yl , Y l ]

)
.

(37)

Using the fact that s
n
→ α, where 0 ≤ α < 1

2 , and using (25)

and (26), we can show that for 1 ≤ l ≤ s,

E
[
MMD2

u [Yl , Y l ]
]

=
(n − s)((n − s)m − 1)MMD2 [p, q]

(n − 1)((n − 1)m − 1)

≥ (1 −
s

n − 1
)2MMD2 [p, q], (38)
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and for s + 1 ≤ k ≤ n,

E
[
MMD2

u [Yk , Y k ]
]

=
s(ms − 1)MMD2 [p, q]

(n − 1)((n − 1)m − 1)

≤
s2MMD2 [p, q]

(n − 1)2
. (39)

Therefore, we obtain,

P

(
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ] > 0

)

= P

(
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

− E
[
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

]

> −E
[
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

])

≤ P

(
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

− E
[
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

]

>
(mn − 1)(n − 2s)MMD2 [p, q]

(n − 1)((n − 1)m − 1)

)

≤ P

(
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

− E
[
MMD2

u [Yk , Y k ] − MMD2
u [Yl , Y l ]

]

> (1 −
2s

n
)MMD2 [p, q]

)
. (40)

Applying McDiarmid’s inequality, we obtain,

Pe ≤ exp

(
log((n − s)s) −

m(1 − 2s
n

)2MMD4 [p, q]

16K2(1 + 4n−5
(n−1)2 )

)
.

(41)

Since s
n
→ α, as n → ∞, we conclude that if

m ≥
16K2(1 + η)

(1 − 2α)2MMD4 [p, q]
log(s(n − s)), (42)

where η is any positive constant, then Pe → 0, as n → ∞. It is

also clear that if the above condition is satisfied, Pe converges

to zero exponentially fast with respect to m.

C. Proof of Theorem 2

We analyze the performance of the test (13). Without loss

of generality, we assume that the first s sequences are the

anomalous sequences. Hence,

Pe = P

((
∃1 ≤ l ≤ s : MMD2

u [Yl , Y l ] ≤ δn

)
or

(
∃s + 1 ≤ k ≤ n : MMD2

u [Yk , Y k ] > δn

))

≤
s∑

l=1

P

(
MMD2

u [Yl , Y l ] ≤ δn

)

+

n∑

k=s+1

P

(
MMD2

u [Yk , Y k ] > δn

)
. (43)

For 1 ≤ l ≤ s, we derive,

P

(
MMD2

u [Yl , Y l ] ≤ δn

)

= P

(
MMD2

u [Yl , Y l ] − E
[
MMD2

u [Yl , Y l ]
]

≤ −E
[
MMD2

u [Yl , Y l ]
]
+ δn

)

≤ P

(
MMD2

u [Yl , Y l ] − E
[
MMD2

u [Yl , Y l ]

≤ −(1 −
s

n − 1
)2MMD2 [p, q] + δn

)
. (44)

For large enough n, −(1 − s
n−1 )2MMD2 [p, q] + δn < 0.

Therefore, by applying McDiarmid’s inequality, we obtain

P

(
MMD2

u [Yl , Y l ] ≤ δn

)

≤ exp

(
−

m((1 − s
n−1 )2MMD2 [p, q] − δn )2

8K2(1 + 1
(n−1)2 )

)
, (45)

for large n.

For s + 1 ≤ k ≤ n,

P

(
MMD2

u [Yk , Y k ] > δn

)

= P

(
MMD2

u [Yk , Y k ] − E
[
MMD2

u [Yk , Y k ]
]

> δn − E
[
MMD2

u [Yk , Y k ]
])

≤ P

(
MMD2

u [Yk , Y k ] − E
[
MMD2

u [Yk , Y k ]
]

> δn −
s2MMD2 [p, q]

(n − 1)2

)
. (46)

Using the fact that s2

n2 δn
→ 0 as n → ∞, we can show that

for large enough n, δn > E
[
MMD2

u [Yk , Y k ]
]
. Therefore, using
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McDiarmid’s inequality, we have

P

(
MMD2

u [Yk , Y k ] > δn

)
≤ exp

(
−

m(δn − s2 MMD2 [p,q ]
(n−1)2 )2

8K2(1 + 1
(n−1)2 )

)
.

(47)

Therefore, when s > 0,

Pe ≤ s exp

(
−

m((1 − s
n−1 )2MMD2 [p, q] − δn )2

8K2(1 + 1
(n−1)2 )

)

+ (n − s) exp

(
−

m(δn − s2 MMD2 [p,q ]
(n−1)2 )2

8K2(1 + 1
(n−1)2 )

)

= exp

(
log s −

m((1 − s
n−1 )2MMD2 [p, q] − δn )2

8K2(1 + 1
(n−1)2 )

)

+ exp

(
log(n − s) −

m(δn − s2 MMD2 [p,q ]
(n−1)2 )2

8K2(1 + 1
(n−1)2 )

)
, (48)

for large enough n. Hence, we conclude that if

m ≥
8K2(1 + η)

MMD4 [p, q]
log s, and m ≥

8K2(1 + η)

δ2
n

log(n − s),

where η is any positive constant, then Pe → 0, as n → ∞.

When s = 0, Pe =
∑n

k=1 P (MMD2
u [Yk , Yk ] > δn ). Then

applying (47), we have that, if

m ≥
8(1 + η)K2

(δn − s2 MMD2 [p,q ]
(n−1)2 )2

log n, (49)

where η is any positive constant, then Pe → 0, as n → ∞.

D. Proof of Proposition 4

Without loss of generality, we assume that s < n
2 . We

first construct the set of index set S as follows. Let In
i =

{1, 2, . . . , s − 1, s + i − 1}, for i = 1, . . . , n − s. And let S =
{In

i : i = 1, . . . , n − s}. We note that the cardinality of each

index set in S is s.

Let P denote the joint distribution of In and {Y1 , . . . , Yn},

where In is sampled uniformly from S. The following Markov

chain condition holds:

In → {Y1 , . . . , Yn} → În (50)

The worse-case error probability is lower bounded as follows:

max
In :|In |=s

P (În 6= In ) ≥ P (În 6= In ). (51)

By Fano’s inequality, and the assumption that s < n
2 ,

P (În 6= In ) ≥ 1 −
I(In ;Y1 , . . . , Yn ) + 1

log |S|

≥ 1 −
I(In ;Y1 , . . . , Yn ) + 1

log n
2

, (52)

where I(A;B) denotes the mutual information between A and

B. Let Pi denote the distribution of {Y1 , . . . , Yn} conditioned

on In = In
i . Then,

I(In ;Y1 , . . . , Yn )

=

n−s∑

i=1

∑

y1 ,...,yn

P (In
i , y1 , . . . , yn ) log

P (In
i , y1 , . . . , yn )

P (In
i )P (y1 , . . . , yn )

=

n−s∑

i=1

∑

y1 ,...,yn

1

n − s
Pi(y1 , . . . , yn ) log

Pi(y1 , . . . , yn )

P (y1 , . . . , yn )
,

(53)

where P (y1 , . . . , yn ) = 1
n−s

∑n−s
i=1 Pi(y1 , . . . , yn ). Then by the

Jensen’s inequality and the construction of In
i , it can be shown

that

I(In ;Y1 , . . . , Yn ) ≤ m(D(p||q) + D(q||p)). (54)

Hence,

P (În 6= In ) ≥ 1 −
m(D(p||q) + D(q||p)) + 1

log n − log 2
, (55)

which implies that for any consistent test, the following condi-

tion must be satisfied:

m ≥
(1 − η) log n

D(p||q) + D(q||p)
. (56)

Furthermore, due to the fact that D(p||q) + D(q||p) is a con-

stant for any given p and q and can be arbitrarily close to zero,

for any universally consistent test, the following condition must

be satisfied:

m = ω(log n). (57)
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