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Abstract—A nonparametric anomalous hypothesis testing
problem is investigated, in which there are totally n observed
sequences out of which s anomalous sequences are to be detected.
Each typical sequence consists of m independent and identically
distributed (i.i.d.) samples drawn from a distribution p, whereas
each anomalous sequence consists of m i.i.d. samples drawn from
a distribution g that is distinct from p. The distributions p and
q are assumed to be unknown in advance. Distribution-free tests
are constructed by using the maximum mean discrepancy as the
metric, which is based on mean embeddings of distributions into
a reproducing kernel Hilbert space. The probability of error is
bounded as a function of the sample size m, the number s of
anomalous sequences, and the number 7 of sequences. It is shown
that with s known, the constructed test is exponentially consistent
if m is greater than a constant factor of log n, for any p and g,
whereas with s unknown, m should have an order strictly greater
than log n. Furthermore, it is shown that no test can be consistent
for arbitrary p and q if m is less than a constant factor of log n.
Thus, the order-level optimality of the proposed test is established.
Numerical results are provided to demonstrate that the proposed
tests outperform (or perform as well as) tests based on other
competitive approaches under various cases.

Index Terms—Anomalous hypothesis testing, consistency,
distribution-free tests, maximum mean discrepancy (MMD).
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Fig. 1.  Anomalous hypothesis testing with data sequences generated by typi-
cal distribution p and anomalous distribution g.

I. INTRODUCTION

N THIS paper, we study an anomalous hypothesis testing

problem (see Fig. 1), in which there are totally n sequences
out of which s anomalous sequences need to be detected. Each
typical sequence consists of m independent and identically dis-
tributed (i.i.d.) samples drawn from a distribution p, whereas
each anomalous sequence contains i.i.d. samples drawn from a
distribution ¢ that is distinct from p. The distributions p and g are
assumed to be unknown. The goal is to build distribution-free
tests to detect the s anomalous data sequences generated by ¢
out of all data sequences.

Solutions to this problem are very useful in many applications.
For example, in cognitive wireless networks, channel measure-
ments follow different distributions p or ¢ depending on whether
the channel being measured is busy or vacant. A major issue in
such networks is to identify vacant channels out of a large num-
ber of busy channels that can then be used to improve spectral
efficiency. This problem was studied in [2] and [3] under the
assumption that p and ¢ are known, whereas in this paper, we
study the problem with unknown p and ¢q. Other applications
include detecting anomalous events in sensor monitoring net-
works [4], distinguishing diseased groups with aberrant genetic
markers [5], identifying differently expressed genes from gene
expression profiles [6], distinguishing virus infected comput-
ers from other virus free computers [7], detecting rare objects
from astronomical data that might lead to scientific discover-
ies [8], and distinguishing slightly modified images from other
untouched images.

The parametric model of this problem has been well studied,
e.g., [2], [3], in which it is assumed that p and ¢ are known in
advance. However, the nonparametric model is less explored,
in which it is assumed that p and ¢ are unknown and can be
arbitrary. Recently, Li, Nitinawarat and Veeravalli proposed the
nonparametric divergence-based generalized likelihood tests in
[9], and characterized the error decay exponents of these tests.
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However, only the case when p and ¢ are discrete with finite
alphabets was studied in [9], and their tests utilize empirical
probability mass functions of p and g.

In this paper, we study the fully nonparametric model, in
which p and ¢ are arbitrary, i.e., not necessarily discrete. The
major challenges to solve this problem (compared to the discrete
case studied in [9]) lie in: (1) accurately estimating distributions
that may be continuous with limited numbers of samples for
further anomalous hypothesis testing; (2) designing low com-
plexity tests with distributions that may be continuous; and (3)
building distribution-free consistent tests and further guarantee-
ing exponential error decay for arbitrary distributions.

Our approach adopts the maximum mean discrepancy (MMD)
introduced in [10] as the distance metric between two distribu-
tions. The idea is to map probability distributions into a repro-
ducing kernel Hilbert space (RKHS) (as proposed in [11], [12])
such that the distance between the two probability distributions
can be measured by the distance between their corresponding
embeddings in the RKHS. MMD can be easily estimated based
on samples, and hence yields low-complexity tests. In this paper,
we apply MMD as a metric to construct our tests for detecting
anomalous data sequences. In contrast to consistency analysis
in classical theory as in [9], which assumes that the problem
dimension (i.e., the number n of sequences and the number s of
anomalous sequences) is fixed and the sample size m increases,
our focus is on the regime in which the problem dimension (i.e.,
n and s) increases. This is motivated by those applications, in
which anomalous sequences are required to be detected out of a
large number of typical sequences. It is clear that as n becomes
larger (even with fixed s), there is a greater chance that some
typical sequences generated by p exhibit statistical behavior de-
viating from p and may be mistakenly classified as anomalous
sequences. The situation with increasing s makes it even more
challenging to consistently detect all anomalous sequences. It
then requires that the sample size m increase correspondingly in
order to guarantee accurate detection. Hence, we are interested
in characterizing how the sample size m should scale with n
and s in order to guarantee consistent detection.

In this paper, we adopt the following notation to express
asymptotic scaling of quantities with n:

e f(n) = 0O(g(n)): there exist k,ng > 0 s.t. for all n > ny,

F(m)] < Klg(n)]:
* f(n)=Q(g(n)): there exist k,ny > 0 s.t. for all n > ng,
£(n) = kg(n);
e f(n) =0(g(n)): there exist k1, ko, ng > 0s.t. foralln >
no, kig(n) < f(n) < kag(n);

e f(n) =o(g(n)): forall k > 0, there exists ng > 0 s.t. for
alln > ng, |f(n)] < kg(n);
* f(n) =w(g(n)): forall k > 0, there exists ny > 0 s.t. for

all n > ng, |f(n)] > k|g(n)|.

A. Main Contributions

We summarize our main contributions as follows.

1) We construct MMD-based distribution-free tests, which
enjoy low computational complexity and are proven to be
powerful for nonparametric detection.

2) We analyze performance guarantees for the proposed
MMD-based tests. We bound the probability of error as a
function of the sample size m, the number s of anoma-
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lous sequences, and the total number n of sequences.
We then show that with s known, the constructed test is
exponentially consistent if m scales at the order Q(logn)
for any p and ¢, whereas with s unknown, m should scale
at the order w(logn) (i.e., strictly larger than Q(logn)).
Thus, the lack of the information about s results in an
order-level increase in sample size m needed for consis-
tent detection.

3) We further derive a necessary condition which states that
for any test to be consistent for arbitrary p and ¢, m needs
to scale at the order Q(logn), and further establish the
order-level optimality of the MMD-based test.

4) We provide an interesting example study, in which the
distribution ¢ is the mixture of the typical distribution p
and an anomalous distribution §. In this case, anomalous
sequences contain only sparse samples from the anoma-
lous distribution. Our results for this model quantitatively
characterize the impact of the sparsity level of anomalous
samples on the scaling behavior of the sample size m to
guarantee consistency.

5) We provide numerical results to demonstrate our theo-
retical assertions and compare our tests with other com-
petitive approaches. Our numerical results demonstrate
that the MMD-based test has better performance than the
divergence-based generalized likelihood test proposed in
[9] when the sample size m is not very large. We also
demonstrate that the MMD-based test outperforms (or
performs as well as) other competitive tests including the
t-test, FR-Wolf test [13], FR-Smirnov test [13], Hall test
[14], kernel density ratio (KDR) test [15], kernel Fisher
discriminant analysis (KFDA) test [16], one-class support
measure machine (OCSMM) [8] and k-means clustering
[17].

B. Related Work

In this subsection, we review relevant problems and explain
their differences from our model.

The parametric model of our problem with known p and ¢
has been studied, e.g., in [2] and [3]. In fact, in [2] and [3], this
problem was studied under a sequential setting which allows
adaptive sampling to achieve an optimal tradeoff between the
false alarm rate and the expected sample size. In this paper, we
focus on the case with fixed and equal number of samples for
each data stream. It is also of interest to generalize our current
results to the sequential setting. As noted above, the nonpara-
metric model with unknown p and ¢ was studied recently in
[9], where p and ¢ are assumed to be discrete distributions. Our
study addresses the general scenario in which p and ¢ can be
arbitrary (not necessarily discrete) and unknown. Furthermore,
we allow the sample size to scale with the total number n of se-
quences (which goes to infinity), whereas [9] studies the regime
in which n is fixed and only the sample size goes to infinity.

As a generalization of the classical two-sample problem,
which tests whether two sets of samples are generated from the
same distribution, our problem involves much richer ingredients
and more technical challenges. Our problem involves the inter-
play of the number n of sequences, the number s of anomalous
sequences, and the sample size m to guarantee test consistency,
whereas the two sample problem involves only the sample com-
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plexity. Furthermore, test consistency in our problem depends on
the knowledge of the number of anomalous sequences, whereas
the two sample problem does not have such an issue. These new
issues naturally require considerably more technical effort such
as analysis of the MMD estimator via samples from mixed dis-
tributions, bounding the asymptotic behavior of the difference
between two MMD estimators, and development of necessary
condition on sample complexity.

A type of outlier detection problem that has been widely stud-
ied in data mining, e.g., [18], [19], is that in which a number of
data samples are given and outliers that are far away from other
samples (typically in Euclidean distance) need to be detected.
This formulation typically does not assume underlying statistic
models for data samples, whereas our problem assumes that data
are drawn from either p or ¢. Thus, our problem is to detect an
outlier distribution rather than an outlier data sample.

Another related but different model has been studied in [20]-
[22], which tests whether a new sample is generated from the
same distribution as a given set of training samples. This prob-
lem is a binary composite hypothesis testing problem, whereas
our problem involves multi-hypothesis testing, detecting anoma-
lous sequences out of a set of sequences that contain both typical
and anomalous sequences. Furthermore, this problem assumes
availability of a training set of (typical) samples, whereas our
problem does not assume that any sample is known to be typical
in advance.

Our problem is also closely related to the group anomaly
detection problem [8], [22]-[24], which is a generalization of
the outlier detection problem [18], [19] with each sample being
a group of data. The goal is to detect groups of data that do
not conform to the behavior of the majority data samples, i.e.,
to detect anomalous aggregated behavior of data points out of
several groups of data. This problem is related to ours in the
sense that the anomaly refers to certain behavior captured by a
group of data.

C. Organization of the Paper

The rest of the paper is organized as follows. In Section II,
we describe the problem formulation. In Section III, we present
our tests and theoretical analysis of these tests. In Section IV,
we present a necessary condition to guarantee test consistency.
In Section V, we provide numerical results. Finally in Section
VI, we conclude the paper.

II. PROBLEM STATEMENT

We study an anomalous hypothesis testing problem (see
Fig. 1), in which there are in total n data sequences denoted
by Y} for 1 < k < n. Each data sequence Y}, consists of m i.i.d.
samples yx1, ..., Yrm drawn from either a typical distribution
p or an anomalous distribution ¢, where p # ¢. In the sequel,
we use the notation Yy, := (yg1, ..., Yem ). We assume that the
distributions p and g are arbitrary and unknown in advance. Our
goal is to build distribution-free tests to detect data sequences
generated by ¢. In fact, in practice, it is quite common that typical
sequences follow a single distribution p, but outlier sequences
can follow multiple distributions ¢y, ..., g;. In this paper, we
focus on the simple case with only a single g to present the major
approach for this type of nonparametric detection problem. The
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tests and analysis developed here can be naturally extended to
more general situations with multiple anomalous distributions.

We assume that s out of n data sequences are anomalous,
i.e., are generated by the anomalous distribution g. We study
both cases with s known and unknown. We are interested in the
asymptotic regime, in which the number n of data sequences
goes to infinity. We assume that the number s of anomalous
sequences satisfies > — « as n — oo, where 0 < o < 1. This
includes the followmg three cases: (1) s is fixed, and nonzero
as n — o0; (2) s — oo, but & — 0 as n — oo; and (3) - ap-
proaches a positive constant, Wthh is less than or equal to 1.
Some of our results are also applicable to the case with s = 0,

e., the null hypothesis in which there is no anomalous se-
quence. We will comment on this case when the corresponding
results are presented.

We next define the probability of detection error as the per-
formance measure of tests. We let Z denote the set that contains
indices of all anomalous data sequences. Hence, the cardinal-
ity |Z| = s. We let Z" denote a sequence of index sets that
contain indices of all anomalous data sequences claimed by a
corresponding sequence of tests.

Definition 1: A sequence of tests is consistent if

lim P, =

n-—0o0

lim P{I" #71"} =0. (1)

n—00

We note that the above definition of consistency is with re-
spect to the number n of sequences instead of the number m
of samples. However, as n becomes large (and possibly as s
becomes large), it is increasingly challenging to consistently
detect all anomalous data sequences. This then requires that the
number m of samples become large enough in order to more
accurately detect anomalous sequences. Therefore, the limit in
the above definition in fact refers to the asymptotic regime, in
which m scales fast enough as n goes to infinity in order to
guarantee asymptotically small probability of error.

Furthermore, for a consistent test, it is also desired that the
error probability decays exponentially fast with respect to the
number m of samples.

Definition 2: A sequence of tests are exponentially consis-
tent if

m—0o0

lim inf {— logP] = lim inf [—bg P{I" £1"}| > 0.

m—0Q0
2
In this paper, our goal is to construct distribution-free tests
to detect anomalous sequences, and characterize the scaling
behavior of m with n (and possibly s) so that the developed
tests are consistent (and possibly exponentially consistent).
Example with sparse anomalous samples: In this paper, we
also study an interesting example, in which the distribution g is a
mixture of the typical distribution p with probability 1 — e and an
anomalous distribution ¢ with probability e, where 0 < € < 1,
ie,, ¢ = (1 —¢€)p+ €. It can be seen that if ¢ is small, the
majority of samples in an anomalous sequence are drawn from
the distribution p, and only sparse samples are drawn from the
anomalous distribution ¢. The value of e captures the sparsity
level of anomalous samples. Here, € can scale as n increases,
and is hence denoted by ¢,. We will study how ¢, affects the
number of samples needed for consistent detection.
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III. TEST AND PERFORMANCE GUARANTEE

We adopt the MMD introduced in [10] as the distance metric
to construct our tests. More specifically, suppose each distri-
bution p belonging to P (a set of probability distributions) is
mapped to an element in the RKHS H as follows:

Mmzmwumz/%um@m,

where k(-,-) is the kernel function associated with H. It was
shown in [25] and [26] that the above mean embedding map-
ping is injective for characteristic kernels such as Gaussian and
Laplace kernels. The MMD between p and ¢ is defined to be the
distance between i, and ji, in the RKHS given by

MMD|[p, q] := ||Np - ,“q”H- 3)

Due to the reproducing property of the kernel, it can be shown
that

MMD2[ aQ] = ]E;,,J,/[k(x,x')] - 2Ear¢y[k(xa y)]
+Ey [k, y)], 4)

where x and 2’ are independent and have the same distribution
p, and y and 3/ are independent and have the same distribution
q. An unbiased estimator of MMD? [p, q] based on /; samples of
X and [, samples of Y is given as follows:

5 I

1_1 ZZI@ Ti, )

i=1 j#i

MMD? [X,Y] =

ly 1
zzkyuy] lQZ

l _
(2 i=1 j#£i i=1 j=1

In this section, we design and analyze MMD-based tests for
both cases with s known and unknown, respectively. We then
study an example with sparse anomalous samples.

A. Known s

In this subsection, we consider the case with s known. We
start with a simple case with s = 1, and then extend to the
general case, in which % — aasn — oo, where 0 < o < 1.

Consider the case with s = 1. For each sequence Y}, we use
Y} to denote the (n — 1)m dimensional sequence that stacks
all other sequences together, as given by

?k’ :{}/17"'7)/}»“—17)/k+17"'5yn}'

We then compute MMD?[Y;, Y] for 1 <k <n. If Y} is
the anomalous sequence, then Y, is fully composed of typi-
cal sequences. Hence, MMD? [V}, Y] is a good estimator of
MMD? [p, ¢, which is a positive constant. On the other hand, if
Y} is a typical sequence, Y is composed of n — 2 sequences
generated by p and only one sequence generated by ¢g. As n in-
creases, the impact of the anomalous sequence on Y, is negligi-
ble, and MMD? [Y},, Y';.] is asymptotically close to zero. Based
on this understanding, we construct the following test when
s = 1. Sequence k* is claimed to be anomalous if

k* = argmaxMMD? [V}, Y. ]. (6)

1<k<n
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The following proposition characterizes conditions under
which the above test is consistent.

Proposition 1: Consider the anomalous hypothesis testing
model with one anomalous sequence, i.e., s = 1. Suppose
the test (6) applies a bounded characteristic kernel with 0 <
k(z,y) < K for any (z,y). Then, the probability of error is
upper bounded as follows:

mMMD*[p, q] (1 — -17)
< — Lk .
P, <exp <logn 6K? @)

Furthermore, the test (6) is exponentially consistent if

2

m> BEAED, ®)
MMD'[p, ¢

where 7) is any positive constant that does not depend on any

other parameters of the model.

Proof: See Appendix A. |

Proposition 1 implies that for the scenario with one anoma-
lous sequence, 2(logn) samples are sufficient to guarantee test
consistency.

As we can see from Proposition 1, the choice of kernel af-
fects the upper bound on the error probability. And the kernel
should be chosen such that % is maximized. A heuristic
approach is to maximize the following quantity using meth-
ods analogous to those in [27] and [28]: max; ; MMD2 [V, YJ]
which can be viewed as an empirical estimate of MMD2 [p, ¢]. In
practice, we need a train-test split of the samples, i.e., splitting
each sequence of samples into two groups, and then using the
first group as training samples to choose the kernel and using
the second group as testing samples to detect anomalous data
streams.

We next consider the case with s > 1. We consider the case
with % — aasn — oo, where 0 < o < % Although we focus
on the case with v < 7, the case with a >  is similar, with
the roles of p and ¢ being exchanged. Our test is a natural
generalization of the test (6) except that now the test chooses the
sequences with the s largest values of MMD? [V}, Y., which is
given by

7 = {k : MMD?[Y},, Y] is among the s largest
values of MMD? [Y;, Y] fori = 1,...,n}. (9)

The following theorem characterizes conditions under which
the above test is consistent.

Theorem 1: Consider the anomalous hypothesis testing
model with s anomalous sequences, where 2 — a as n — 00
and 0 < a < % Assume the value of s is known. Further as-
sume that the test (9) applies a bounded characteristic kernel
with 0 < k(x,y) < K for any (z,y). Then the probability of
error is upper bounded as follows:

m (1 - 2)* MMD*[p, ¢]

P. <exp
16K2 (1+ 4255 )

log((n — s)s) —

(10)
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Furthermore, the test (9) is exponentially consistent for any p
and q if

16K%(1+n)
m
= (1-20)2MMD’[p,q

where 7 is any positive constant that does not depend on any
other parameters of the model.

Proof: See Appendix B. |

We note that log((n — s)s) = O(logn), for 1 <s<mn.
Hence, Theorem 1 implies that even with s > 1 anomalous se-
quences, the test (9) requires only 2(log n) samples in each data
sequence in order to guarantee test consistency. Hence, increas-
ing s does not affect the order-level requirement on the sample
size m. We further note that Theorem 1 is also applicable to the
case o > % with the roles of p and ¢ exchanged.

Remark 1: The computational complexity of (9) can be re-
duced significantly by caching the intermediate results. Consider
the matrix G defined as

m m m m

Grw = k(Wi Yij)and Gy =Y Y k(Yii, Vi),

i=1 j=1 i=1 j=1

J#i
for 1 <k <mnand1<1[<n, where G}, is the scaled self-
similarity term in (5), and Gy is the scaled cross-similarity
term in (5). It can be easily verified that MMD? [V}, Y] is a
linear combination of Gy, ., Z#k Gy, and Z#k Z#k Gi k.

] log(s(n — s)), (11

Hence, the complexity of computing MMDZ [Yi, Y] for every
1 < k < nis O(m?n?), which is reduced substantially.

A more computationally efficient test can be constructed us-
ing the distance metric proposed in [29] which is based on using
a J-dimensional vector to represent each of the n sequences,
which can be computed in O(nm.J?) time, with .J typically be-
ing small. Then using the same idea as in designing (9), the total
computational complexity is O(nm.J?), which is a significant
improvement compared to O(m?n?). The techniques used in
this paper can also be applied to analyze the consistency and
scaling behavior of this test.

We note that Theorem 1 (which includes Proposition 1 as a
special case) characterizes conditions that guarantee test con-
sistency for a pair of fixed but unknown distributions p and q.
Hence, the condition (11) depends on the underlying distribu-
tions p and q. In fact, this condition further yields the following
condition that guarantees that the test will be universally con-
sistent for arbitrary p and q.

Proposition 2 (Universal Consistency): Consider the anom-
alous hypothesis testing problem with s anomalous sequences.
Assume that s is known. Further assume that the test (9) applies
a bounded characteristic kernel with 0 < k(z,y) < K for any
(x,y). Then the test (9) is universally consistent for any arbitrary
pair p and ¢ if

m = w(logn). (12)

Proof: This result follows from (11), log((n — s)s) =
©(logn) and the fact that MMD|p, ¢| is constant for any given
pand q. [ ]

B. Unknown s

In this subsection, we consider the case in which s is un-
known, and we focus on the scenario in which % — Qasn — oo.
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This includes two cases: (1) sis fixed,and (2) s — coand > — 0
as n — oo. Without the knowledge of s, the test in (9) is not
applicable, because it depends on the value of s.

In order to build a test for this case, we first observe that for
each k, although Y, contains mixed samples from p and ¢, it
is dominated by samples from p due to the above assumption
on s. Thus, for large enough m and n, MMD?[Y},, Y] should
be close to zero if Y}, is drawn from p, and should be far away
enough from zero (in fact, close to MMD? [, q]) if Y}, is drawn
from ¢. Based on this understanding, we construct the following
test:

7 = {k:MMD2[Y;,Y] > 6,} (13)

.2
where §,, — 0 and # — 0 as n — oo. The reason for the
n
2
S

condition 7 i 0 is to guarantee that 9,, converges to O more
slowly than MMD? Y}, Y] with Y}, drawn from p so that as n
goes to infinity, 5, asymptotically falls between MMD? [Y;, Y]
with Y}, drawn from p and MMD? [Y},, Y'1.] with Y}, drawn from
q. We note that the scaling behavior of s as n increases needs
to be known in order to choose d,,. In practice the scale of
anomalous data sequences can be estimated based on domain
knowledge.

The following theorem characterizes the condition under
which the test (13) is consistent.

Theorem 2: Consider the anomalous hypothesis testing
problem with s anomalous sequences in which > — 0 as
n — o0o. Assume that s is unknown in advance. Further as-
sume that the test (13) adopts a threshold d,, such that §,, — 0
and % — 0, as n — o0, and the test applies a bounded char-
acteristic kernel with 0 < k(x,y) < K for any (x,). Then the
probability of error is upper bounded as follows:

m((1 — —=-)2MMD?[p, q] — 6, )?
P, < exp | logs — (« 1) p.d] )
8K (14 o)
. 2
m (5,1 — 7821\?}:422)[5)"”)
+exp | log(n —s) —
SK?2 (1 + 7(,”_1”2)
(14)
Furthermore, the test (13) is consistent if
1 1 1 —
> 8(1 4 i s {180mx{15)) Tog(n— )|
MMD"[p, q] 5
(15)

where 7 is any positive constant that does not depend on any
other parameters of the model.

Proof: See Appendix C. |

We note that Theorem 2 is also applicable to the case
with s = 0, i.e., the null hypothesis when there is no anoma-
lous sequence. We further note that the test (13) is not ex-
ponentially consistent. However, if MMD|p, ¢| can be esti-
mated from domain knowledge, we can choose the threshold
Op = w In this case, the test (13) is exponentially con-
sistent if m = Q(log n), which can be shown similarly to The-
orem 2. And it does not require knowledge of s, nor even of the
scaling behavior of s.
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In fact when there is no null hypothesis (i.e., s > 1), an ex-
ponentially consistent test can be built similarly as in [30]. The
basic idea is to reformulate the anomalous data stream detection
problem as a problem of clustering the data streams based on
their generating distributions. Using this idea, we first construct
two clustering centers by choosing the two data streams with
the largest MMD, then assign the remaining data streams by
comparing the distances to the two clustering centers. It can be
shown that this test is exponentially consistent if m = Q(logn).
This test does not require knowing s, nor even of the scaling
behavior of s. However, this test depends on the assumption that
s > 1 such that the two clustering centers constructed are from
the typical and anomalous distributions, respectively. Hence,
this test does not work if s = 0.

Theorem 2 implies that m should be of the order w(logn)
to guarantee test consistency, because > — 0 and 4, — 0 as
n — oco. Compared to the case with s known (for which it is
sufficient for m to scale at the order ©(log n)), the threshold on
m has an order-level increase due to the lack of knowledge of
s. Furthermore, the above understanding about the order-level
condition on m also yields the following sufficient condition for
universal test consistency.

Proposition 3 (Universal Consistency): Consider the anom-
alous hypothesis testing problem in which = — 0 as n — oc.
Assume that s is unknown in advance. Further assume that the
test (13) adopts a threshold d,, such that §,, — 0 and 55— 6
as n — oo, and the test applies a bounded characterrstrc kernel
with 0 < k(z,y) < K, V(z,y). Then the test (13) is universally
consistent for any p and g, if

— 0,

m = w(logn). (16)

A comparison of Proposition 3 and Proposition 2 indicates
that the knowledge of s does not affect the order-level sample
complexity to guarantee universal consistency.

C. Example with Sparse Anomalous Samples

We study the example with the anomalous distribution ¢ =
(1 — €,)p + €,4 as introduced in Section II. The following re-
sult characterizes the impact of the sparsity level ¢, on the
scaling behavior of m to guarantee consistent detection.

Corollary 1: Consider the model with the typical distribution
p and the anomalous distribution ¢ = (1 — €, )p + €, G, where
0 < €, < 1.1If s is known, then the test (9) is consistent if

16K2(1
> WD) tog(s(n - 5)).
(1 —2a)?eiMMD"p, q|
where 7 is any positive constant that does not depend on any

other parameters of the model.
If s is unknown, then the test (13) is consistent if

A7)

log(max{1,s})
(G%MMD2 [p7 Q] - 571)2 ’

m > 16(1 + n) K? max {

log(n — s)
(6, — E[MMDZ[Y,Y]])? } (1%

where 7 is any positive constant that does not depend on any

HOand%HOaan

n

2.2
other parameters of the model, 5
n

00, Y is a sequence generated by p, and Y is a stack of (n — 1)
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sequences with s sequences generated by ¢ and the remaining
sequences generated by p.

Proof: The proof follows from Theorems 1 and 2 by substi-
tuting as follows:

MMD?[p, ¢]
=E, v [k(z,2")] = 2Es o [k(z, y)] + By, [k(y, y)]
=E, o [k(z,2")] — 2(1 — €,)E, o [k(z, 2')]
— 26, By [k(x,9)] + (1 — €,)* By wo[k(z, 2")]
+ 26, (1 — €0)Ey g[k(2,9)) + €, B 5 [k(5, )]
= €, MMD’[p, q], (19)

where x and 2’ are independent with the same distribution p, y
and ¢’ are independent with the same distribution ¢, and ¢ and
' are independent with the same distribution §. |

Corollary 1 implies that if €, is a constant, then the scaling
behavior of m needed for consistent detection does not change.
However, if ¢, — 0 as n — o0, i.e., anomalous sequences con-
tain more sparse anomalous samples, then m needs to scale
faster with n in order to guarantee consistent detection. This
is reasonable because the sample size m should have a higher
order to offset the impact of the increasingly sparse anomalous
samples in each anomalous sequence. Corollary 1 explicitly cap-
tures the tradeoff between the sample size m and the sparsity
level ¢,, of anomalous samples in addition to n and s.

IV. NECESSARY CONDITION AND OPTIMALITY

In this section, we provide a necessary condition for any test
to be consistent.

Proposition 4: Consider the anomalous hypothesis testing
problem with s anomalous sequences. For any test to be consis-
tent for arbitrary p and ¢, the sample size m must satisfy

m logn —log2 —1
~ D(pllg) + D(qllp)’

Furthermore, for any test to be universally consistent, the sample
size m must satisfy

(20)

m = w(logn). (21)

Proof: See Appendix D. |

The sufficient and necessary conditions on sample complexity
that we have derived thus far establish the following optimality
of the MMD-based test.

Theorem 3 (Optimality): Consider the nonparametric anom-
alous hypothesis testing problem with s > 1. For s being known
and unknown, the MMD-based test (9) (under the conditions
in Propositions 2) and the test (13) (under the conditions in
Proposition 3) are order-level optimal in sample complexity
required to guarantee universal consistency for any p and q.

Proof: The proof follows by comparing Propositions 2 and
3 with Proposition 4. ]

V. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate
our theoretical assertions, and compare our MMD-based tests
with other approaches. We also apply our test to real datasets.
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Fig. 2. Performance of the MMD-based test vs. the bandwidth parameter o
of the Gaussian kernel.
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Fig. 3. The performance of the MMD-based test.

We note that although the following experiments are performed
for chosen distributions p and ¢, our tests are nonparametric and
do not exploit the information about p and q.

Previous works in kernel-based anomaly detection have
shown that the Gaussian kernel is more suitable than some other
kernels such as polynomial kernels [31]. Thus, we will focus on
the Gaussian kernel given by k(z, 2') = exp(— ”z;f;“z ), where
o > 0 is the bandwidth parameter. We first study how changing
o affects the performance of our tests. We choose the distri-
butions p = N(0,1) and ¢ = NV(1.2,1), and set s = 2, n = 10
and m = 20. We plot the probability of error as a function
of o in Fig. 2. We also plot the analytically-derived value of
MMD?[p, q] as a function of & in Fig. 2. It can be observed
that if o is chosen such that the analytical value of MMD? [p, ¢]
is maximized, the corresponding probability of error is almost
minimized. This suggests that a good choice of o can be set by
maximizing the empirical estimate max; <; j<, MMD?[Y;, Y;]
of MMD?p, q].

We also note that as o increases, the probability of error ap-
proaches a constant. This is consistent with the result in [32]
that for the two-sample test between distributions with different
means, any bandwidth higher than a certain threshold yields
equal asymptotic power. This fact will not hold for other distri-
butions p and g. For example, if p is the Laplace distribution with
mean 0 and variance 1, and ¢ = A/(0, 1), then the probability of
error increases when o becomes very large.

We then demonstrate our theorems on the sample complex-
ity. We choose the distribution p to be N(0,1), and choose
the anomalous distribution ¢ to be the Laplace distribution with
mean one and variance one. In the experiment, we use the Gaus-
sian kernel, and choose the bandwidth parameter o by maximiz-
ingmax;<; j<, MMD?[Y;,Y;]. Weset s = 1. We run the test for
cases with n = 40 and 100, respectively. In Fig. 3, we examine
how the probability of error changes with m. For illustrational
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Fig. 4. Comparison of the MMD-based test with the divergence-based gener-
alized likelihood test.

convenience, we normalize m by log n, i.e., the horizontal axis
represents - It is clear that when logn is above a certain
threshold, the probability of error converges to zero, which is
consistent with our theoretical results. Furthermore, for these
two values of n, the two curves drop to zero at almost the same
threshold. This observation confirms Proposition 1, which states
that the threshold on -°— depends only on the bound K of the
kernel and MMD of the two distributions. Both quantities are
constant for the two values of n.

We next compare the MMD-based test with the divergence-
based generalized likelihood test developed in [9]. Since the
test in [9] is applicable only when the distributions p and ¢ are
discrete and have finite alphabets, we set the distributions p and ¢
to be Bernoulli distributions with p having probability 0.3 to take
“0” (and probability 0.7 to take “1”’), and ¢ having probability
0.7 to take “0” (and probability 0.3 to take “1””). We let s = 1 and
assume that s is known. We let n = 50, and use the Gaussian
kernel, again choosing the bandwidth parameter o using the
same method as in Fig. 3. In Fig. 4, we plot the probability of
error as a function of the sample size m. It can be seen that the
MMD-based test outperforms the divergence-based generalized
likelihood test. We note that it has been shown in [9] that the
generalized likelihood test converges at an optimal rate in the
limiting case when n is infinite. Our numerical comparison, on
the other hand, demonstrates that the MMD-based test performs
as well as or even better than the generalized likelihood test for
moderate n.

We then compare the performance of the MMD-based test
with two other tests using kernel mean embedding. We choose
p=N(0,1),qg=N(1.2,1),n = 20, s = 2, and for a fair com-
parison, we fix the kernel to be a Gaussian kernel with o = 1 for
all three tests. We plot the probability of error as a function of
the sample size m in Fig. 5 for the three algorithms: OCSMM,
k-means using kernel mean embedding and our MMD-based
approach.

It can be observed from Fig. 5 that MMD outperforms OC-
SMM and k-means. More specifically, the probability of error
of OCSMM is one. This can be explained as follows. First,
OCSMM does not fully exploit the knowledge of the number
s of anomalous data streams. The number of anomalous data
streams detected by OCSMM is not necessarily equal to the
true s. Second, OCSMM detects only a subset of the anomalous
sequences, and mislabels some typical sequences as anoma-
lous ones. A possible explanation is that OCSMM is trained
on the dataset in which both typical and anomalous sequences
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Fig. 6. Comparison of the MMD-based test with four other tests on the

Syracuse-Hawaii temperature dataset.

are mixed together, and the trained hyperplane is further used
to detect the anomaly in the training data. Although it can la-
bel a large fraction of data streams correctly, it cannot detect all
the anomalous sequences correctly (which is counted as an error
event under our definition of the error). The k-means approach is
implemented by first mapping the distributions into the RKHS,
and then running the k-means algorithm using the distance in
the RKHS. The k-means algorithm is usually used to solve
the clustering problem and it is well-known that the k-means
algorithm only performs well on balanced clusters [17].

We then compare the performance of the MMD-based test
with a few other competitive tests on a Syracuse-Hawaii tem-
perature dataset. We choose the collection of daily maximum
temperatures in Syracuse (New York, USA) in July from 1993
to 2012 as the typical data sequences, and the collection of daily
maximum temperatures in Makapulapai (Hawaii, USA) in May
from 1993 to 2012 as anomalous sequences. Here, each data se-
quence contains daily maximum temperatures of a certain day
across twenty years from 1993 to 2012. In our experiment, the
dataset contains 32 sequences in total, including one tempera-
ture sequence from Hawaii and 31 sequences from Syracuse.
The probability of error is averaged over all cases with each
using one sequence from Hawaii as the anomalous sequence.
Although it seems easy to detect the sequence from Hawaii out
of the sequences from Syracuse, the temperatures we compare
for the two places are in May for Hawaii and July for Syracuse,
during which the two places have approximately the same mean
temperature. Thus, it may not be easy to detect the anomalous
sequence (in fact, some tests do not perform well as shown in
Fig. 6).
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Fig. 8. Comparison of the MMD-based test with other tests on the climate-
type dataset.

We first compare the performance of the MMD-based test
with the t-test, FR-Wolf test, FR-Smirnov test, and Hall test on
the above Syracuse-Hawaii temperature dataset. For the MMD-
based test, we use the Gaussian kernel with 0 = 1. In Fig. 6, we
plot the probability of error as a function of the sequence length
m for all tests. It can be seen that the MMD-based test, Hall test,
and FR-wolf test have the best performances, and all three tests
are consistent with the probability of error converging to zero as
m goes to infinity. Furthermore, comparing to the Hall and FR-
wolf tests, the MMD-based test has the lowest computational
complexity.

We further compare the performance of the MMD-based test
with the kernel-based tests KFDA, KDR, OCSMM and k-means
for the same dataset. For all the tests, we choose the Gaussian
kernel with o = 1 for a fair comparison. In Fig. 7, we plot the
probability of error as a function of the sequence length for all
tests. It can be seen that for all the tests the probability of error
decreases as m increases, and the MMD-based test has the best
performance among these tests.

We then compare the performance on a climate-type dataset.
We obtained data taken at various weather statinos from the
National Center for Atmospheric Research data archive [33].
The climate type of each station is labeled according to the
Koppen-Geiger climate classification [34]. For each station, we
extract the average temperate and precipitation of each month
from the dataset, i.e., the dimension of each data point is two.
The data at each station across months forms a sequence. We
randomly choose 18 stations in southeast China and southeast
North America to construct the typical sequences (191 stations
in total in the chosen temperate area), and randomly choose
two stations in north Africa and central Australia (13 stations
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in total in the chosen tropical area) to construct the anomalous
sequences. We randomly choose m months from 1987 till now,
and let m vary. We plot the probability of error as a function
of m in Fig. 8. It can be seen that the MMD-based approach
outperforms the other approaches.

VI. CONCLUSION

In this paper, we have investigated a nonparametric anoma-
lous hypothesis testing problem. We have built MMD-based
distribution-free tests to detect the anomalous sequences. We
have characterized the scaling behavior of the sample size m
as the total number n of sequences goes to infinity in order to
guarantee consistency of the developed tests. We have further
provided a necessary condition for any test to be consistent, and
thus established that our proposed tests are order-level optimal.
Our study of this problem demonstrates a useful application of
the mean embedding of distributions and MMD, and we be-
lieve that this approach can be applied to solving various other
nonparametric problems.

APPENDIX

A. Proof of Proposition 1

We first introduce McDiarmid’s inequality which is useful in
bounding the probability of error in our proof.

Lemma 1 (McDiarmid’s Inequality): Let f : X™ — R be a
function such that for all i € {1, ..., m}, there exist ¢; < oo for

which
sup  |f(x1, ..., 2m)
XeXxmieXx
—f(JC17...$i_1,,f,137;+1,...,,Im)|SCi. (22)

Then for all probability distributions p and every € > 0,

2¢?

) e
=1 "1

where X denotes (z1,...,2,,), Fx denotes the expectation
over the m random variables x; ~ p, and Px denotes the prob-
ability over these m variables.

In order to analyze the probability of error for the test (6),
without loss of generality, we assume that the first sequence is
the anomalous sequence generated by the anomalous distribu-
tion ¢. Hence,

P (1) = Bx (7(3)) > €) <o -

P =Pk #1)

= P(Elk #1:MMD?[Y;,Y}.] > MMD? [Yl,Y1]>
< >0 P (MMDE Y V] > MMDE YL V). 2
k=2

For notational convenience, we stack Yi,...,Y, into an nm
dimensional row vector Y = {y;,1 <i < nm}, where Y}, =
{Yk-1ym+1s-- - Ykm }» and we define n’ = (n — 1)m. We then

5793
have,
MMD; [V;,Y] = Z k(yi, ;)
=1
i#]
Z k(yi v5) — Z k(i y5)-
Z] m+1 i=1
i#j ]:m+1
(25)
For 2 < k < n, we have,
1 km km
MMD?[Y;, Y] = ————— k(yi, y;
u[ ks k} m(m_1)17 Z (y y])
J=(k—1)m+1
i#]
. 1 m,m k Z k
n/(n/ _ 1) — yt?y_/ ytvy/
l]?éj j= m+1
m,nm (k=1)m,(k—1)m
=1 i,j=m+1
j=km+1 i#j
nm,nm (k=1)m,nm
FOS M)t D k)
i,j=km+1 i=m-+1
i#j j=km+1
9 m,km (k=1)m . km
- mn,( S kwoy)+ Y, ki)
i=1 i=m+1
j=(k—1)m-+1 j:(kfljrerl
km ,nm
+ ) k(yi,yﬂ). (26)
i=(k—=1)m+1
j=km+1
We define
Ap = MMD?[Y;,, Y] — MMD?[V;,Y].
It can be shown that,
E[MMD?[Y7,Y]] = MMD?|p, ql,
and
E[MMD? (Y, Y]] = B, ok(x, o)
¥ : (m — DE,  k(y.v)
mim — ’
(n— Lym((n — Dm — 1) vy Y
+2m*(n — 2)E, , k(z,y)

+((n—2)m—1)(n—2)mE, . k(x, x'))

2

ol e <m2Ew’yk(x, y)+(n— 2)m2Ex,w'k($7$/)>

— m—1 2
= oD DM
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where z and 2/ are independent but have the same distribution
p, and y and y are independent but have the same distribution
q.

We next divide the entries in {y1, . . ., Y } into three groups:
le = {yla cee 7ym}s Yk - {y(k—l)nH-l ey ykm}a and Yk that
contains the remaining entries. We define Y_, as Y with the
a-th component y, being removed.

For 1 < a <m, y, affects A, through the following terms:

m (k=1)m
2
n/(n/_l)(E K(ya i)+ Y ke, )
j=1

j=m+1
Jj#a
nm 9 km
. k(ya,y,-)) -2 kew)
j=km+1 j=(k=1)m+1
e Zk Yar Uj) Y k(yeyy)- @D
j:m+1
k;éa
Hence, for 1 < a < m, we have
4K 1
A —ay Ja A —a Ja < - ]. . 28
1AL (Yoaya) — Ak (Yoo, )| m<+n—1> (28)
For (k — 1)m + 1 < a < km, y, affects A, through
9 km m
mim—1) > kay) - (Zk Yis Ya)
j=(k=1)m+1
j#a
(k—=1)m
+ > kW) Z kya,yj>
i=m-+1 j=km+1
S M) Y kew). (9)
n(n o 1) yaay] mn/ . y(I?yZ .
j=m+1 i=1
j#a

Hence, for (k — 1)m + 1 < a < km, we have

41K 1
|Ak( a7ya) Ak( aaya)|<m<1+1)' (30)

Form+1<a<(k—1)mand km+1<a <nm,y, af-
fects Ay through

2 m
M(;k(yuya

(k—=1)m

Z k(Yi,va)

i=m+1
i#a
nm 9 km
+ > k(ya,yj)> - > ke y)
j=km+1 j=(k—-1)m+1
nm km
Z k yaayj Z k(yivya)~
j=m+1 i=(k—=1)m+1
j#a
(3D
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Hence, form+1<a<(k—1)morkm+1<a < nm, we
have

8K
Ap(You,¥a) = Bk (You, )| € 7 32
We further derive the following probability:
P (MMDE (1. 7] > MMD2 11,741
= P(MMDi V3., Y] — MMD?[Y1, Y] + MMD?[p, q|
— E[MMD;, [V, Y]] > MMD?[p, ¢] — E[MMD;, m,m).
(33)

Combining (28), (30) and (32), and applying McDiarmid’s
inequality, we have,

P (MMD2[Y;.,Y,] > MMD? [Y;, V1))

mMMD' [p, ¢|(1 - =t =mn)
< exp (_ (n=1)((n—1)m—1)

6K (1 + 5s)

mMMD*[p, g](1 — +17)
< exp ( e . (34)
Hence,
mMMD*[p, ¢](1 — -15)
P, <exp <logn — 16K2 ) . (35)
‘We then conclude that if
16K2%(1
S K04, (36)

~ MMD'[p,q]

where 7 is any positive constant, then P, — 0 as n — oo. Itis
also clear that if the above condition is satisfied, P, converges
to zero exponentially fast with respect to m. This completes the
proof.

B. Proof of Theorem 1

We analyze the performance of the test (9). Without loss of
generality, we assume that the first s sequences are anomalous
and are generated from distribution q. Hence, the probability of
error can be bounded as,

- P(Ek > s5: MMD?[Y},, Y] > 1213 MMD? [YLYA)
> 3 P (MMDE 1. Vi) > M2 . ).
k=s+11=1
(37

Using the fact that ;il — a,where 0 < a < %, and using (25)

and (26), we can show that for 1 <[ < s,

(n — s)((n — s)m — 1)MMD?[p, q]
(n—1)(n—1)m—1)

~—)’MMD’[p,q]

E[MMD} [y, Y]] =

(38)
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andfors+1 <k <n,

s(ms — 1)MMD?[p, q|
(n—=1)((n—=1)m—1)

E[MMD; [V, Y]] =

s>MMD?[p, q]

=1y 39)

Therefore, we obtain,
P (MMD3[11. 7] - MMDE[11. 7] > 0

= P(MMDﬁ [V, Y] — MMD?[Y,, Y]
— E[MMD? [Y;, Y] — MMD? [V, Y]]

> B [MMD[Yi. V3] — MMD? 177 )

< P<MMD3 [Vi, Y] — MMD?[Y}, Y]

— E[MMD?[Y;, Y] — MMD. [V, Y]]

(mn — 1)(n — 2s)MMD?[p, q]>
(n= 1) ((n— Dm—1)

—E[MMD}[Y;, Y] — MMD; [V, Y]]

2s

>(1—-— (40)
n

)MMD* [p, Q]) :

Applying McDiarmid’s inequality, we obtain,

m(1— 2)?MMD'p,g
P < 1 — — n v
= exp ( og((n = 5)s) 16K2(1+ (273) )
41)
Since % — «, as n — 00, we conclude that if
16 K2%(1 +
( ) log(s(n — s)), (42)

m
~ (1—2a)>’MMD"[p, q]

where 7 is any positive constant, then P, — 0, asn — oo. Itis
also clear that if the above condition is satisfied, P. converges
to zero exponentially fast with respect to m.

C. Proof of Theorem 2

We analyze the performance of the test (13). Without loss
of generality, we assume that the first s sequences are the
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anomalous sequences. Hence,
P, = P((Eil <1<s:MMD;[Y;,Y;] <6,)or

(3s+1<k<n:MMD.Y;,Y] > 5,7)>

< ZP(MMDg [V,Y)] < 5,,,)
=1

+ > P(MMDﬁ[Yk,Yk] >5n>. (43)

k=s+1

For1 <[ < s, we derive,
P(MMDZ V,Y)] < 5n>
= P(MMD;‘; [V;,Y,] — E[MMD; Y}, Y]]
< —-E[MMD:[Y;, Y]] + 6,

< P(MMDZ (11, V1] - £ MMDE 1, 71

S

<—(1-

1)2MMD2[ ,q) + 5”). (44)

For large enough n, —(1 — —7)?MMD?[p, q] + 6,, < 0.
Therefore, by applying McDiarmid’s inequality, we obtain

P(MMD?,, Y:,Y)] < 5n)

1 — —=_)2MMD?[p, q] — 8,)?
<exp| — m(( i1) 1[]9 d ) , (45)
8K (1 + tyyr)

for large n.
Fors+1<k<n,

P(MMDi [V, Y] > 6,,1)
= P(MMD% [, Y] — E[MMD; [V, Y]]
> §, — E[MMD? [Yk,Yk]]>
< P(MMDﬁ Y2, Y] — E[MMD; [V}, Y]]

> 671, -

s?MMD? p, ¢ ) _ 46)

(n—1)?

Using the fact that % — (0 as n — oo, we can show that
for large enough n, 6, > E[MMD, [Y;,, Y ]]. Therefore, using
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McDiarmid’s inequality, we have

5> MMD? [p,q]
m(d, — (nl)fq)2>

P(MMD2[Y;,, Y] > 6, ) < -
< u[ k k] 1) _eXp( 8K2(1+ﬁ)

47)
Therefore, when s > 0,
m((1 — +27)*MMD?[p, ] — 5n)2>
SK2(1+ 5tyy7)

P, Ssexp(—

SK2(1+ gtyy7)

m((1— ,lil)QMMDZ [p,q] — n)2)

8K2(1+ giyyr)

( m(8, — szh</l7l:41312>[51,Q])2)
+(n—s)exp| —

= exp (logs—

5‘2 2 D
ex ogin—s)—
Poe S Sl ——
for large enough n. Hence, we conclude that if
K*(1 K*(1
m > Lﬂlogs, and m > Mlog(n —5),
MMD[p, 4] &

where 7 is any positive constant, then P, — 0, as n — oo.
When s =0, P.=3Y}_, P(MMD?[Y};,Y;] > 4,). Then
applying (47), we have that, if

2
o Bt nK

- s? 21p,
(80 — a2

logn, 49)

where 7 is any positive constant, then P, — 0, as n — oo.

D. Proof of Proposition 4

Without loss of generality, we assume that s < 3. We
first construct the set of index set S as follows. Let 7! =
{1,2,...,s—1,s+i—1},fori=1,...,n —s. AndletS =
{Zl i =1,...,n — s}. We note that the cardinality of each
index set in S is s.

Let P denote the joint distribution of Z" and {Y7,...,Y,},
where 7" is sampled uniformly from S. The following Markov
chain condition holds:

" —{%,... .Y} > 1" (50)

The worse-case error probability is lower bounded as follows:

L ax P(I" #£1") > P(I" #1"). (51)
By Fano’s inequality, and the assumption that s < 3,
. I(Z":Yy,....Y, 1
P(I?L#I")Zl— ( )y L1 ) n)+
log [S|
1(Z":Yy,....Y, 1
>1— ( y L1, ) n)+ ’ (52)
log 5

where I(A; B) denotes the mutual information between A and
B. Let P; denote the distribution of {Y7,...,Y}} conditioned
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onZ" =7I. Then,

I(I":Y,...,Yy)
. P(Inaylvu'ayn)
:Z Z P(Iglayh'"ayn)log nt
=1 Y1,..-,Yn P(Zz )P(y17'-~7er)
. 1 B(yh“-ayn)
= Pl sy Yn lo —
;yl,z,.u,nis (y1 y) gP(ylv'--ayn)
(53)
where P(yl’ o "y”) = 71175 ZZI:_IS Pi(y17 s 7yn)'Thenbythe

Jensen’s inequality and the construction of Z}*, it can be shown
that

("Y1, ..., Y,) <m(D(pllg) + D(qllp)).  (54)

Hence,

m(D(pllg) + D(qllp)) + 1
logn — log 2

P #1")>1— . (55)
which implies that for any consistent test, the following condi-
tion must be satisfied:

" (1 —n)logn
~ D(pllg) + D(qllp)

Furthermore, due to the fact that D(p||q) + D(q||p) is a con-
stant for any given p and q and can be arbitrarily close to zero,
for any universally consistent test, the following condition must
be satisfied:

(56)

m = w(logn). (57)
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