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Abstract—Cloud storage is vulnerable to Advanced Persistent
Threats (APTs), which are stealthy, continuous, well funded
and targeted. In this paper, prospect theory is applied to study
the interactions between a subjective cloud storage defender
and a subjective APT attacker. Two subjective APT games are
formulated, in which the defender chooses its interval to scan
the storage device and the attacker decides its duration between
launching two attacks under uncertain APT attack durations
and action of the opponent, respectively. The Nash equilibria of
the static subjective APT games are derived. We also study the
dynamic APT game and propose a Q-learning based APT defense
strategy for cloud storage. Simulation results show that the APT
defense benefits from the subjective view of the attacker and the
proposed defense strategy can improve detection performance
with a higher utility.

Index Terms—Cloud storage, advanced persistent threat, game
theory, prospect theory.

I. INTRODUCTION

Cloud storage services provide considerable resources and
ubiquitous access, and data privacy is critical for their further
development [1]. Cloud storage is vulnerable to Advanced
Persistent Threats (APTs), in which the attacker applies so-
phisticated methods to hack the target system continuously
and stealthily to steal information over a long term instead
of crashing the data immediately [2]. The seminal game
theoretic framework proposed in [3] captures the stealthy-
takeover property of APT, in which both the attacker and the
defender make decisions to maximize their expected utilities
according to the Expected Utility Theory (EUT).

However, according to the Allais Paradox [4], subjective
decisions made by end-users sometimes deviate from EUT and
prospect theory (PT) models these deviations via probability
weighting functions and value functions. For example, PT can
describe how most people underweight the outcomes with high
probabilities, and overweight outcomes with low probabilities
[5].

In this paper, we apply prospect theory to investigate the
defense of cloud storage against APT, in which a subjective
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attacker chooses the interval between two trials to compro-
mise the storage device while the defender chooses its scan
interval to recapture the compromised device. We formulate
two subjective APT storage games, for both uncertain attack
durations and unknown action of the opponent. We derive the
Nash equilibria (NEs) of the subjective games and investigate
the impact of the end-user subjectivity on the APT defense
of cloud storage. We also propose an APT defense strategy
based on Q-learning to derive the scan interval via trials
in dynamic APT games without being aware of the system
parameters such as the attack cost and the gain from a longer
scan interval. Simulation results show that the subjectivity of
the APT attacker decreases its attack rate while a subjective
defender tends to inspect the cloud storage more frequently to
address APT.

The contributions of this work can be summarized as:

+ We formulate two subjective APT games under uncertain
attack durations and actions of the opponent, respectively,
derive their NEs, and provide conditions under which the
equilibria exist.

o We propose a Q-learning based defense scheme to detect
APT for cloud storage and investigate its performance
against subjective APT attackers in dynamic subjective
APT games via simulations.

The remainder of the paper is organized as follows. We
review related work in Section II and present the system
model in Section III. We present a subjective APT game with
uncertain attack durations in Section IV and that with unknown
action of the opponent in Section V. We investigate a dynamic
APT game in Section VI. We provide simulation results in
Section VII and conclude in Section VIII.

II. RELATED WORK

Game theory has been applied to investigate network secu-
rity against APT attackers. A cyber-physical signaling game
among an attacker, a cloud defender and a cloud-connected
device was formulated in [6], in which the device judiciously
decides whether to trust the command from the cloud threat-
ened by an attacker. The dynamic programming algorithm
proposed in [7] provides a nearly optimal defense strategy
against stealthy attacks. The interaction between an overt
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defender and a stealthy attacker investigated in [8] shows that
a defender with a periodic strategy has a best response against
a non-adaptive attacker. The two-layer game model proposed
in [9] investigated the joint threat from an APT attacker and
insiders.

Prospect theory was applied in [10] to study a two-user
random access game. The subjective wireless random access
and data pricing game was identified in [11]. The spectrum
investment of a subjective secondary operator was investigated
in [12], yielding an optimal sensing and leasing decision.
An energy exchange game among microgrids and a power
plant formulated in [13] provides the criteria to design the
energy price in the local energy market for subjective users.
PT-based pricing proposed in [14] improves the revenue of
service provider and maintains the radio resource allocation
over subjective users. An anti-jamming transmission game
formulated in [15] investigated the user subjectivity on data
throughput in cognitive radio networks.

III. SYSTEM MODEL

We consider an APT attacker (A) against a storage device,
which is protected by a storage defender (D), as shown in Fig.
1. The defender chooses the time interval between the k-1-th
scan and the k-th scan of the storage device, denoted by z*.
The defender is assumed to restore the storage once it detects
an attack. The APT attacker observes the defense strategies of
the storage defender and takes stealthy actions. Specifically,
the APT attacker knows whether the compromised storage
device has been recaptured while the defender is unaware of
whether the device is compromised unless it scans the storage
device. The attacker waits a time interval 4/* to start launching
the k-th APT attack after the defender detects and restores the
storage device. The duration for the attacker to complete the
k-th attack, denoted by 2k, is in general a random variable
that is difficult to predict. The defender takes charge of the
storage device at the beginning.

Prospect theory captures the behavior deviation from that of
EUT, such as risk seeking and loss aversion. The probability
weighting function proposed in [4] models the subjective
decision-making, mapping from an objective probability to a
subjective one. As in [16], we will use Prelec’s probability
weighting function, denoted by w..(p), to investigate subjective
decision-making of player r, with r = A, D, in the APT
games, with

w,(p) = exp (— (= Inp)*"), (1)

where the objective probability weight «,. € (0, 1] represents
the subjective level of player r in making decisions.

IV. SUBJECTIVE APT GAME WITH PURE STRATEGY

We formulate the interaction between an APT attacker and
a defender who compete to take charge of a storage device
at time k as a static subjective APT game G, in which the
defender chooses x € (0, 1], the interval between its k-1-th and
k-th scans, while the attacker decides y € [0, 1], the interval
between its k-1-th and k-th attacks. We assume x > 0 for

Attacker

Defender

Fig. 1. Tllustration of an APT game, in which the defender scans the storage
device after interval =¥, the attacker launches APT after interval y* and the
attack duration is z*, where k is the index of the interaction.

simplicity. As shown in Fig. 1, the normalized time during
which the device is safe is given by min ((y + z) /x,1). The
gain of the defender to wait unit time to scan is denoted by
G, and the cost for the attacker to launch APT is C'. Similarly
to [7], the utility of the defender denoted by up and that of
the attacker denoted by u 4 are defined respectively, as

up(z,y) = min <yl_z, 1) + G 2)

ua(x,y) = —min (W, 1) —I(y < x)C, 3)
x
where I(-) is the indicator function that takes 1 if the event is
true and O otherwise.

The time that the attacker takes to control the device follows
the distribution [P;)o<;<r, where P, = Pr(z = [/L). By
definition, we have P, > 0 and ZlL:oPl = 1. According
to (2) and (3), the expected utilities of the defender and the
attacker over the realizations of z, denoted by U EUT and
USYT | respectively, are given by

L
. L+1
Up""(z,y) =Y _ Pymin (ny ,1) +aG &
=0

L

L+1

UEUT(x,y)z—Zlein<y +
1=0

oL ,1) —I(y < x)C.

(&)

If the defender and the attacker distort probabilities of events
with their objective probability weights to make decisions,
prospect theory can capture the subjective decision-making
processes. The utilities of the defender and the attacker un-
der prospect theory, denoted by ULT and ULT, are given
respectively by

L

UL"(z,y) = > wp(P) min (yLHJ) +aG ©)
=0
L yL +1
UL (z,y) = —ZwA(Pl)min( — ,1) ~I(y < 2)C.

=0

@)

A Nash equilibrium of the subjective APT game G is
denoted by (z*,y*), in which both the attacker and the
defender choose their best-response strategies given that the



opponent chooses the NE strategy, i.e.,
UL (2" y*) 2 UL (2.y"),
UL (" y") 2 UL (2, y),

Theorem 1. The NE of the subjective APT game G with
L = 2 non-zero attack time quantization levels is given by

0<z<1 (8)
0<y<1. &)

(1/2,0), L (10a)
(m*7y*) (170)7 12 (10b)
(1,1), I, (10c)
where
I: G<exp(—(—InP)*”) (11)
C <exp(—(—1nPy)**) (12)
Iy: G>exp(—(—InP)*?) (13)
C <exp(—(—InPy)**) + %exp (— (= In P)™*)
(14)
I3: C>exp(—(—InPy)™)+ %exp (—(=In Pp)*).
(15)
Proof: By (1) and (7), we have
—dexp(—(-InPy)*) <0, O<z—y<3
6U§T B —% (exp (— (—1n Py)**)
dy | +exp(—(—InP)*)) <0, l<r—y<1
0, 0.w.

Thus, UYT decreases with 0 < y < x and is constant if
r <y < 1. It is clear that U7 (2,0) > ULT(z,9), for
x < g < 1, if (12) holds with 0 < = < 1/2, or (14) holds
with 1/2 < & < 1. Thus (9) holds for (z,0). Otherwise, if
(10c) holds, we have (9) holds for (z,9), Vo < g < 1. By (1)
and (6), we have

or |, |-=EGERR L f<r<t
Q*UET _ {07 O<z< %
9z* |, Lrexp (= (-InP)*"), f<z<l1

indicating that U5 (x,0) is maximized at z = 1/2 or 1. By
(6), if (11) holds, we have U5T(1/2,0) > UL (1,0) and thus
(8) holds for (z*,y*) = (1/2,0). Thus, if both (11) and (12)
hold, (1/2,0) is an NE of the game.

Similarly, we see that (1,0) and (1,1) are another two NEs
of the subjective APT game for I and I3, respectively. H

Remark: Under a low attack cost (i.e., (12) and (14)), the
attacker launches APT attacks immediately and the defender
maximizes its scan interval to save energy (i.e., (13)). Other-
wise, if the attack cost is high (i.e., (15)), a subjective APT
attacker has no motivation to launch APT.

V. SUBJECTIVE APT GAME WITH MIXED STRATEGY

We consider a subjective APT game denoted by G’, in
which the defender chooses the scan interval, with x €

Algorithm 1 Q learning-based APT defense strategy.
Initialize v, 6, " + 2%, Q(s, ) = 0,V (s) = 0, Vs, x.
For k =1,2,3, ...

Update the state s* = y*=1 4 2F—1

Choose z* with an e-greedy policy

Detect the storage after time z*

Observe utility up and y* + z*

Update Q(s*, z%) via (32)

Update V(s*) via (33)
End for

{m/M}1<m<m., while the attacker quantizes its attack in-
terval, with y € {n/N}o<p<n. In this mixed-strategy game,
the scan interval x is chosen according to the mixed strategy
P = [Pmli<cm<m, Where p,, = Pr(z = m/M) is the
probability to detect the storage device after =, while the attack
interval y is selected based on the strategy q = [gn]o<n<n>
where ¢, = Pr(y = n/N) is the probability for the
attacker to wait y to launch APT. By definition, we have
Pm = 0,0 > 072%:11%; = 1 and Ziv:() qgn. = 1. For
simplicity, we assume that an attacker takes a constant time
to control the device in this game. The expected utility of the
defender and that of the attacker are given by (2) and (3) as

Up“"(p,q Zmeqn
m=1n=0
M+ zMN G
x <min ("i’ff 1) n "&) (16)
m
M N
U (p,@) = > > P
m=1n=0
x <—min (W\[ > I(N < %) C> (7
m

If both the defender and the attacker hold subjective views
under uncertain actions of their opponents, their strategies are
chosen to maximize their PT-based utilities, given by

P, q Z mewD q'n

m=1n=0
nM + zMN mG
in| ———,1 — 1
><<m1n( S ,)+M) (1)
UA P:q —ZZWAPm
m=1n=0

. nM + zMN n m
x <—m1n <mN1> I(N < M) C>. (19)

By definition, the NE of the subjective mixed-strategy APT



game G’, denoted by (p*,q*) is given by

p* = argmax UL (p, q*) (20a)
)
q" = argmax U7 (p*, q) (20b)
q
M
> pm=1p=0 (20¢)
m=1
N
Y an=1,qx0. (20d)
n=0

Theorem 2. The NE of the subjective APT game G’ is given

by
m n 1T
A = Apl
[U‘D(Mv N)} L <m<MO<n<N [wp (Qk)]ogng DIN+1
(21a)
m n T T
AN * =l
[UA(M7 N :|1§m§M,0§n§N [wA (pk)hgkgM ALM
(21b)
M
> ph=1p=0 )
m=1
N
> gi=1q=0 1d)
n=0
Ap > 0,24 <0, (2le)

if its solution exists, where 1, represents the 7-dimensional
all-1 column vector.

Proof: We define Lp as

M
Lp=Up" (p,a*) — ¢ <Z Pm — 1)
m=1

The Karush-Kuhn-Tucker (KKT) conditions of (20) are given
by

M
+ > fmpm- (22)

m=1

9Lp

=0
Opm
_]5m <0, tm =0, bnpm =0, 1<m <M (23)
Z Pm — 1=0
m=1

According to (18) and (22), we apply the complementary
slackness for (23) and obtain

N

> up (&, 2)wp(g) —Ap =0, 1<k<M
n=0
M , (24)
E Pm = 1
m=1
Ap >0
yielding (21a). Similarly, we obtain (21b). |
Corollary 1. If M =2, N =1 and
1/2,0) — 1
uD(]-v 1) - uD(l/Qv ]-)
1/2,1) — 1/2

uA(l, 0) — UA(L 1)
the subjective APT game G’ has a unique NE, which is given

by

n (uA(l/Q, 1) —ua(1/2,0)
uA(l,O) - UA(l, 1)

) T (—In(1—p})™

—(=In(p)** =0 (26)
up(1/2,0) —up(1,0) an
! <UD(1, 1) —up(1/2, 1)) +(=In(1-g))
—(=In(gy)*™” =0. @27

Proof: According to (1), (21a) and (25a), we have (27).
Similarly, we can obtain (26) by (1), (21b) and (25b). Next,
we prove the uniqueness of ¢j. Note that f(z) = (—1In(z))"
monotonically decreases with . By (25a) and (27) we have
f(g5) > f(q7), yielding 0 < g < g < 1. As g5 +qf =1,
we have 0 < ¢f < 1/2.If 0 < x < 1/2, we have

d(fl—=z) —
VA=DZJE) _ pa -y >0, es)
indicating that f(1 — x) — f(z) increases with x. Therefore,
(27) has a unique solution. Similarly, p] is unique. |

According to Corollary 1, the NE of the EUT-based APT
game is given by (26) and (27) as
1—-z-C
min(2z,1) — z
G
2min(2z,1) — 22"

*

P = (29)

*

qo =

(30)

VI. DYNAMIC SUBJECTIVE APT GAME

In dynamic subjective APT games, the defender and attacker
are usually unaware of the system parameters such as the
attack cost (C') and the gain from the scan interval (G). As a
simple and widely-used reinforcement learning algorithm, Q-
learning [17] enables the storage defender to derive its optimal
strategy via trial-and-error without knowing the APT attack
model and parameters in advance.

In the dynamic APT game with an objective storage de-
fender and a subjective attacker under uncertain duration
to successfully compromise the storage device, the defense
interval can be determined by assuming that the attack interval
is chosen to maximize the PT utility of the attacker given in
Eq. (7) according to the attack history in the last time slot,
ie.,

. 1— Nv, §=argmax,ULT(2,y
pr(y:y):{ y A( )7

v, 0.W.

€2y

where v is a small positive value, with 0 < v < 1.

At time k, the defender observes the total attack duration in
the last slot, i.e., y*~1 4 2*~1, and the system state is given by
sP = 2F=1 4 ¢#*~1 The defender applies the e-greedy policy

to determine its detection interval 2 based on the state s*.

Let Q(s, z) denote the quality function of the scan interval z
and state s. V(s) is the value function of state s. The defender
updates its )-function based on its utility up and the value
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Fig. 2. Performance of the subjective APT game with uncertain attack
durations GG, with C = 0.62, G = 0.6, ap = 1 and L = 2.

function as follows:

Q(s", ") « (1 = 7)Q(s",2")

+ (up (s*,2%) + sV (sF11)) (32)
V(s") = maxQ(s", ), (33)

where 0 € [0,1] is the discount factor in the learning, v €
(0,1] is the learning rate of the defender. The algorithm is
summarized in Algorithm 1.

VII. SIMULATION RESULTS

Simulations were performed to evaluate the subjectivity of
the attacker with C = 0.62, G = 0.6, ap = 1 and L =
2 in the APT game G and C' = 0.5, G = 0.1 and z =
0.2 in the game G’. As shown in Fig. 2, the utility of the
attacker has a sudden increase with its objective weight while
that of the defender decreases. For instance, the utility of the
attacker increases sharply from -1 to -0.92, as a4 changes
at around 0.42. The reason is that a subjective APT attacker
tends to overweigh its loss of being detected by the defender
and thus reduces its attack rate if its subjective level is high.
As shown in Fig. 3, the subjectivity of the attacker reduces its
own utility and improves the defender’s utility. For example,
if the objective weight of the attacker increases from 0.5 to 1
against an objective defender, its utility increases from —0.929
to —0.914. In addition, the defender’s utility increases with
its objective weight while the attacker’s utility decreases. For
instance, if a defender whose objective weight increases from
0.8 to 1 detects an objective attacker, the utility of the defender
increases by 1.1%, because an objective defender detects the
APT attack more frequently to suppress attack motivation.

Fig. 4 presents the performance of the proposed APT de-
fense scheme, in which the defender chooses its scan interval
based on Q-learning, with L. = 5, C = 0.4, G = 0.6,
as = 0.8 and ap = 1. As shown in Fig. 4 (a), the attack rate
decreases during learning process, e.g., it decreases from 32%
to 12% after 2500 time slots since the start of the game, which

-0.91 T T T
—— Attacker, ocD:1
-y
—e— Defender, o =1 --" v
- v - Attacker, aD=048
- e - Defender, OtD=0.8
N o
g -0.92 g
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£ 9 2
© 3
2 2
k] [ 5
> v - P2
= v 0 Ttt-we. g
D -093F b X T D o=l 8 35
~=—0- -
-0
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0.5 0.55 06 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Objective weight of attacker, o,
Fig. 3. Performance of the subjective APT game with unknown action of

the opponent G’, with C = 0.5, G = 0.1 and z = 0.2.

is 62.5% lower than that of the random detection strategy. As
shown in Fig. 4 (b), the utility of the defender increases over
time and converges to a high value, e.g., it increases by 7.7%
and converges to 1.4 after 2500 time slots. The reason is that
the defender learns the total attack durations and adjusts its
scan interval via trials.

As shown in Fig. 5 (a), the average attack rate increases
with the objective weight of the attacker, e.g., it increases from
0.05 to 0.35, if a4 changes from 0.2 to 1. The reason is that a
subjective attacker tends to overweigh the attack durations and
thus reduces its attack frequency. Compared with the random
strategy, the proposed scheme decreases the average attack rate
by 30% with a4 = 1. Consequently, as shown in Fig. 5 (b),
the average utility of the storage defender decreases from 1.43
to 1.28, if a4 changes from 0.2 to 1.

VIII. CONCLUSION

In this work, we have formulated two subjective APT
static games for cloud storage, in which the storage defender
determines its interval to scan the storage device, while the
subjective attacker chooses its interval to launch APT under
uncertain attack durations in the pure-strategy game, or un-
known scan interval in the mixed-strategy game. We have
derived the NEs of the two static games and provided con-
ditions under which the NEs exist, showing that a subjective
attacker tends to overweigh its attack cost and thus increases
its attack interval, improving the utility of the defender. We
have also investigated a dynamic game and proposed a Q-
learning based APT defense scheme. Simulation results show
that the proposed scheme can improve the performance of the
APT game, e.g., the utility of the defender increases by 7.7%
and the attack rate decreases by 62.5%, compared with the
benchmark strategy.
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