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Abstract—The arbitrarily varying channel (AVC) models com-
munication over a channel that varies in an arbitrary and
unknown manner from channel use to channel use. This paper
considers the AVC under list decoding and studies the corre-
sponding list capacity. In particular, the list capacity function is
shown to be discontinuous and the corresponding discontinuity
points are characterized for all possible list sizes. For orthogonal
AVCs it is then shown that the list capacity is super-additive,
implying that joint encoding and decoding for two orthogonal
AVCs can yield a larger list capacity than independent processing
of both channels. This discrepancy is shown to be arbitrary large.

I. INTRODUCTION

Arbitrarily varying channels (AVCs) [1–3] model communi-

cation with imperfect channel state information. This concept

assumes that the actual channel realization is unknown; it is

only known that this realization is from a known uncertainty

set and that it varies in an arbitrary and unknown manner from

channel use to channel use. This framework not only models

the case of channel uncertainty, but also captures scenarios

with interference from malevolent adversaries.

Reliable communication over AVCs is a non-trivial task; in

particular, for so-called symmetrizable AVCs it has been shown

that traditional coding schemes with pre-specified encoder and

decoder are not sufficient [2, 3]. More sophisticated coding

schemes based on common randomness (CR) are needed

[1]. Such coding schemes might not be feasible in practice

when the transmitter and receiver have no access to such

coordination resources so that list decoding has been proposed

to overcome such problems. The AVC under list decoding has

been studied in [4] and [5]. In particular, it has been shown that

the list capacity of an AVC displays a dichotomous behavior:

Whenever the list size is larger than the symmetrizability of

the channel, the list capacity equals the CR-assisted capacity;

otherwise it is zero. In this paper, we further study the behavior

of the list capacity function and show that it is discontinuous,

and present a complete characterization of this behavior. This

means that small variations in the uncertainty set can lead to

dramatic changes in the list capacity.
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We continue our study by addressing the question of ad-

ditivity of the list capacity function. Intuitively, a capacity

function is expected to be additive: Given two orthogonal

channels the capacity of the overall system should be the sum

of the individual channels. This is indeed the case for discrete

memoryless channels but in general by no means trivial or

obvious to answer. Shannon for example asked this question

in 1956 for the zero error capacity [6] and conjectured it to

be additive as well. This was disproved by Haemers [7] and

Alon [8] by constructing counter-examples. To date, a general

characterization of this phenomenon is not known and only

certain explicit examples of super-additivity are known. Alon

further conjectured that the additivity is even violated in a

strong form. This was recently disproved by Keevash who

showed in [9] that the discrepancy of the normalized Shannon

zero error capacity between joint and independent processing

of orthogonal channels is indeed bounded.

In another line of research, Ahlswede showed that the char-

acterization of the zero error capacity is included as a special

case in the problem of determining the capacity of the AVC

under the maximal error criterion [10]. This connects these

two fields making it worth studying the question of additivity

also from an AVC perspective. This has been done for the

AVC in [11] where it has been shown that the deterministic

capacity of an AVC under the average error criterion is super-

additive including a complete characterization. In this paper,

we extend these studies to the AVC under list decoding and

show that the list capacity is super-additive as well. In addition,

we study whether the strong form of violation according to

Alon’s conjecture happens for the list capacity as well, and

show that the discrepancy in list capacity between a joint use

of two orthogonal AVCs and its corresponding independent

use can be arbitrarily large. To achieve this, a unified theory

is developed that allows us to answer such questions of

discontinuity and non-additivity not only for the list capacity

as done in this paper, but also for the capacity with maximum

error and randomized encoding, as well as for the ε-capacity

with average error. It is an interesting and open question to

further extend these studies to the AVC with state constraints.1

1Notation: P(·) denotes the set of all probability distributions on its
argument; Sym[L] denotes the set of all permutations on {1, 2, ..., L};
CH(X ;Y) denotes the set of all stochastic matrices (channels) X → P(Y).

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 2820



II. ARBITRARILY VARYING CHANNEL

Let X and Y be finite input and output sets and S be a finite

state set. Then the channel between the transmitter and the

receiver is given by a stochastic matrix W : X × S → P(Y)
which we interchangeably also write as WS : X → P(Y)
and W ∈ CH(X ,S;Y). For a fixed state sequence sn ∈ Sn,

the discrete memoryless channel is given by Wn
sn(y

n|xn) =
Wn(yn|xn, sn) =

∏n
i=1 W (yi|xi, si) for all input and output

sequences xn ∈ Xn and yn ∈ Yn.

Definition 1. The arbitrarily varying channel (AVC) W is

given by

W =
{

Ws

}

s∈S
=

{

W (·|·, s)
}

s∈S
.

If not otherwise stated, all AVCs are assumed to be finite.

This means that the input and output alphabets X and Y are

finite and, in particular, that the state set S is finite.

A. List Codes

For AVCs it makes a substantial difference what kind of

codes are used for communication and whether additional

resources for coordination are available or not [1–5].

1) List Codes: Instead of decoding the received signal into

exactly one message, the decoder of a list code outputs a list

of up to L possible messages.

Definition 2. A (n,Mn)-list-L code CL consists of a deter-

ministic encoder at the transmitter f : M → Xn with a set of

messages M = {1, ...,Mn} and a list decoder at the receiver

ϕL : Yn → PL(M) with PL(M) the set of all subsets of

M with cardinality at most L.

For a state sequence sn ∈ Sn the average probability of

error of such a list code is

ēL(s
n) =

1

|M|

∑

m∈M

∑

yn:m/∈ϕL(yn)

Wn(yn|xn
m, sn).

Definition 3. A rate R > 0 is an achievable list-L rate for an

AVC W if for all τ > 0 and there exists an n(τ) ∈ N and a

sequence {CL,n}n∈N such that for all n ≥ n(τ) we have

1

n
log

Mn

L
≥ R− τ and max

sn∈Sn

ēL(s
n) ≤ λn

with λn → 0 as n → ∞.

The list-L capacity CL(W) of an AVC W is given by the

supremum of all achievable list-L rates R.

Remark 1. For list size L = 1 the list-L code CL in Defi-

nition 2 reduces to a traditional deterministic code C whose

decoder outputs only one specific message, i.e., ϕ : Yn → M.

2) CR-Assisted Codes: CR is modeled by a random vari-

able Γ taking values in a finite set Gn according to a prob-

ability distribution PΓ ∈ P(Gn). This enables the transmitter

and receiver to coordinate their choice of encoder and decoder

based on the actual realization γ ∈ Gn.

Definition 4. A CR-assisted (n,Mn,Gn, PΓ )-code CCR is

given by a family of deterministic codes {C(γ) : γ ∈ Gn}

together with a random variable Γ taking values in Gn

according to PΓ ∈ P(Gn).

The average error extends to CR-assisted codes by taking

the expectation over the family of codes. The definitions of

a CR-assisted achievable rate and the CR-assisted capacity

CCR(W) of an AVC W follow accordingly.

B. Capacity Results

The CR-assisted capacity of an AVC goes back to [1] and

is restated next.

Theorem 1 ([1]). The CR-assisted capacity CCR(W) of an

AVC W is

CCR(W) = max
PX∈P(X )

inf
q∈P(S)

I(X;Y q)

where Y q represents the output of the averaged channel

W q(y|x) =
∑

s∈S
W (y|x, s)q(s) for some q ∈ P(S).

To characterize the list-L capacity of an AVC, we need

the concept of symmetrizability which, roughly speaking,

describes the ability of an AVC to “simulate” additional valid

inputs making it impossible for the decoder to decide on the

correct codeword.

Definition 5. An AVC is called L-symmetrizable if there exists

a stochastic matrix σ ∈ CH(XL;S) such that for all permu-

tations π ∈ Sym[L+ 1] the following holds:
∑

s∈S

W (y|x1, s)σ(s|x2, ..., xL+1)

=
∑

s∈S

W (y|xπ(1), s)σ(s|xπ(2), ..., xπ(L+1))

for all x1, x2, ..., xL+1 ∈ X and y ∈ Y .

With this the list-L capacity is characterized as follows.

Theorem 2 ([4, 5]). The list-L capacity CL(W) of an AVC W

is

CL(W) =

{

CCR(W) if W is not L-symmetrizable

0 otherwise.

III. DISCONTINUITY AND SUPER-ADDITIVITY BEHAVIOR

Here, we further explore the concept of list decoding for

AVCs and identify certain properties of the list-L capacity.

A. A Fundamental Function and Basic Properties

We introduce the function FL(W) : CH(X ,S;Y) → R+

FL(W) = inf
σ∈CH(XL;S)

max
xL+1∈XL+1

max
π∈Sym[L+1]

∑

y∈Y

∣

∣

∣

∑

s∈S

W (y|x1, s)σ(s|x2, ..., xL+1)

−
∑

s∈S

W (y|xπ(1), s)σ(s|xπ(2), ..., xπ(L+1))
∣

∣

∣
.

Since CH(XL;S) is a bounded and closed set, there exists for

any AVC W a channel σ∗ ∈ CH(XL;S) such that the infimum

above is achieved and FL can be expressed as a minimum.
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Further, we have FL(W) ≥ 0 with equality if and only if W

is L-symmetrizable; cf. Definition 5.

We also need a concept of distance. For two DMCs

W1,W2 ∈ CH(X ;Y) we define the distance between W1 and

W2 based on the total variation distance as

d(W1,W2) := max
x∈X

∑

y∈Y

∣

∣W1(y|x)−W2(y|x)
∣

∣.

To extend this concept to AVCs, we consider two AVCs

W1 = {W1(·|·, s1)}s1∈S1
and W2 = {W2(·|·, s2)}s2∈S2

with

Wi(·|·, si) ∈ CH(X ,Si;Y), i = 1, 2, and define

G(W1,W2) := max
s1∈S1

min
s2∈S2

d
(

W1(·|·, s1),W2(·|·, s2)
)

which describes how well one AVC can be approximated by

the other one. Note that the function G is not symmetric.

Accordingly, we define the distance between W1 and W2 as

D(W1,W2) := max
{

G(W1,W2), G(W2,W1)
}

. (1)

Note that S1 and S2 can be arbitrary finite state sets and we

do not need |S1| = |S2|.

Lemma 1. The following inequalities hold:

FL(W2) ≤ 2G(W1,W2) + FL(W1) (2a)

FL(W1) ≤ 2G(W2,W1) + FL(W2) (2b)
∣

∣FL(W1)− FL(W2)
∣

∣ ≤ 2D(W1,W2). (2c)

Proof: The proof is omitted due to space constraints.

As an immediate consequence, we obtain the following.

Lemma 2. Let Ŵ be an arbitrary finite AVC and let {Wn}
∞
n=1

be a sequence of finite AVCs such that

lim
n→∞

D(Wn, Ŵ) = 0

holds. Then

lim
n→∞

FL(Wn) = FL(Ŵ).

Proof: This follows immediately from Lemma 1.

For the next result, we need the concept of orthogonal (or

parallel) AVCs. For two AVCs W1 and W2 we define the

orthogonal AVC W as

W= W1⊗W2 = {W1(·|·, s1)}s1∈S1
⊗{W2(·|·, s2)}s2∈S2

(3)

which means that the underlying channel law is

W (y1, y2|x1, x2, s1, s2) = W1(y1|x1, s1)W2(y2|x2, s2) (4)

for all xi ∈ Xi, yi ∈ Yi, and si ∈ Si, i = 1, 2. Then we obtain

the following upper and lower bounds on the function FL.

Lemma 3. The following chain of inequalities holds:

max
{

FL(W1), FL(W2)
}

≤ FL(W1 ⊗W2)

≤ FL(W1) + FL(W2).

Proof: The proof is omitted due to space constraints.

B. Characterization of Discontinuity Behavior

Here, we want to study the continuity of the list-L capacity,

which we define as follows.

Definition 6. Let W be a finite AVC. The list-L capacity

CL(W) is said to be continuous in W, if for all sequences

of finite AVCs {Wn}
∞
n=1 with

lim
n→∞

D(Wn,W) = 0 (5)

we have

lim
n→∞

CL(Wn) = CL(W).

Based on this definition, the list-L capacity CL(W) is dis-

continuous in W if and only if there is a sequence {Wn}
∞
n=1

of finite AVCs satisfying (5) but

lim sup
n→∞

CL(Wn) > lim inf
n→∞

CL(Wn)

is satisfied. With this concept, we are now in the position to

give a complete characterization of the discontinuity points of

the list-L capacity.

Theorem 3. The list-L capacity CL(W) is discontinuous in

W if and only if the following conditions hold:

1) CCR(W) > 0
2) FL(W) = 0 and for every ε > 0 there exists a finite

AVC Ŵ with D(W, Ŵ) < ε and FL(Ŵ) > 0.

Proof: “⇒” First we show that both conditions are

necessary for the list capacity to be discontinuous. We start

with the first condition and assume that W is a discontinuity

point of CL(W). Then there must exist a sequence of finite

AVCs {Wn}
∞
n=1 such that

lim
n→∞

D(Wn,W) = 0 (6)

and

lim sup
n→∞

∣

∣CL(Wn)− CL(W)
∣

∣ > 0.

Then the first condition CCR(W) > 0 must hold due to

the following reasoning: If CCR(W) = 0, we would have

CL(W) = CCR(W) = 0 as well. Further, for any sequence

of finite AVCs {Wn}
∞
n=1 for which (6) is satisfied we have

0 ≤ CL(Wn) ≤ CCR(Wn). It is easy to see that the

CR-assisted capacity CCR(W) is continuous in W, so that

we would have limn→∞ CCR(Wn) = 0 and therewith also

limn→∞ CL(Wn) = 0, i.e., the list capacity would be contin-

uous in W. But this contradicts our initial assumption so that

the first condition CCR(W) > 0 must hold.

Next, we show that the second condition must be satisfied

as well. If we would have FL(W) > 0, the continuity of

FL(·) would imply FL(Ŵ) > 0 for all finite AVCs Ŵ with

D(Ŵ,W) < ε for a suitable ε > 0. Then for all finite AVCs

Ŵ we would have CL(Ŵ) = CCR(Ŵ) so that CL(W) is

continuous in W which is a contradiction. Accordingly, we

must have FL(W) = 0. In the following we assume that the

second condition is not satisfied, i.e., there exists an ε̂ > 0
such that for all finite AVCs Ŵ with D(W, Ŵ) < ε̂ we have
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FL(Ŵ) = 0. This implies that Ŵ is L-symmetrizable so that

CL(Ŵ) = 0, cf. Theorem 2. This is true for all finite AVCs Ŵ

that are close to W (in the sense that D(W, Ŵ) < ε̂) which

means that CL(W) is actually constant in the ε̂-neighborhood

of W. Thus, it is continuous and the second condition must

be satisfied as well.

“⇐” Now we prove the other direction and show that both

conditions are also sufficient for the list-L capacity to be dis-

continuous. Since FL(W) = 0 we have CL(W) = 0; see also

the initial discussion about FL above. We choose a sequence

of finite AVCs {Wn}
∞
n=1 that satisfy D(Wn,W) < 1

n and

FL(Wn) > 0. With this choice, we have for all n ∈ N

CL(Wn) = CCR(Wn) and further

lim
n→∞

CL(Wn) = lim
n→∞

CCR(Wn) = CCR(W) > 0 
= CL(W)

so that CL(W) is discontinuous in W.

The next result establishes certain robustness properties of

the list-L capacity.

Theorem 4. Let W be a finite AVC with FL(W) > 0. Then

there exists an ε̂ > 0 such that all finite AVCs Ŵ with

D(Ŵ,W) < ε̂ are continuity points of CL(W).

Proof: We have FL(W) > 0. Since FL(W) is a contin-

uous function in W, cf. also Lemma 2, there exists an ε̂ such

that for all finite AVCs Ŵ with D(Ŵ,W) < ε̂ we always

have FL(Ŵ) > 0. This implies CL(Ŵ) = CCR(Ŵ). Since

CCR(W) is continuous in W, all these AVCs are continuity

points of CL(W).

C. Super-Additivity for Orthogonal AVCs

Here, we study communication over two orthogonal AVCs

and identify properties of the list-L capacity.

Definition 7. Let W1 and W2 be two finite AVCs and W1 ⊗
W2 an orthogonal combination as defined in (3) and (4). Then,

the list-L capacity is said to be super-additive if

CL(W1 ⊗W2) > CL(W1) + CL(W2),

i.e., a joint use of both channels yields a higher list-L capacity

than the sum of their individual uses.

Furthermore, if CL(W1) = CL(W2) = 0 but CL(W1 ⊗
W2) > 0, we have the extreme case of non-additivity which

we call super-activation of W1 ⊗W2.

With this we can study the list-L capacity and show that

super-activation is not possible for orthogonal AVCs.

Theorem 5. Let W1 and W2 be two orthogonal AVCs. Then

CL(W1 ⊗W2) = 0 (7)

if and only if

CL(W1) = CL(W2) = 0. (8)

Proof: “⇐” First, we show that (8) implies (7) with the

help of Lemma 3. We have (8) if and only if

FL(W1) = FL(W2) = 0. (9)

Note that CCR(W) = 0 implies that FL(W) = 0 for all L ∈ N.

Then Lemma 3 implies that

FL(W1 ⊗W2) = 0 (10)

as well which then gives us (7) as desired.

“⇒” Now we show the other direction. Assume that (7)

holds. This implies that (10) is satisfied so that Lemma 3 yields

(9). Thus, (8) is true proving the other direction.

Remark 2. This result agrees with [11] where it has been

shown for traditional decoding, i.e., L = 1, that super-

activation is a unique feature of secure communication over

orthogonal AVCs and that it is not possible for public (non-

secure) communication.

The next result shows that the list-L capacity is super-

additive.

Theorem 6. Let W1 and W2 be two orthogonal AVCs. Then

CL(W1 ⊗W2) > CL(W1) + CL(W2) (11)

if and only if

min
{

FL(W1), FL(W2)
}

= 0, (12a)

max
{

FL(W1), FL(W2)
}

> 0, (12b)

and

min
{

CCR(W1), CCR(W2)
}

> 0. (13)

Proof: “⇒” If (12) is not true, then CL(Wi) = CCR(Wi),
i = 1, 2. From Lemma 3 from the additivity of CCR [11] we

also know that

CL(W1 ⊗W2) = CCR(W1 ⊗W2)

= CCR(W1) + CCR(W2)

= CL(W1) + CL(W2)

which contradicts (11) so that condition (12) must be satisfied.

If (13) is not true, then w.l.o.g. we have CCR(W1) = 0. We

also have

CL(W1 ⊗W2) ≤ CCR(W1 ⊗W2) = CCR(W2).

From Theorem 5 we then know that either

CL(W1 ⊗W2) = CCR(W2)

or

CL(W1 ⊗W2) = 0

which contradicts (11) so that condition (13) must be satisfied

as well. This shows that both (12) and (13) are necessary for

(11) to be true.

“⇐” Next, we show that (12) and (13) are also suffi-

cient conditions. Assume (12) is true. Then w.l.o.g. we have

CL(W1) = 0 and from the additivity of CCR [11]

CL(W1 ⊗W2) = CCR(W1 ⊗W2)

= CCR(W1) + CCR(W2)

> CL(W1) + CL(W2)

which shows (11) proving the desired result.
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D. Bounds for Super-Additivity and the Problem of Alon

Alon studied how much the additivity of the zero error

capacity can be violated. This question can be rewritten in

terms of AVCs with maximum error.

In more detail, in [8] it was shown that for every ε > 0
there exist two AVCs W1 and W2 with

Cmax(Wi) ≤ ε, i = 1, 2

such that for the normalized Shannon capacity

C̄max(Wi) =
Cmax(Wi)

log2(min(|Xi|, |Yi|))
, i = 1, 2

it holds that

C̄max(W1 ⊗W2) >
1

2
− ε. (14)

Remark 3. For the zero error capacity, Alon asked in [8]

whether the constant 1/2 in (14) can be replaced by 1. This

question was negatively answered in [9] by showing that the

constant 1/2 is indeed tight in this case.

In the following, we want to study this question for AVCs

under list decoding. Let W1 and W2 be two arbitrary finite

AVCs with

CL(Wi) ≤ ε, i = 1, 2. (15)

If max{FL(W1), FL(W2)} = 0, then it follows from Theo-

rem 5 that

CL(W1 ⊗W2) = 0

so that there is nothing to prove. If we have

min{FL(W1), FL(W2)} > 0, then the list capacity CL

is additive and there is also nothing to prove. Therefore, it

remains to study the case for which (15) holds and further

min{FL(W1), FL(W2)} = 0.

W.l.o.g. we assume that FL(W1) = 0 so that we must have

CCR(W1) > 0 for super-additivity. Thus, we have

CL(W1 ⊗W2) = CCR(W1) + CL(W2)

≤ CCR(W1) + ε.

For sufficiently small ε, we choose a DMC W2 with C(W2) =
ε which is always possible. With W2 = {W2} we have

CL(W2) = CL(W2) = ε and therewith

sup
W1,W2

CL(W1 ⊗W2) = sup
W1

CCR(W1) + ε

where the sup is over all AVCs that satisfy (15) where W1

must further satisfy FL(W1) = 0 and for all ε > 0 there is

a finite AVC Ŵ with with D(Ŵ,W1) < ε and FL(Ŵ) >
0. Next, we want to construct a good upper bound on the

normalized list-L capacity

C̄L(W) =
CL(W)

log2(min(|X |, |Y|))
. (16)

For sufficiently small ε, we can choose |X2| = |Y2| = 2. With

this choice, we obtain

C̄L(W1 ⊗W2) ≤
CCR(W1) + ε

log2(min(|X1|, |Y1|)) + 1
.

From [5, Theorem 1] we know that CCR(W1) ≤
1
L log2(min(|Y1|, |S1|)) so that we obtain for the normalized

list-L capacity

C̄L(W1 ⊗W2) ≤
1

L

( log2(min(|Y1|, |S1|))

log2(min(|X1|, |Y1|)) + 1

)

+
ε

log2(min(|X1|, |Y1|)) + 1
.

This means that the normalized list-L capacity approaches zero

as L → ∞. In other words, the normalized list-L-capacity (16)

becomes smaller with increasing list size L. This is in contrast

to the behavior we observe in (14) for the zero error capacity.

We further see that the strong form of violation does not hold;

cf. also Remark 3.

IV. CONCLUSION

A unified theory has been developed that enables the study

of properties of capacity functions such as discontinuity and

non-additivity. In particular, in this paper the list-L capacity

of an AVC has been studied and we have shown that it

is a discontinuous function. In particular, the discontinuity

points have been completely characterized. We have further

shown that the list-L capacity function is super-additive and

have characterized those AVCs that possess this property.

As a consequence, joint encoding and decoding can result

in a higher list-L capacity than processing every orthogonal

AVC individually. While this behavior already appears for

the deterministic capacity C (i.e. list size L = 1), we have

shown that the discrepancy for the list-L capacity can further

be arbitrarily large. The gain in list-L capacity due to joint

processing increases without bound with increasing L.
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