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Abstract—The arbitrarily varying channel (AVC) models com-
munication over a channel that varies in an arbitrary and
unknown manner from channel use to channel use. This paper
considers the AVC under list decoding and studies the corre-
sponding list capacity. In particular, the list capacity function is
shown to be discontinuous and the corresponding discontinuity
points are characterized for all possible list sizes. For orthogonal
AVCs it is then shown that the list capacity is super-additive,
implying that joint encoding and decoding for two orthogonal
AVCs can yield a larger list capacity than independent processing
of both channels. This discrepancy is shown to be arbitrary large.

I. INTRODUCTION

Arbitrarily varying channels (AVCs) [1-3] model communi-
cation with imperfect channel state information. This concept
assumes that the actual channel realization is unknown; it is
only known that this realization is from a known uncertainty
set and that it varies in an arbitrary and unknown manner from
channel use to channel use. This framework not only models
the case of channel uncertainty, but also captures scenarios
with interference from malevolent adversaries.

Reliable communication over AVCs is a non-trivial task; in
particular, for so-called symmetrizable AVCs it has been shown
that traditional coding schemes with pre-specified encoder and
decoder are not sufficient [2,3]. More sophisticated coding
schemes based on common randomness (CR) are needed
[1]. Such coding schemes might not be feasible in practice
when the transmitter and receiver have no access to such
coordination resources so that list decoding has been proposed
to overcome such problems. The AVC under list decoding has
been studied in [4] and [5]. In particular, it has been shown that
the list capacity of an AVC displays a dichotomous behavior:
Whenever the list size is larger than the symmetrizability of
the channel, the list capacity equals the CR-assisted capacity;
otherwise it is zero. In this paper, we further study the behavior
of the list capacity function and show that it is discontinuous,
and present a complete characterization of this behavior. This
means that small variations in the uncertainty set can lead to
dramatic changes in the list capacity.
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We continue our study by addressing the question of ad-
ditivity of the list capacity function. Intuitively, a capacity
function is expected to be additive: Given two orthogonal
channels the capacity of the overall system should be the sum
of the individual channels. This is indeed the case for discrete
memoryless channels but in general by no means trivial or
obvious to answer. Shannon for example asked this question
in 1956 for the zero error capacity [6] and conjectured it to
be additive as well. This was disproved by Haemers [7] and
Alon [8] by constructing counter-examples. To date, a general
characterization of this phenomenon is not known and only
certain explicit examples of super-additivity are known. Alon
further conjectured that the additivity is even violated in a
strong form. This was recently disproved by Keevash who
showed in [9] that the discrepancy of the normalized Shannon
zero error capacity between joint and independent processing
of orthogonal channels is indeed bounded.

In another line of research, Ahlswede showed that the char-
acterization of the zero error capacity is included as a special
case in the problem of determining the capacity of the AVC
under the maximal error criterion [10]. This connects these
two fields making it worth studying the question of additivity
also from an AVC perspective. This has been done for the
AVC in [11] where it has been shown that the deterministic
capacity of an AVC under the average error criterion is super-
additive including a complete characterization. In this paper,
we extend these studies to the AVC under list decoding and
show that the list capacity is super-additive as well. In addition,
we study whether the strong form of violation according to
Alon’s conjecture happens for the list capacity as well, and
show that the discrepancy in list capacity between a joint use
of two orthogonal AVCs and its corresponding independent
use can be arbitrarily large. To achieve this, a unified theory
is developed that allows us to answer such questions of
discontinuity and non-additivity not only for the list capacity
as done in this paper, but also for the capacity with maximum
error and randomized encoding, as well as for the e-capacity
with average error. It is an interesting and open question to
further extend these studies to the AVC with state constraints.!

! Notation: P(-) denotes the set of all probability distributions on its
argument; Sym[L]| denotes the set of all permutations on {1,2,...,L};
CH(X; ) denotes the set of all stochastic matrices (channels) X — P(Y).
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II. ARBITRARILY VARYING CHANNEL

Let X and Y be finite input and output sets and S be a finite
state set. Then the channel between the transmitter and the
receiver is given by a stochastic matrix W : X x § — P(Y)
which we interchangeably also write as Ws : X — P())
and W € CH(X,S;)). For a fixed state sequence s” € S™,
the discrete memoryless channel is given by W, (y"|z") =
W (y"z™, s™) = [T, W(yi|z;, s;) for all input and output
sequences 2" € X" and y" € Y".

Definition 1. The arbitrarily varying channel (AVC) 27 is
given by

W= A{We}es = W)} e

If not otherwise stated, all AVCs are assumed to be finite.
This means that the input and output alphabets X and ) are
finite and, in particular, that the state set S is finite.

A. List Codes

For AVCs it makes a substantial difference what kind of
codes are used for communication and whether additional
resources for coordination are available or not [1-5].

1) List Codes: Instead of decoding the received signal into
exactly one message, the decoder of a list code outputs a list
of up to L possible messages.

Definition 2. A (n, M,)-list-L code Cj, consists of a deter-
ministic encoder at the transmitter f : M — X™ with a set of
messages M = {1, ..., M,,} and a list decoder at the receiver
o Y = Pr(M) with P (M) the set of all subsets of
M with cardinality at most L.

For a state sequence s” € S" the average probability of
error of such a list code is

= n 1 n n n n

er(s ):W Z Z W"(y" |y, s").
meMymmépr (y™)

Definition 3. A rate R > 0 is an achievable list-L rate for an

AVC 20 if for all 7 > 0 and there exists an n(7) € N and a

sequence {Cr, , }nen such that for all n > n(7) we have

1 M,,
— > — e "<
- log 7 2 R—7 and Srglea‘;(n er(s™) < A\,

with \,, — 0 as n — oo.

The list-L capacity Cr,(20) of an AVC 20 is given by the
supremum of all achievable list-L rates R.

Remark 1. For list size L = 1 the list-L code C; in Defi-
nition 2 reduces to a traditional deterministic code C whose
decoder outputs only one specific message, i.e., ¢ : Y — M.

2) CR-Assisted Codes: CR is modeled by a random vari-
able I" taking values in a finite set G,, according to a prob-
ability distribution Pr € P(G,,). This enables the transmitter
and receiver to coordinate their choice of encoder and decoder
based on the actual realization v € G,,.

Definition 4. A CR-assisted (n, M,,,G,, Pr)-code Ccr 1is
given by a family of deterministic codes {C(v) : v € G,}

together with a random variable I taking values in G,
according to Pr € P(G,).

The average error extends to CR-assisted codes by taking
the expectation over the family of codes. The definitions of
a CR-assisted achievable rate and the CR-assisted capacity
Ccr(20) of an AVC 20 follow accordingly.

B. Capacity Results

The CR-assisted capacity of an AVC goes back to [1] and
is restated next.

Theorem 1 ([1]). The CR-assisted capacity Ccr(20) of an
AVC 20 is

Ccer(W) = max  inf I(X;Y,)

PxeP(X) qeP(S)
where Y, represents the output of the averaged channel
Wqylz) =3 es Wylz, s)q(s) for some q € P(S).

To characterize the list-L capacity of an AVC, we need
the concept of symmetrizability which, roughly speaking,
describes the ability of an AVC to “simulate” additional valid
inputs making it impossible for the decoder to decide on the
correct codeword.

Definition 5. An AVC is called L-symmetrizable if there exists
a stochastic matrix ¢ € CH(X'"; S) such that for all permu-
tations m € Sym|[L + 1] the following holds:

Z W (ylz1, s)o(s|za, ..., Tr41)
seS

= Z W(y|x7r(1)a s)g(s|m7r(2)v e

seS

xTr(L+1))

for all x1,22,...,2,+1 € X and y € ).
With this the list-L capacity is characterized as follows.

Theorem 2 ([4,5]). The list-L capacity Cr,(20) of an AVC 25
is
Ccr(20)

0 otherwise.

if W is not L-symmetrizable
CL(W) = { / Y
III. DISCONTINUITY AND SUPER-ADDITIVITY BEHAVIOR
Here, we further explore the concept of list decoding for
AVCs and identify certain properties of the list-L capacity.

A. A Fundamental Function and Basic Properties

We introduce the function F7,(20) : CH(X,S;)) — Ry

Fr(20) = inf max max
c€CH(XL;S) abtle XL+ meSym[L+1]

SIS Wiler, )tk wren)

yey seSs

- Z W(y|l‘ﬂ(1), S)O’($|I‘ﬂ.(2), ceey xﬁ(LH)) .
seS

Since CH(X'Y;S) is a bounded and closed set, there exists for
any AVC 20 a channel o* € CH(X'%; S) such that the infimum
above is achieved and F can be expressed as a minimum.
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Further, we have F,(20) > 0 with equality if and only if 20
is L-symmetrizable; cf. Definition 5.

We also need a concept of distance. For two DMCs
Wi, Wy € CH(X;)) we define the distance between W, and
W5 based on the total variation distance as

d(Wy, W) = max z; (Wi (yla) — Wa(yla)|.
ye

To extend this concept to AVCs, we consider two AVCs
in = {Wl("'asl)}x"‘lE‘ﬁ and Qﬂ? = {WQ('|'752)}82€S2 with
Wi(-|-,s:) € CH(X,S;;Y), i = 1,2, and define

G(2W,,20,) = nax sglleng d(Wr (-], 51), Wa(|-, 52))

which describes how well one AVC can be approximated by
the other one. Note that the function G is not symmetric.
Accordingly, we define the distance between 2J; and 205 as

D(ml,wg) = max{G(QIIl,QUQ),G(QBQ,Qﬁl)}. (1)

Note that S; and Sy can be arbitrary finite state sets and we
do not need |S;| = |Sa].

Lemma 1. The following inequalities hold:

FL(%Q) < 2G(Qﬂ1,ﬂﬂ2) + FL(in) (2a)
Fr(20,) < 2G(202,20,) + Fr(22) (2b)
|FLL(20,) — F1L(202)| < 2D(207,205). )

Proof: The proof is omitted due to space constraints. B
As an immediate consequence, we obtain the following.

Lemma 2. Let 20 be an arbitrary finite AVC and let {20, }5°
be a sequence of finite AVCs such that

lim D(20,,20) =0

n—oo
holds. Then
lim FL(QBn) = FL(QU)
n—oo
Proof: This follows immediately from Lemma 1. [ ]

For the next result, we need the concept of orthogonal (or
parallel) AVCs. For two AVCs 2J; and 20, we define the
orthogonal AVC 2U as

W = WRWs, = {Wl('|'7 51)}51€S1®{W2("'7 82)}82632 3)
which means that the underlying channel law is

Wy, y2|z1, 22, 51, 52) = Wi(yi|z1, s1)Wa(yz|we, s2) (4)

forall x; € X;, y; € Vi, and s; € S;, i = 1, 2. Then we obtain
the following upper and lower bounds on the function F7,.

Lemma 3. The following chain of inequalities holds:

max { Ff,(201), F,(2W2) } < Fr(2W1 @ W»)
< Fr (1) + Fr(s).

Proof: The proof is omitted due to space constraints. H

B. Characterization of Discontinuity Behavior

Here, we want to study the continuity of the list-L capacity,
which we define as follows.

Definition 6. Let 2J be a finite AVC. The list-L capacity
CL(20) is said to be continuous in 20, if for all sequences
of finite AVCs {20,,}5° ; with

lim D(20,,20) = 0 (5)

n—r oo

we have

Based on this definition, the list-L capacity Cr,(20) is dis-
continuous in 20 if and only if there is a sequence {20,,}5° 4
of finite AVCs satisfying (5) but

lim sup C,(20,,) > liminf Cf,(205,,)
n— o0 n—00
is satisfied. With this concept, we are now in the position to
give a complete characterization of the discontinuity points of
the list-L capacity.

Theorem 3. The list-L capacity Cp(20) is discontinuous in
20 if and only if the following conditions hold:
1) CCR(Qﬁ) >0
2) Fr(W) = 0 and for every e > 0 there exists a finite
AVC 23 with D(20,20) < € and Fr,(20) > 0.

Proof: “=" First we show that both conditions are
necessary for the list capacity to be discontinuous. We start
with the first condition and assume that 20 is a discontinuity
point of C(20). Then there must exist a sequence of finite
AVCs {20,,}52, such that

lim D(25,,,20) =0 (6)

n—oo

and
lim sup !CL(QUn) — C’L(QB)| > 0.
n—oo

Then the first condition Ccr(20) > 0 must hold due to
the following reasoning: If Ccr(20) = 0, we would have
CL() = Ccr(W) = 0 as well. Further, for any sequence
of finite AVCs {20,,}22, for which (6) is satisfied we have
0 < CrL(W,) < Ccr(2W,). It is easy to see that the
CR-assisted capacity Ccr(20) is continuous in 20, so that
we would have lim,,_, o Ccr(20,,) = 0 and therewith also
lim,, o Cr(20,,) = 0, i.e., the list capacity would be contin-
uous in 2U. But this contradicts our initial assumption so that
the first condition Ccr(20) > 0 must hold.

Next, we show that the second condition must be satisfied
as well. If we would have F7(20) > 0, the continuity of
Fp(-) would imply F7(20) > 0 for all finite AVCs 20 with
D(20,20) < ¢ for a suitable € > 0. Then for all finite AVCs
20 we would have Cp(20) = Ccr(2) so that Cp () is
continuous in 2U which is a contradiction. Accordingly, we
must have F7,(20) = 0. In the following we assume that the
second condition is not satisfied, i.e., there exists an € > 0
such that for all finite AVCs 20 with D(20,20) < ¢ we have
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F1,(20) = 0. This implies that 20 is L-symmetrizable so that
C1(20) = 0, cf. Theorem 2. This is true for all finite AVCs 20
that are close to 20 (in the sense that D (2, 20) < é) which
means that C,(20) is actually constant in the é-neighborhood
of 2U. Thus, it is continuous and the second condition must
be satisfied as well.

“<"” Now we prove the other direction and show that both
conditions are also sufficient for the list-L capacity to be dis-
continuous. Since F'7,(20) = 0 we have C,(20) = 0; see also
the initial discussion about F';, above. We choose a sequence
of finite AVCs {20,,}52, that satisfy D(20,,20) < L and
Fr(20,) > 0. With this choice, we have for all n € N
CL(20,,) = Ccr(20,,) and further

lim CL(QI]") = nhan;o CCR(QIIH) = CCR(QI]) >0 7& CL(QI])

n—oo

so that C'r,(20) is discontinuous in 20. [ |

The next result establishes certain robustness properties of
the list-L capacity.

Theorem 4. Let 2 be a finite AVC with Fr,(20) > 0. Then
there exists an € > 0 such that all finite AVCs 20 with
D(28,20) < € are continuity points of Cr,(20).

Proof: We have Fp,(20) > 0. Since F1,(20) is a contin-
uous function in 20, cf. a1§0 Lemma 22 there exists an ¢ such
that for all finite AVCs 20 with D(20,20) < ¢ we always

have F7,(20) > 0. This implies Cf(20) = Ccr(20). Since
Ccr(20) is continuous in 20, all these AVCs are continuity
points of C,(20). [
C. Super-Additivity for Orthogonal AVCs

Here, we study communication over two orthogonal AVCs
and identify properties of the list-L capacity.

Definition 7. Let 201 and 25 be two finite AVCs and 2J; ®
25 an orthogonal combination as defined in (3) and (4). Then,
the list-L capacity is said to be super-additive if

CrL(W; @ Ws) > Cp (W) + Cr(Ws),

i.e., a joint use of both channels yields a higher list-L capacity
than the sum of their individual uses.

Furthermore, if C(2;) = C(Ws) = 0 but CL(W; ®
W) > 0, we have the extreme case of non-additivity which
we call super-activation of 201 @ 20>.

With this we can study the list-L capacity and show that
super-activation is not possible for orthogonal AVCs.

Theorem 5. Let 231 and 25 be two orthogonal AVCs. Then
Cr(W, ® W) =0 )

if and only if
Cr(Wy) = CL(W2) = 0. (®)

Proof: “<” First, we show that (8) implies (7) with the
help of Lemma 3. We have (8) if and only if

Fr(W,) = Fr,(Ws) = 0. 9

Note that Ccgr (20) = 0 implies that F,(20) = 0 forall L € N.
Then Lemma 3 implies that

Fr,(W, © Wa) =0 (10)

as well which then gives us (7) as desired.

“=" Now we show the other direction. Assume that (7)
holds. This implies that (10) is satisfied so that Lemma 3 yields
(9). Thus, (8) is true proving the other direction. [ |

Remark 2. This result agrees with [11] where it has been
shown for traditional decoding, i.e., L = 1, that super-
activation is a unique feature of secure communication over
orthogonal AVCs and that it is not possible for public (non-
secure) communication.

The next result shows that the list-L capacity is super-
additive.

Theorem 6. Let 231 and 25 be two orthogonal AVCs. Then

CL(2, ® ) > CL(W1) + CL (W) (11)
if and only if
min{FL(Qﬂl),FL(Qﬂg)} =0, (12a)
max { F,(201), Fr,(23) } > 0, (12b)
and
min { Ccg(2W1), Ccr(Wa) } > 0. (13)

Proof: “="1f (12) is not true, then C,(20;) = Ccr(20;),
i =1,2. From Lemma 3 from the additivity of Ccg [11] we
also know that
CL(in X Qng) = CCR(in (%9 Qﬂg)
= Ccr(W1) + Ccr(Ws)
= Cr(W1) + CL(W2)
which contradicts (11) so that condition (12) must be satisfied.

If (13) is not true, then w.l.0.g. we have Ccr(207) = 0. We
also have

Cr(W; ® Ws) < Cer (W1 @ Ws) = Ccr(Wa).
From Theorem 5 we then know that either
CL(in ® Qﬂg) = CCR(QBQ)

or
CL(Q:n1 ® mg) =0

which contradicts (11) so that condition (13) must be satisfied
as well. This shows that both (12) and (13) are necessary for
(11) to be true.

“«<=" Next, we show that (12) and (13) are also suffi-
cient conditions. Assume (12) is true. Then w.l.o.g. we have
CL(2,) = 0 and from the additivity of Ccr [11]

Cr(W; ® Ws) = Cer (W1 @ Wa)
= Ccr(W1) + Ccr(2Ws)
> CL(2) + CL(2W5)

which shows (11) proving the desired result. [ |
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D. Bounds for Super-Additivity and the Problem of Alon

Alon studied how much the additivity of the zero error
capacity can be violated. This question can be rewritten in
terms of AVCs with maximum error.

In more detail, in [8] it was shown that for every ¢ > 0
there exist two AVCs 20, and 20, with

Cmax(mi) S €, 1= 172
such that for the normalized Shannon capacity

_ Cmax(mi)
log, (min(| X[, [il))”

Crnax (20;) i=1,2

it holds that

1
C'max(gnl ® mQ) > 5 — €.

Remark 3. For the zero error capacity, Alon asked in [8]
whether the constant 1/2 in (14) can be replaced by 1. This
question was negatively answered in [9] by showing that the
constant 1/2 is indeed tight in this case.

(14)

In the following, we want to study this question for AVCs
under list decoding. Let 20; and 20, be two arbitrary finite
AVCs with

Cr(W;) <e, i=1,2. (15)

If max{Fy,(2W1), (W)} = 0, then it follows from Theo-
rem 5 that
CL (in & Qﬂg) =0

so that there is nothing to prove. If we have
min{Fr (W), Fr.(W2)} > 0, then the list capacity Cp,
is additive and there is also nothing to prove. Therefore, it
remains to study the case for which (15) holds and further

min{ F'7, (20, ), F, (W)} = 0.

W.Lo.g. we assume that F7,(201) = 0 so that we must have
Ccr(2071) > 0 for super-additivity. Thus, we have

CL(W; © Wa) = Cer(W1) + CL(Wa)
< Cer(Wh) +e.

For sufficiently small ¢, we choose a DMC W with C(W5) =
e which is always possible. With 20, = {W>} we have
Cr(Ws3) = CL (W) = € and therewith
sup CL(W; @ Wa) = sup Ccr(W1) + ¢
21,202 W,

where the sup is over all AVCs that satisfy (15) where 20,
must further satisfy F7,(207) = 0 and for all € > 0 there is
a finite AVC 20 with with D(20,20,) < e and Fp(20) >
0. Next, we want to construct a good upper bound on the
normalized list-L capacity

_ CL(W)

log, (min(|X[, [Y]))°
For sufficiently small €, we can choose |X2| = |Va| = 2. With
this choice, we obtain

- CCR(in)-FG
CrL(, ®2,) < - .
LW @ 2W2) < (A, Vi) 1

CL(20)

(16)

From [5, Theorem 1] we know that Ccr(20;) <
+ log, (min(|)1 |, |S1])) so that we obtain for the normalized
list-L capacity

logy (min(|J1 ], |S1])) )

] 1
C1L (W1 @ W) (10g2(min(|X1|a|y1|)) +1
€

< =
- L

* Tog, (min(1 ], ) 1 1

This means that the normalized list-L capacity approaches zero
as L — oo. In other words, the normalized list- L-capacity (16)
becomes smaller with increasing list size L. This is in contrast
to the behavior we observe in (14) for the zero error capacity.
We further see that the strong form of violation does not hold;
cf. also Remark 3.

IV. CONCLUSION

A unified theory has been developed that enables the study
of properties of capacity functions such as discontinuity and
non-additivity. In particular, in this paper the list-L capacity
of an AVC has been studied and we have shown that it
is a discontinuous function. In particular, the discontinuity
points have been completely characterized. We have further
shown that the list-L capacity function is super-additive and
have characterized those AVCs that possess this property.
As a consequence, joint encoding and decoding can result
in a higher list-L capacity than processing every orthogonal
AVC individually. While this behavior already appears for
the deterministic capacity C (i.e. list size L = 1), we have
shown that the discrepancy for the list-L capacity can further
be arbitrarily large. The gain in list-L capacity due to joint
processing increases without bound with increasing L.
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