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Abstract—A Gaussian multiple-input multiple-output wiretap
channel in which the eavesdropper and legitimate receiver are
equipped with arbitrary numbers of antennas and the transmitter
has two antennas is studied in this paper. It is shown that
the secrecy capacity of this channel can be achieved by linear
precoding. The optimal precoding and power allocation schemes
achieving the secrecy capacity are developed subsequently, and
the secrecy capacity is compared with the generalized singular
value decomposition (GSVD)-based precoding, which is the best
previously proposed precoding for this problem. Numerical
results show that substantial gain can be obtained in secrecy
rate between the proposed and GSVD-based precodings.

I. INTRODUCTION

Wireless security has been an important concern for many
years. As a means of augmenting wireless security, physical
layer security has attracted significant attention recently. Phys-
ical layer security is based on the information theoretic secrecy
that can be provided by physical communication channels, an
idea that was first proposed by Wyner [1] in the context of the
wiretap channel. In this channel, a transmitter (Alice) wishes
to transmit information to a legitimate receiver (Bob) while
keeping the information secure from an eavesdropper (Eve).
Wyner demonstrates that it is possible to have both reliable and
secure communication between Alice and Bob in the presence
of Eve under certain circumstances.

With the rapid advancement of multi-antenna techniques, se-
curity enhancement in multiple-input multiple-output (MIMO)
wiretap channels has drawn significant attention. A big step
toward understanding MIMO wiretap channels was taken in
[2]-[4] where a closed-form expression for the capacity of
this channel was established. This expression is not, however,
computable because the input covariance matrix that maxi-
mizes it is unknown in general. In fact, under an average
power constraint, there is no computable capacity expression
and achieving the secrecy capacity would require an exhaustive
search over the set of all input covariance matrices that satisfy
this constraint. The complexity associated with such a search
makes such an approach prohibitive and motivates the study
of simpler techniques for secure communication, e.g., based
on linear precoding.

Precoding is a technique for exploiting transmit diversity via
weighting the information stream. Singular value decomposi-
tion (SVD) precoding with water-filling power allocation is a
well-known example that achieves the capacity of the MIMO
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channel. Khisti and Wornell [2] proposed a generalized SVD
(GSVD)-based precoding scheme, with equal power alloca-
tion, for the MIMO Gaussian wiretap channel. The optimal
power allocation for GSVD precoding in the MIMO Gaussian
wiretap channel was obtained in [5]. GSVD precoding gets
close to the capacity in certain antenna configurations but it
is not capacity-achieving in general.

Despite its importance and years of research, optimal trans-
mit strategies to maximize the secure rate in MIMO wiretap
channels remain unknown in general. Linear beamforming
transmission has been proved to be optimal for the special
case of (n¢,ny,ne) = (2,2,1) in [6]. It is also known to be
the optimal strategy for multiple-input single-output (MISO)
wiretap channels [7], [8]. When all nodes have multiple an-
tennas, capacity-achieving coding would require an exhaustive
search over all input covariance matrices. Recently, a closed-
form solution for the optimal covariance matrix has been
found when the channel is strictly degraded [9], [10]. The
combination of this result and the unit-rank solution of [7]
can give the optimal covariance matrix for the case of two
transmit antennas. The optimal solution is, however, still open
in general.

In this paper, we characterize optimal precoding and power
allocation for MIMO Gaussian wiretap channels in which the
legitimate receiver and eavesdropper have arbitrary numbers of
antennas but the transmitter has two antennas. A consequence
of this results is to prove that linear beamforming transmission
is optimal for a much broader class of MIMO Gaussian wiretap
channels. Our approach in finding the optimal covariance
matrix is completely different from that of [9] and [10]. It
does not require the degradedness condition and thus provides
the optimal solution for both full-rank and rank-deficient cases
in one shot. The proposed beamforming and power allocation
schemes result in a computable capacity with a reasonably
low complexity, rather than a prohibitively complex exhaustive
search. Also, as numerical results confirm, it can bring notably
high gain over GSVD-based beamforming.

The paper is organized as follows. In Section II, we describe
the system model. In Section III, we reformulate the secrecy
rate problem and propose linear precoding and power alloca-
tion schemes to achieve the secrecy capacity of the MIMO
wiretap channels of interest. We present numerical results in
Section IV and conclude the paper in Section V.

Throughout this work, tr(-), (-)¢, and (-) denote the trace,
transpose, and conjugate transpose of a matrix, respectively.
A > 0 means that A is a positive semidefinite matrix, and
I,, represents the identity matrix of size m.
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II. SYSTEM MODEL AND PRELIMINARIES

Consider a MIMO Gaussian wiretap channel with n:, n,,
and n. antennas, respectively, at the transmitter, legitimate
receiver, and eavesdropper. Let H € R"*"t and G € R"™*"t
be the real channel matrices associated with the legitimate
user and eavesdropper, respectively, and assume that the
channels are fixed during the transmission and are known to
all terminals. The received signal at the legitimate receiver and
eavesdropper are, respectively, given by

(1a)
(1b)

yr:HX+Wr7
ye:GX+W€7

in which x € R™*! is the transmitted signal and w; € R™*!,
1 € {r,e}, is an independent and identically distributed (i.i.d.)
Gaussian noise vector with zero mean and identity covariance
matrix. The transmitted signal is subject to an average power
constraint

tr(E{xx'}) = tr(Q) < P, )

where P is a scalar, and Q = E{xx'} is the input covariance
matrix.

Khisti and Wornell [2] and Oggier and Hassibi [3] indepen-
dently proved the secrecy capacity of this channel. The secrecy
capacity (bits per real dimension) is the solution of [4]

1
max 5 [log det(I, + HQH') — log det(L,,+ GQG")]

st Qz0,Q=Q, 2(Q) <P,

3)
in which the first two constraints are due to the fact that Q
is a covariance matrix and the third constraint is due to (2).
The secrecy capacity is obviously nonnegative as Q = 0 is a
feasible solution of (3).

The above optimization problem is non-convex in general
and its objective function possesses numerous local maxima.
Thus, the optimum Q is not known, in general. There has been
an active investigation into characterizing the optimal input
covariance matrix. Until recently, the special cases for which
the optimal Q was known were limited to the cases of n,, = 1
[7] and n; = 2, n, = 2, n, = 1 [6]. More recently, major
steps have been made in characterizing the optimal covariance
matrix. Fakoorian and Swindlehurst [9] determined conditions
under which the optimal input covariance matrix is full-rank or
rank-deficient. They also proposed an approach for obtaining
such a full-rank Q. Very recently, Loyka and Charalambous
[10] found a closed-form solution for the optimal covariance
matrix when the channel is strictly degraded. Combined with
the unit-rank solution of [7], this gives the optimal Q for the
case of two transmit antennas. However, the optimal solution
is yet open in general.

We consider MIMO wiretap channels where n,. and n. are
arbitrary integers while n; = 2, and we show that the secrecy
capacity can be achieved by linear precoding. To this end, we
find a closed-form solution for the optimal covariance matrix.
Our approach is completely different from that of [9] and [10].
It does not impose any conditions on the channel matrices,
and explicitly finds optimal precoding and power allocation

schemes. This, in turn, provides the optimal covariance matrix
for both full-rank and unit-rank cases.

III. A CAPACITY ACHIEVING PRECODING

The secrecy capacity of the MIMO Gaussian wiretap chan-
nel can be rewritten as

oo by det(L, - H'HQ)
;, — INnax —

s T 2% det (I, + GIGQ)’
where Q = 0,Q = Q?, tr(Q) < P. This is obtained from (3)
knowing that for any A € C™*" and B € C"*™ we have

“4)

det(I, + AB) = det(I, + BA). (5)

Note that H'H and GG are n; xn; symmetric matrices. Also,
Q is an n; X n; symmetric matrix and its eigendecomposition
can be written as

Q =VAV!, (6)

where V € R™t*™ ig the orthogonal matrix whose ith column
is the uth eigenvector of Q and A is the diagonal matrix
whose diagonal elements are the corresponding eigenvalues,
i.e., Aii = )\i.

A. Reformulating the Problem for n, = 2

We simplify the optimization problem (4) for n; = 2 in this
subsection. Since V is orthogonal its columns are orthonormal
and, without loss of generality, we can write

—sinf cosf
o { cos@ sin 9} ’ )
for some 6. Further, let
hi h
HtH — 1 2:| GtG — |:gl g2:| ) 8
[hz hs|”’ g2 g3 ®)

The following lemma converts the optimization problem (4)
into a more tractable problem.

Lemma 1. For n; = 2 but arbitrary n, and n., the optimiza-
tion problem in (4) is equivalent to

1 a1 sin 20 + by cos 20 + ¢;

5o O

max
A1+A2 <P

Cs = .
ag sin 20 + by cos 20 + ¢

in which Ay and )y are nonnegative, and
a1 = (A2 — A1)he,
1
by = 5()\1 — A2)(hs — hy),

(10a)
(10b)
&1 =14 30+ M)+ his) + M da(lahs — B3), (100)
az = (A2 — A1)g2, (10d)
by = %()\1 —A2)(93 — g1), (10e)
=1+ %(/\1 +X2)(91 + 93) + MAa(grgs —g3). (100

Proof. To prove this lemma, we simplify the determinants in
(4). First, consider det(I,, + H'HQ). Using Q given in (6)
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and applying (5), it is seen that det(L,, + HHQ) = det(I,,, +
V'H'HVA). Further, it is straightforward to check that

VIHIHV = {wl “’2] : (11)
wy w3
in which
wy = hy sin? 0 + hs cos? 0 — 2hs sin 6 cos 0, (12a)
wo = hy(cos® O — sin? @) + (hs — hy)sinfcosf,  (12b)
w3 = hy cos® 0 + hssin? 6 + 2hs sin 6 cos 6. (12¢)
Consequently,
det(I,, + HHQ) = det(I,, + VIH'HVA) (13)

= (1 + )\1’LU1)(1 + )\ng) — )\1)\2’[1)%.

Next, using the trigonometric identities cos 20 = 2 cos? §—1 =
1 —2sin? 0 and sin 20 = 2sinf cos 6 it is straightforward to
show that

w =1 ; fis s — M 00 hysin20,  (14a)

wy = hy cos 20 + hs =M 20, (14b)

w3 = I ;_ hs ; i cos 20 + hg sin 26. (14¢)
Substituting (14a)-(14c) in (13), we obtain

det(I,,, + H'HQ) = a; sin 20 + by cos 20 + ¢, (15)

in which ay, by, and ¢; are given in (10a)-(10c). Following
similar steps it is clear that

det(I,, + G'GQ) = aysin 20 + by cos 20 + ¢, (16)

where as, by, and ¢y are given in (10d)-(10f). It should be men-
tioned that the constraint A\; + Ao < P comes from tr(Q) < P
since, from (6), tr(Q) = tr(VAV?) = tr(VIVA) = tr(A).
Note that tr(AB) = tr(BA) and V'V =1,,,. Also, A\; > 0
and Ay > 0 are due to Q = 0. This completes the proof of
Lemma 1. ]

Lemma 2. [n the optimization problem given by Lemma 1, the
constraint \1 + A o < P can be replaced either by \1 +X o = P
or A\ + Ao = 0; i.e., it is optimal to use either all available
power or nothing.

Proof. The proof is omitted due to space limitations [12]. [

B. Optimal Precoding

In what follows, we first find a closed-form solution for the
optimization problem in Lemma 1 for a given pair of \; and A,
that satisfy the constraints. Since log(z) is strictly increasing
in x, we can instead maximize the argument of the logarithm
in (9). Thus, let us define

a1 sin 26 4 by cos 20 + ¢;

W = . 17
a9 sin 260 + by cos 20 + co an

Then, 0* = argmaxW and is obtained by differentiating
W with respect to 6 and finding its critical points. It can be
checked that %—Vg = 0 is equivalent to

asin20 + bcos20 + ¢ = 0, (18)

in which a = ¢1by—cob1,b = a1ca—agcy, and ¢ = a1by—ash;.
Before proceeding, we note that W is periodic in 6 and its
period is 7. Also, it can be checked that if both a and b are
zero, then Z—: = Z—; = 2—; and W is constant; i.e., any 6 is
optimal. Thus, we assume a® + b? # 0. Defining 2 = tan ¢,
(18) can be further simplified as

&
sin(20 4 ¢) + ——=—= =10 (19)
(20+0) + =t
The critical points of the above equation are given by
—arctan £ — arcsin ——— + 2k
20 = 5 ver , Q0
—arctan ¢ 4 7 + arcsin o= + 2k7

where k is an integer.! Then, using the second derivative of
W with respect to 0, it is straightforward to check that the
first argument gives the minimum of W while the second one
gives its maximum. Further, without loss of optimality, we let
k = 0 in (20). Hence, the optimal 6 that maximizes W is
obtained by

c T
Jaip 2

Thus far, the optimal 6 is obtained for given \; and \s.
To find the optimal A\; and Ao, in light of Lemma 2, we can
search over all A\; > 0 and Ay > 0 that satisfy A\; + Ay = P or
A1+ A2 = 0 and maximize (17) where 6 is given in (21). We
can vary A\ from 0 to P. Hence, we can have the following.

1)

L oretan ? o L aresi
= — — ar n— — arcsin
23,C& o 2acs

Theorem 1. 7o achieve the secrecy capacity of the MIMO
Gaussian wiretap channel (with ny = 2) under the average
power constraint P, it suffices to use
—sinf cosd

- { cosf  sin 9] ’ (22)
as the transmit beamformer with the power allocation matrix
A = diag(A1, A\2). An optimal 6 is given by (21) and is
obtained by searching over nonnegative Ay and \o that satisfy
A+ Ao = P or A\ + Ay = 0 and maximize (17).

Once the optimal V, A1, and \s are determined, these can be
used for precoding and power allocation as illustrated in Fig 1,
very similar to the V-BLAST architecture for communicating
over the MIMO channel [11]. Here, two (n; = 2) independent
data streams are multiplexed in the coordinate system given
by the precoding matrix V. The ith data stream is allocated a
power ;. Each stream is encoded using a capacity-achieving
Gaussian code. The data streams are decoded jointly. When the
orthogonal matrix V and powers \; are chosen as described in
Theorem 1, then we have the capacity-achieving architecture
in Fig 1.

Lemma 3. With a proper choice of 0, the pairs (A1, A\2) and
(A2, \1) result in the same maximum rate in Lemma 1.

Proof. Suppose (A1, A2) maximizes (17) for some 0* given by
(21). Then, from (10) it is easy to check that (A, A1) results
in the same W for § = 6* + /2. Therefore, (A2, A1) can
achieve the same rate as (A1, A2) does. O

'Tt should be highlighted that we always have |c| < Va2 + b2, as otherwise

W would be strictly increasing or strictly decreasing in 6, which is impossible
because W is periodic and continuous.
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Fig. 1. Optimal architecture for communicating over the MIMO wiretap

channel with ny = 2 and arbitrary n,- and ne.

C. Closed-Form Solution for Optimal Power Allocation

Finding optimal \; and A5 in Theorem 1 requires exhaustive
search. Although checking a reasonably small number of (A1,
A2) is enough in pmctice,2 in this subsection we find a closed-
form solution for optimal (A1, A2).

We know that if W < 1 then (A}, \5) = (0, 0) is the optimal
solution. Thus, let us assume W > 1. Then, using Lemma 2,
this implies that \; + A = P is optimal. Thus, to find optimal
A1 and Ao, we can solve the following problem:

max

1+A2=P 2 log(W)

CMIMOME = \ (23)
where W = det(I,,, + H'HQ)/ det(L,,+ GtGQ) is glven
in (4). To this end, We define a, &t by, £ —hy, ¢, £
hl;’”,dh £ /a3 + bz, and bh & tanqﬁh Then, from (14a)-

(14c) we will have

w1 = ¢p + dp cos(260 — op), (24a)
Wo = dh sin(29 — ¢h)7 (24b)
w3 = ¢p, — dp, cos(20 — ¢p,). (24¢)

Now, we can write

Wy, = det(I,,+ H'HQ)

(@) (

1 + )\111)1)(1 + )\211)3) — )\1)\211)%

(:) 1+ )\1’[1.)1 -+ )\2w3 —+ )\1/\2(h1h3 — h%)

91 At A)en + (A —Aa)dy cos(20 — én)

+ M Aa(hihs — h2),

Dy 4 Pey, + (201 — P)dy, cos(20 — ¢y

+ A (P — A1) (hihs — h3)

(e

= o+ Brdr — O\, (25)

in which (a) is due to (13), (b) can be verified using (14a)-
(14c), (c) is due to (24a) and (24c), (d) is due to the fact that
A1 + Ao = P is optimal when W > 1, which follows from
Lemma 2, and (e) is obtained by defining

ap = 1+ Pcp, — Pd,, COS(29 — (bh), (26a)
Br = 2dj, cos(26 — (bh) + Poy, (26b)
8 = hihs — h3. (26¢)

2This is discussed in Section IV.

4
In a similar way, we can show that
W, = det(L,,+ G'GQ) = a, + B,A\1 — 6,77, (27)
where
ag =1+ Pcy, — Pdgcos(20 — ¢), (28a)
Bg = 2dg4 cos(20 — ¢4) + Py, (28b)
39 = 9193 — 93, (28¢)

and cg,dy, and ¢4 are defined for G similar to those of H.
Then, W = W}, /W, and it can be checked that

ow
)81

_ e4ba +aN 29
(ag + BgA1 — gA7)2

(5hﬂg,6 = 25gOLh —

in which a = 0,0), — 20p0, and € =

Brorg — Byaun. Let A = b — 4ac, and suppose that A > 0.3
Then

Aiq = (-b+VA)/2a, (30a)

o= (-b—VA)/2a, (30b)

are the roots of (29). Next, it is easy to show that, for A] ;, i €
{1,2}, in (30a) and (30b) we have

PW ey 2 b2a\,  [+wm i=
N2 VT (g 4 By — G,03)2 _\V/VK i=2

That is, the second derivative is positive at A7 ; and negative at
Al 2. Thus, the former corresponds to a minimum of W and the
latter corresponds to a maximum of that quantity. Therefore,
the following cases appear:

1) Case I (A < 0): This case results in a strictly decreasing
or increasing W in A;. Then, Ay = 0 or A\; = P is optimal,
depending on the sign of a. The optimum value of \; can be
inserted into (10) to find the optimal # in (21). The optimal
Ao is obtained from \; + Ay = P.

2) Case II (A > 0): In this case, the maximum of W is
achieved by A\y = 0, A\; = P, or \; = )\T,Q, provided that
0 < Al < P. The optimal )y is obtained from A; + Ay = P.
Hence, when W > 1, (A}, \3) is one of the following pairs:
(0, P), (P,0), or (A7 5, P Al 2). But, in light of Lemma 3, it
can be seen that (0, P) and (P 0) result in the same optimum
W and thus one of them can be omitted.

To summarize, considering all cases for W < 1land W > 1,
it is enough to check

(A1;A3) = (0,0), (la)
(A1, A3) = (0, P), (31b)
( T)A;) = ( >1k,2aP - AT,Q)a (31o)

in order to obtain the maximum of WW. We should highlight
that (31c) will be a choice only if A7 ,, defined in (30b), is a
real number between 0 and P. As a result, we have

Theorem 2. The optimal Ay and o in Theorem 1 is confined
to one of the cases in (31), and 0 is given in (21).

3 When A <0, W is strictly decreasing or increasing in A1, and Ay = 0
or A1 = P are the only critical points.
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Fig. 2. Comparison of the secrecy capacity of the MIMO Gaussian wiretap channel (achieved by the proposed beamforming method) and the secrecy rate
of GSVD-based beamforming for ny = 2, n, =4, and (a) ne = 1 (b) ne = 2 (¢) ne = 4.

Remark 1. As can be traced from (30b), in general, the optimal
A1 is a function of . On the other hand, the optimal 6, given in
(21), is a function of A1 (and A3). Thus, the triplet (A1, A2, )
can be found for any possible maximizing argument in (31).
Then, by evaluating W for these points we can determine
the optimal (capacity-achieving) solution. For the first two
cases in (31) the solution is obtained analytically. However, the
equation resulting from combining the third case in (31) and
(21) is rather cumbersome and thus we solve it numerically.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples to illus-
trate the secrecy capacity of Gaussian multi-antenna wiretap
channels using the proposed beamforming method. We also
compare our results with those of GSVD-based beamforming
with optimal power allocation [5]. As proved in Section III,
the proposed beamforming method is optimal and achieves
the capacity. Numerical results are included here to show how
much gain this optimal method brings when compared with
the existing beamforming and power allocation methods.

All simulation results are for 1000 independent realizations
of the channel matrices H and G. The entries of these matrices
are generated as i.i.d. N(0,1). To get the capacity, based on
the optimal beamforming scheme proposed in Theorem 1, we
have searched over 50 linearly spaced values of A\; and As.
We have also used the optimal power allocation of Theorem 2.
The difference between the two methods is negligible (on the
order of 10~%) and one curve represents both of them. We first
consider the case with n; = 2, n,, = 4, and n, = 1. As can
be seen from Fig. 2(a), when the eavesdropper has a single
antenna the proposed capacity-achieving beamforming per-
forms significantly better than GSVD-based beamforming. By
increasing the eavesdropper’s number of antennas in Fig. 2(b)
and Fig. 2(c), the secrecy capacity decreases and the rate
achieved by GSVD beamforming becomes very close to that
of the optimal method. However, there is still a small gap
between the two methods particularly when P is small. This
is magnified in Fig. 2(b) and Fig. 2(c).

Figures 2(a)-2(c) also demonstrate the effect of increasing
the number of antennas at the eavesdropper. As expected and
can be seen from these figures, for a fixed n; and n,., the extent
to which information can be secured over the air reduces as

n. increases. Further simulations indicate that no information
can be secured via physical layer techniques for n. > 16.
This is because the eavesdropper can no longer be degraded
by beamforming in this situation.

V. CONCLUSION

We have developed a linear precoding scheme to achieve
the capacity of Gaussian multi-antenna wiretap channels in
which the legitimate receiver and eavesdropper have arbitrary
numbers of antennas but the transmitter has two antennas.
We have reformulated the problem of determining the secrecy
capacity into a tractable form and solved this new problem to
find the corresponding optimal precoding and power allocation
schemes. Our investigation leads to a closed-form solution for
the covariance matrix and computable secrecy capacity.
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