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Abstract—A Gaussian multiple-input multiple-output wiretap
channel in which the eavesdropper and legitimate receiver are
equipped with arbitrary numbers of antennas and the transmitter
has two antennas is studied in this paper. It is shown that
the secrecy capacity of this channel can be achieved by linear
precoding. The optimal precoding and power allocation schemes
achieving the secrecy capacity are developed subsequently, and
the secrecy capacity is compared with the generalized singular
value decomposition (GSVD)-based precoding, which is the best
previously proposed precoding for this problem. Numerical
results show that substantial gain can be obtained in secrecy
rate between the proposed and GSVD-based precodings.

I. INTRODUCTION

Wireless security has been an important concern for many

years. As a means of augmenting wireless security, physical

layer security has attracted significant attention recently. Phys-

ical layer security is based on the information theoretic secrecy

that can be provided by physical communication channels, an

idea that was first proposed by Wyner [1] in the context of the

wiretap channel. In this channel, a transmitter (Alice) wishes

to transmit information to a legitimate receiver (Bob) while

keeping the information secure from an eavesdropper (Eve).

Wyner demonstrates that it is possible to have both reliable and

secure communication between Alice and Bob in the presence

of Eve under certain circumstances.

With the rapid advancement of multi-antenna techniques, se-

curity enhancement in multiple-input multiple-output (MIMO)

wiretap channels has drawn significant attention. A big step

toward understanding MIMO wiretap channels was taken in

[2]–[4] where a closed-form expression for the capacity of

this channel was established. This expression is not, however,

computable because the input covariance matrix that maxi-

mizes it is unknown in general. In fact, under an average

power constraint, there is no computable capacity expression

and achieving the secrecy capacity would require an exhaustive

search over the set of all input covariance matrices that satisfy

this constraint. The complexity associated with such a search

makes such an approach prohibitive and motivates the study

of simpler techniques for secure communication, e.g., based

on linear precoding.

Precoding is a technique for exploiting transmit diversity via

weighting the information stream. Singular value decomposi-

tion (SVD) precoding with water-filling power allocation is a

well-known example that achieves the capacity of the MIMO
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channel. Khisti and Wornell [2] proposed a generalized SVD

(GSVD)-based precoding scheme, with equal power alloca-

tion, for the MIMO Gaussian wiretap channel. The optimal

power allocation for GSVD precoding in the MIMO Gaussian

wiretap channel was obtained in [5]. GSVD precoding gets

close to the capacity in certain antenna configurations but it

is not capacity-achieving in general.

Despite its importance and years of research, optimal trans-

mit strategies to maximize the secure rate in MIMO wiretap

channels remain unknown in general. Linear beamforming

transmission has been proved to be optimal for the special

case of (nt, nr, ne) = (2, 2, 1) in [6]. It is also known to be

the optimal strategy for multiple-input single-output (MISO)

wiretap channels [7], [8]. When all nodes have multiple an-

tennas, capacity-achieving coding would require an exhaustive

search over all input covariance matrices. Recently, a closed-

form solution for the optimal covariance matrix has been

found when the channel is strictly degraded [9], [10]. The

combination of this result and the unit-rank solution of [7]

can give the optimal covariance matrix for the case of two

transmit antennas. The optimal solution is, however, still open

in general.

In this paper, we characterize optimal precoding and power

allocation for MIMO Gaussian wiretap channels in which the

legitimate receiver and eavesdropper have arbitrary numbers of

antennas but the transmitter has two antennas. A consequence

of this results is to prove that linear beamforming transmission

is optimal for a much broader class of MIMO Gaussian wiretap

channels. Our approach in finding the optimal covariance

matrix is completely different from that of [9] and [10]. It

does not require the degradedness condition and thus provides

the optimal solution for both full-rank and rank-deficient cases

in one shot. The proposed beamforming and power allocation

schemes result in a computable capacity with a reasonably

low complexity, rather than a prohibitively complex exhaustive

search. Also, as numerical results confirm, it can bring notably

high gain over GSVD-based beamforming.

The paper is organized as follows. In Section II, we describe

the system model. In Section III, we reformulate the secrecy

rate problem and propose linear precoding and power alloca-

tion schemes to achieve the secrecy capacity of the MIMO

wiretap channels of interest. We present numerical results in

Section IV and conclude the paper in Section V.

Throughout this work, tr(·), (·)t, and (·)H denote the trace,

transpose, and conjugate transpose of a matrix, respectively.

A � 0 means that A is a positive semidefinite matrix, and

Im represents the identity matrix of size m.
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II. SYSTEM MODEL AND PRELIMINARIES

Consider a MIMO Gaussian wiretap channel with nt, nr,

and ne antennas, respectively, at the transmitter, legitimate

receiver, and eavesdropper. Let H ∈ R
nr×nt and G ∈ R

ne×nt

be the real channel matrices associated with the legitimate

user and eavesdropper, respectively, and assume that the

channels are fixed during the transmission and are known to

all terminals. The received signal at the legitimate receiver and

eavesdropper are, respectively, given by

yr = Hx + wr, (1a)

ye = Gx + we, (1b)

in which x ∈ R
nt×1 is the transmitted signal and wi ∈ R

ni×1,

i ∈ {r, e}, is an independent and identically distributed (i.i.d.)

Gaussian noise vector with zero mean and identity covariance

matrix. The transmitted signal is subject to an average power

constraint

tr(E{xxt}) = tr(Q) ≤ P, (2)

where P is a scalar, and Q = E{xxt} is the input covariance

matrix.

Khisti and Wornell [2] and Oggier and Hassibi [3] indepen-

dently proved the secrecy capacity of this channel. The secrecy

capacity (bits per real dimension) is the solution of [4]

max
Q

1

2

[

log det(Inr
+HQHt)− log det(Ine

+GQGt)
]

s. t. Q � 0,Q = Qt, tr(Q) ≤ P,
(3)

in which the first two constraints are due to the fact that Q

is a covariance matrix and the third constraint is due to (2).

The secrecy capacity is obviously nonnegative as Q = 0 is a

feasible solution of (3).

The above optimization problem is non-convex in general

and its objective function possesses numerous local maxima.

Thus, the optimum Q is not known, in general. There has been

an active investigation into characterizing the optimal input

covariance matrix. Until recently, the special cases for which

the optimal Q was known were limited to the cases of nr = 1
[7] and nt = 2, nr = 2, ne = 1 [6]. More recently, major

steps have been made in characterizing the optimal covariance

matrix. Fakoorian and Swindlehurst [9] determined conditions

under which the optimal input covariance matrix is full-rank or

rank-deficient. They also proposed an approach for obtaining

such a full-rank Q. Very recently, Loyka and Charalambous

[10] found a closed-form solution for the optimal covariance

matrix when the channel is strictly degraded. Combined with

the unit-rank solution of [7], this gives the optimal Q for the

case of two transmit antennas. However, the optimal solution

is yet open in general.

We consider MIMO wiretap channels where nr and ne are

arbitrary integers while nt = 2, and we show that the secrecy

capacity can be achieved by linear precoding. To this end, we

find a closed-form solution for the optimal covariance matrix.

Our approach is completely different from that of [9] and [10].

It does not impose any conditions on the channel matrices,

and explicitly finds optimal precoding and power allocation

schemes. This, in turn, provides the optimal covariance matrix

for both full-rank and unit-rank cases.

III. A CAPACITY ACHIEVING PRECODING

The secrecy capacity of the MIMO Gaussian wiretap chan-

nel can be rewritten as

Cs = max
Q

1

2
log

det(Int
+HtHQ)

det(Int
+GtGQ)

, (4)

where Q � 0,Q = Qt, tr(Q) ≤ P . This is obtained from (3)

knowing that for any A ∈ C
m×n and B ∈ C

n×m we have

det(Im +AB) = det(In +BA). (5)

Note that HtH and GtG are nt×nt symmetric matrices. Also,

Q is an nt×nt symmetric matrix and its eigendecomposition

can be written as

Q = VΛVt, (6)

where V ∈ R
nt×nt is the orthogonal matrix whose ith column

is the ith eigenvector of Q and Λ is the diagonal matrix

whose diagonal elements are the corresponding eigenvalues,

i.e., Λii = λi.

A. Reformulating the Problem for nt = 2

We simplify the optimization problem (4) for nt = 2 in this

subsection. Since V is orthogonal its columns are orthonormal

and, without loss of generality, we can write

V =

[

− sin θ cos θ
cos θ sin θ

]

, (7)

for some θ. Further, let

HtH =

[

h1 h2

h2 h3

]

, GtG =

[

g1 g2
g2 g3

]

. (8)

The following lemma converts the optimization problem (4)

into a more tractable problem.

Lemma 1. For nt = 2 but arbitrary nr and ne, the optimiza-

tion problem in (4) is equivalent to

Cs = max
λ1+λ2≤P

1

2
log

(

a1 sin 2θ + b1 cos 2θ + c1
a2 sin 2θ + b2 cos 2θ + c2

)

, (9)

in which λ1 and λ2 are nonnegative, and

a1 = (λ2 − λ1)h2, (10a)

b1 =
1

2
(λ1 − λ2)(h3 − h1), (10b)

c1 = 1 +
1

2
(λ1 + λ2)(h1 + h3) + λ1λ2(h1h3 − h2

2), (10c)

a2 = (λ2 − λ1)g2, (10d)

b2 =
1

2
(λ1 − λ2)(g3 − g1), (10e)

c2 = 1 +
1

2
(λ1 + λ2)(g1 + g3) + λ1λ2(g1g3 − g22). (10f)

Proof. To prove this lemma, we simplify the determinants in

(4). First, consider det(Int
+HtHQ). Using Q given in (6)
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and applying (5), it is seen that det(Int
+HtHQ) = det(Int

+
VtHtHVΛ). Further, it is straightforward to check that

VtHtHV =

[

w1 w2

w2 w3

]

, (11)

in which

w1 = h1 sin
2 θ + h3 cos

2 θ − 2h2 sin θ cos θ, (12a)

w2 = h2(cos
2 θ − sin2 θ) + (h3 − h1) sin θ cos θ, (12b)

w3 = h1 cos
2 θ + h3 sin

2 θ + 2h2 sin θ cos θ. (12c)

Consequently,

det(Int
+HtHQ) = det(Int

+VtHtHVΛ) (13)

= (1 + λ1w1)(1 + λ2w3)− λ1λ2w
2
2.

Next, using the trigonometric identities cos 2θ = 2 cos2 θ−1 =
1 − 2 sin2 θ and sin 2θ = 2 sin θ cos θ it is straightforward to

show that

w1 =
h1 + h3

2
+

h3 − h1

2
cos 2θ − h2 sin 2θ, (14a)

w2 = h2 cos 2θ +
h3 − h1

2
sin 2θ, (14b)

w3 =
h1 + h3

2
− h3 − h1

2
cos 2θ + h2 sin 2θ. (14c)

Substituting (14a)-(14c) in (13), we obtain

det(Int
+HtHQ) = a1 sin 2θ + b1 cos 2θ + c1, (15)

in which a1, b1, and c1 are given in (10a)-(10c). Following

similar steps it is clear that

det(Int
+GtGQ) = a2 sin 2θ + b2 cos 2θ + c2, (16)

where a2, b2, and c2 are given in (10d)-(10f). It should be men-

tioned that the constraint λ1+λ2 ≤ P comes from tr(Q) ≤ P
since, from (6), tr(Q) = tr(VΛVt) = tr(VtVΛ) = tr(Λ).
Note that tr(AB) = tr(BA) and VtV = Int

. Also, λ1 ≥ 0
and λ2 ≥ 0 are due to Q � 0. This completes the proof of

Lemma 1.

Lemma 2. In the optimization problem given by Lemma 1, the

constraint λ1+λ2 ≤ P can be replaced either by λ1+λ2 = P
or λ1 + λ2 = 0; i.e., it is optimal to use either all available

power or nothing.

Proof. The proof is omitted due to space limitations [12].

B. Optimal Precoding

In what follows, we first find a closed-form solution for the

optimization problem in Lemma 1 for a given pair of λ1 and λ2

that satisfy the constraints. Since log(x) is strictly increasing

in x, we can instead maximize the argument of the logarithm

in (9). Thus, let us define

W =
a1 sin 2θ + b1 cos 2θ + c1
a2 sin 2θ + b2 cos 2θ + c2

. (17)

Then, θ∗ = argmaxW and is obtained by differentiating

W with respect to θ and finding its critical points. It can be

checked that ∂W
∂θ

= 0 is equivalent to

a sin 2θ + b cos 2θ + c = 0, (18)

in which a = c1b2−c2b1, b = a1c2−a2c1, and c = a1b2−a2b1.

Before proceeding, we note that W is periodic in θ and its

period is π. Also, it can be checked that if both a and b are

zero, then a1

a2

= b1
b2

= c1
c2

and W is constant; i.e., any θ is

optimal. Thus, we assume a2 + b2 &= 0. Defining b
a
= tanφ,

(18) can be further simplified as

sin(2θ + φ) +
c√

a2 + b2
= 0. (19)

The critical points of the above equation are given by

2θ =

{

− arctan b
a
− arcsin c√

a2+b2
+ 2kπ

− arctan b
a
+ π + arcsin c√

a2+b2
+ 2kπ

, (20)

where k is an integer.1 Then, using the second derivative of

W with respect to θ, it is straightforward to check that the

first argument gives the minimum of W while the second one

gives its maximum. Further, without loss of optimality, we let

k = 0 in (20). Hence, the optimal θ that maximizes W is

obtained by

θ∗ = −1

2
arctan

b

a
+

1

2
arcsin

c√
a2 + b2

+
π

2
. (21)

Thus far, the optimal θ is obtained for given λ1 and λ2.

To find the optimal λ1 and λ2, in light of Lemma 2, we can

search over all λ1 ≥ 0 and λ2 ≥ 0 that satisfy λ1+λ2 = P or

λ1 + λ2 = 0 and maximize (17) where θ is given in (21). We

can vary λ1 from 0 to P . Hence, we can have the following.

Theorem 1. To achieve the secrecy capacity of the MIMO

Gaussian wiretap channel (with nt = 2) under the average

power constraint P , it suffices to use

V =

[

− sin θ cos θ
cos θ sin θ

]

, (22)

as the transmit beamformer with the power allocation matrix

Λ = diag(λ1, λ2). An optimal θ is given by (21) and is

obtained by searching over nonnegative λ1 and λ2 that satisfy

λ1 + λ2 = P or λ1 + λ2 = 0 and maximize (17).

Once the optimal V, λ1, and λ2 are determined, these can be

used for precoding and power allocation as illustrated in Fig 1,

very similar to the V-BLAST architecture for communicating

over the MIMO channel [11]. Here, two (nt = 2) independent

data streams are multiplexed in the coordinate system given

by the precoding matrix V. The ith data stream is allocated a

power λi. Each stream is encoded using a capacity-achieving

Gaussian code. The data streams are decoded jointly. When the

orthogonal matrix V and powers λi are chosen as described in

Theorem 1, then we have the capacity-achieving architecture

in Fig 1.

Lemma 3. With a proper choice of θ, the pairs (λ1, λ2) and

(λ2, λ1) result in the same maximum rate in Lemma 1.

Proof. Suppose (λ1, λ2) maximizes (17) for some θ∗ given by

(21). Then, from (10) it is easy to check that (λ2, λ1) results

in the same W for θ = θ∗ + π/2. Therefore, (λ2, λ1) can

achieve the same rate as (λ1, λ2) does.

1It should be highlighted that we always have |c| ≤
√
a2 + b2, as otherwise

W would be strictly increasing or strictly decreasing in θ, which is impossible
because W is periodic and continuous.
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Fig. 1. Optimal architecture for communicating over the MIMO wiretap
channel with nt = 2 and arbitrary nr and ne.

C. Closed-Form Solution for Optimal Power Allocation

Finding optimal λ1 and λ2 in Theorem 1 requires exhaustive

search. Although checking a reasonably small number of (λ1,

λ2) is enough in practice,2 in this subsection we find a closed-

form solution for optimal (λ1, λ2).

We know that if W ≤ 1 then (λ∗
1, λ

∗
2) = (0, 0) is the optimal

solution. Thus, let us assume W > 1. Then, using Lemma 2,

this implies that λ1+λ2 = P is optimal. Thus, to find optimal

λ1 and λ2, we can solve the following problem:

CMIMOME = max
λ1+λ2=P

1

2
log(W ), (23)

where W = det(Int
+ HtHQ)/ det(Int

+ GtGQ) is given

in (4). To this end, we define ah , h3−h1

2 , bh , −h2, ch ,
h1+h3

2 , dh ,
√

a2h + b2h, and bh
ah

, tanφh. Then, from (14a)-

(14c) we will have

w1 = ch + dh cos(2θ − φh), (24a)

w2 = dh sin(2θ − φh), (24b)

w3 = ch − dh cos(2θ − φh). (24c)

Now, we can write

Wh = det(Int
+HtHQ)

(a)
= (1 + λ1w1)(1 + λ2w3)− λ1λ2w

2
2

(b)
= 1 + λ1w1 + λ2w3 + λ1λ2(h1h3 − h2

2)

(c)
= 1 + (λ1+λ2)ch + (λ1−λ2)dh cos(2θ − φh)

+ λ1λ2(h1h3 − h2
2),

(d)
= 1 + Pch + (2λ1 − P )dh cos(2θ − φh)

+ λ1(P − λ1)(h1h3 − h2
2)

(e)
= αh + βhλ1 − δhλ

2
1, (25)

in which (a) is due to (13), (b) can be verified using (14a)-

(14c), (c) is due to (24a) and (24c), (d) is due to the fact that

λ1 + λ2 = P is optimal when W > 1, which follows from

Lemma 2, and (e) is obtained by defining

αh = 1 + Pch − Pdh cos(2θ − φh), (26a)

βh = 2dh cos(2θ − φh) + Pδh, (26b)

δh = h1h3 − h2
2. (26c)

2This is discussed in Section IV.

In a similar way, we can show that

Wg = det(Int
+GtGQ) = αg + βgλ1 − δgλ

2
1, (27)

where

αg = 1 + Pcg − Pdg cos(2θ − φg), (28a)

βg = 2dg cos(2θ − φg) + Pδg, (28b)

δg = g1g3 − g22 , (28c)

and cg, dg , and φg are defined for G similar to those of H.

Then, W = Wh/Wg and it can be checked that

∂W

∂λ1
=

c̄+ b̄λ1 + āλ2
1

(αg + βgλ1 − δgλ2
1)

2
, (29)

in which ā = δgβh − δhβg, b̄ = 2δgαh − 2δhαg , and c̄ =
βhαg − βgαh. Let ∆ = b̄2 − 4āc̄, and suppose that ∆ > 0.3

Then

λ∗
1,1 = (−b̄+

√
∆)/2ā, (30a)

λ∗
1,2 = (−b̄−

√
∆)/2ā, (30b)

are the roots of (29). Next, it is easy to show that, for λ∗
1,i, i ∈

{1, 2}, in (30a) and (30b) we have

∂2W

∂λ2
1

(λ∗
1,i) =

b̄+ 2āλ∗
1,i

(αg + βgλ1 − δgλ2
1)

2
=







+
√
∆

W 2
g
, i = 1

−
√
∆

W 2
g
, i = 2

.

That is, the second derivative is positive at λ∗
1,1 and negative at

λ∗
1,2. Thus, the former corresponds to a minimum of W and the

latter corresponds to a maximum of that quantity. Therefore,

the following cases appear:

1) Case I (∆ ≤ 0): This case results in a strictly decreasing

or increasing W in λ1. Then, λ1 = 0 or λ1 = P is optimal,

depending on the sign of a. The optimum value of λ1 can be

inserted into (10) to find the optimal θ in (21). The optimal

λ2 is obtained from λ1 + λ2 = P .

2) Case II (∆ > 0): In this case, the maximum of W is

achieved by λ1 = 0, λ1 = P , or λ1 = λ∗
1,2, provided that

0 ≤ λ∗
1,2 ≤ P . The optimal λ2 is obtained from λ1+λ2 = P .

Hence, when W > 1, (λ∗
1, λ

∗
2) is one of the following pairs:

(0, P ), (P, 0), or (λ∗
1,2, P −λ∗

1,2). But, in light of Lemma 3, it

can be seen that (0, P ) and (P, 0) result in the same optimum

W and thus one of them can be omitted.

To summarize, considering all cases for W ≤ 1 and W > 1,

it is enough to check

(λ∗
1, λ

∗
2) = (0, 0), (31a)

(λ∗
1, λ

∗
2) = (0, P ), (31b)

(λ∗
1, λ

∗
2) = (λ∗

1,2, P − λ∗
1,2), (31c)

in order to obtain the maximum of W . We should highlight

that (31c) will be a choice only if λ∗
1,2, defined in (30b), is a

real number between 0 and P . As a result, we have

Theorem 2. The optimal λ1 and λ2 in Theorem 1 is confined

to one of the cases in (31), and θ is given in (21).

3 When ∆ ≤ 0, W is strictly decreasing or increasing in λ1, and λ1 = 0

or λ1 = P are the only critical points.
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(a) ne = 1 (b) ne = 2 (c) ne = 4

Fig. 2. Comparison of the secrecy capacity of the MIMO Gaussian wiretap channel (achieved by the proposed beamforming method) and the secrecy rate
of GSVD-based beamforming for nt = 2, nr = 4, and (a) ne = 1 (b) ne = 2 (c) ne = 4.

Remark 1. As can be traced from (30b), in general, the optimal

λ1 is a function of θ. On the other hand, the optimal θ, given in

(21), is a function of λ1 (and λ2). Thus, the triplet (λ1, λ2, θ)
can be found for any possible maximizing argument in (31).

Then, by evaluating W for these points we can determine

the optimal (capacity-achieving) solution. For the first two

cases in (31) the solution is obtained analytically. However, the

equation resulting from combining the third case in (31) and

(21) is rather cumbersome and thus we solve it numerically.

IV. NUMERICAL RESULTS

In this section, we provide numerical examples to illus-

trate the secrecy capacity of Gaussian multi-antenna wiretap

channels using the proposed beamforming method. We also

compare our results with those of GSVD-based beamforming

with optimal power allocation [5]. As proved in Section III,

the proposed beamforming method is optimal and achieves

the capacity. Numerical results are included here to show how

much gain this optimal method brings when compared with

the existing beamforming and power allocation methods.

All simulation results are for 1000 independent realizations

of the channel matrices H and G. The entries of these matrices

are generated as i.i.d. N (0, 1). To get the capacity, based on

the optimal beamforming scheme proposed in Theorem 1, we

have searched over 50 linearly spaced values of λ1 and λ2.

We have also used the optimal power allocation of Theorem 2.

The difference between the two methods is negligible (on the

order of 10−4) and one curve represents both of them. We first

consider the case with nt = 2, nr = 4, and ne = 1. As can

be seen from Fig. 2(a), when the eavesdropper has a single

antenna the proposed capacity-achieving beamforming per-

forms significantly better than GSVD-based beamforming. By

increasing the eavesdropper’s number of antennas in Fig. 2(b)

and Fig. 2(c), the secrecy capacity decreases and the rate

achieved by GSVD beamforming becomes very close to that

of the optimal method. However, there is still a small gap

between the two methods particularly when P is small. This

is magnified in Fig. 2(b) and Fig. 2(c).

Figures 2(a)-2(c) also demonstrate the effect of increasing

the number of antennas at the eavesdropper. As expected and

can be seen from these figures, for a fixed nt and nr, the extent

to which information can be secured over the air reduces as

ne increases. Further simulations indicate that no information

can be secured via physical layer techniques for ne ≥ 16.

This is because the eavesdropper can no longer be degraded

by beamforming in this situation.

V. CONCLUSION

We have developed a linear precoding scheme to achieve

the capacity of Gaussian multi-antenna wiretap channels in

which the legitimate receiver and eavesdropper have arbitrary

numbers of antennas but the transmitter has two antennas.

We have reformulated the problem of determining the secrecy

capacity into a tractable form and solved this new problem to

find the corresponding optimal precoding and power allocation

schemes. Our investigation leads to a closed-form solution for

the covariance matrix and computable secrecy capacity.
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