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ABSTRACT | Large-scale power failures induced by severe
weather have become frequent and damaging in recent years,
causing millions of people to be without electricity service for
days. Although the power industry has been battling weather-
induced failures for years, it is largely unknown how resilient
the energy infrastructure and services really are to severe
weather disruptions. What fundamental issues govern the
resilience? Can advanced approaches such as modeling and data
analytics help industry to go beyond empirical methods? This
paper discusses the research to date and open issues related
to these questions. The focus is on identifying fundamental
challenges and advanced approaches for quantifying resilience.
In particular, the first aspect of this problem is how to model
large-scale failures, recoveries, and impacts, involving the
infrastructure, service providers, customers, and weather.
The second aspect is how to identify generic vulnerability in the
infrastructure and services through large-scale data analytics.
The third aspect is to understand what resilience metrics are
needed and how to develop them.
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I. INTRODUCTION

Severe weather events such as storms, flooding, and
extreme temperatures have been occurring across the
United States and the world in recent years, increasingly
threatening places where large populations and economic
activities are heavily concentrated [1]-[4]. Among the
most affected are the energy infrastructure and services to
customers, where weather-induced failures have affected
millions of people for days [2], [5], [6]. In response to these
disruptions, nationwide efforts focused on resilience have
been initiated [2], [4], [6]-[8]. Here resilience refers to the
ability to reduce failures under external disruptions and to
recover rapidly once failures occur [2], [4], [8].

However, as pointed out by the taskforce report [8],
the current understanding of resilience is limited for the
energy infrastructure under severe weather. In particu-
lar, it is largely unknown how resilient our infrastructure
really is to severe weather [2]. Moreover, the problem is
not only about fixing the physical infrastructure. Services
(i.e., electricity supplies to customers) are pertinent that
involve users, service providers (i.e., distribution system
operators (DSOs)) and policy makers [9].

This paper discusses research to date and challenges
on resilience. The focus is on how to quantify resilience
of the energy infrastructure and services to customers.
Here the infrastructure refers to power distribution grids
that deliver electricity directly to users. Power distribu-
tion grids are particularly vulnerable to severe weather
disruptions, where 90% of failures have occurred [4].
Furthermore, the current power distribution infrastruc-
ture is not yet fully equipped with the state-of-the-art
technologies for efficient monitoring and protection
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[10]-[12]. Services of power distribution grids that involve a
large number of customers in disjoint service regions man-
aged by disparate distribution system operators and regula-
tors are particularly challenging. A severe weather event can
have a wide geographical span. For example, Superstorm
Sandy affected eight million customers in 21 DSO service
regions in the United States. In the face of these issues, quan-
tifying resilience remains a challenging problem, involving
both infrastructure and services [2], [9], [13]-[15].

Notably, resilience centers on complex and interacting
networks involving weather, the power distribution infra-
structure, and a Community of customers, service providers,
and policy makers [2], [4]. The failure aspect of resilience
relates to the interactions between the physical infrastruc-
ture and weather. The recovery aspect relates mainly to
services. Services depend on complex factors, not only the
infrastructure but also DSOs, customers, and policies. Both
aspects require advanced modeling to incorporate a large
number of dependent variables, and data analysis to gain
knowledge about what determines resilience. Thus resil-
ience involves a multitude of complex factors from weather
to the physical infrastructure, customers, service providers,
and policy makers. These issues call for not only new think-
ing and actions from industry but also research that can
address fundamental problems underlying the challenges.

We identify three technical challenges within this context.
The first challenge is how to model complex interactions
among weather, failures at the infrastructure, and recoveries
by service providers governed by policies. Mathematical mod-
els are needed to describe these important factors, from a large
number of local and dependent failures and recoveries, to cus-
tomer responses and weather [9], [14], [16], [17]. Meanwhile,
it is pertinent to incorporate multiple spatiotemporal scales in
these models that span a distribution system locally to service
areas regionally [9], [14], [16]. The second challenge is the
development of data analytics that can learn how resilient the
infrastructure and services really are from measurements. The
power industry has been collecting data on failures and resto-
ration. Such data can potentially be turned into knowledge to
guide resilience enhancement. A challenge is the availability of
detailed data at a large scale across service territories. Detailed
data are owned by DSOs. Large-scale data studies thus call
for active participation of DSOs and policy makers. Here, we
describe the granularity, scale, paucity, and inaccuracy of exist-
ing data, from which we learn what new information should
be collected. Furthermore, data analytics, although at an early
stage for resilience, suggests what knowledge can be learned
from the available measurements. Finally, the third challenge is
how to measure resilience in a way that incorporates the infra-
structure, services, customers, and weather. Such resilience
metrics are needed for the community to be able to quantify
threats and system-wide performance.

These three aspects are interrelated as illustrated
in Fig. 1. Modeling lays a foundation to guide data analytics
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Fig. 1. lllustration of three interrelated challenges.

(i-e., on what simple quantities to evaluate from complex
failure and recovery processes, and what data to use to gain
knowledge on resilience). Meanwhile, modeling provides a
basis from which resilience metrics can be derived as system-
wide performance. Data analytics provide knowledge and
insights on resilience of operational distribution grids and
services. Data also underlay measures of resilience met-
rics and model parameters. Such knowledge should in turn
improve modeling and data analytics.

The rest of this paper is organized as follows. The funda-
mental aspects of the problem and challenges are described in
Section II. Modeling is discussed in Section III. Data analytics
are reviewed in Section IV. Resilience metrics are described in
Section V. Challenges and open issues are discussed through-
out the paper and are summarized in Section VI.

II. PROBLEM DESCRIPTION AND
FUNDAMENTAL CHALLENGES

The quantification of resilience depends on characteriza-
tion of the performance of power systems. Resilience can
be understood as the ability of the power systems to avoid
or reduce failures and to recover quickly after failure occur-
rences. These two aspects are interrelated through the con-
cepts of resilience across multiple spatiotemporal scales as
stated below.

A. Infrastructure

The first aspect of resilience is that of reducing failures
in the energy infrastructure. Here, as noted above, the infra-
structure refers to power distribution systems, the last stage
of the grid [18]. Severe weather events (e.g., high winds and
flooding) damage power components such as down wires
caused by falling debris, damaged transformers, or non-
functional distribution substations. Component failures in a
power distribution system are local (i.e., do not cascade for
radial topology) but can involve large numbers of customers
and span a wide geographical area [19]. Protective devices,
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activated by failures or fault currents, are also considered
as infrastructural failures since they interrupt electricity
supplies to customers [18]. Examples of activated protec-
tive devices include open switches and blown fuses [20].
Outages are further caused by failures within a distribution
system, where devices downstream lose power but are not

damaged [9], [16].

B. Services

The second aspect of resilience relates to services (i.e.,
maintaining electricity supplies to customers) [21], [22].
Recovery from failures thus signifies the service aspect
of resilience, involving complex factors of infrastruc-
tures, service providers, and policies [23]. In particular,
DSOs are responsible for restoring electricity supplies
to customers when disruptions occur. Thus, services are
provided in a decentralized fashion, where individual
DSOs are responsible for their own managed territories.
Services are also governed by policies in the form of guide-
lines from state and federal governments [24]. Policy makers
also participate actively in recovery processes (i.e., help
guide restoration crews as shown in Superstorm Sandy
and Hurricane Matthew). Hence, customers, DSOs, and
policy makers form a community relevant to resilient
energy services.

C. Multiple Spatiotemporal Scales

Resilience involves interactions among power distri-
bution grids, services to customers, the community, and
weather, as illustrated in Fig. 2. Such interactions occur
dynamically across multiple spatiotemporal scales. For
example, high winds cause fallen debris that induce fail-
ures to overhead power distribution lines in minutes [14].
Outages caused by failures occur in seconds or subseconds
within a distribution infrastructure [16], [25]. Recovery
occurs in seconds for restoring outages and in days for
difficult manual repairs [9], [14]. Spatial scales vary from
components in a local distribution system to townships,
single service regions, and multiple service territories [26].

Area |
Substation Area |
o 3 Failure

Recanery Areal

Failure Recovery

aumpnseyu]

Area 3

Failure Recavery

Fig. 2. Hlustration of interactions among weather, infrastructure,
and community.

1356 PROCEEDINGS OF THE IEEE | Vol. 105, No. 7, July 2017

D. Challenges and Open Issues
The following challenges emerge.

1) Modeling: How can we quantify resilience, i.e., start-
ing with modeling, for large-scale weather events? As
resilience should be a property of dynamic and depend-
ent networks, models are necessary for integrating local
but dependent failures, recoveries, the community, and
weather at a large scale. Such models are challenging to
obtain across multiple spatiotemporal scales for the infra-
structure and services jointly (see Section III for detailed
discussions).

2) Data analysis: How resilient are our power distri-
bution grids and services in the first place? What should
be enhanced for resilience? Data are needed from opera-
tional power distribution grids and services to aid in
understanding what fundamentally governs resilience. A
challenge is to obtain both detailed and large-scale data
from the grid and about weather. Data are owned by indi-
vidual DSOs governed by policies. Hence, data analytics
call for collaboration from DSOs and policy makers (see
Section IV).

3) Resilience metrics: How can we measure resilience at
the network level involving both the infrastructure and ser-
vices? Reliability metrics have been used as standards [27].
However, these metrics are designed for daily operations
rather than severe weather events. Resilience metrics are
required to incorporate dynamic characteristics at multiple
spatiotemporal scales (see Section V).

III. MODELING

An objective of modeling is to characterize relationships
among a large number of dependent variables. Such vari-
ables include weather, failures at the distribution grid level,
recoveries, and impacts on customers and the community
overall. To date, there does not exist such a model that
incorporates all these pertinent factors. Different aspects
have been studied in prior work, from static models to non-
stationary spatiotemporal random processes.

A. Static Models in Machine Learning

A large body of prior work addresses the modeling of how
severe weather induces initiating failures [20], [28]-[30].
These models are static, focusing on finding a mapping
between weather variables and failures. Such models pio-
neered the work in this area, starting with one node (e.g.,
a power distribution line or a component), and one to
multiple weather variables [20], [29], [31]. For exam-
ple, the failure rate, which is the average number of new
failures occurring per mile per hour of overhead power
lines, is modeled as a quadratic function of wind intensity
in [18]. Fragility, which is the conditional probability of a
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Fig. 3. Machine learning view of static models.

component failure given weather variables, is modeled as a
function of wind intensity or gust, precipitation, and surge
elevation, respectively, in [32] and [33].

These models, although diverse, can be unified through
machine learning as illustrated in Fig. 3. Consider an
n-dimensional vector of exogenous variables x e R" at a
given location for 1 < n. Modeling can be viewed as find-
ing a static mapping, f(x;a): x — y, between exogenous
variables x and targetsy ¢ R™for1 < m. Here y describes
failures (i.e., as the number of failures or failure durations,
or the probability of failures/durations), and a e R'is a
vector of unknown parameters with 1 < [. The data set
D = {x®,y®}is obtained on pairs of exogenous and fail-
ure variables, where (x(k) , y(k)) denotes the kth sample of
the input x and desired output y of the learning machine.
The goal of learning is to obtain either f or the parameter
a for a chosen f using data D so that f approximates an
underlying mapping from x to y. This is clearly a context of
supervised learning [34], [35]. The models are static, where
neither f nor the parameters a nor the inputs and outputs
(x,y) vary with time.

The input variables x mainly represent weather phenom-
ena, including wind intensity, speed, and gust, as well as pre-
cipitation. Several example models for f have been studied.

1) Poisson generalized linear model (GLM) [36]: The num-

ber of power failures in a grid cell is modeled as a Poisson

random variable with mean g, where In(u) is assumed to

be a linear function of the weather variables x.

Negative binomial generalized linear model

(NBGLM) [20]: An error term e is introduced into

the GLM to model the dispersion (i.e., the inconsist-

ency between the mean and the variance).

3) Generalized additive model (GAM) [31]: The linear
function is replaced by a nonlinear mapping f, with
examples including cubic splines and nonparametric

2

~—

models.

Spatially dependent Poisson linear models [37]:
Spatial correlation is included in the GLM as a multi-
variate normal distribution across different grid cells.

4

~—

The above models have been used widely in subsequent
works [38]-[41]. Resulting models identify fallen trees as
major causes of power failures [20], [42], and transformers
as the components most affected by severe storms [36], [38].
Other learning methods have been applied, includ-

classification and regression trees, Bayesian

ing

additive regression trees, and multivariate adaptive regres-
sion splines [29]. Bayesian additive regression trees have
been found to be the most accurate in predicting durations
of failures given weather variables [29]. Principal compo-
nent analysis (PCA) has been found to be effective in learn-
ing from correlated weather variables [38].

The static models assume that failures occur indepen-
dently of time and locations [20], [37]. This assumption on
temporal independence is reasonable if evolution of failures is
not considered. The assumption of spatial independence can
be invalid since sufficiently close locations may experience
similar weather impacts [37]. In addition, certain geoloca-
tions exhibit a higher likelihood of weather-induced failures
than the others [2]. Due to these assumptions, certain static
models are obtained by aggregating over time and service
regions [20]. However, the aggregation may lose spatiotem-
poral information needed for failure and recovery studies (see
Section IV for further discussions).

B. Spatiotemporal Random Processes

When sufficiently fine spatial and temporal scales are
taken into consideration, failures and recoveries need to
be modeled as spatiotemporal random processes [9], [14],
[43]-[45]. Such models characterize dynamic interactions
of infrastructural failures, services, and customers, which
are not quantified by static models [9], [14].

1) Dynamic Models for Cascading Failures: The prior
works motivate such modeling albeit the problem they con-
sider is on cascading failures that occur in power transmis-
sion rather than distribution grids [46], [47]. For example,
dynamic models have been developed for cascading failures
through branching processes [46], [48], Markov decision
processes [49], hybrid system models for random and spo-
radic failures [50], and other probabilistic temporal or spa-
tial models (see [51]-[54] and references therein).

These models are based on stationary probability distri-
butions while weather-induced failure-recovery processes
are nonstationary [9], [14]. Furthermore, severe-weather-
induced disruptions span a wide geographical area. Therefore,
spatiotemporal processes are needed for weather-induced
failures and recoveries.

2) Nonstationary Failure—Recovery—Impact Processes:
Some recent work has developed a spatiotemporal non-
stationary model for dependent failure-recovery processes
[14]-[17]. This model is motivated by nonstationary queues
[55]. Such models have been applied to failure-recovery
processes from severe weather events [14], [17]. However,
the queuing model is inapplicable when a finer spatiotem-
poral scale is considered for impacts on customers of each
failure and recovery, and restoration is conducted with pri-
orities for critical customers [22].

A formulation is then developed from bottom-up, start-
ing with failures in the power distribution infrastructure,
incorporating service recovery through failure durations,

Vol. 105, No. 7, July 2017 | PROCEEDINGS OF THE IEEE 1357



Ji et al.: Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics

and impacts on customers [9]. Such models integrate a large
number of interdependent variables at the finest spatiotem-
poral scale.

To consider this model, assume failures are already
detected. IV (t) (d = f,0) is an indicator function, rep-
resenting a failure (f) or an outage (o) for D) =1
otherwise, Il(d)(t) = 0. i includes the type, geolocation,
and system location of device i. Service is characterized
by how rapidly power is restored to customers [2], and is
thus represented by the downtime duration D;(v) for fail-
ure or outage i that occurs at time v. An indicator function
I[D;(v) > t—v]represents the recovery event, where fail-
ure or outage i is not yet recovered att,0 < v < t. Finally,
the impact on customers evaluated at time t is modeled via a
function G; (v, t) for disruption i, which occurs at time v for
v < t. As a simple example, G;(v,t) is the customer down-
time resulting from failure or outage i.

Failures, outages, recoveries, and costs are dependent
for a given weather event, evolving in time and locations.
Incorporating randomness from weather disruptions, the
spatiotemporal nonstationary random processes model a
collection of dependent infrastructural failures, recoveries,
and costs as coupled processes:

1) failure (and outage): {Igd)(v),q e S(v),v > 0}
2) recovery: {I[[D,() > t—v],k e S(t),0 < v < t}
3) cost: {Gj(v,1),j € S(v),0 < v < t}.

Here, S(v) and S(t) consist of nodes in normal opera-
tion at time v and disruptions at time t, respectively. While
such a model starts from the finest spatial scale of individual
components and customers, aggregation can be done at the
scales of an area, a township, one service region, and multi-
ple DSO territories, as illustrated in Fig. 2.

Quantifying completely the spatiotemporal non-
stationary random processes is prohibitive since that
requires joint probability distributions at all time epochs.
The first moments can be used in an initial effort, includ-
ing the time-varying failure rates and marginal condi-
tional probability of downtime duration given failure
occurrence time [9]. These simple quantities guide data
analytics in Section IV.

C. Open Issues and Challenges

The first open issue that emerges is how to characterize
two generic properties of resilience (Section II): 1) depend-
ent “networks” from the infrastructure to customers and ser-
vice providers impacted by weather; and 2) nonstationarity
across multiple spatiotemporal scales. Different models have
characterized different aspects of the problem. There are no
models yet that characterize all the generic properties.

The second open issue is the complexity of modeling
in characterizing the uncertainty. Models can become pro-
hibitively complex when involving spatiotemporal uncer-
tainty in the physical infrastructure and services [56], [57].
For example, questions arise whether power flows should
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be incorporated for studying resilience [52], [58]-[60]; or
whether failures can be assumed as detected already so that
failure and recovery processes are on (failed, outaged or
normal) states of components [9], [14]. The aforementioned
models do not involve power flows, which makes the for-
mulation analytically tractable. Such models also allow data
analytics to be conducted using available measurements
(see Section IV). However, starting from power flows ena-
bles failure detection and grid reconfiguration [11], [58]. A
challenge is to identify appropriate granularity in modeling-
dependent variables based on objectives from weather, the
infrastructure, services, and impacts on customers.

The third open issue is on the community. While the
roles of DSOs and policy makers are embedded in services
(and infrastructure enhancement), approaches are lacking
to model such influences explicitly. Although not specific for
the resilience problem, approximate dynamic programming
is one of the approaches that choose optimal control policies
towards a self-healing grid [61]. An open question is how to
quantify policies that impact services in a real-world setting.

Finally, a further open issue is how to combine
strengths of machine learning approaches and spatiotem-
poral random processes to incorporate diverse factors at
a large scale. For example, using data from phasor meas-
urement units (PMUs) (see Section IV), failures can be
identified from power flows in conjunction with state esti-
mation and optimal sensor (PMU) placement [11]. Such
an approach can be extended to power distribution grids,
where learning algorithms can potentially learn statistical
characteristics from PMU measurements and probability
distributions of failure hypotheses from historical data.
Another related application, which increases the visuali-
zation of power distribution grids, is topology inference
through learning from data collected only at the edge
nodes [62]. In a broader context, machine learning is
expected to play a major role in how to quantify uncer-
tainty and data analysis [63], which are the key issues of
modeling and the resilience problem overall. In this con-
text, the availability of data at a sufficiently fine spatiotem-
poral scale is crucial for enabling learning approaches [63].

IV. DATA ANALYTICS

Data analytics learn knowledge from measurements on fail-
ures, recoveries, and weather variables. Knowledge learned
helps to answer such questions as how resilient the infra-
structure and services really are; and what governs resilience
or the lack thereof. Here modeling provides a pertinent role
of guiding data analytics (i.e., on what measurements to use
and what quantities to estimate).

A. Data

Data determines significantly what knowledge can be
learned about resilience.
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1) Data on Failure and Recovery: The power indus-
try has been collecting data on failures, restoration, and
impacts to customers [18]. The objectives of this collec-
tion have been outage management, customer communi-
cation, and reporting [24]. Data analysis is yet to become
a focus.

As a typical example of granular data, an item on a
failure includes “occurrence- and restoration-time, geo-
location, system-location, the type of activated protective
device, the number of customers affected” [9], [14], [37].
Here activated protective devices signify the actual failed
components, and themselves interrupt electricity service to
customers [36], [37].

One minute is the finest temporal resolution of the
available data for failure occurrence and restoration time.
Resulting from customer reports on service interruptions,
such a time scale is consistent with that of weather-induced
failures from dynamic evolution of severe storms [9], [14],
[20], [36]. Failures can further cause outages in a distribu-
tion system, where certain components lose power but are
not damaged [16]. Outages occur in seconds or less [16], [25].
Therefore, the temporal scale of failure data should ideally
be less than a second. Such a fine temporal scale is not yet
achieved in current data collection. Advanced technologies
are required to attain such granularity beyond customer
reports. The current resolution on restoration time is also a
minute, where failure durations vary from minutes to hours
and days.

Geolocations of failures and outages are provided in
exact coordinates of (latitude, longitude) [9]. The location
information is usually available on activated protective
devices rather than actual failed components [9], [16], [37].
Data on locations of failed power components are more
informative for studying relationships between failures
and weather variables [36], [39]. Although not usually
available for research, the information on failed devices
is known in principle after restoration. Detecting power
failures and identifying their locations in real time have
been of research interest, especially with deployment of
smart meters, (micro) PMUs for distribution systems, field
sensors, and control units [11], [64]-[67]. Overall, accu-
rate geolocations together with downtime of both failed
components and activated protective devices are desirable
for studying spatiotemporal variability of severe weather
impacts (Fig. 4).

Accuracy of the data is another pertinent issue. Existing
collection methods can fail to generate high-resolution data,
especially in severely impacted service regions [68]. For
example, a large number of customer calls within a short
time duration hinders failure isolation [68]. Repair crews are
typically busy fire-fighting to restore services to customers;
data collection on recovery time is thus not a priority [68].
Therefore, automated approaches are pertinent for accurate
data collection.

Storm Track

Storm Track
N

Fig. 4. Geolocations and occurrences of failures, and the storm
track during Superstorm Sandy.

Impacts on customers provide another important source
of information on resilience. Available data on impact are
currently measured as the number of customers affected by
each failure [9], [31], [36]. Total customer downtime can
then be obtained, reflecting impacts from both failures and
recoveries [9].

B. Data on Weather Variables

Data on weather variables offer pertinent informa-
tion on external causes of failures and delays in recovery.
Commonly used data on severe storms have been collected
on wind intensity and gust, precipitation, moisture, and
temperature [28], [31], [36]. Such data are usually provided
by additional sources outside DSO service regions. While
an extensive survey of weather data is beyond the scope
of this work, well-known example data in wind and pre-
cipitation are from the National Oceanic and Atmospheric
Administration (NOAA) [9], [36], [38], [69]. The spatiotem-
poral granularity of the data varies. For example, the wind
speed is measured in minutes and at the centroid of each zip
code [42]. The resolution for gust wind speed is estimated
at three-second intervals and each 3.66-km X 2.44-km grid
cell [38]. Weather data with a coarse spatiotemporal resolu-
tion can be insufficient for terrains with dynamically varying
weather conditions. Recent data collection and forecasting
techniques improve spatial resolution by incorporating
community weather stations [69], [70].

Several DSOs have installed densely distributed weather
stations in their service regions, where existing regional
weather service is insufficient for dynamic local condi-
tions. This allows data to be collected on both weather and
power failures at comparable spatiotemporal scales [28].
For instance, National Grid has deployed weather stations,
each of which covers five square miles in a service area [28].
Central Hudson Electric and Gas has weather stations
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needed for the varying terrain conditions in its service
region [71]. San Diego Gas and Electric has sensors and
mini weather stations for predicting wildfires and its result-
ing power failures [72]. Furthermore, a commercial product
(Deep Thunder) by IBM offers localized weather prediction
at a spatial scale of city blocks [70].

Storm surge and flooding result in damages to power
components [68]. However, data on surge and flooding
are available from fewer sources [73]. Synthetic data
have been generated from simulation on storm surge and
flooding as well as high winds when detailed data are dif-
ficult to obtain [74], [75]. A challenge is for simulated
data to sufficiently accurately relate to failures in the
infrastructure.

Other exogenous variables include land cover, where
residential, forest, commercial, industrial, and transporta-
tion land use seem to be related to impacts of service inter-
ruptions on customers [20], [36], [37]. For example, tree
density is an exogenous variable used in prior work that
results in downed wires and other initiating failures from
high winds [20], [36], [37].

C. Analytics

As modeling and available measurements lay founda-
tions for data analytics, a pertinent question is what knowl-
edge can be learned from data.

1) Outage Management: DSOs have long been collecting
data on failures and recoveries [18]. A major use of data is
for outage management [18], [68]. For example, customer
reports of service interruptions are combined with outage
management systems to localize failures. Such information
is then used to guide repair crews. Outage maps are gen-
erated for customers showing the evolution of failures and
restoration [76]. Aggregated information on failure and
recovery is used for reporting impacts and performance of
service restoration [77]. Data analytics have not been a sig-
nificant part of standard outage management in practice.

2) Failure Prediction in One Service Region: Failure pre-
diction has been studied by the prior works [28], [29], [35],
[30]. One of the first works, although mainly focused on
reliability rather than resilience, applies machine learning
to predict equipment failures in the New York City power
grid [30]. An objective is to enable proactive maintenance
for reducing severe impacts of power failures resulting in
events such as explosions or fires. Data on failures and assets
have been collected from manholes in multiple years, and
reactive point processes are used to learn model parameters
from the data [78]. Although the power grid in New York
City is complex, the data analytics showed promise for fail-
ure prediction [30], [78].

Several other prior works pioneered failure prediction
using weather data and regression models (see Section III).
The premise is that if the likelihood of failures can be

1360 PROCEEDINGS OF THE IEEE | Vol. 105, No. 7, July 2017

obtained given weather variables, failures can be predicted
through weather forecasts [28], [29], [36]. Data on failures
and weather from one service region are used for parameter
estimation and model validation [20], [28], [29], [31]-[33],
[38], [40], [42].

A challenge is that detailed data are often unavailable on
failures due to security issues [39]. As such, the early works
have had to use aggregated failure data [20], [31]-[33], [38].
Temporal aggregation yields the number of failures, ranging
from one day to an entire period of a hurricane [20], [32],
[79]. Spatial aggregation of failure locations ranges from a
small grid cell of 0.42 km? to an area specified by a geocode
or zip code [20], [32], [40], [80].

On other occasions failure and weather data have different
granularity [20]. Failure data are then aggregated to match the
coarser geographic resolution of measurements on weather
and other exogenous variables [20]. Overall, aggregated infor-
mation over time and locations cannot specify exactly when
and where individual failures occur and recover. Thus, data in
weather and failures, when either are aggregated, can affect
the accuracy of a learned model and consequently prediction.

With densely installed weather stations in a service ter-
ritory, several recent works have been able to use detailed
data on both weather and power failures, resulting in a few
failure prediction systems for DSOs [28], [70], [72].

D. Regression Study at the National Scale

As a severe weather event often spans multiple service
regions, a question is how to extend data analysis from one
service territory to a regional or national scale. Granular
data on power failure and recovery are owned privately by
individual DSOs. A recent work explores a novel option of
publicly available data [81]. Such data result from DSOs’
annual reports on the IEEE standard reliability indices:
system average interruption frequency index (SAIFI) and
system average interruption duration index (SAIDI) [27].
SAIFT and SAIDI are, respectively, the average number of
power failures and downtime durations per customer per
year. Thus such data are aggregated with a spatial resolution
of a service region and temporal scale of a year [77].

The data have been collected at the national scale across
the United States over the past 13 years [81]. Data on exog-
enous variables have also been obtained on weather, DSO
expenditures on reliability, and the density of power lines.
The data from all sources are used to learn parameters of
regression models [81]. The failure and duration indices are
found to correlate with weather variables, especially when
major weather events occurred.

While this approach explores new large-scale data
sources, stationarity of the variables may be required so
that regression using aggregated data can be equivalent to
using detailed measurements. Intuitively, the approach
is expected to perform well for daily operations when the
stationarity is natural for failures and restorations. When
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including a severe weather event, detailed data are needed
at sufficiently fine spatiotemporal scales.

E. Infrastructure and Service Resilience in Multiple
Regions

Owned by individual DSOs, detailed and large-scale data
require collaboration from multiple service providers. As a
first step, four DSOs and policy makers have collaborated in a
recent work, providing detailed data on failure and recovery
in Upstate New York [9]. The data span four service regions
over 50000 square miles that serve two million customers.
The granularity of the data is the finest that the current collec-
tion can offer [9]. The data consist of failures and recoveries
that occurred during Superstorm Sandy and daily operations
in 2012. Weather data were not used for the study.

Such detailed data at the large scale enable complemen-
tary questions to be studied: whether data analysis can help
identify generic vulnerabilities (i.e., nonresilience) in the
infrastructure and services. If so, how can data collected
by DSOs benefit long-term prediction of resilience through
enhancement? A recent work studying these questions is
summarized below [9].

Guided by the nonstationary spatiotemporal model
(Section III-B), the analysis of detailed data focuses on a
few simple model parameters such as failure rates and con-
ditional probabilities of downtime durations. The data
analysis reveals infrastructural vulnerability illustrated in
Fig. 5(a), where local failures, although they do not cascade

within power distribution systems, have nonlocal impacts
(i.e., they affect a large number of customers) [9]. A scal-
ing law further characterizes systematically how local fail-
ures impact customers: A point of scaling obeys the 20-80
rule [82], where the top 20% of failures affect 80% of the cus-
tomers. Importantly, such infrastructural vulnerability was
not caused by Superstorm Sandy but exists regularly in daily
operations. The hierarchical structure of power distribution
systems relates to the infrastructural vulnerability, where the
majority of the top failures were seen to occur at the higher
level of the hierarchy and thus affected a large number of cus-
tomers. Superstorm Sandy exacerbated such infrastructural
vulnerability by increasing the likelihood of such failures. The
large scale spanning the four service regions confirms that the
vulnerability is common across four DSO service territories.

In contrast, recovery patterns on customer services
are different from those failures [Fig. 5(b)]. A large num-
ber (i.e., 89% of all) small failures that affected the bottom
34% of customers aggregate to 56% of total customer inter-
ruption time. This illustrates challenges for services and
requires further study [9].

F. Challenges and Possible Directions

The first challenge is how to obtain sufficiently detailed
and accurate data. Research to date suggests the necessity of
collecting data with sufficient spatiotemporal granularity.
A temporal resolution should be comparable to that of fail-
ure and outage occurrences, i.e., at seconds for outages, and

Disruptions Customers
© Top 20% 3 (@)
O Others 1 3,000

(a)

e

Category CMI (x 1,000 h) \’if
O | (Large/Early) . O
© 2 (Small) 300

O 2 (Large/Late)

(b)

Fig. 5. Geographical distribution of failures and customer downtime in Upstate New York during Superstorm Sandy. (a) Top 20% and the
remaining failures. (b) Customer interruption hours (CMI), where the colors represent the downtime for large (top percentage) failures that
recovered rapidly versus the remaining disruptions. Each marker represents a failure or an outage. Map reproduced using OpenStreetMap

and ArcGIS software. The figures are adopted from [9].
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minutes for weather-induced failures. Desired spatial resolu-
tion corresponds to exact failure and restoration locations.
Additionally, large-scale (and detailed) data are needed to
understand whether knowledge learned is widely applicable.
The best available data so far attain accurate spatial resolu-
tion, a minute as the time scale, and across several multiple
service regions. Aggregated data have been used at the
national level. Data acquisition for power recoveries is also
insufficient. This is because repair crews naturally place a
higher priority on restoring services than on data collection.

Advanced collection systems can help circumvent data
paucity and inaccuracy. A large-scale deployment of low-
cost sensors pioneers this approach for monitoring voltage
sags and communicating event information across service
regions in the United States [83]. A next-generation col-
lection system can potentially gather high-resolution data,
using widely deployed micro PMUs in power distribution
systems, advanced metering infrastructure, and intelligent
devices [12], [15], [65], [66], [85]-[87]. Advanced detection
algorithms can then accurately detect and locate failures in
real time to replace customer reporting [11].

The second challenge is for data on weather and other
exogenous variables to have a sufficiently fine spatiotempo-
ral scale. When weather data have a coarser spatial temporal
resolution compared to that from the grid [20], the perti-
nent and detailed information on infrastructural failures
may be wasted [14], [20]. An open issue is how to obtain
data with sufficient resolution from diverse sources (i.e., the
infrastructure, services, and weather).

The third challenge is how to enable collaboration on
data analysis. Large-scale and detailed data from multiple
DSOs are severely lacking for research due to security and
privacy concerns [2]. An important issue is to actively involve
DSOs and policy makers to collaborate on data analytics. As
shown in the prior study [9], resilience is for everyone; thus,
it is possible for DSOs, policy makers, and academia to col-
laborate on data analytics. Procedures that support security
and privacy will help enable and expand such collaboration.

Finally, data analytics, although showing promise of
learning knowledge on generic vulnerabilities and predict-
ing failures, are still at an early stage. The potential of data
analytics for resilience is yet to be fully explored when meas-
urements become more and more available.

V. RESILIENCE METRICS

Modeling and data analytics lay a foundation for resilience
metrics. Such metrics are expected to characterize system-
wide performance by including all factors from weather to
the infrastructure, services, and community. Thus, resil-
ience metrics need to be derived from models and measured
from data. While such metrics are yet to be fully developed,
the research to date shows the necessity for new metrics.
Open issues include what variables are pertinent and how to
derive the performance metrics.
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A. Invalidity of Standard Metrics

Are new metrics needed for resilience in the first place?
Two IEEE reliability standards for daily operations (SAIFI
and SAIDI) have been extended to severe weather events:
storm average interruption frequency index (STAIFI)
and storm average interruption duration index (STAIDI)
[88], [89]. Given a severe weather event, STAIFI and
STAIDI are defined as [89]

total number of customers interrupted

STAIFI = @D

total number of customers served
total customer storm interruption minutes

STAIDI = e)

total number of customers served

Now consider a data set from a service region during
Superstorm Sandy in Upstate New York. Each data sample
corresponds to a failure signified by an activated protective
device with the occurrence time, duration, and number of
customers affected. There are 1334 failures from October 28,
2012, to October 31, 2012 (see [9] for details). The STAIFI
and STAIDI values and their standard deviations are
obtained using (1) and (2) and shown in Fig. 6. The standard
deviations are so large for both indices that they allow a nega-
tive quantity when the error bars are taken into considera-
tion. Such large deviations suggest that STAIFI and STAIDI
exhibit too much uncertainty to be valid for characterizing
resilience. Therefore, extending, by brute force, the reliabil-
ity standards to resilience metrics is not viable.

Having the large standard deviation is not a coincidence
but results naturally from nonstationary failure-recovery
processes. Nonstationary random processes can of course
exhibit time-varying mean functions [9], [14], [53]. This is
clearly shown by the time-varying version of STAIFI and
STAIDI from (1) and (2) that are computed using sam-
ples at 1-h intervals in Fig. 6. In contrast, the STAIFI and
STAIDI are static sample averages by definition, and thus
insufficient for representing non-stationary failure and
recovery processes.

B. Other Metrics and On-Going Studies

Estimated time of restoration (ETR) is another met-
ric used by industry [68]. ETR informs customers of the
expected time needed for restoring services after failures.
While appealing to users, ETR is difficult to estimate accu-
rately because of the uncertainty and dynamics from nonsta-
tionary failure and recovery processes.

Fragility and its variations relate failures to weather
variables [40], [80], [89], [90]. Such a relationship is neces-
sary to view resilience through potential threats, and thus
is promising to characterize a performance metric. A chal-
lenge is how to include dynamics and system-wide perfor-
mance in such a resilience measure.

Dynamic metrics such as quality and its variations (i.e.,
robustness and rapidity) characterize over time parts of a
system or the number of customers in normal operations
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Fig. 6. STAIFI and STAIDI from a service region in Upstate New York during Hurricane Sandy. The histograms show the percentage of
affected customers versus (a) time and (b) interruption duration. The error bars correspond to the standard deviations.

[91]-[93]. These metrics include dynamic evolution of resil-
ience but are based on pre-assumed functions of time.

Questions arising include, what factors should a resilience
metric include; and how to derive such a metric. In princi-
ple, a resilience measure should include pertinent factors
from weather to failures, recoveries, and impacts on custom-
ers [94]. As resilience quantifies system-wide performance,
a fundamental approach is to derive such a metric from
bottom-up based on modeling, including weather variables
as potential causes, then failures, recoveries, and impacts as
consequences [16], [17].

Grounded by the spatiotemporal model, resilience met-
rics in recent work are derived from the bottom-up to incor-
porate some of the factors: nonstationary failure—recovery
processes and impacts to customers [16], [17]. However,
weather and other exogenous variables are not included. A
metric R(t) is defined as

R(t) = —&E{C(nd)} 3)

where E{C(t;d)} is the expected cost/impact at time t [16], [17];
d > 0isathreshold on tolerable delays for recovery; Cy is a
normalization factor; and R(t) = 1 indicates the best resil-
ience and R(t) = 0 is nonresilience, so that 1 — R(t) is the
percentage cost or impact, evolving with occurrences of fail-
ures and recoveries.

The impact/cost has been derived using failure-recovery
processes developed through nonstationary queuing models
[16], [17]. Data from Hurricane Ike have been used to obtain
the value of the metric for an operational power distribu-
tion grid [16], [17]. The failure-recovery—cost processes
in Section III [9] can potentially be used to evaluate the
impact/cost on customers. Thus, resilience metrics depend
critically on modeling and data.

C. Challenges and Discussions

Despite the progress made to date, there are yet to be
performance measures that incorporate all three intrinsic
characteristics at the system level: spatiotemporal nonsta-
tionary failure-recovery; weather variables; and service pro-
viders, customers, and the community overall. Static metrics
such as STAIFI and STAIDI characterize average behaviors
of failures and recoveries but not the spatiotemporal evo-
lutions during a severe weather event. The dynamic met-
rics recently developed include failure—recovery processes
and impacts on customers, but not weather. The following
research questions relating to resilience metrics arise.

1) What resilience metrics can encompass cohesively the
three pertinent characteristics: exogenous weather vari-
ables, spatiotemporal nonstationary failures in the infra-
structure, and recoveries of services for customers?

2) What approaches can lead to such resilience metrics
at the system level, combining weather with failure—
recovery—impact processes?

3) What (additional) data are needed to evaluate resil-
ience of the infrastructure and services?

Answers to those questions are expected to result from
both development of system-wide metrics and modeling
that incorporates the variables from bottom-up. Extensive
data analytics are also needed to obtain values of newly
developed metrics and to compare them with the standards.

VI. CONCLUSION

Quantifying resilience of the energy infrastructure and ser-
vices under severe weather is pertinent but understudied, as
shown by the prior works. An immediate need is to understand
how resilient the energy infrastructure and services really are.
Such understanding will enable fundamental enhancement of
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resilience beyond responding to severe weather. In this con-
text, unique characteristics emerge involving weather, fail-
ure, and recovery processes in the infrastructure and services,
as well as impacts on communities. These characteristics are
interrelated and impact resilience together. Therefore, mod-
eling, data analytics, and resilience metrics need to be studied
cohesively and at a large scale.

Models, when developed for separate aspects of the
problem, are found incapable of characterizing these unique
properties jointly. Formulating the problem from bottom-up
through spatiotemporal random processes has the potential
to characterize the interactions of failure-recovery—impact
processes. While the modeling framework extends to custom-
ers as parts of communities, roles of service providers and
policy makers have been insufficiently studied. Relationships
between weather variables and failures have been studied in a
separated context. Models are yet to be developed to incorpo-
rate all pertinent factors.

Data analytics, although at an early stage, have started to
show promise in learning knowledge about resilience. Data
collected by DSOs, when sufficiently detailed, have shown
potential in identifying generic vulnerabilities of the infra-
structure and services. Large-scale and detailed data are par-
ticularly needed from multiple service territories. This pro-
vides an opportunity for collaboration among DSOs, policy
makers, and researchers. After all, resilience is for the ben-
efit of the entire community. As big data are prospering in
many fields of engineering, the resilience problem presents
a new application area.

Modeling lays a foundation for deriving resilience met-
rics. Widely used IEEE standards are mostly developed for
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