
ITERATIVE BEAM ALIGNMENT ALGORITHMS FOR TDD MIMO SYSTEMS

Dennis Ogbe, David J. Love

Purdue University
School of Electrical and Computer Engineering

West Lafayette, IN 47907, USA

Vasanthan Raghavan

Qualcomm, Inc.,
Bridgewater NJ 08807, USA

ABSTRACT

We propose two novel, low-complexity techniques for beam align-
ment in time division duplexing (TDD) multiple-input multiple-
output (MIMO) systems. The techniques are inspired by the power
method, an iterative algorithm to determine eigenvalues and eigen-
vectors through repeated matrix multiplications and improve upon
this simple idea by providing a better performance in the low-SNR
regime. The first technique sequentially constructs a least-squares
estimate of the channel matrix, which is then used to calculate the
optimal beamformer/combiner pair. The second technique aims to
mitigate the effect of additive noise by using a linear combination
of the previously tried beams to calculate the next beam in the itera-
tion. Simulation results provide insight on the performance of both
algorithms in the presence of noise and compare them with similar
techniques from the literature.

Index Terms— Beam alignment, Beamforming, channel reci-
procity, TDD, channel estimation, massive MIMO, power method.

1. INTRODUCTION

The two most promising multiple-input multiple-output (MIMO) ap-
plications, millimeter-wave (mmWave) MIMO [1, 2, 3, 4] and mas-
sive MIMO [5, 6, 7], rely on utilizing large beamforming gains to
achieve the capacity requirements set for future 5G networks [8, 9,
10]. These gains can only be realized if sufficient channel state infor-
mation (CSI) is available at the communication nodes. In traditional
MIMO systems, this information is acquired by the use of channel
sounding sequences and feedback [11, 12, 13, 14], which will be
impractical when considering the large number of antenna elements
used for mmWave and massive MIMO systems.

A common way way to avoid this problem is to exploit the re-
ciprocal nature of wireless channels using time division duplexing
(TDD) systems. Channel reciprocity reduces the overall resources
spent on channel sounding since CSI about the channel in one direc-
tion can be used to adapt to the channel in the reverse direction. To
further reduce the amount of CSI to acquire, future systems will be
forced to sound different beams during a beam alignment phase [15],
eliminating the need for full CSI at the receiver and transmitter.

Many recent works such as [16, 17, 18, 19, 20, 21] have pursued
a greedy TDD-based approach to obtaining good beamformers. The
common theme that ties these works is the fact that repeated conju-
gation, normalization, and retransmission of an arbitrarily initialized
beamforming vector through a reciprocal MIMO channel (with no
noise) is akin to performing the power method [22] on the chan-
nel matrix. However, simple implementations like the ones pro-
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posed in [16, 17, 21] are likely to perform poorly in the low-SNR
regime [19]. Further work on the problem of finding good beams
using the power method has been done in [19] and [23]. These tech-
niques offer improvements on the robustness and speed of conver-
gence of the basic power method at the cost of additional complex-
ity. More recent approaches to the problem employ Krylov subspace
methods in the context of hybrid mmWave systems [24].

Building on [19] and [23], this paper presents two novel tech-
niques for the MIMO beam alignment problem in TDD systems with
reciprocal channels. Both techniques improve on the performance of
the simple power method-based algorithms, especially in low-SNR
environments which are typical of practical mmWave systems. The
first technique is based on the fact that a least-squares estimate of the
channel matrix can be constructed sequentially using the previously
used sounding beams. The channel estimates at each iteration can
then be used to compute the next sounding beamformer/combiner
pair, which is exchanged through a feedback link. The second tech-
nique does not require a feedback link and improves on the low-SNR
performance of the basic power method by computing a normalized
running sum of the previous beamformers, thus gaining greater ro-
bustness against noise through averaging. Both approaches provide
useful low-complexity solutions for realizing the large beamforming
gains in mmWave systems.

2. SYSTEM MODEL

We consider the multi-antenna communication system shown in
Figure 1 consisting of two transceivers (communication nodes),
with Mt antennas at node 1 and Mr antennas at node 2. The two
transceivers communicate over a channel H ∈ CMr×Mt , which we
assume to be reciprocal, i.e., the channel matrix from node 1 to node
2 (uplink) is the transpose of the channel matrix from node 2 to node
1 (downlink).

Transmission on the uplink channel are precoded at node 1 by a
unit-norm transmit beamforming vector f =

[
f1 f2 . . . fMt

]T
∈ CMt , sent over the channel, and combined at node 2 with a unit-
norm receive combiner z =

[
z1 z2 . . . zMr

]T ∈ CMr . A
data symbol so[`] sent on the uplink channel thus results in the
received symbol

ro[`] =
√
ρo z∗Hfso[`] + no[`], (1)

where ρo is the uplink signal-to-noise ratio (SNR), no[`] ∼ CN (0, 1)
is a complex additive white Gaussian noise sample, and (·)∗ denotes
complex transposition. Similarly, for a data symbol se[`] sent on the
downlink channel, node 1 obtains the received symbol

re[`] =
√
ρe fTHTzse[`] + ne[`], (2)

where · denotes complex conjugation.
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Fig. 1. Communication node 1 transmits data over the uplink chan-
nel H with node 2, while node 2 transmits data over the downlink
channel HT. The nodes precode and combine their transmitted and
received signals using the beamforming vectors f and z

The terms |z∗Hf |2 = |fTHTz|2 represent the effective channel
gain, which we want to maximize in order to achieve reliable com-
munications and the highest possible data rate in both directions. We
denote the beams that achieve this as fopt and zopt. It is well-known
from [25, 26] that the effective channel gain is maximized when
f and z are the right and left singular vectors of H corresponding
to the largest singular value of H and that its maximum achievable
value is ‖H‖22 = λmax (H

∗H). Furthermore, we assume that neither
transceiver has knowledge of the channel, rendering it impossible for
either node to compute the estimates of fopt and zopt using the singu-
lar value decomposition (SVD). Instead, as mentioned earlier, these
estimates are obtained iteratively during a beam alignment phase.

In the proposed techniques, both nodes cooperatively determine
fopt and zopt during the beam alignment phase by exploiting the
channel’s reciprocity property. To model this, our system operates
on a ping-pong observation framework, which divides each discrete
channel use into two time slots [15]. During slot 1 (ping), node 1
transmits training data to node 2 on the uplink channel H. During
slot 2 (pong), node 2 transmits training data back to node 1 on the
downlink channel HT. Since the training data is irrelevant to the
beamforming weights, we restrict our attention to the transmit and
receive beam during the k-th ping-pong period, which, for slot 1, is
given as

yo[k] =
√
ρo Hf [k] + no[k]. (3)

In (3), the term f [k] denotes an estimate of fopt at training phase
time-index k and no[k] ∼ CN (0, I) is a complex Gaussian noise
vector of sizeMr . Due to the reciprocity of the uplink and downlink
channels, the observation at slot 2 is given as

ye[k] =
√
ρe HTz[k] + ne[k]. (4)

Similar to (3), ρe denotes the downlink training SNR, z[k] de-
notes the estimate of zopt at training phase time-index k and
ne[k] ∼ CN (0, I) is a complex Gaussian noise vector of size
Mt.

3. SEQUENTIAL LEAST SQUARES (SLS) POWER
METHOD

In the first scheme, each transceiver sequentially constructs a least-
squares estimate of H before each ping-pong time slot, which is
then used to compute the next state of its beamforming vector. This
computation of the beamforming vector follows directly from the

SVD theorem [22], which states that we can obtain the left singular
vector of a matrix A = UΣV∗ by multiplying A with its right
singular vector and vice versa.

Since the channel matrix is unknown at either side of the com-
munication link, the transceivers construct an estimate of it before
each time slot. These estimates are constructed using all of the pre-
vious estimates of fopt and zopt. In particular, using all beamforming
vectors upto time slot k, we can write (3) and (4) in matrix form as

Yo,k =
√
ρo HFk + No,k (5)

and

Ye,k =
√
ρe HTZk + Ne,k. (6)

In eqns. (5) and (6), Fk =
[
f [0] f [1] . . . f [k]

]
and Zk =[

z[0] z[1] . . . z[k]
]

contain all of the estimates of fopt and
zopt up to ping-pong period k. Furthermore, note that the matri-
ces Yo,k =

[
yo[0] yo[1] . . . yo[k]

]
and similarly Ye,k =[

ye[0] ye[1] . . . ye[k]
]

contain all of the observed signal
vectors, respectively.

Based on this information, transceiver 1 constructs an estimate
of the channel by solving the least-squares problem

Ĥe,k = argmin
H̃∈CMr×Mt

(∥∥∥YT
e,k−1 −

√
ρe Z∗k−1H̃

∥∥∥2
F

)
. (7)

Similarly, transceiver 2 constructs an estimate of the channel by solv-
ing

Ĥo,k = argmin
H̃∈CMr×Mt

(∥∥∥Yo,k −
√
ρo H̃Fk

∥∥∥2
F

)
. (8)

Note that there exists an asymmetry in the time-index between (7)
and (8). The solutions to these least-squares problems (Ĥe,k and
Ĥo,k) can be obtained using the Moore-Penrose pseudoinverse,
which we call the batch approach. Clearly, the estimation error is
monotonically decreasing in the SNRs, ρo and ρe. Once Ĥe,k has
been estimated, applying the SVD theorem, we note that the nodes
can compute estimates of their optimal beamformers fopt and zopt as

f [k] =
Ĥ∗e,kz[k − 1]∥∥∥Ĥ∗e,kz[k − 1]

∥∥∥
2

, z[k] =
Ĥo,kf [k]∥∥∥Ĥo,kf [k]

∥∥∥
2

. (9)

The batch least-squares estimators are traditionally obtained by com-
puting the Moore-Penrose pseudoinverse using the SVD. For large
k, this can become computationally intensive. Our method therefore
uses a sequential algorithm [27] that updates each previous channel
estimate based on the current received signal vector. This approach
minimizes computational burden as well as eliminates the need to
store all of the previous received signal vectors and beamforming
vectors.

Since (9) uses the conjugate transpose of the channel to compute
a new beamformer, we can use an algorithm that directly computes
an estimate for the conjugate transpose of the channel, Ĥ∗e,k. This
choice is made here simply to make the derivation of the sequential
formulas more consistent between the two nodes. In this setup, the
sequential solution to of (8) (the channel estimator update) is given
as

Ĥ∗e,k = Ĥ∗e,k−1 +

(
ye[k − 1]
√
ρe

− Ĥ∗e,k−1z[k − 1]

)
Ke,k (10)
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where

Ke,k =
z∗[k − 1]Ce,k−1

1 + z∗[k − 1]Ce,k−1z[k − 1]
(11)

and the covariance matrix update is given as

Ce,k = Ce,k−1 (I− z[k − 1]Ke,k) . (12)

After obtaining Ĥ∗e,k, node 1 uses (9) to obtain the k-th estimate for
fopt. The value of this beamformer then needs to be fed back to node
2, where it will be used to obtain the next estimate for zopt. At node
2, the same sequential algorithm is used to solve the least-squares
problem, and the update expresion for Ĥo,k becomes

Ĥo,k = Ĥo,k−1 +

(
yo[k]√
ρo
− Ĥo,k−1f [k]

)
Ko,k (13)

where

Ko,k =
f∗[k]Co,k−1

1 + f∗[k]Co,k−1f [k]
(14)

with the covariance matrix update

Co,k = Co,k−1 (I− f [k]Ko,k) . (15)

Node 2 then obtains z[k] from (9), which in turn is fed back to node
1. We note that the feedback requirements, which are on the order
of the number of antenna elements in the system, are small given
the multi-Gbps rates expected from mmWave and massive MIMO
systems and thus do not reduce the practicality of this approach, es-
pecially given its performance in low-SNR environments.

We observe that these sequential least-squares estimators are
only equivalent to their batch estimators when the beamformer ma-
trices Fk and Zk are of full column rank. That is, for k < rank[H],
both nodes would need to compute their channel estimates using the
batch approach. Hence, we propose to initialize f [−1] and z[−1]
with complex random unit-norm vectors. We then use the batch
estimators for k < rank[H] and switch to the sequential estima-
tors after the iteration k = rank[H]. As the channel estimates con-
verge to the true channel with the number of iterations, the steps out-
lined in (9) essentially perform a two-iteration power method with-
out noise, which converges at a rate of (σ1/σ2)

2 [22].
For large channel matrices, it can be computationally difficult to

use the batch estimator for the first Mt iterations. In this case, it can
be shown analytically and it has been verified in Section 5 that the
SLS power method delivers sufficient performance when using the
sequential estimators starting with the first iteration. In this setup, the
nodes initialize f [−1] and z[−1] with complex random unit-norm
vectors and transmit these vectors across H according to (3) and (4)
and compute their initial rank-1 channel estimates using the Moore-
Penrose pseudoinverse, which reduces to a conjugate transposition,
since Fk and Zk both have only one column when k = 0. To ensure
convergence of the channel estimates to the true channels, the nodes
then initialize Co,−1 and Ce,−1 to αI, where α is a large real num-
ber [28] and use the sequential formulas (10)-(15) to estimate their
beamformers.

4. SUMMED POWER METHOD

In the second scheme, both transceivers calculate their next beam-
formers based on a normalized running sum of their previous ob-
servations. The transceivers do not need a feedback link, as neither

transceiver needs to have knowledge of the other transceiver’s beam-
former. For notational convenience, we consider a square channel
matrix in this section. Without loss in generality, we can transform
an Mt ×Mr channel matrix to an M ×M channel matrix by ap-
pending zero columns/rows until we arrive at a square matrix. Then,
as described in Section 2, both nodes exchange training symbols ac-
cording to (3) and (4). However, instead of simply conjugating and
retransmitting their received vector as in the simple power method,
both nodes obtain their next beamformers from a running sum of all
of their previous received vectors. During the k-th ping-pong period,
node 1 computes its next beamformer as

f [k] = αk−1 [ye[k − 1] + ye[k − 2] + · · ·+ ye[1]]

= αk−1se[k − 1]. (16)

Similarly, node 2 computes its next beamformer as

z[k] = βk−1 [yo[k − 1] + yo[k − 2] + · · ·+ yo[1]]

= βk−1so[k − 1]. (17)

In the above equations, se[k] and so[k] are the state vectors at each
node which hold the running sum of the received vectors. The terms
αk = 1/ ‖se[k]‖2 and βk = 1/ ‖so[k]‖2 are normalization terms to
impose a unit-norm power constraint.

The main idea behind this technique is to average out noisy es-
timates of the singular vector estimates f [k] and z[k] during each
ping-pong period. Convergence properties are notoriously difficult
to prove when considering general channel matrices, but it is possi-
ble for some special cases. We will thus consider diagonal channel
matrices with ordered elements on the diagonal for the remainder of
this paper. This can equivalently be thought of as performing all of
the signal processing within the bases corresponding to the left and
right singular vectors of the true channel. As we will show in Sec-
tion 5, our simulation results indicate that the algorithm converges
for general channel matrices as well. With the above assumptions,
we can then write the 2M -dimensional state vector s[k] for both
nodes as

s[k] =

[
se[k]
so[k]

]
=

[
I

√
ρe βk−1H

∗
√
ρo αk−1H I

]
s[k − 1] + n[k]

=

k−1∏
i=0

[
I

√
ρe βk−1−iH

∗
√
ρo αk−1−iH I

]
s[0]

+

k∑
`=1

k−1∏
j=`

[
I

√
ρe βk−1+`−jH

∗
√
ρo αk−1+`−jH I

]
n[`]

(18)

Since the optimal beamformers in this setup are scalar multiples
of the first column of the M ×M identity matrix, it is now our ob-
jective to show that the combined state vector s[k] approaches the
vector sopt =

[
α 0 · · · 0 β 0 · · · 0

]T for some α and
β as the number of iterations k grows large. The optimal beamform-
ers are defined only up to a point on the Grassmannian manifold,
which explains the impreciseness in the factors α and β. It is shown
in [28] that for the given assumptions, the normalizing factors αk

and βk are approximately equal. Using this fact, we can observe that
the state transition matrix from (18) is diagonalized by the unitary
matrix

Ũ =
1√
2

[
I I
I −I

]
. (19)
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It can further be shown that the state-space model from (18) can then
be rewritten as

s[k] = Ũ

[∏k−1
i=0

(
I+

√
ραiH

)
0

0
∏k−1

i=0

(
I−√

ραiH
)] Ũ∗s[0]

+ Ũ

k∑
�=1

[∏k−1
j=�

(
I+

√
ραjH

)
0

0
∏k−1

j=�

(
I−√

ραjH
)] Ũ∗n[�],

(20)

where we have made the further simplification of assuming ρo =
ρe = ρ to simplify the analysis. Using this observation, the results
of Theorem 1 can be obtained.

Theorem 1. s[k] → sopt as k increases.

For the full proof, see Section IV of [28]. The outline of the

proof is as follows. We focus on the diagonal matrices Λ̃k−1,�,
obtained by diagonalizing the state-space model of (20). They are
given as

Λ̃k−1,� =

[∏k−1
i=�

(
I+

√
ραiH

)
0

0
∏k−1

i=�

(
I−√

ραiH
)] .

(21)

It can then be shown that the diagonal entries of Λ̃k−1,� are domi-
nated by first and the (M − 1)-th entry. The repeated multiplication
and normalization steps then ensure that the first and the (M −1)-th
entry of s[k] dominate over the others, converging to a vector of the

form
[
α 0 · · · 0 β 0 · · · 0

]T
for some α and β.

5. SIMULATION RESULTS

Figures 2 and 3 compare the performance of our proposed algo-
rithms to the techniques presented in [16] and [19] using Monte-
Carlo methods. Since we are only interested in the dominant sin-
gular vectors, we used the one-dimensional versions of the algo-
rithms. The value of the design parameter μ for the BSM algo-
rithm from [19] was 1.5k in each of the simulations. The SLS power
method curve uses the sequential estimator starting at the first iter-
ation after properly initializing the covariance matrices Co,−1 and
Ce,−1 as outlined in Section 3. The figures show the results for up-
link and downlink SNRs of 0 dB (solid lines) and 20 dB (dashed
lines). We consider two performance metrics: i) instantaneous ef-
fective channel gain |z∗[k]Hf [k]|2 at time index k, and ii) the angle
between the true singular vector fopt and its estimate f [k], given as
φk = cos−1

(|f∗optf [k]|).
We also note that in order to average results over different chan-

nel realizations, we normalize the values of the effective channel
gain by the ideal channel gain with full CSI at the receiver and trans-
mitter, which is equal to the matrix 2-norm of the channel. Fast
convergence of the algorithm then means fast convergence of the
normalized instantaneous effective channel gain to 1. In all cases,
the SLS power method yields the fastest and most accurate results.
At high SNR values, the BIMA algorithm from [16] performs on
par with the SLS method and is the better choice due to its low
computational complexity. The situation is different at a low SNR.
Here, the BIMA is clearly inferior to the other algorithms, while the
SLS method still delivers good performance. The strength of the
summed power method is evident in the low-SNR curves, where it
produces desirable results despite very low computational overhead
with respect to the BIMA algorithm. The results indicate that the

50 100 150 200

Iteration index

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

|z
∗ H

f
|2
/
‖H

‖2 2

Summed power meth.
SLS power meth.
BIMA [16]

Gazor/AlSuhaili [19]

Fig. 2. Average values of the effective channel gain |z∗Hf |2, nor-
malized by the ideal CSI gain ‖H‖22 for a 32 × 4 MIMO system.
Solid lines: 0 dB SNR. Dashed lines: 20 dB SNR. Averaged over
60000 runs.

50 100 150 200

Iteration index

10
−4

10
−3

10
−2

10
−1

10
0

A
v
er

ag
e
|φ

k
|2

Summed power meth.
SLS power meth.
BIMA [16]

Gazor/AlSuhaili [19]

Fig. 3. Average of the square of the difference angle φ between fopt
and its estimate f [k] for a 32 × 4 MIMO system. Solid lines: 0 dB
SNR. Dashed lines: 20 dB SNR. Averaged over 60000 runs.

SLS power method should be the preferred choice for systems with-
out constraints in computational complexity. If the computational
overhead of the SLS power method is too high, a combination of
the BIMA algorithm and the summed power method seems to be a
good choice. In this setup, the BIMA algorithm would be used in
the high SNR regime, while the summed power method would be
used in low SNRs. The combination of both techniques does not in-
crease the complexity of the implementation, since both algorithms
are very similar.

6. CONCLUSION

We studied the problem of estimating the dominant singular vectors
of a MIMO channel matrix in a low-SNR enviroment. We presented
two novel approaches to address this problem, both delivering im-
proved performance compared to prior work. We presented the con-
vergence behavior of both approaches through analysis and numeri-
cal studies.
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