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Abstract—In this paper, a multi-scale approach to spectrum
sensing in cognitive cellular networks is proposed. In order to
overcome the huge cost incurred in the acquisition of full network
state information, a hierarchical scheme is proposed, based on
which local state estimates are aggregated up the hierarchy to
obtain aggregate state information at multiple scales, which are
then sent back to each cell for local decision making. Thus, each
cell obtains fine-grained estimates of the channel occupancies
of nearby cells, but coarse-grained estimates of those of distant
cells. The performance of the aggregation scheme is studied in
terms of the trade-off between the throughput achievable by
secondary users and the interference generated by the activity of
these secondary users to primary users. In order to account for
the irregular structure of interference patterns arising from path
loss, shadowing, and blockages, which are especially relevant in
millimeter wave networks, a greedy algorithm is proposed to find
a multi-scale aggregation tree to optimize the performance. It is
shown numerically that this tailored hierarchy outperforms a
regular tree construction by 60%.

I. INTRODUCTION

The recent proliferation of mobile devices has been expo-

nential in number as well as heterogeneity [1]. This tremen-

dous increase in demand of wireless services poses severe

challenges due to the finite bandwidth of current systems, and

calls for new tools for the design and optimization of agile

wireless networks [2]. Cognitive radio [3] has the potential

to improve spectral efficiency, by enabling smart terminals

(secondary users, SUs) to exploit resource gaps left by legacy,

primary users (PUs) [4].

In this paper, we consider a cognitive cellular network,

which comprises a set of PUs, which are licensed to access

the spectrum, and a set of SUs, which may access opportunis-

tically any unoccupied spectrum. The network is arranged into

cells. In each cell, PUs join and leave the channel at random

times, thus the state of each cell is described by a first-order

binary Markov process. In order to utilize the unoccupied

spectrum, the SUs require accurate estimates of spectrum

occupancies throughout the cellular network. In principle,

the channel occupancies can be sensed locally in each cell

and collected at a fusion center; the global network state

information collected at the fusion center is then broadcasted

to each cell for local decision making. In practice, however,
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such centralized estimation can be extremely costly in terms

of transmit energy and time.

Due to path loss, shadowing, and blockage, SUs accessing

the channel in one cell cause significant interference to nearby

PUs, but negligible interference to distant PUs. Therefore, each

SU needs precise information about the occupancies of nearby

cells, but only coarse information about the occupancies of

faraway cells. Given this intuition, we construct a cellular

hierarchy, which is used to aggregate channel measurements

over the network at multiple scales. Thus, SUs operating in a

given cell have precise knowledge about the local state, ag-

gregate knowledge of the states of the cells nearby, aggregate

and coarser knowledge of the states of the cells farther away,

and so on at multiple scales, reflecting the distance dependent

nature of wireless interference.

This paper provides important extensions over [5], wherein

we assumed a regular tree for hierarchical spectrum sensing by

assuming that interference is regular and isotropic (matched

to the hierarchy). Herein, we examine the irregular effects

of shadowing and blockage, which are especially severe at

millimeter wave frequencies [6]–[8]. As in [5], we tradeoff SU

network throughput versus the interference generated by the

SUs to the PUs. To overcome combinatorial complexity, we

develop a greedy algorithm to determine the best hierarchical

aggregation tree matched to the irregular interference patterns

of millimeter wave communications. Optimality is defined

in terms of the trade-off between SU network throughput

and interference to PUs. As expected, this tailored hierarchy

outperforms the regular tree construction in [5] by 60%. Our

methods also apply to sub-6GHz wireless networks and are

robust to issues of directionality of interferers and primary

receivers.

Hierarchical estimation was proposed in [9] in the context

of averaging consensus [10], which is a prototype for dis-

tributed, linear estimation schemes. Consensus-based schemes

for spectrum estimation have also been proposed in [11], [12].

In contrast, we focus on a dynamic setting. A framework for

joint spectrum sensing and scheduling in wireless networks has

been proposed in [13], for the case of a single cell. Instead,

we consider a network composed of multiple cells.

To summarize, the contributions of this paper are as follows.

1) We propose a hierarchical framework for aggregation of

channel state information over a wireless network composed

of multiple cells, with a generic interference pattern among

cells. We study the performance of the aggregation scheme in

terms of the trade-off between the throughput of SUs and the

interference generated by the activity of the SUs to the PUs.

2) We develop a closed form expression for the belief of the

spectrum occupancy vector that shows that this belief is sta-

tistically independent across subsets of cells at different levels

of the hierarchy, and uniform within each subset (Theorem 1).
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Fig. 1: System model.

This results greatly facilitates the computation of the expected

average long-term reward (Lemma 1); and 3) we address the

optimal design of the hierarchical aggregation tree so as to

optimize performance, for a given interference pattern; due to

the combinatorial complexity of this problem, we propose a

greedy algorithm based on agglomerative clustering [14, Ch.

14] (Algorithm 1).

This paper is organized as follows. In Sec. II, we present

the system model. In Sec. III, we present the performance

analysis, for a given tree and interference pattern. In Sec. IV,

we address the tree design. In Sec. V, we present numerical

results and, in Sec. VI, we conclude this paper.

II. SYSTEM MODEL

We consider a cognitive network, depicted in Fig. 1, com-

posed of a primary cellular network with NC cells, and an op-

portunistic network of SUs. Cells are indexed as 1, 2, . . . , NC .

We denote the set of cells as C ≡ {1, 2, . . . , NC}. The SUs

opportunistically access the spectrum so as to maximize their

own throughput, under a constraint on the interference caused

to the cellular network.

Let bi,t ∈ {0, 1} be the PU spectrum occupancy of cell i ∈ C
in slot t. That is, bi,t = 1 if the channel is occupied by PUs

in cell i at time t, and bi,t = 0 if it is idle. We suppose that

{bi,t, t ≥ 0, i ∈ C} are i.i.d. across cells, and evolve according

to a two-state Markov chain, as a result of PUs joining and

leaving the network at random times. We let

p � P(bi,t+1 = 1|bi,t = 0), q � P(bi,t+1 = 0|bi,t = 1), (1)

be the transition probability of the Markov chain from "0" to

"1" and from "1" to "0", respectively. Therefore, the steady-

state probability that bi,t is occupied is given by

πB �
p

p+ q
. (2)

We denote the state of the network in slot t as bt =
(b1,t, b2,t, . . . , bNC ,t).

The activity of the SUs is represented by the SU access

decision ai,t ∈ {0, 1}, in cell i, slot t, where ai,t = 1 if

the SUs operating in cell i access the channel at time t, and

ai,t = 0 otherwise. We denote the network-wide SU access

decision as at = (a1,t, a2,t, . . . , aNC ,t) in slot t. The activity

of the SUs generate interference to the cellular network. We

denote the interference strength between cells i and j as φi,j ≥
0. We assume that interference is symmetric, so that φi,j =

φj,i, ∀i, j ∈ C. Note that φi,i is the strength of the interference

caused by the SUs in cell i to cell i. We let Φ be the symmetric

interference matrix, with components [Φ]i,j = φi,j , ∀i, j ∈ C.

Given the network state bt ∈ {0, 1}NC and the SU access

decision ai,t ∈ {0, 1}, we define the local reward for the SUs

in cell i as

ri(ai,t,bt)=ai,t

⎡

⎣ρI(1−bi,t) + ρBbi,t − λ

NC
∑

j=1

φi,jbj,t

⎤

⎦ . (3)

The term ai,t(1 − bi,t) in (3) equals one if and only if the

SUs in cell i access the channel when cell i is idle; ρI ≥ 0
is the instantaneous expected SU throughput accrued in this

case. The term ai,tbi,t in (3) equals one if and only if the

SUs in cell i access the channel when cell i is occupied; ρB
is the instantaneous expected SU throughput accrued in this

case, with 0 ≤ ρB ≤ ρI . Finally, the term

ai,t

NC
∑

j=1

φi,jbj,t

represents the overall interference generated by the SUs in cell

i to the rest of the network, cell i included. The term λ > 0 is

a Lagrangian multiplier which captures the trade-off between

the reward for the SU system and the interference generated

to the PUs.

The network reward is defined as the aggregate reward over

the entire network, as a function of the SU access decision at
and network state bt,

R(at,bt) =
∑

i∈C

ri(ai,t,bt). (4)

The SU access decision in cell i is decided based on partial

network state information, denoted as πi,t at time t, where

πi,t(b) is the belief that the network state takes value bt in

slot t, available to SUs in cell i. Given πi,t, the SUs in cell

i choose ai,t ∈ {0, 1} so as to maximize the expected reward

ri(ai,t, πi,t), given by

ri(ai,t, πi,t) �
∑

b∈{0,1}NC

πi,t(b)ri(ai,t,b). (5)

Thus,

a∗i,t = arg max
a∈{0,1}

ri(a, πi,t), (6)

yielding the optimal expected local reward

r∗i (πi,t) = max{ri(0, πi,t), ri(1, πi,t)} = max{0, ri(1, πi,t)},

where ri(0, πi,t) = 0 from (3).

Given the belief πt = (π1,t, π2,t, . . . , πNC ,t) across the

network, under the optimal SU access decisions a∗t given by

(6), the optimal network reward is thus given by

R∗(πt) =
∑

i∈C

r∗i (πi,t). (7)

Using the fact that ri(a,b) ≤ max{ri(0,b), ri(1,b)}, ∀i ∈
C, ∀a ∈ {0, 1}, ∀b ∈ {0, 1}NC , we obtain the inequality

R∗(πt) ≤
∑

b∈{0,1}NC

πi,t(b)
∑

i∈C

max{0, ri(1,b)}, (8)
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i.e., the expected network reward under partial network state

information is upper bounded by the expected network reward

obtained when full network state information is provided to

the SUs in each cell (perfect knowledge of bt). Thus, the SUs

should, possibly, obtain full network state information in order

to achieve the best performance.

The belief πi,t is computed based on spectrum measure-

ments performed over the network. Ideally, in order to achieve

global network state information and maximize the reward (see

(8)), the SUs in cell i should obtain the local spectrum state

bi,t, as well as the spectrum state from the rest of the network.

To this end, the SUs in cell j �=i should report the local spec-

trum state bj,t to the SUs in cell i via information exchange,

potentially over multiple hops, for transmitters/receivers far

away from each other. Since this needs to be done over the

entire network (i.e., for every pair (i, j) ∈ C2), the associated

cost of information exchange may be huge, especially in

large networks composed of a large number of small cells.

In order to reduce the cost of acquisition of network state

information, in this paper we propose a multi-scale approach

to spectrum sensing. To this end, we structure the cellular grid

in a hierarchical structure, defined by a tree of depth D ≥ 1.

A. Tree construction

Herein, we describe the tree construction. At level 0, we

have the leaves, represented by the cells C. We let C
(i)
0 ≡

{i} for i ∈ C. At level 1, let C
(k)
1 , k = 1, 2, . . . , n1 be a

partition of the cells into n1 subsets, where 1 ≤ n1 ≤ |C|.

We associate a cluster head to each subset C
(k)
1 ; the set of n1

level-1 cluster-heads is denoted as H1. Hence, C
(k)
1 is the set

of cells associated to the level-1 cluster head k ∈ H1.

Recursively, at level L, let HL be the set of nodes defining

the level L-cluster heads, with L ≥ 1. If |HL| = 1, then we

have defined a tree with depth D = L. Otherwise, we define a

partition of HL into nL+1 subsets H
(k)
L , k = 1, 2, . . . , nL+1,

where 1 ≤ nL+1 ≤ |HL|, and we associate to each subset a

level-(L+1) cluster head; the set of nL+1 level-(L+1) cluster-

heads is denoted as HL+1. Let C
(k)
L+1, k = 1, 2, . . . , nL+1 be

the set of cells associated to level-(L + 1) cluster head k ∈
HL+1. This is obtained recursively as

C
(k)
L+1 =

⋃

m∈H
(k)
L

C
(m)
L . (9)

Let PL(i) ∈ HL be the level L parent of cell i, i.e., P0(i) =

i, and PL(i) = k for L ≥ 1 if and only if i ∈ C
(k)
L , for some

k ∈ HL. We make the following definition.

Definition 1. We define the hierarchical distance between

cells i ∈ C and j ∈ C as

Λ(i, j)=min {L ≥ 0 : PL(i) = PL(j)} .

In other words, Λ(i, j) is the lowest level L such that cells

i and j belong to the same cluster at level L. It follows that

Λ(i, i) = 0 and Λ(i, j) = Λ(j, i), i.e., the hierarchical distance

between cell i and itself is 0, and it is symmetric.

We let C
(i)
Λ (L) be the set of cells at hierarchical distance L

from cell i. That is, C
(i)
Λ (0) ≡ {i}, and, for L > 0,

C
(i)
Λ (L) ≡ C

(PL(i))
L \ C

(PL−1(i))
L−1 . (10)

In fact, by the tree construction, C
(PL(i))
L contains all cells with

hierarchical distance (from cell i) less (or equal) than L. Thus,

C
(i)
Λ (L) is obtained by removing from C

(PL(i))
L all cells with

hierarchical distance less (or equal) than L− 1, C
(PL−1(i))
L−1 .

B. Hierarchical information exchange over the tree

In order to collect network state information at multiple

scales, the SUs exchange local information over the tree. In

particular, we propose a scheme in which the SUs carry out a

hierarchical fusion of local estimates. This fusion is patterned

after hierarchical averaging, a technique for scalar average

consensus in wireless networks developed in [9].

At the beginning of slot t, at the cell level (level-0), the

local SUs perform spectrum sensing to estimate the local state.

Thus, the SUs in cell i estimate the local state bi,t as b̂
(i)
i,t ∈

[0, 1], representing the belief that the local state takes the value

bi,t = 1, as seen by the SUs operating in cell i (superscript (i)).
For simplicity, in this paper we assume that local spectrum

sensing is done with no errors, so that

b̂
(i)
i,t = bi,t, ∀i ∈ C. (11)

Next, these observations are fused up the hierarchy. The

level 1 cluster head m ∈ H1 receives the spectrum measure-

ments from its cluster C
(m)
1 , and fuses them as

S
(1)
m,t =

∑

j∈C
(m)
1

bj,t, ∀m ∈ H1. (12)

This process continues up the hierarchy: the level L cluster

head m ∈ HL receives the aggregate spectrum measurements

S
(L−1)
k,t from the level-(L − 1) cluster heads k ∈ H

(m)
L−1

connected to it, and fuses them as

S
(L)
m,t =

∑

k∈H
(m)
L−1

S
(L−1)
k,t =

∑

j∈C
(m)
L

bj,t, ∀m ∈ HL. (13)

Eventually, the aggregate spectrum measurements are fused

at the unique root of the tree (level D) as

S
(D)
1,t =

∑

k∈H
(1)
D−1

S
(D−1)
k,t =

∑

j∈C

bj,t, (14)

where we have used the fact that C
(1)
D ≡ C.

Upon reaching level D, the appropriate aggregate spectrum

measurements are propagated down to the individual cells i ∈
C, following the tree. Thus, at the beginning of slot t, the SUs

operating in cell i receive
⎧

⎪

⎪

⎨

⎪

⎪

⎩

S
(0)
P0(i),t

=
∑

j∈C
(P0(i))
0

bj,t = bi,t,

S
(L)
PL(i),t =

∑

j∈C
(PL(i))

L

bj,t, 1 ≤ L < D,

S
(D)
1,t =

∑

j∈C bj,t,

where we remind that PL(i) is the level-L parent of cell i,

and C
(PL(i))
L is the set of cells associated to PL(i). That is,

the SUs operating in cell i receive from the level-L parent the

aggregate spectrum measurements over C
(PL(i))
L . From this set

of measurements, one can compute
{

σ
(0)
i,t � bi,t,

σ
(L)
i,t � S

(L)
PL(i),t − S

(L−1)
PL−1(i),t

, 1 ≤ L ≤ D.
(15)
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Note that σ
(L)
i,t is the aggregate spectrum measurement of the

cells at hierarchical distance L from cell i,

σ
(L)
i,t �

∑

j∈C
(i)
Λ (L)

bj,t, ∀ 0 ≤ L ≤ D. (16)

Thus, the SUs in cell i receive the set of aggregate spectrum

measurements at multiple scales corresponding to different

hierarchical distances. Importantly, they know only the ag-

gregate spectrum measurements, but not the specific values of

bj,t, ∀j �= i. These aggregate spectrum measurements are used

to update the belief πi,t in the next section.

III. ANALYSIS

The SUs in cell i update the belief πi,t based

on past and present spectrum measurements σi,τ =

(σ
(0)
i,τ , σ

(1)
i,τ , . . . , σ

(D)
i,τ ), ∀0 ≤ τ ≤ t. The form of πi,t is

provided by the following Theorem.

Theorem 1. Given σi,t = (o0, o1, . . . , oD),

πi,t(b) =
D
∏

l=0

P(bj,t = bj , ∀j ∈ C
(i)
Λ (L)|σ

(L)
i,t = oL), (17)

independent of σi,τ , ∀τ < t, where

P(bj,t = bj , ∀j ∈ C
(i)
Λ (L)|σ

(L)
i,t = oL) (18)

= χ

⎛

⎜

⎝

∑

j∈C
(i)
Λ (L)

bj = oL

⎞

⎟

⎠

oL!
(

|C
(i)
Λ (L)| − oL

)

!

|C
(i)
Λ (L)|!

,

where χ(·) is the indicator function.

Proof. Due to space constraints, the proof is in [15].

From Equation (17), it follows that the belief πi,t is sta-

tistically independent across the subsets of cells at different

hierarchical distances from cell i; this result follows from the

fact that {bi,t, t ≥ 0, i ∈ C} are i.i.d. across cells. Additionally,

since
∑

j∈C
(i)
Λ (L)

bj,t = oL (as a result of state aggregation

at hierarchical distance L) and bj,t ∈ {0, 1}, there are
(

|C
(i)
Λ (L)|
oL

)

possible combinations of {bj,t, j ∈ C
(i)
Λ (L)};

equation (18) states that these combinations are uniformly

distributed, as a result of the i.i.d. assumption.

Importantly, πi,t is independent of past measurements but

solely depends on the current one σi,t. In fact, spectrum

occupancies bj,t are identically distributed across cells.

We can use Theorem 1 to compute the expected reward in

cell i, given by (5). Using (3), we obtain

ri(ai,t, πi,t) = ρIai,t(1− P(bi,t = 1|πi,t))

+ ρBai,tP(bi,t = 1|πi,t)− λai,t

NC
∑

j=1

φi,jP(bj,t = 1|πi,t)

= ρIai,t(1− P(bi,t = 1|πi,t)) + ρBai,tP(bi,t = 1|πi,t)

− λai,t

D
∑

L=0

∑

j∈C
(i)
Λ (L)

φi,jP(bj,t = 1|πi,t). (19)

In the last step above, we have partitioned the set of cells C
into the subsets corresponding to hierarchical distances L =

0, 1, . . . , D from cell i. Now, using (18) in Theorem 1, we

obtain, for all 0 ≤ L ≤ D, for all ∀j ∈ C
(i)
Λ (L),

P(bj,t = 1|πi,t) = 0, if oL = 0, (20)

P(bj,t = 1|πi,t) =
oL!

(

|C
(i)
Λ (L)| − oL

)

!

|C
(i)
Λ (L)|!

(

|C
(i)
Λ (L)| − 1
oL − 1

)

,

if oL > 0, (21)

since there are

(

|C
(i)
Λ (L)| − 1
oL − 1

)

combinations such that

bj,t = 1, given that σ
(L)
i,t = oL. Solving, we obtain

P(bj,t = 1|πi,t) =
oL

|C
(i)
Λ (L)|

. (22)

Thus, substituting in (19), and letting

Φi(L) �
∑

j∈C
(i)
Λ (L)

φi,j (23)

be the total interference generated by the SUs in cell i to

the cells at hierarchical distance L from cell i, we can finally

rewrite

ri(ai,t,σi,t) =ρIai,t(1− σ
(0)
i,t ) + ρBai,tσ

(0)
i,t

− λai,t

D
∑

L=1

σ
(L)
i,t

|C
(i)
Λ (L)|

Φi(L), (24)

where, for convenience, we have expressed the dependence of

ri(·) on σi,t, rather than on πi,t. Thus, the network reward (7)

is given by

R∗(Σt) =
∑

i∈C

max {0, ri(1,σi,t)} , (25)

where we have defined Σt = [σ1,t,σ2,t, . . . ,σNC ,t], and, for

convenience, we have expressed the dependence of R∗(·) on

Σt, rather than on πt.

A. Average long-term performance evaluation

We are interested in evaluating the average long-term per-

formance of the hierarchical estimation scheme, that is

R̄ = lim
T→∞

1

T
E

[

T−1
∑

t=0

R∗(Σt)

]

, (26)

where the expectation is computed with respect to the se-

quence {Σt, t ≥ 0}. We have the following result.

Lemma 1. The average long-term network reward is given by

R̄ =
∑

i∈C

∑

o0∈{0,1}

B(o0; 1)

|C
(i)
Λ (1)|
∑

o1=0

B
(

o1; |C
(i)
Λ (1)|

)

. . . (27)

· · ·

|C
(i)
Λ (L)|
∑

oL=0

B
(

oL; |C
(i)
Λ (L)|

)

· · ·

|C
(i)
Λ (D)|
∑

oD=0

B
(

oD; |C
(i)
Λ (D)|

)

×max

{

0, ρI(1− o0) + ρBo0 − λ

D
∑

L=1

oL

|C
(i)
Λ (L)|

Φi(L)

}

,
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where B
(

·; |C
(i)
Λ (L)|

)

is the binomial distribution with

|C
(i)
Λ (L)| trials and occupancy probability πB ,

B
(

oL; |C
(i)
Λ (L)|

)

=

(

|C
(i)
Λ (L)|
oL

)

πoL
B (1− πB)

|C
(i)
Λ (L)|−oL .

In fact, since channel occupancy states are i.i.d. across cells,

at steady-state, the number of cells occupied within any subset

C̃ ⊆ C is a binomial random variable with |C̃| trials (the

number of cells in the set) and occupancy probability πB (the

steady-state probability that one cell is occupied). The result

then follows by applying this argument to the hierarchical

aggregation scheme.

Note that R̄ depends on the structure of the tree employed

for network state information exchange. In the next section,

we present an algorithm to design the tree so as to maximize

the network reward R̄.

Using (8), we can compare the network reward R̄ with the

upper bound computed under the assumption of full network

state information at each cell, given by

R̄up =
∑

i∈C

∑

b∈{0,1}NC

π
∑

i
bi

B (1− πB)
NC−

∑
i
bi

×max

⎧

⎨

⎩

0, ρI(1− bi) + ρBbi − λ

NC
∑

j=1

φi,jbj

⎫

⎬

⎭

. (28)

IV. TREE DESIGN

The reward of the network depends crucially on the tree

employed for information exchange. Optimizing the network

reward over the set of all possible trees is a combinatorial

problem with high complexity. Instead, we employ meth-

ods from hierarchical clustering to build a tree. Hierarchical

clustering is well-studied (see, e.g. [14, Ch. 14]), with two

main approaches: divisive clustering, in which a tree is built

by successively splitting larger clusters; and agglomerative

clustering, in which a tree is built by successively combining

smaller clusters. Our algorithm is based on the latter.

Agglomerative clustering requires a similarity metric be-

tween clusters; at each round, similar clusters are aggregated.

Our goal in designing a tree-based approach to spectrum

sensing is to prioritize information that nodes can use to

limit the interference they generate to other cells. Therefore,

we want to aggregate cells together with high potential for

interference. To this end, we define the similarity between

level-L clusters k1, k2 ∈ HL as

γL(k1, k2) =
∑

i∈C
(k1)

L

∑

j∈C
(k2)

L

φi,j , (29)

or the sum of inter-cluster interference strengths.

The algorithm proceeds as shown in Algorithm 1. We

initialize it with the NC leaves C
(i)
0 = {i}, i = 1, 2, . . . , NC .

Then, at each level L, we iterate over all of the clusters,

pairing each one with the cluster with which it has the most

interference (this can be done in order of pairs with maximum

similarity (29)). This forms the set of level L+1 clusters. If the

number of clusters at level L happens to be odd, one cluster

may not be paired, in which case it forms its own cluster at

Algorithm 1: Agglomerative Hierarchy Construction

input : Cells C, interference matrix Φ

output: A hierarchy of clusters C
(k)
L , k ∈ HL,

L = 1, 2, . . . , D

foreach cell i ∈ C do C
(i)
0 ← {i};

initialize L ← 0 ;

// if more than one cluster head,

continue

while |HL| > 1 do

// make an empty list of next level

cluster heads

HL+1 ← ∅;

// cluster head counter

knext ← 1;

// make a list of unpaired cluster

heads at the current level

Hunpaired
L ← HL;

while |Hunpaired
L | > 0 do

if |Hunpaired
L | = 1 then

// no unpaired neighbors,

“pair” with self

k ∈ Hunpaired
L ;

HL+1 ← HL+1 ∪ {knext} ;

C
(knext)
L+1 ← C

(k)
L ;

knext ← knext + 1 ;

Hunpaired
L ← Hunpaired

L \ {k} ;

else

// find unpaired cluster with

max similarity

(k, k∗) ← argmax
k,k′∈Hunpaired

L
,k �=k′

γL(k, k
′) ;

HL+1 ← HL+1 ∪ {knext} ;

C
(knext)
L+1 ← C

(k)
L ∪ C

(k∗)
L ;

knext ← knext + 1 ;

// remove paired clusters from

list

Hunpaired
L ← Hunpaired

L \ {k, k∗} ;

L ← L+ 1 ;

level L + 1. The algorithm continues until the cluster C
(1)
L

contains the entire network, i.e., a tree is formed.

Agglomerative clustering has complexity O(N2
C log(NC)),

where the N2
C term owes to searching over all pairs of clusters.

V. NUMERICAL RESULTS

In this section, we provide numerical results. We consider a

4× 4 cells network. We set the parameters as follows: ρI=1,

ρB=0, λ=1, p=q=0.1. We use the following interference

model between a pair of cells (assuming there is no blockage

between them):
{

φi,j = ‖p(i)− p(j)‖−α
, i �= j,

φi,i = 1,
(30)
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Fig. 2: Average long-term network reward as a function of the

probability of blockage pblock.

where p(i) is the position of cell i, ‖p(i)− p(j)‖ is the

distance between cells i and j, and α = 2 is the pathloss

exponent.

We define random "walls" between cell boundaries, i.i.d.

with probability pblock ∈ [0, 1]. If a wall is present, then all

the cells separated by it experience mutual blockage; thus, if

cells i and j are separated by a wall, then φi,j = φj,i = 0. The

blockage topology is generated randomly, for a given blockage

probability pblock, and a sample average of the performance

is computed over 200 independent trials.

In Fig. 2, we plot the curve of the network reward as

a function of the blockage probability pblock, for different

schemes:

• a scheme in which a regular tree is used for state

information aggregation. In this case, neighboring cells

and clusters are paired together, in order, independently

of the interference pattern. This scheme is similar to [5];

• a scheme in which the tree is generated with Algorithm 1,

by leveraging the specific structure of interference;

• an upper bound in which the reward is computed under

full network state information at each cell, given by (28).

This is computed via Monte Carlo simulation over 5000

independent realizations of bt (at steady-state).

We notice that the best performance is obtained under full

network state information available at each cell. This is

because each cell can leverage the most refined information on

the interference pattern. However, this comes at a huge cost

of propagating network state information over the network.

In contrast, the cost of acquisition of state information can

be significantly reduced using aggregation, at the cost of

some performance degradation. Remarkably, by using the

greedily optimized algorithm for information aggregation,

the performance improves by up to 60% with respect to a

scheme that uses a regular tree. In fact, the greedily optimized

algorithm leverages the specific structure of interference over

the network.

VI. CONCLUSIONS

In this paper, we have proposed a multi-scale approach to

spectrum sensing in cognitive cellular networks. To reduce

the cost of acquisition of network state information, we have

proposed a hierarchical scheme, that makes it possible to

obtain aggregate state information at multiple scales, at each

cell. We have studied analytically the performance of the

aggregation scheme in terms of the trade-off between the

throughput achievable by secondary users and the interference

generated by the activity of these secondary users to primary

users. We have proposed a greedy algorithm to find a multi-

scale aggregation tree, matched to the structure of interference,

to optimize the performance. Finally, we have shown perfor-

mance improvement up to 60% using a greedily optimized

tree, compared to a regular one.
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