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Abstract

Automatic classification of animal vocalizations has great potential to enhance the monitor-
ing of species movements and behaviors. This is particularly true for monitoring nocturnal
bird migration, where automated classification of migrants’ flight calls could yield new biolog-
ical insights and conservation applications for birds that vocalize during migration. In this
paper we investigate the automatic classification of bird species from flight calls, and in par-
ticular the relationship between two different problem formulations commonly found in the lit-
erature: classifying a short clip containing one of a fixed set of known species (N-class
problem) and the continuous monitoring problem, the latter of which is relevant to migration
monitoring. We implemented a state-of-the-art audio classification model based on unsuper-
vised feature learning and evaluated it on three novel datasets, one for studying the N-class
problem including over 5000 flight calls from 43 different species, and two realistic datasets
for studying the monitoring scenario comprising hundreds of thousands of audio clips that
were compiled by means of remote acoustic sensors deployed in the field during two migra-
tion seasons. We show that the model achieves high accuracy when classifying a clip to one
of N known species, even for a large number of species. In contrast, the model does not per-
form as well in the continuous monitoring case. Through a detailed error analysis (that
included full expert review of false positives and negatives) we show the model is con-
founded by varying background noise conditions and previously unseen vocalizations. We
also show that the model needs to be parameterized and benchmarked differently for the
continuous monitoring scenario. Finally, we show that despite the reduced performance,
given the right conditions the model can still characterize the migration pattern of a specific
species. The paper concludes with directions for future research.

Introduction

Many organisms, particularly birds, vocalize frequently, and these signals are the means by
which detection and classification occurs. These signals may represent the best means of sur-
veying individuals or populations. However, much biodiversity monitoring has been
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performed by expert humans, who typically rely on auditory cues to detect and classify bird
species, because replicating and automating humans’ abilities have proven very challenging to
the extent that automated systems cannot routinely replace humans in conducting biodiversity
surveys for birds. Yet, a number of factors constrain human monitoring, including variability
in observer skills in detection and classification [1-3], temporal mismatches in observer effort
and biological phenomena [4, 5], and spatial mismatches in observer coverage and biological
distributions [6, 7].

Automated classification of organisms to species based on their vocalizations would con-
tribute tremendously to abilities to monitor biodiversity, with a wide range of applications in
the field of ecology. Acoustic monitoring provides information about biodiversity and changes
in its spatial and temporal distribution [8], and, with coordinated application with existing
technologies, about migrating species in areas where potential hazards exist, such as collisions
with buildings, planes, communications towers, and wind turbines. Acoustic monitoring can
provide the unique benefits of knowing species composition wherever and whenever micro-
phones and recorders are deployed. This includes long term recording from remote locations
and continuous recording for periods when observers are not active. One particular applica-
tion where such automation would provide unique and complementary information is in
monitoring nocturnal bird migration.

Current tools to study nocturnal bird migration rely on several sources of information to
produce details of bird movements. These sources include weather surveillance radar, which
provides insight into the density, direction, and speed of bird movements but little to no infor-
mation about the species actually migrating [9], tracking devices that provide information
about the location and activity of individuals but little information about population behaviors,
marking (e.g. banding, ringing, or color marking) and later recapturing individuals, with simi-
lar constraints, stable isotope tracking of the changes in key elements to define movements of
birds [10, 11], and crowdsourced human observations, made almost exclusively during day-
time hours and of limited use for studying nocturnal migratory flights other than by proxy
[12]. Automatic bioacoustic monitoring and analysis is a complementary solution that could
be scalable and produce species-specific information otherwise impossible to obtain from any
of the previously mentioned methods.

Among an increasingly important array of bioacoustic tools for conservation science [13]
that describe presence, abundance, and behavior of vocal species, there is a significant body of
research on automatic species classification (e.g. [14-21]). See [22] for a detailed survey of
automatic birdsong recognition. Of these, a number of systems target acoustic monitoring [16,
18, 19, 21, 23], some focusing specifically on bird flight calls [24-26]. Such systems can be
broadly divided into two groups: those designed to distinguish among a predefined set of
known species [14, 15, 17, 20, 27], and those designed to identify a specific species in a contin-
uous audio stream [16, 18, 19, 21, 23]. The former is posed as an N-class classification problem:
given a collection of sound clips where each clip contains the vocalization of one of N possible
species, train a model to correctly classify the species. Recent studies have obtained highly
promising results for birdsong classification under this scenario, in particular through the
employment of feature learning techniques [20]. However, the N-class scenario is not neces-
sarily a good match for bioacoustic monitoring, as it abstracts away the primary, and critical,
challenge of having to detect vocalizations in a continuous stream of what is mostly non-rele-
vant geophony (e.g. wind, water), biophony (e.g. insects, frogs) and anthrophony (e.g. speech,
transportation). Furthermore, many of the datasets used in such studies were recorded under
relatively homogeneous conditions, featuring bird vocalizations in the foreground with rela-
tively little background noise. These are ideal but unrealistic conditions for in-the-field acous-
tic monitoring systems.
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The latter set of systems pose the problem as one of event detection and classification. For
nocturnal migration monitoring, the first generation of systems captured audio data via record-
ing stations [28, 29], but for many years the identification of species was performed via aural
and visual inspection of the recording and spectrogram, respectively, by experts [30]. Auto-
matic classifiers later replaced such inspection, however, in many cases these automated sys-
tems were carefully crafted by exploiting species-specific characteristics and building them into
the model through custom preprocessing or feature design [24] or by comparing to a set of pre-
selected and preprocessed spectral templates [25, 26]. A primary disadvantage of such systems
is that they require complete (and manual) readjustment to work for a different species. Fur-
thermore, many of the aforementioned studies make use of relatively small datasets, usually on
the order of a few hundred audio clips, and it is thus unclear how well they would perform at a
larger scale. More recently, a number of approaches have been proposed that employ more
advanced and generalizable machine learning techniques that can be easily adapted to multiple
species [19, 31, 32]. These studies were focused on bird song (and marine mammals) however,
not flight calls. Among other differences from vocalizations analyzed in previous studies, flight
calls are primarily single note vocalizations that are less than 200 ms long, whereas most songs
contain several types of notes and may vary from seconds to minutes in duration.

In this paper we investigate the automatic classification of bird species from flight calls, and
in particular the relationship between the two problem formulations described above: the N-
class problem, and the continuous monitoring problem which as noted earlier is the scenario
relevant to nocturnal migration monitoring. The study has two principle goals:

1. To contrast the performance of the same classification architecture on the N-class problem
and the continuous acoustic monitoring problem.

2. To study the performance and limitations of the classification architecture under a real-
world scenario: acoustic monitoring where the test data is open-set (unconstrained in
terms of possible classes) and whose class distribution is unknown a-priori.

To this end, we implemented a state-of-the-art audio classification model based on unsuper-
vised feature learning that has been applied successfully to music information retrieval [33],
urban sound classification [34, 35] and birdsong classification [20]. To the best of our knowl-
edge this is the first time a feature-learning-based audio classification technique has been
applied to flight call classification. To ensure our experiments are representative of real-world
scenarios, we constructed novel datasets for evaluating the aforementioned approach. For the
N-class problem, we compiled a dataset of over 5000 flight calls from 43 different bird species.
For the monitoring problem, we collected a large amount of audio data using remote acoustic
sensors deployed in the field during two migration seasons. The data collected contains realis-
tic challenges such as varied background and foreground noise and a significant unbalance
between the size of the target class (clips containing the flight call of a target species) and the
negative class (clips containing all other flight calls and geophonic, biophonic and anthropho-
nic noise), which is considerably larger. Through a series of experiments we show that:

1. High accuracy is achievable for flight call classification under the N-class scenario even for
a large number of species.

2. The classification system needs to be optimized and benchmarked differently for each of
the two scenarios (N-class and acoustic monitoring).

3. The system is not as robust for in-the-field event classification (acoustic monitoring). Still,
given the right conditions the model can successfully characterize the nocturnal migration
pattern of a specific species.
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The remainder of this paper is organized as follows: in the following section (Methods), we
describe the feature-learning-based classification model implemented for this study and the
metrics used to evaluate it. This is followed by a detailed description of the datasets used in this
study, including how they were compiled and their key characteristics (Data). Next we present
and discuss the results obtained for the various experiments conducted in this study (Results
and Discussion). We examine the results for the N-class problem, and then contrast them with
those obtained in the acoustic monitoring scenario for two different target species. The final
section of this paper (Conclusions and Future Work) summarizes the results presented in the
paper and the key discussion points, and provides some proposed directions for future
research.

Methods

The construction of our classification model can be divided into three main blocks: (1) feature
learning, (2) feature encoding and (3) classification (Fig 1). The goal of the first block was to
learn a dictionary (or codebook) of representative bases (or codewords) from the training data
by means of an unsupervised data-driven process. In the second block, the learned dictionary
was used to encode the samples of the dataset into feature vectors. Finally, in the third block
these feature vectors were used to train (and test) a discriminative classifier. The details of each
of the three blocks are provided below.

( )
1. Feature learning _ _
Representation Feature Learning Feature Codebook
(time-frequency) (unsupervised) (dictionary)
2%, -
\ . J
> _ \ [ e .
2. Feature encoding 3. Classification

Representation Encoding & Pooling (supervised)

I
U, 0, max

. J . J

Fig 1. Block diagram of the classification framework comprising 3 main blocks: (1) Feature learning (learn a codebook from the train data), (2)
Feature encoding (use the learned codebook to encode the train and test data), (3) Classification (use the encoded train and test data to fit and
evaluate a discriminative classifier).

doi:10.1371/journal.pone.0166866.9001
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Feature learning

The goal of this block was to learn a dictionary of representative (and discriminative) code-
words directly from the audio signal in a data-driven fashion. Although there have been some
recent advancements in learning audio representations directly from the time-domain signal
[36, 37], such techniques are computationally complex, require thousands of hours of audio
data for training, and still only perform comparably to feature learning from a time-frequency
(e.g. spectral) representation which can be performed more efficiently using a smaller model.
Consequently, for this work we extracted log-scaled mel-spectrograms with 40 components
between 2000-11025 Hz. The flight calls of the species studied in this work all fall inside this
frequency range. Since flight calls are short (compared to e.g. birdsong), on the range of 50-
150 ms in duration with fast frequency modulations, it was important that our processing
pipeline be parametrized so that it could capture the fine temporal structure of these calls.
After some initial experimentation, we settled on an analysis window (Hann) of 11.6 ms (256
samples at a sampling rate of 22050 Hz), and a hop size (the time interval between consecutive
analysis windows) of 1.45 ms (32 samples). In [34] we showed that feature learning is more
effective (compared to using standard audio features based on Mel-Frequency Cepstral Coeffi-
cients (MFCC) [38]) when the learning is performed jointly on groups of frames (also referred
to as “shingles” or 2D time-frequency patches) since the learned features can capture spectro-
temporal shapes that are representative of the different classes of interest. Following this result,
in this study we also used 2D time-frequency patches (henceforth TF-patches). The duration
of the TF-patches used for learning was determined via cross-validation on the training set,
the details of which shall be explained later on. Furthermore, decorrelating the input dimen-
sions prior to feature learning improves the discriminative power of the learned features [39],
and so before passing the 2D log-mel-spectrogram patches to the learning stage we applied
Principal Component Analysis (PCA [40]) to the entire training set and scaled each compo-
nent such that the resulting feature dimensions are uncorrelated and have unit variances (PCA
whitening). Following [33] we kept enough components to explain 99% of the variance in the
data. The PCA parameters learned from the training data were also used for encoding as
detailed in the Feature encoding section below.

To learn the codebook we used the spherical k-means algorithm [39]. Unlike the traditional
k-means clustering algorithm [41], the centroids are constrained to have unit L2 norm (they
must lie on the unit sphere, preventing them from becoming arbitrarily large or small), and
represent the distribution of meaningful directions in the data. Compared to standard k-
means, spherical k-means is less susceptible to events carrying a significant amount of the total
energy of the signal (e.g. background noise) dominating the codebook. The algorithm is effi-
cient and highly scalable, and it has been shown that the resulting set of vectors (the centroids)
can be used as bases (a dictionary) for mapping new data into a feature space which reflects the
discovered regularities [20, 39, 42]. The algorithm is competitive with more complex (and con-
sequently slower) techniques such as sparse coding, and has been used successfully to learn fea-
tures from audio for music [33], birdsong [20] and urban sound classification [34, 35]. After
applying this clustering to our training data, we used the resulting cluster centroids as the
codewords of our learned dictionary. Note that we used the algorithm as a feature learning
technique, and not for the purpose of clustering the data into the actual number of classes they
are comprised of. As such, we used the algorithm to learn an over-complete codebook, mean-
ing the values tested for k (described in the Evaluation section) were much larger than the
number of classes (in our case, species) present in the data.

The clustering was performed as follows: let us represent our data as a matrix X € R"™",
where every column vector x) € R" is the feature vector for a single sample (in our case a
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whitened log-mel-spectrogram TF-patch), # is the number of dimensions in each feature vec-
tor and i = 1. . .m where m is the total number of samples. We use s to denote the code vector
for sample i which stores a binary assignment value for each of our k clusters (with [|s”]|o < 1,
Vi, i.e. only one element in s can be non-zero). For convenience, let S be the matrix whose
columns are s®. Finally, let D € R"* represent our codebook of k vectors (means). Then, the
spherical k-means algorithm can be implemented by looping over the following three equa-

tions until convergence:

5

0T o) 3¢ 5 0T (0
0. {D x0if arg mlaX|D Ny

0 otherwise.
D:=XS"+D (2)
DY .= DV/||DY||,vj 3)

where T indicates matrix transposition. In Eq (1) we assign samples to centroids, in Eq (2) we
update the centroids, and finally in Eq (3) we normalize the centroids to have unit L2 norm.
Before running the algorithm we randomly initialized the centroids in the codebook D from a
Normal distribution and normalized them as in Eq (3). For further details about the algorithm
the reader is referred to [39].

Feature encoding

The spherical k-means algorithm produces a codebook matrix with k columns, where each col-
umn represents a learned codeword (centroid). We used the codebook to encode every sample
in our dataset into a feature vector. Given an audio recording, we extracted the log-mel-spec-
trogram as before, sliced it into a series of overlapping TF-patches and applied PCA to each
patch using the same PCA parameters that were learned in the previous block when learning
the codebook (i.e. the PCA parameters can be considered part of the model training process:
they were learned from the training data and kept fixed for encoding the test data). The result
can be represented as a matrix M € R™" where each column represents one (flattened) TF-
patch after PCA whitening (similar to X from the previous block except M contains TF-
patches from a single audio recording whereas X comprised the TF-patches of the entire train-

ing set). Encoding was performed by taking the matrix product between M ' and the code-
book D:

F=MDeR"™ (4)

The resulting matrix F has k columns and a row for each row in the input matrix, where the
number of rows m depends on the duration of the recording. Every column i (i = 1. . .k) in the
encoded matrix F can be viewed as a time-series whose values represent the match scores
between the TF-patches of the input recording and the i codeword in the codebook: when a
TF-patch is similar to the codeword the value in the time-series will be higher, and when it is
dissimilar the value will be lower. The encoded matrix F cannot be used directly as input fea-
tures to the classifier since for each recording the matrix can have a different number of rows
(depending on the duration of the recording), whereas we require a feature vector of fixed
dimensionality. To obtain a consistent dimensionality for every clip in the dataset regardless of
its duration (for the N-class scenario we used clips of varying duration, and for the acoustic
monitoring scenario the continuous signal was segmented into short clips of equal duration),
the matrix was summarized over the time dimension by computing a number of summary
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statistics (such as the mean, standard deviation, and maximum) from each column of F,
resulting in a feature vector of size k * I where [ is the number of summary statistics computed.
Both k and the specific set of summary statistics to be computed were treated as model hyper-
parameters (i.e. model parameters that must be specified before the model is trained as
opposed to the model parameters that are learned during training) and determined via cross
validation. Further details about the specific values of k and summary statistics used in the
experiments are provided in the Evaluation section.

Classification

The output of the encoding, a feature vector of size k * [ for every sample in the dataset, can be
used to train (and test) a discriminative classifier of our choice. Following the results of [20,
34], we experimented with two classification algorithms: a Random Forest classifier [43] and a
Support Vector Machine (SVM) classifier with a radial basis function kernel [44]. The choice
of classifier (and classifier hyper-parameters) was treated as another hyper-parameter to be
determined via cross-validation on the training set. Since in all experiments conducted in this
study the SVM was always chosen over the Random Forest, for the sake of clarity and concise-
ness we shall only discuss the results obtained using the SVM classifier. Prior to training the
classifier the features were standardized across samples. We used the Essentia library [45] for
computing the log-mel-spectrograms and the scikit-learn library [46] for training the classifier,
both of which are open source.

To ensure the model generalizes as best as possible to the test data we would like the distri-
bution of classes in the training data to be as representative (similar) as possible to the distribu-
tion of classes in the test data. In the case of the controlled N-class problem, we achieved this
by using stratified train/test splits with 5-fold cross-validation (further details are provided in
the Evaluation section). For the acoustic monitoring problem, however, we sought to simulate
a real-world scenario where we would have to train the model with the data collected and
labeled to date (in this study represented by the data collected during fall 2014, as detailed in
the Data section) and run it on data that would be collected during future migration seasons
(in this study represented by the data collected during spring 2015, as detailed in the Data sec-
tion), the distribution of which, therefore, would be unknown at the time of training. The best
approximation we can obtain of the test data distribution under this scenario (in the absence
of additional (meta)data such as eBird species distributions [8]) is given by the unweighted
class distribution of the training data. Consequently, for the acoustic monitoring scenario we
trained the model using the training data with equal weighting for every datum. For further
discussion of the challenges presented by this type of open-set problem (i.e. where the distribu-
tion of classes in the test data is not known a-priori) in the context of bioacoustics see [47].

We were particularly interested in this scenario since deploying a classification system such
as the one proposed in this study for migration monitoring at a large scale necessarily means
the model will have to cope with new environments (locations/seasons) that are not necessarily
well represented by the training data (or not at all). How well our model generalized to such
environments (and under what scenarios it failed to generalize) was one of the key questions
of this study.

Evaluation

Baseline: To assess how well the proposed model performed on the N-class problem compared
to a standard audio classification approach which does not employ feature learning (a baseline
model), we also implemented and evaluated a model which extracts 25 Mel-Frequency Ceps-
tral Coefficients (MFCC [38]) per-frame using a Hann window of 11.6 ms and a hop size of
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1.45 ms (the same analysis parameters used to compute the mel-spectrogram for the feature
learning model). We summarized the MFCC coefficients over time using 11 summary statis-
tics as in [48], and used the resulting feature vectors to train and test an SVM classifier with a
radial basis function kernel.

Hyper-parameters: For the N-class scenario we evaluated the two models (baseline and
proposed) using 5-fold cross validation. We determined model hyper-parameters separately
for each fold by splitting the training set of the fold into training and validation subsets. We
performed a grid search for model hyper-parameters by fitting the model to the training subset
and evaluating it on the validation subset. After determining the best hyper-parameters, we fit
the model to the full training set (of the fold) using the optimal hyper-parameter values, and
then evaluated it on the fold’s test set. We repeated this process for every fold, and obtained
the final accuracy score by taking the average over all 5 folds. For the acoustic monitoring sce-
nario we split the data into train and test sets by season (details are provided in the Data sec-
tion). Consequently, we determined model hyper-parameters by splitting the train set into
train and validation subsets and performing the grid search as described above.

For the proposed feature learning approach, the hyper-parameters included the duration of
the TF-patches used for feature learning d.ch, the dictionary size k, the set of summary statis-
tics firar and the penalty parameter C of the SVM. The values included in the grid search were:

o dpatch = {1.45, 5.8, 11.6, 23.2, 46.4, 92.9, 185.8} milliseconds.

o k={128, 256,512, 1024, 2048}

o fitat = {{mean, std}, {max}, {mean, std, max}}, giving set sizes of | = {2, 1, 3} respectively.
« C=1{1.0,10.0, 100.0, 1000.0}.

For the baseline approach the only hyper-parameter was C (for which we evaluated the same 4
values listed above).

Metrics: For the N-class problem we evaluated model performance in terms of classifica-
tion accuracy. Since the classes in the dataset used to evaluate this scenario (CLO-43SD, see
the Data section for a detailed description) were not balanced, we also computed the per-class
classification accuracy and the confusion matrix (which shows how many clips from each class
were mistakenly classified and what they were classified as). To evaluate the sensitivity of the
proposed model to every hyper-parameter, we gathered all the intermediate classification
scores produced by the grid search for optimal hyper-parameter values conducted as part of
the cross-validation process described earlier (there were 2100 such scores). We then grouped
the scores, first by the value of dp,ch, then by the value of k, fi.; and C. Each grouping was used
to produce a box plot that allowed us to compare the performance of the model as a function
of every tested hyper-parameter value.

Unlike the N-class problem which is a multi-class classification task, the acoustic monitor-
ing scenario is a binary classification task (i.e. every clip was classified as either containing a
flight call from the species we were targeting or not). Given that each of the two datasets used
to evaluate the acoustic monitoring scenario (CLO-WTSP and CLO-SWTH, see the Data sec-
tion for a detailed description) was comprised of two highly-imbalanced classes, classification
accuracy was not an appropriate metric. An alternative approach to evaluating binary models
is to compute the Receiver Operating Characteristic (ROC curve) and the Area Under the
(ROC) Curve (AUC) [49]. The ROC curve visualizes the trade-off between true positives and
false positives (the closer the curve to the top-left corner the better), and the AUC summarizes
the curve as a single number between 0 (worst) and 1 (best). A limitation of the ROC curve is
that the difference observed between curves (as quantified by the AUC) is influenced by the
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degree of class imbalance. This means that, although it allows us to observe a difference in per-
formance, for highly imbalanced sets (such as CLO-SWTH) it is hard to assess the degree to
which model performance differs or the implications of this difference. A good model should
detect most of the true target-species calls (high recall) and reject the vast majority of non-tar-
get clips (high precision). The latter (i.e. high precision) is particularly important, since a
model that produces too many false positives cannot be used to reliably estimate the pattern of
species occurrences over time. In light of this, another (potentially more informative) way to
evaluate a binary model on unbalanced data is in terms of precision and recall as summarized
by a Precision-Recall Curve (PR-curve). The PR-curve displays the model’s precision and
recall for multiple possible threshold values between 0 and 1 (where the threshold is applied to
the likelihood value produced by the model for each clip in order to make a classification deci-
sion). To provide as complete an evaluation as possible, we computed all of the aforemen-
tioned evaluation metrics that are relevant to the acoustic monitoring scenario: the confusion
matrix, ROC curve, AUC, and PR-curve.

Finally, to assess the influence of background noise on the performance of the proposed
model, we estimated the signal-to-noise ratio (SNR) between the flight call of the target species
and the background noise for every positive clip (i.e. the clips that contained a flight call by the
target species) in each of the two datasets (CLO-WTSP and CLO-SWTH). For each clip, we
approximated the SNR by computing the average energy of the signal in the middle 150 ms of
the clip where the flight call was found P.,j;, and the average energy of the signal everywhere
else in the clip Pyaciground (€ach clip was roughly 1 s long, see the Data section for further
details). Since the features used by our model only considered the spectrum between 2000 and
11025 Hz, we computed the spectral energy from the same frequency band. The approximate
SNR is then given by:

P
SNR,; = 10log, (P—”> (5)

background

We divided the target clips into two groups based on the predictions made by the proposed
model: the first group contained the true positives (correctly classified target clips) and the sec-
ond contained the false negatives (incorrectly classified target clips). We then compared the
SNR distributions of the two groups to see whether there was any relationship between SNR
and model performance. We also tested to see whether there was a correlation between the
approximate SNR and the confidence value returned by the proposed model for each clip. We
obtained the confidence value, i.e. the probability that a clip belonged to the target class, by
applying Platt scaling to the distance of the clip from the SVM’s separation hyper-plane [50].

Data
43 Species Dataset (CLO-43SD)

To evaluate the classification model under the N-class scenario we compiled a dataset com-
prised of 5428 audio clips of flight calls from 43 different species of North American wood-
warblers (in the family Parulidae), henceforth referred to as CLO-43SD. The clips came from a
variety of recording conditions, including clean recordings obtained using highly-directional
shotgun microphones, recordings obtained from noisier field recordings using omnidirec-
tional microphones, and recordings obtained from birds in captivity using the method
described in [51]. Every clip in this dataset was trimmed to contain a single flight call from one
of the 43 target species A list of the species included in this dataset and the number of clips per
species is provided in S1 Table.
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Fall 2014—Spring 2015 Migration Datasets

Acoustic sensing: To evaluate the model under conditions that realistically match the noctur-
nal migration monitoring scenario, we collected data using a prototype acoustic sensing sys-
tem developed and deployed by the Cornell Lab of Ornithology. Two main components
compose this system: a set of remote acoustic sensors and a centralized data server. Each
acoustic sensor, or Recording and Observing Bird Identification Node (ROBIN), has a micro-
phone, processor, and wireless Internet connection, and monitors the acoustic environment
continuously. The sensor is equipped with a pressure zone microphone with a Knowles
EK23132 microphone element. Each microphone is vertically oriented and its element sits at
the bottom of a small plastic horn-shaped enclosure, which in turn sits inside a plastic housing.
This configuration provides a doubling of sound pressure in the vicinity of the microphone
element, where it sits near the hard plastic boundary of the horn enclosure. The external hard
plastic enclosure aids in rejecting interfering sounds on the horizontal axis. The frequency
response of this element is flat above 2 kHz, well suited to monitoring flight calls.

The ROBIN is powered by a commercially available Raspberry Pi Model B single-board
computer (https://www.raspberrypi.org/products/model-b/) running the Cornell Lab of
Ornithology’s own Realtime Acoustic Detection daemon (RADd). This daemon allows the
processor to configure and to run a detection engine of one or more detectors simultaneously,
with classification occurring on the server side and not on the Raspberry Pi. Currently the
RADd is running template detectors. Each data template detector uses representative calls to
serve as templates [52]. Correlation scores are calculated by using spectrogram cross correla-
tion to compare each template to the audio stream, resulting in a score between 0 and 1. When
the score goes above a defined threshold, the detector is activated and an audio clip of roughly
1 second in duration centered on the detected event is recorded and transmitted to the data
server over WiFi for classification. The detected audio clips are stored in the data server along-
side metadata such as the sensor location, the date and time each clip was recorded, and the
species-specific detector that triggered and recorded the clip.

For this study each sensor was loaded with two detectors, one for each of two species:
White-throated Sparrow (WTSP) and Swainson’s Thrush (SWTH). Since the goal of these
detectors is to maximize the recall of flight calls from the target species, they were set with a rel-
atively low threshold (0.6), meaning each detector returned thousands to hundreds of thou-
sands of clips over a single migration season (between 2—-4 month), where the vast majority of
those clips did not contain any flight call, and the remainder were comprised of calls by the tar-
get species and calls from other (non-relevant) species. Our goal was to train the classification
model to perform a binary classification of each clip, where the two possible classes were the
target species (WTSP or SWTH) and “everything else”, which henceforth shall be referred to
as “other”. Consequently, we trained a separate (binary) model for each of the two species.

Data collection: Two sensors were deployed in the fall of 2014, one in Ithaca, NY (ITH)
and another in New York, NY (NYC). 8 more sensors were deployed in the spring of 2015, giv-
ing a total of 10 sensors: one in NYC and 9 in up-state NY. The sensors monitored the envi-
ronment and transmitted audio clips of potential flight call detections over a total period of 6
months: from September to December 2014 (4 months) and from April to May 2015 (2
month). The former represents all or almost all of the fall 2014 migration season for WT'SP
and SWTH, and the latter all or almost all of the spring 2015 migration season. In the fall,
WTSP detectors transmitted 5016 clips, all from the NYC location. SWTH detectors transmit-
ted 8666 clips, the majority (8248) from the NYC location, and the rest from ITH. In the spring
WTSP detectors transmitted a total of 11687 clips (n.b. from all 10 sensors) and SWTH detec-
tors transmitted 170445 clips (also from all 10 sensors). For both species, we used the fall 2014
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clips for training, and the spring 2015 clips for testing. Since practically all of the training data
came from the NYC sensor, while the test data came from all 10 stations, our training and test-
ing sets were mismatched both in location and season. This situation provides a challenging
classification task that requires the model to generalize well from the training conditions to the
test conditions.

One of us (AF) manually annotated every 1 sec detection clip, each of which came from a
species-specific detector (e.g. WTSP), with “WTSP”, “Flight Call” (for flight calls other than
the target species) or “Reject” (for non-flight calls) labels. We maintained these categories, but
we also combined the latter two groups into an “Other” category for our experiments. The
annotation process to label and review labels of flight calls requires significant expertise with
flight calls, including knowledge of the diversity of inter- and infraspecific variation and the
different ways this variation can be expressed in aural and visual forms of review. With over
three decades of experience with flight call identification from field and laboratory perspec-
tives, including classification by ear (i.e. by listening) and by eye (i.e. reviewing spectrograms),
we are confident in our annotations. Additionally, during our error analysis (cf. Results and
Discussion) we found no classification errors resulting from human confusion among call
identities. Furthermore, although we found a small numbers of labeling errors in each of our
review processes, all of these were clerical in nature. After three rounds of reviewing the calls
and their labels, we found our data to be error free.

Most flight calls have a duration of less than 150 ms, and training a model on a full 1 second
clip, at least 850 ms of which might not contain relevant data, could result in most training
data not containing the relevant signal (the flight call). To account for this, we trimmed auto-
matically every clip to 150 ms, centering on the middle of the original file with the assumption
that a flight call was most likely to be centered around the precise time at which the template
detector was triggered. In a random inspection of a small subset of 100 clips from the dataset,
we found that all inspected clips still contained the flight call after the trimming procedure.

For the remainder of this paper we treat the aforementioned data as two separate datasets:
one containing all the fall and spring clips returned by the WTSP detectors, and the other con-
taining all the fall and spring clips returned by the SWTH detectors (CLO-WTSP and
CLO-SWTH, respectively). A summary of the two datasets with train/test (fall/spring) splits is
provided in Table 1. The “%Pos” column shows the percentage of positive instances in each
data subset. Note that in both datasets the number of false positives returned by the template
detectors (the sum of FlightCall and Reject) is considerably greater than the number of true
positives (Target), as evident from the low positive instance percentages. This scenario is
extreme in the case of SWTH clips during spring 2015, where the template detectors returned
only 316 true positives compared to over 170000 false positives. The task of correctly identify-
ing true positives while rejecting all false positives is, therefore, extremely challenging. To
ensure reproducibility, the two datasets (CLO-WTSP and CLO-SWTH) as well as the CLO-
43SD dataset are available online (http://dx.doi.org/10.5061/dryad.j2t92).

Results and Discussion

N-class problem with CLO-43SD

We begin with the results obtained for the N-class problem. The classification accuracy yielded
by the baseline approach and the proposed model are presented in Fig 2. The proposed model
performed well on the N-class problem, obtaining an average classification accuracy of 93.96%
and significantly outperforming the MFCC baseline (84.98%) as determined by a two-sample
Kolmogorov-Smirnov test (statistic = 1.0, p-value = 0.003, sample size = 5 (folds)). Since the
classes in CLO-43SD were not balanced, we also computed the per-class accuracies (Fig 3) and
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Table 1. Summary of the two datasets used to evaluate the model under the acoustic monitoring scenario: CLO-WTSP and CLO-SWTH. For each
dataset a breakdown is provided into train data, test data, and total. For each breakdown we provide the number of instances for the positive class (Target)
and for the negative class, where the latter is further divided into negative instances containing flight calls other than the target species (FlightCall) and nega-
tive instances containing no flight call (Reject). The percentage of positive instances in each set is provided in the %Pos column.

Dataset Train (fall 2014) Test (spring 2015) Total (fall + spring)

Target | FlightCall |Reject |%Pos |Target | FlightCall |Reject %Pos |Target |FlightCall |Reject %Pos
CLO-WTSP | 882 1063 3071 21.3% | 656 1569 9462 5.9% | 1538 2632 12533 10.1%
CLO-SWTH | 876 806 6984 11.2% | 316 197 169932 0.2% | 1192 1003 176916 0.7%

doi:10.1371/journal.pone.0166866.t001
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the confusion matrix for all 5 folds combined (S1 Fig). Despite the class imbalance, the model
yielded near or above 90% accuracy for the majority of species (the average per-class accuracy
was 86%), with only 4 species going below 70%, which is understandable given that there were
only 13 or fewer instances of those classes in the dataset. The confusion matrix is very sparse,
indicating the model rarely made mistakes, and the few notable confusions can be attributed
to the low number of instances of the confused classes in the dataset.

The results confirm that the learning-based model is suitable for flight call classification,
even for a relatively high number of classes (43 species), and complement the results obtained
for birdsong classification in [20]. Whether this performance translated to the bioacoustic
monitoring “species versus other” scenario was one of the key questions of this study, and will
be answered in the following section.

Finally, we explored the sensitivity of the model to each hyper-parameter, displayed in Fig
4. The most influential parameter was dp,ch, (the duration of the TF-patch): using longer

Baseline

Preliminary [15] Proposed

Fig 2. Classification accuracy of the proposed model for the N-class problem using CLO-43SD. The proposed
model is compared against a baseline method which uses standard MFCC features. For additional context the
preliminary result reported in [15] for a flight call dataset with a similar number of species (42) is also provided, however it
is not directly comparable to the baseline and proposed model since the study used a smaller dataset of 1180 samples.
The error bars represent the standard deviation over the per-fold accuracies (for [15] there is only a single value).

doi:10.1371/journal.pone.0166866.g002
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Fig 3. Per-class (per-species) classification accuracy obtained by the proposed model for each of the 43 species in CLO-43SD. The box plots are
derived using 5-fold cross validation, where the red squares represent the mean score for each species. A mapping between the abbreviations used in this
plot and the full species names is provided in S1 Table.

doi:10.1371/journal.pone.0166866.9003

patches (thus learning larger spectro-temporal structures) increased accuracy up to a patch
duration of 46.4 ms. Beyond that the patch duration spans most or all of the flight call, and
this proved to be detrimental to the model under this scenario. Interestingly, using a small
dictionary size of 128 was sufficient, and increasing k did not result in improved accuracy.
This result stands in contrast to that observed for urban sounds in [34], possibly due to the
reduced variance in flight calls of the same species compared to more heterogeneous sounds
such as sirens or jackhammers which have more diverse sound production mechanisms and
patterns. The model was also relatively robust to the choice of summary statistic and C value
(for C > =10).

Acoustic monitoring with CLO-WTSP

Next we turn to the nocturnal migration monitoring scenario, starting with the CLO-WTSP
dataset. Recall that the training set contained 882 WTSP clips and 4134 “other”, and the test
set contained 656 WTSP clips and 11031 “other”. The hyper-parameter values used for dpaich,
k, fstar and C (determined via cross-validation on the training set) were 92.9 ms (64 frames),
128, {max} and 1.0 respectively. The optimal hyper-parameters values were notably different
compared to the N-class scenario: here an even longer TF-patch duration of 92.9 ms proved to
be beneficial, while the optimal C value was 1. This tells us that the model must be parameter-
ized differently for the N-class and the acoustic monitoring scenarios and is the first (but not
last) indication in this study that one should not expect results obtained for the former sce-
nario to generalize to the latter.

As noted in the Methods section, classification accuracy was not a relevant metric for this
scenario (the class imbalance meant that even a model that labeled everything as “other”
would yield an accuracy of 94.4% on the test set). Instead, we directly examined the confusion
matrix (Table 2), which shows that the model was successful at rejecting noise clips (only 6
false positives), but it also rejected most of the real WTSP flight calls.

The ROC curve and AUC for the train and test sets are presented in Fig 5. We observed a
drop in performance between the training and test sets, highlighting the challenge presented
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used for training the Support Vector Machine classifier.
doi:10.1371/journal.pone.0166866.9004
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by this real-world scenario in which we must cope with mismatched conditions between the
training and test sets (different location, different time of year). Further insight can be gained
by examining the PR-curves for the train and test sets, presented in Fig 6. The difference in
performance is more pronounced in the PR-curves, and allows us to make direct performance
observations: the model could detect WTSP calls in the test set with relatively high precision (a

Table 2. Confusion matrix yielded by the proposed model for the CLO-WTSP test set. Row labels repre-
sent the true class and column labels represent the class predicted by the model.
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Fig 5. Receiver Operating Characteristic (ROC) curves produced by the proposed model for CLO-WTSP:
training set (blue, obtained via 5-fold cross validation) and test set (red). The Area Under the Curve (AUC) score
for each set is provided in the figure legend at the bottom right corner.

doi:10.1371/journal.pone.0166866.9005

low number of false positives) for recall values up to 0.4. For greater recall values (obtained by
using more relaxed threshold values) the precision dropped markedly and the model became
considerably less reliable.

To gain further insight into the limitations of the model, we conducted a detailed error anal-
ysis in which one of us (AF) examined (visually and aurally) every misclassified clip (as deter-
mined by the confusion matrix in Table 2). Starting with the false negatives, we identified three
primary potential causes for model confusion: of the 616 wrongly rejected clips, 42% (258)
included some other loud source (such as insects or wind noise) that was at least partially mask-
ing the flight call. 82% (504) contained a range of unusual variants of more typical WTSP flight
calls, with observable (visual and aural) variation in the calls’ fundamental frequency trajectories
compared to more expected patterns. Differences included varying numbers of frequency
peaks, varying slope of descending frequency contour at the start of the call, and varying modu-
lation to end the call, among other features. Such calls are unlikely to be well represented in the
training set, particularly given the suite of variants composing these more unusual calls, result-
ing in their misclassification during testing (suggestions for dealing with this problem are pro-
vided further down). Finally, 95% of the false-negative clips (588) contained a call that was
either distant or quiet compared to the acoustic environment. 31% had both interference and
an unusual call, 37% interference and were quiet, 78% were quiet and unusual, and 30%
included all three factors. This analysis highlighted that the main challenges faced by the model
for this dataset were background noise, low signal energy and limited training data.

In Fig 7(a) we compare the SNR values for the WTSP true positives and false negatives.
There is a clear difference between the two sets, with true positives having better (higher) SNR
values than false negatives. This difference is statistically significant as determined by a two-
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Fig 6. Precision-recall (PR) curves for CLO-WTSP: training set (blue, obtained via 5-fold cross validation) and
test set (red).
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sample Kolmogorov-Smirnov test (statistic = 0.44, p-value = 4.7 x 1077, sample sizes of 40 and
616 for true positives and false negatives respectively), and provides quantitative confirmation
of our observations based on the qualitative error analysis presented earlier. As explained in
the Methods section, we also tested whether there is a correlation between the approximate
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Fig 7. Approximate Signal-to-Noise-Ratio (SNR) computed separately for the true positives and false negatives returned by the proposed
model: (a) CLO-WTSP test set, (b) CLO-SWTH test set.

doi:10.1371/journal.pone.0166866.9007
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SNR and the confidence value returned by the SVM classifier. Indeed, we found the two to be
positively correlated (Pearson correlation coefficient of 0.37, p-value = 1.3 x 10™*%, degrees of
freedom (df) = 654), meaning there was a tendency for the model to produce more confident
predictions the greater the SNR of the flight call was compared to the background.

Dealing with unusual calls could be addressed by increasing our training set in future itera-
tions, making sure to include as many of these unusual calls as possible so that the classifier
can better model the variance of the target class. An alternative (and more scalable) solution is
to use data augmentation techniques to generate a variety of modulated calls from the existing
training data. Such techniques have shown great success in improving model generalization
[53], including for audio classification problems [54]. Finally, we examined the 6 false posi-
tives, and all clips did actually contain a WTSP call: 2 were labeling errors, and AF rejected the
other 4 because they occurred during diurnal recording periods.

Acoustic monitoring with CLO-SWTH

Next, we repeated the analysis for the CLO-SWTH dataset. As noted earlier, this dataset was
considerably more challenging due to the extremely disproportionate ratio between the posi-
tive class (316 SWTH calls) and the negative class (170129 “other” clips). This time, the hyper-
parameter values selected for dpachs K, fotar and C were 23.2 ms (16 frames), 512, {mean, std}
and 1.0 respectively. This shows that not only does the optimal model parametrization change
from the N-class to the acoustic monitoring scenario—it also changes within the acoustic
monitoring scenario depending on the specific species we are trying to detect.

The confusion matrix (Table 3) shows that even though the model correctly identified more
than half of the true SWTH flight calls and rejected over 160000 noise clips, it still generated
over 5000 false positives. The considerable class imbalance means the ROC curves and AUC
values (Fig 8) are not really informative for this dataset, and we must examine the PR-curves
(Fig 9) to gain meaningful insight. The PR-curve for the test set shows that, even with a very
strict threshold, the precision never goes above 0.5, and with such a threshold the model
would retrieve less than 5% of the true SWTH calls. This suggests that, unlike for WTSP, for
SWTH there is no threshold value for which the model would produce satisfactory results on
the test set.

To gain further insight we conducted the same error analysis for SWTH as we did for
WTSP. Starting with the 122 false negatives reported in Table 3, 76% (93) contained interfer-
ence, 55% (68) contained an unusual call, and 60% (74) contained calls that were distant or
quiet. 42% (51) contained interference and an unusual call, 43% (52) interference and a quiet
call, 33% (40) an unusual and quiet call, and finally 23% (28) of the clips included all three fac-
tors. From Fig 7(b) we see the difference in approximate SNR between true positives and false
negatives is not as notable as it was for WTSP, though still statistically significant (KS statis-
tic = 0.23, p-value = 0.0005, sample sizes of 194 and 122 for true positives and false negatives
respectively). However, we found only a weak correlation between the SNR and model confi-
dence (Pearson correlation coefficient of 0.13, p-value = 0.018, df = 312).

Unlike WTSP, for SWTH the model returned a considerable number of false positives
(5396). Upon examination, we discovered that the vast majority (5261 or 97%) were clips

Table 3. Confusion matrix yielded by the proposed model for the CLO-SWTH test set. Row labels repre-
sent the true class and column labels represent the class predicted by the model.

SWTH OTHER
SWTH 194 122
OTHER 5396 164733

doi:10.1371/journal.pone.0166866.t003
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Fig 8. Receiver Operating Characteristic (ROC) curves produced by the proposed model for CLO-SWTH: training set (blue) and test set (red).
The Area Under the Curve (AUC) score for each set is provided in the figure legend at the bottom right corner.
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containing vocalizations of spring peepers (Psuedscris cruficier), a frog species that produces a
sound remarkably similar, aurally and visually when inspecting the spectrogram, to the SWTH
flight call. This problem could be addressed in several ways in future studies: first, we could
discard springtime detections from ROBIN units at locations known to contain peepers,
though this is not ideal nor scalable. Second, we could work on improving the microphone
technology on the sensors such that they only capture sound coming from above the sensor,
for example through the use of microphone arrays and beamforming [55, 56]. From a machine
listening perspective, the obvious solution is to include peeper samples in our training set—the
training set used for the current model included flight calls from non-target bird species, but
not from other taxonomic groups (e.g. Class Amphibia) such as, in this case, frogs.

Flight call detection histograms

Given the reduced detection precision of the model in the acoustic monitoring scenario as evi-
denced by the PR-curves obtained for WTSP and SWTH, we must ask: is the model precise
enough to reliably identify the pattern of species occurrences over time? Furthermore, what
threshold value should we use (i.e. on the likelihoods produced by the model) to decide which
clips should be labeled as positive detections? To answer this, we plotted the detection results
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Fig 9. Precision-recall (PR) curves for CLO-SWTH: training set (blue, obtained via 5-fold cross validation) and
test set (red).

doi:10.1371/journal.pone.0166866.9009

once more, this time as a histogram of daily detections over the 2-month migration period.
The results are presented in Fig 10 for WTSP and Fig 11 for SWTH (note the log-scaled y-axis
in the latter).

When examining the detection curves for WTSP (Fig 10) we see that both the default detec-
tion curve (blue) and the curve obtained by maximizing the f1 score on the training set (red)
are fairly conservative. The oracle curve is closer to the reference curve during the peak of the
migration season, but also produces more false positives during April. What is encouraging
about these curves though is that they are all highly correlated with the reference curve. The
Pearson correlation coefficient between the red curve (which is the best we could do in a real-
world scenario) and the reference curve is 0.98 with a p-value of 1.7 x 107*° (df = 55). In fact, it
is more strongly correlated to the reference curve than both the default curve (0.95) and the
oracle curve (0.93). So although we cannot trust the absolute counts generated by our model,
we can use the model to determine the migration pattern (or trend) for WTSP; this result is
highly promising.

Finally, we turn to the detection curves obtained for SWTH. Given the poor PR-curve
obtained by the model for the CLO-SWTH test set, it is unsurprising that all three detection
curves (default, optimal f1 and oracle, Fig 11) contain a large amount of false detections on
various days (note the log-scaled y-axis). Based on our qualitative error analysis, we know the
vast majority of these false detections are triggered by spring peepers. Indeed, the model pro-
duces so many false positives on certain days that on a linear scale the reference curve in black
appears almost flat in comparison. Consequently, the detection curves are uncorrelated to the
reference curve (Pearson correlation coefficient of 0.014, -0.002 and 0.065 respectively). The
negative result for SWTH highlights two important points: first, even a model that correctly
rejects the vast majority of non-target clips (approximately 165000 of 170000) might be too
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Fig 10. Detection curves showing the daily number of detected WTSP calls in the CLO-WTSP test set. The true curve (the reference, computed
from the expert annotations) is plotted in black. The other three curves represent detections generated by the proposed model using different threshold
values: the default (0.5) in blue, the threshold that maximizes the f1 score (which quantifies the trade-off between precision and recall by computing their
harmonic mean) on the training set (0.33) in red, and the “oracle threshold” (0.11) that maximizes the f1 score on the test setin green.

doi:10.1371/journal.pone.0166866.9010

imprecise to produce a reliable detection curve. For the N-class problem such a high classifica-
tion accuracy (96%) would be considered satisfactory in most cases, further highlighting the
increased complexity of the continuous monitoring scenario. It also clearly demonstrates that
a model that performs well on the former might not translate to the latter, in this case due to
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Fig 11. Detection curves showing the daily number of detected SWTH calls in the CLO-SWTH test set. The true curve (the reference, computed
from the expert annotations) is plotted in black. The other three curves represent detections generated by the proposed model using different threshold
values: the default (0.5) in blue, the threshold that maximizes the f1 score (which quantifies the trade-off between precision and recall by computing their
harmonic mean) on the training set (0.29) in red, and the “oracle threshold” (0.73) that maximizes the f1 score on the test set in green.

doi:10.1371/journal.pone.0166866.g011
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the abundance of a previously unseen confounding source (the spring peeper), a problem that
cannot be identified in the N-class (closed-set) setting where all the data are known in advance.
Second, it is evident that the task of the classifier has been made excessively challenging by the
poor performance of the SWTH template detector running on the remote sensors, producing
hundreds of thousands of false positives. Consequently, in addition to continued work on the
model itself, we must dedicate time to developing a better detector. Due to the relatively low
processing power of the remote sensors, the challenge lies in producing a detector that per-
forms better than the simple spectral cross-correlation approach, whilst being computationally
efficient. To this end, we are currently investigating the performance of onset detection algo-
rithms [57] that are efficient enough to run in real-time. Another option would be to develop
more complex classification models for generic flight-call detection and reduce their complex-
ity via model compression [58] so that they can be run on limited devices such as the Rasp-
berry Pi.

Conclusions and Future Work

In this paper we investigated the automatic classification of bird species from their flight calls.
In particular, we examined and contrasted the differences between two classification scenarios:
the N-class problem and the continuous acoustic monitoring scenario, which is more relevant
to automatic nocturnal migration monitoring via bioacoustic analysis. To do so, we imple-
mented a state-of-the-art audio classification model based on unsupervised feature learning.
We evaluated the model on three novel datasets, one for studying the N-class problem includ-
ing over 5000 flight calls from 43 different species, and two realistic datasets for studying the
nocturnal migration monitoring scenario that were compiled by means of remote acoustic
sensors deployed in the field during the fall 2014 and spring 2015 migration seasons. By exam-
ining the performance of the model on these datasets we identified the challenges presented by
the continuous monitoring scenario and contrasted them to the more controlled N-class clas-
sification problem. We showed that although the model performs very well on the N-class
problem, it is not equally successful for the bioacoustic monitoring scenario. Furthermore, we
showed that the model must be optimized differently for each scenario and differently for each
species in the acoustic monitoring scenario. In the case of one species (White-throated Spar-
row) we observed that, despite a decrease in performance, the model was nonetheless able to
produce a detection curve that is highly correlated to the reference. This type of bioacoustic
information complements existing sources of information about bird migration, in particular
from Doppler weather surveillance radar [59] and eBird [8, 60]. Radar data can describe the
density, direction, speed, and altitude of migrating birds at night, but they cannot describe the
species involved; eBird data describe the location, number, and identity of species, but almost
exclusively ground-based observations during diurnal periods. Data from bioacoustic migra-
tion monitoring, such as the detection curve produced by the model for WTSP, describe spe-
cies composition at night while migrating birds are actually migrating, providing a critical link
between the taxonomically agnostic radar data and temporally mismatched eBird data. The
model did not produce an equally reliable curve for Swainson’s Thrush patterns. Interestingly,
the main source of confusion for the model was not other bird species, but the presence of
spring peepers, a species of frog that produces a vocalization remarkably similar to the SWTH
flight call. In addition to continued work on the model itself, template detectors running on
the acoustic sensors must be replaced with an algorithm that produces less false positives but is
still computationally efficient (i.e. due to the sensors’ limited processing power).

Also, while we can compute the precision of the template detectors from the clips they pro-
duce (i.e. the ratio of true positives to false positives), we cannot currently evaluate their recall
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rate. That is, since the sensors only return clips when a detection is triggered, we have no way
of knowing whether the template detectors are missing any true positives. As part of our future
work we will collect continuous recordings of full nights (8-10 hours each) at sensor locations
during a migration season. This will allow us to compare clips returned by the detectors to the
true number of flight calls emitted by the target species during these nights and compute the
detector recall rate. We already noted that the precision of the current detectors, especially the
SWTH detector, is too low and that we must employ an alternative approach that produces
fewer false positives. At the same time, we must ensure that the detection technique we deploy
on the sensors has a very high recall rate, since any flight calls not returned by the detectors
cannot be recovered at the latter stage of specific species classification using a more complex
model running on our server.

The results of this study suggest a number of future directions for research. As already
noted, we need to develop a high-recall low-complexity detector with better precision than the
current template detectors to run on the remote sensors. In this context, we intend to investi-
gate adaptive noise filtering techniques [16] to reduce the amount of false positives returned
by the detectors. Such filtering could also potentially improve the performance of our species
classification by reducing the variance of the background conditions the model has to deal
with and improving its generalizability from one environment to another. Still, it is clear that
even with noise filtering the detector is bound to produce a large amount of false positives, and
so we must also work on improving the performance of our species classification method.
Given that the proposed feature learning approach outperformed the baseline technique which
uses a standard feature set, it is reasonable to assume that a deeper learning architecture such
as the one employed by convolutional neural networks [61-65] might perform better still, and
we intend to investigate this set of classification architectures. Finally, given that some of the
observed errors stem from the lack of representative data, we also plan to conduct extended
data collection and annotation in combination with data augmentation techniques [53, 54] as
part of our future work.
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by the model.
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