Band Structure of Germanium Carbides for Direct Bandgap Photonics
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Abstract— Ab-initio simulations of dilute germanium
carbides (Ge:C) using hybrid functionals predict a direct
bandgap with <1%C. Growth of dilute Ge:C shows
reduced direct gap consistent with the model, with no
structural defects detected. Ge:C may enable lasers and
compact modulators on Si.
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I. INTRODUCTION

A direct bandgap material on Si would enable
strong optical coupling for compact integrated lasers,
modulators, and detectors. Although Ge and C both
have indirect bandgaps, an alloy of Ge1-=Cx with x~1%
may offer a strongly direct bandgap with EcL-Ecr > 0.2
eV. This work presents ab-initio simulations and
growth of dilute Ge1xCx to study the expected band
structure of this alloy for optical applications.

II. AB INITIO CALCULATIONS

The Vienna Ab-initio Software Package (VASP)
was used to calculate crystal and band structures of
Geo9922Cooo7s8 using HSEQ6 hybrid functionals.l?
Although Ge and C have the same valence, C is much
more electronegative than Ge and strongly perturbs the
crystal and band structures. The Ge-C bond is 14%
shorter than Ge-Ge (93 pm vs. 108 pm), as shown in
Fig. 1. Electrons are localized near the C atom with
roughly spherical symmetry, similar to the direct
bandgap conduction band gap at I' (k=0). This splits
the conduction band (CB) into E+ and E- bands, while
preserving the s-like character of the CB at I' (Fig. 2).
The new CB minimum Egr = 0.285 eV is at least 0.2
eV below the L valley, so most electrons will populate
the I' valley. It is also less than the split-off band
energy of 0.31 eV calculated from smaller supercells.

Electrons (red/white) localized near C atom (blue)

Fig 1. Simulated crystal structure and electron density
equipotential surfaces showing electrons localized near C
atoms. (a) Looking along a <111> column (upper left). Ge
atoms are green, electron density in red (equipotential surface
with isosurface=0.44 e-/cell). Blue arrows highlight two Ge
atoms pulled out of Ge lattice positions (dashed line) by
adjacent C atoms. (b) Closer view of a single C atom with

isosurface=1.39 e’/cell. Regions of high electron density
(white) approach s-like spherical symmetry around C atom.
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Fig 2. Decomposition of GeCooors folded band structure
(without spin-orbit coupling) into s and p orbital weights.
Marker size represents fraction of each type of orbital
character at each point.
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III. GROWTH AND CHARACTERIZATION

To prevent surface segregation and formation of
undesirable C-C bonds, we grew Ge:C using a
precursor molecule with a C atom already tetrahedrally
bonded to four GeHs groups? During growth by
molecular beam epitaxy, H thermally desorbs, and the
CGes4 core is buried and diluted by Ge from a
conventional Ge Knudsen cell. Local strain inhibits C
atoms from moving closer than second-nearest
neighbors.

Secondary ion mass spectroscopy showed the C to
be approximately 0.2%, too small for a direct bandgap.
However, no graphitic clusters or C-C bonds were
visible in Raman spectroscopy, and nuclear reaction
analysis Rutherford backscattering spectroscopy (NRA
RBS) showed excellent crystallinity with no detectable
interstitial C. Contactless electroreflectance (CER, Fig.
3) showed a reduction in direct bandgap of 0.14+0.1
eV/%C, comparable with dilute nitrides. Transitions to
the E+ band in CER were obscured by Franz-Keldysch

oscillations.
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Fig. 3. Contactless electroreflectance of Ge:C sample and a
bare Ge substrate. Transitions occur at lower energy in Ge:C.

IV. DISCUSSION

The strongly direct bandgap predicted here holds
promise for a laser material. It is expected that the
bandgap can be tuned by adding Si and/or Sn. Also, the
calculated band structure is not well described by a
simple band anticrossing model* except perhaps near
I', warranting further study. The electron effective
mass was found to be nearly the same as pure Ge.

Mid-IR quantum well lasers often suffer from high
Auger recombination. For Ge:C, Egr < Eson, which
suppresses Auger recombination. Future modeling will

study transition rates between the E+ and E-
conduction bands.

The small fraction of C in the experimental growth
makes extraction of optical parameters uncertain.
Growth of Ge:C with higher C content would reduce
these uncertainties.

V. CONCLUSION

Ab-initio simulation of Ge:C predicts a strongly
direct bandgap for 1% C. Growth of Geo9922Co.0078 was
demonstrated with no structural defects detectable, and
the reduction in direct bandgap agreed with simulated
results. Growth with higher C content is needed to
reach a direct bandgap and extract optical properties.
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