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Abstract—  Ab-initio   simulations  of   dilute  germanium 
carbides (Ge:C) using hybrid functionals predict a direct 
bandgap  with  <1%C.    Growth  of  dilute  Ge:C  shows 
reduced  direct  gap  consistent  with  the  model,  with  no 
structural defects detected.  Ge:C may  enable  lasers and 
compact modulators on Si. 
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I. INTRODUCTION 

A  direct  bandgap  material  on  Si  would  enable 

strong  optical  coupling  for  compact  integrated  lasers, 

modulators,  and  detectors.  Although  Ge  and  C  both 

have  indirect bandgaps, an alloy of Ge1-xCx with x≈1% 

may offer a strongly direct bandgap with ECL-ECΓ > 0.2 

eV.  This  work  presents  ab-initio  simulations  and 

growth  of  dilute  Ge1-xCx  to  study  the  expected  band 

structure of this alloy for optical applications. 

II. AB INITIO CALCULATIONS

The  Vienna  Ab-initio  Software  Package  (VASP) 

was  used  to  calculate  crystal  and  band  structures  of 

Ge0.9922C0.0078  using  HSE06  hybrid  functionals.1,2 

Although Ge  and C have the  same valence, C is much 

more electronegative than Ge  and strongly perturbs the 

crystal  and  band  structures.  The  Ge-C  bond  is  14% 

shorter  than Ge-Ge  (93  pm  vs.  108 pm),  as  shown  in 

Fig.  1.  Electrons  are  localized  near  the  C  atom  with 

roughly  spherical  symmetry,  similar  to  the  direct 

bandgap  conduction  band  gap  at Γ  (k=0).   This splits 

the conduction band (CB) into E+ and E- bands, while 

preserving the  s-like character  of  the  CB at Γ (Fig. 2). 

The  new  CB minimum  EGΓ  = 0.285 eV  is at least 0.2 

eV  below the L valley,  so  most electrons will populate 

the Γ  valley.  It  is  also  less  than  the  split-off  band 

energy of 0.31 eV calculated from smaller supercells. 

Electrons (red/white) localized near C atom (blue)

Ge (b)(a)

Fig   1.  Simulated  crystal  structure  and  electron   density 

equipotential  surfaces  showing  electrons  localized  near  C 
atoms.  (a)  Looking  along a  <111>  column (upper  left).  Ge 

atoms are green, electron density in  red (equipotential  surface 
with  isosurface=0.44  e-/cell).  Blue  arrows  highlight two Ge 

atoms  pulled  out  of  Ge  lattice  positions  (dashed  line)  by 
adjacent  C  atoms.  (b) Closer view  of  a  single  C  atom  with 

isosurface=1.39  e-/cell.  Regions  of  high  electron  density 
(white) approach s-like spherical symmetry around C atom.

Fig  2.  Decomposition  of  GeC0.0078  folded   band  structure 
(without  spin-orbit  coupling)  into s  and p  orbital  weights. 
Marker  size  represents  fraction  of  each  type  of  orbital 
character at each point. 
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III. GROWTH AND CHARACTERIZATION

To  prevent  surface  segregation  and  formation  of 

undesirable  C-C  bonds,  we  grew  Ge:C  using  a 

precursor molecule with a  C atom  already tetrahedrally 

bonded  to  four  GeH3  groups.3  During  growth  by 

molecular beam  epitaxy,  H  thermally  desorbs,  and the 

CGe4  core  is  buried  and  diluted  by  Ge  from  a 

conventional Ge  Knudsen  cell.  Local strain inhibits  C 

atoms  from  moving  closer  than  second-nearest 

neighbors. 

Secondary ion mass spectroscopy showed the C to 

be approximately 0.2%, too small for a direct bandgap. 

However,  no  graphitic  clusters  or  C-C  bonds  were 

visible  in  Raman  spectroscopy,  and  nuclear  reaction 

analysis Rutherford backscattering spectroscopy (NRA 

RBS) showed excellent crystallinity with no detectable 

interstitial C.  Contactless electroreflectance (CER, Fig. 

3) showed  a  reduction  in  direct  bandgap  of  0.14±0.1 

eV/%C,  comparable  with  dilute nitrides.  Transitions to 

the E+ band in CER were obscured by Franz-Keldysch 

oscillations.

Fig. 3. Contactless electroreflectance of Ge:C sample and a 
bare Ge substrate. Transitions occur at lower energy in Ge:C.

IV. DISCUSSION 

The  strongly  direct  bandgap  predicted  here  holds 

promise  for  a  laser  material.  It  is  expected  that  the 

bandgap can be tuned by adding Si and/or Sn. Also, the 

calculated  band  structure  is  not  well  described  by  a 

simple  band  anticrossing  model,4 except perhaps  near 

Γ,  warranting  further  study.  The  electron  effective 

mass was found to be nearly the same as pure Ge. 

Mid-IR quantum  well lasers often suffer  from  high 

Auger  recombination.  For  Ge:C,  EGΓ < ESOH,  which 

suppresses Auger recombination.  Future  modeling will 
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study  transition  rates  between  the  E+  and  E- 

conduction bands. 

The small fraction of C in the  experimental growth 

makes  extraction  of  optical  parameters  uncertain. 

Growth of  Ge:C  with  higher  C content  would  reduce 

these uncertainties. 

V. CONCLUSION 

Ab-initio simulation of Ge:C predicts a strongly 

direct bandgap for 1% C. Growth of Ge0.9922C0.0078 was 

demonstrated with no structural defects detectable, and 

the reduction in direct bandgap agreed with simulated 

results. Growth with higher C content is needed to 

reach a direct bandgap and extract optical properties. 
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