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a b s t r a c t

The origin of a large elastic stress within an interface between martensitic variants (twins) within a finite

strain phase field approach has been determined. Notably, for a sharp interface this stress is absent. Three

different constitutive relations for the transformation stretch tensor versus order parameters have been

considered: a linear combination of the Bain tensors (kinematic model-I, KM-I), an exponential-

logarithmic combination (KM-II) of the Bain tensors, and a stretch tensor corresponding to simple

shear (KM-III). An analytical finite-strain solution has been found for an infinite sample for tetragonal

martensite under plane stress condition. In particular, explicit expression for the stresses have been

obtained. The maximum interfacial stress for KM-II is more than twice that which corresponds to KM-I.

Stresses are absent for KM-III, but it is unclear how to generalize this model for multivariant martensitic

transformation. An approximate analytical solution for a finite sample has been found as well. It shows

good correspondence with numerical results obtained using the finite element method. The obtain re-

sults are important for developing phase field approaches for multivariant martensitic transformations

coupled to mechanics, especially at the nanoscale.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Interfacial stresses. Interfacial stresses play an important role in

the formation of the nanostructures, causing martensitic phase

transformations (PTs) in the nanowires [1,2], and influencing the

nucleation condition and evolution in the multivariant martensitic

microstructures [3,4]. Interfacial stresses can also reduce the acti-

vation energy for intermediate melt nucleation within solid-solid

interface by more than an order of magnitude [5]. Interfaces may

have a complex internal structure, including the intermediate

phases [6e9]. Theymay appear as an intermediate state during PTs,

e.g., solid-solid PT via intermediate melting [10e15]. Interfacial

stresses have been determined for external surfaces [1] and solid-

melt interfaces [16e18] using atomistic simulations.

It is well-known [19] that each material surface is subjected to

biaxial interface stresses. For phases that do not support deviatoric

stresses at the equilibrium (liquids and gases), the interfacial force

per unit length s
S in both directions is equal to the surface energy g.

For interfaces in solids, or for solid-liquid and solid-gas interfaces,

the magnitude of the surface stresses is determined by the Shut-

tleworth equation [20] s
S ¼ gþ vg=vεi ¼ sst þ s

S
e, where εi is the

mean interface strain. Thus, interfacial stress consists of two parts:

the tensile structural stress, sst , which is the same as for a liquid-gas

interface, and another, sSe, which is caused by elastic deformation of

an interface and which may be tensile or compressive.

Within the sharp interface approach, the constitutive equations

and balance laws for elastic interfaces were derived in

Refs. [20e27]. The challenges are (a) in finding the material pa-

rameters and (b) in the concern for whether the resultant interfa-

cial stresses can be formalized through simple constitutive

equations due to strongly heterogeneous interfacial fields like

elastic moduli, transformation strains, and total strains across the

interface.

Phase field approach. The phase field approach, which for the
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conserved order parameters is also known as the Ginzburg-Landau

approach, is broadly applied for studying the microstructure evo-

lution during various first-order PTs. The most relevant to the

current paper are works on modeling austenite - multivariant

martensite and twinned microstructure evolution in crystalline

solids [4,28e41]. We also mention works on transformations in

liquids [42] and melting/solidification [43e45], in which interfacial

stresses have been included. In the phase fieldmodels, the interface

has a finite width, and its structure (i.e., distribution of all fields

within an interface) is resolved. Interfacial stresses sst (here, force

per unit area at each point within the interface) with the resultant

force per unit length sst equal to the interface energy g have been

introduced in Refs. [42e44], but are not fully consistent; see the

discussion in Ref. [46]. The problem of introducing of the interfacial

stresses sst was solved for melting [47,48] and the solid-solid

interface for small [3,46,49] and large [50,51] strains, including

cases with anisotropic interface energy [51]. The interfacial stresses

were also introduced and studied for a complex solid-melt-solid

interface [5,52], which appears during solid-solid PT via the inter-

mediate melt.

Elastic interfacial stresses sSe (with resultant force per unit

interface length s
S
e) appear automatically (i.e., without extra terms

in the constitutive equations) as a result of solution of the coupled

Ginzburg-Landau and elasticity equations, due to heterogeneity of

the transformations strain and the elastic properties within inter-

face. They were found numerically for a solid-melt interface

[45,47,48], for the austenite-martensite [3] and martensite-

martensite [4,33] interfaces, as well as for a complex solid-melt-

solid interface [5,52,53]. In contrast, the theory in Ref. [54] in-

troduces the explicit dependence of the gradient energy on the

interfacial strain. This results in the additional interfacial stresses

that depend on the gradient of the order parameter. In the sharp

interface limit, this theory reduces to the theory in Ref. [23], in

which interfacial energy depends on the interfacial strain. The

theory in Ref. [54] does not include structural interfacial stresses

sst . Since the boundary-value problem for stresses was not solved

in Ref. [54], elastic stresses due to heterogeneity of material pa-

rameters within the interface were not discussed. At the same time,

it is argued in Ref. [50] that it is not evident that such an additional

dependence of the gradient energy on the interfacial strain is

necessary, because stresses due to heterogeneous distribution of

material parameters across an interface (neglected in Ref. [54]) may

be large, exceeding what one wants to introduce. This was shown

for the solid-melt interface in Refs. [47,48]. In this case, volumetric

transformation strain (more precisely, the biaxial part of the

transformation strain along the interface) determines the elastic

interfacial stresses [47,48]. They appeared to be too large and un-

realistic (they are significantly larger than stresses determined

using molecular dynamic simulations in Refs. [16,17]). These

stresses artificially suppress melting, and in order to restore con-

sistency with experimental data on the size-dependence of the

melting temperature for Al nanoparticles, various methods of their

relaxation (in particular, introducing an additional equation for

stress relaxation) have been proposed in Refs. [47,48]. This led to

the conclusion that for melting it is not necessary to introduce

additional elastic interface stresses. However, there have been only

limited attempts to understand which parameters affect elastic

interfacial stresses for a solid-solid interface and how they can be

controlled; see, e.g., [4,55,56].

In the current paper, we have found a complete analytical so-

lution for the simplest case of a solid-solid interface between two

martensitic variants, or a twin interface. Since transformation strain

for twinning is a simple shear, internal stresses do not appear

within the sharp interface between martensitic variants or twins. It

is intuitively expected that they should not appear within a phase

field approach also. However, we will see that this is not the case.

Multivariant martensitic PTs. Microstructure evolution during

martensitic PTs plays the central role in determining mechanical,

electrical, and other properties in a broad range of materials, e.g.

shape memory alloys, ferroelectric materials, and multiferroic

materials. The microstructures in such materials usually consist of

mixture of austenite, A, and N martensitic variants, Mi, where

i ¼ 1;2;…;N; see, e.g., [57,58]. Some of the martensitic variants can

form twin boundaries that are coherent interfaces. Across a twin

boundary, one variant can be obtained by simple shear deformation

of the other. In experiments, one rarely sees interfaces between A

and a single martensitic variant, since the stress-free lattices of A

and Mi in most of the materials are not geometrically compatible

(in the sense of Hadamard's compatibility) to form a coherent

stress-free interface. The system prefers to form microstructures

consisting of A separated from twinned martensite by a plane

interface, which minimizes the elastic energy of the system [57,58].

Various continuum theories [57e63] have been used to study

twinnedmicrostructures within sharp interface approaches. On the

other hand, various aspects of the phase field approach to

martensitic PTs and twinning have been developed and used for

simulations in various papers; see e.g., [4,28e41]. Themain concept

is related to the order parameters h that describe material in-

stabilities during PTs from A to Mi in a continuous way.

The necessary conditions for the Landau (local) potential and

transformation strain, which are functions of the order parameters,

have been formulated and utilized in Refs. [30,33,64e66] for small

strains and in Refs. [30,67] for large strains. They, in particular,

introduce the conditions that the thermodynamically equilibrium

values of the order parameters are fixed (i.e., 0 or 1) for A andMi for

any stress and temperature and that the crystal lattice instability

conditions should be included in the theory. This results in a much

more complex expression for the thermodynamic potential and

transformation strain tensor as compared to those used in the other

theories [34e39]. Large strain formulation for multivariant

martensitic PTs were developed in Refs. [30e32,38,39,67]. Three

different kinematic assumptions are currently used in various

papers.

(a) Kinematic model-I (KM-I): Symmetric right transformational

stretch Ut is considered as a linear combination of the Bain

stretch tensors Uti of all the martensitic variants multiplied

with a corresponding nonlinear interpolation function of the

order parameters [30,67]. Such an expression satisfies all of

the conditions formulated in Refs. [30,67]. However, as it was

shown in Refs. [38,39], it does not conserve the determinant

of the transformation stretch (i.e., volumetric transformation

strain) within the transition region between the variants

where 0<h<1. In particular, this means that while all

martensitic variants have the same specific volume, the

transformation process Mi4Mj is not isochoric. This

requirement is not a mandatory one, because, for disloca-

tional slip, for example, there is a volume change along the

shearing process between two stable atomic configurations

[68]. In fact, defect cores in dislocations and twin boundaries

may induce change in volume (see Chapter 7 and 8 of [69]

and the references therein). However, the requirement for

volume conservation sounds reasonable, at least, for the

simplest model; it is good to have such a model. If volume

change is observed during a transformation process between

two martensitic variants, in principle, it could be included as

a correction to the isochoric model.
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(b) Kinematic model-II (KM-II): Recently, an alternative expres-

sion for the transformation stretch was proposed, which is

given by exponential of a linear combination of the natural

logarithm of the Bain tensors [38,39]. In this case, the volume

remains always preserved along the entire path of the

Mi4Mj transformations. However, numerical simulations

demonstrated large elastic stresses within twin boundaries,

which were suppressed by some computational tricks

[38,39]. It is necessary to mention that the order parameters

in Refs. [38,39] are the volume fractions of various phases

and all interpolation functions are linear in order parameters,

in contrast to [30,67]. The requirements formulated in

Refs. [30,67] were not considered [38,39].

Note that even for small strains, while the difference between

two of the above models would be expected to be vanishing, large

elastic stresses within theMi �Mi interfaces have been reported in

Refs. [4,33]. An unambiguous explanation for the reason of such

large elastic stresses within twin boundaries is still missing.

Needless to say, a proper understanding of the origin and nature of

such stresses in twin boundaries is very important in order to use

those models for further study and/or to develop a more suitable

theory. Interfacial stresses can cause martensitic and variant-

variant transformations [1,2]. Also, in a fine mixture of martens-

itic variants, their thickness is only a few nanometers and they

possess sharp tips [70]. Large stresses within nanometer wide in-

terfaces may cause significant stresses of the opposite sign in the

bulk twin phases, which should strongly affect nucleation and

evolution of a martensitic nanostructure [3,4].

(c) Kinematic model-III (KM-III): When single twinning was

studied, a simple shear assumption for the non-symmetric

transformation deformation gradient Ft ¼ I þ gtðhÞm5n

was used [40,64,71]. Here, gtðhÞ ¼ gt0fðhÞ is a smooth

function of the order parameter 0 � h � 1 such that the

interpolation function f satisfies the conditions fð0Þ ¼ 0,

fð1Þ ¼ 1, and vf=vhð0Þ ¼ vf=vhð1Þ ¼ 0 within the two vari-

ants, which were derived as the conditions for thermody-

namic equilibrium of phases. Hence clearly, Ft ¼ I and

Ft ¼ I þ gt0m5n within two respective variants, where gt0

is the shear strain along the unit direction m in the plane

with the unit normal n (called the twinning plane), and 5

stands for the dyadic product between two vectors. This

model cannot be easily generalized for multiple martensitic

variants; see Ref. [30]. To the best of our knowledge, the

interfacial stresses for this model has not yet been studied.

Our goal is to investigate the origin of large elastic stresses

within a variant M1 - variant M2 interface for all three phase field

models, and to analyze the results in details. To accomplish this

goal, an analytical finite strain solution has been obtained for all the

fields within the plane M1 �M2 interface in an infinite sample

under plane stress condition. Cubic A and tetragonal Mi have been

considered. While for KM-III stresses within the interface were

zero, significantly large stresses have been observed for KM-I and

KM-II due to the heterogeneity in the components of the trans-

formation deformation gradient tensor across the interface. In fact,

for KM-II, the maximum value of the interfacial stress is more than

twice of that for KM-I. Thus, if the goal is to develop a model with

stress-free interfaces, one has to find a way of generalizing KM-III

for multivariant transformations, and this is a challenging task. If

one can tolerate interfacial stresses, but wants to minimize them,

then the KM-I, which involves variation of the volumetric strain

during M1 �M2 transformation, is better than the KM-II, which

preserves volumetric strain. It also shows that the requirements to

the phase field theories should be formulated not only for condi-

tions when one phase homogeneously transforms into another one,

but also for the case of coexistent phases divided by an interface.

Furthermore, the effect of the finite size of a sample on the solu-

tions has been investigated. An approximate analytical solution has

been obtained for KM-I, and the finite element (FE) results for both

KM-I and II have been presented. Analytical and numerical solu-

tions for KM-I are in very good agreement.

The paper has been organized in the followingmanner. A system

of coupled mechanics and phase field equations, and various

constitutive relations have been listed in Section 2. We have pre-

sented our results for an infinite sample in Section 3 and for a finite

sample in Section 4. We conclude our paper with Section 5.

We denote multiplication and inner product between two sec-

ond order tensors as ðA$BÞij ¼ AikBkj and A : B ¼ AijBji, respectively,

where repeated indices denote summation as per Einstein's

convention; Aij and Bij are the components of the tensors in a right

handed orthonormal Cartesian basis fe1; e2; e3g; determinant and

trace of tensor A are denoted by det A and tr A, respectively;

subscript 0 means that the quantity is defined in the reference

configuration U0; superscripts T and �1 denote tensor trans-

position and inversion; the gradient operators in reference U0 and

deformed U configurations have been denoted by V0 and V,

respectively; I is the second order identity tensor; V
2
0 :¼ V0$V0

denotes the Laplacian operator in U0; :¼ stands for equality by

definition.

2. Coupled mechanics and phase field equations

We begin Section 2.1 by summarizing the standard kinematic

relations, constitutive relations, and the Ginzburg-Landau equation

for M14M2 transformations. Stress-free A will be chosen as the

reference configuration. A general theory for A and two martensitic

variants requires at least two order parameters. Let us consider that

one order parameter describes austenite 4 martensitic trans-

formation such that it is 0 in A and 1 in M, and the other describes

M14M2 transformations (see Ref. [30] for a similar description).

Hence if a system contains martensitic variants only and austenite

is completely absent, then the order parameter related to

austenite 4 martensitic transformation is equal to unity every-

where, and we just need a single order parameter for describing

M14M2 transformations. The system under study in the present

paper primarily evolves with two variants, where the residual

austenite is fully absent. We denote the later order parameter by h,

where h ¼ 1 inM1 and h ¼ 0 inM2. Obviously, there would be only

a single Ginzburg-Landau equation for the system under study.

Next, specialized kinematic and constitutive relations based on

plane stress assumption have been summarized in Section 2.2.

Finally, the constitutive relations for the transformation stretch

tensor Ut for cubic to tetragonal transformations have been

collected in Section 2.3.

2.1. General theory and system of equations

2.1.1. Kinematics

The deformation of a transforming material is described by the

smooth function r ¼ rðr0; tÞ, where r and r0 are the position vec-

tors of a particle in the deformed U and the reference U0 configu-

rations, respectively, and t denotes time. The deformation gradient

F :¼ V0r is multiplicatively decomposed into elastic part Fe ¼ Ve$R

and the symmetric transformation stretch tensor Ut (see Ref. [50]

for details):
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F ¼ Fe$Ut ¼ Ve$R$Ut ¼ Ve$Ft ; Ft ¼ R$Ut ; (2.1)

where Ve is the symmetric left elastic stretch tensor and R is

the lattice rotation. The deformation gradient F maps an

infinitesimal line element from U0 to U; Ut is the mapping

from U0 to an intermediate stress-free configuration Ut; Fe

maps Ut to the deformed configuration U. We define an

Eulerian elastic strain tensor

be ¼ 0:5ðBe � IÞ ¼ 0:5
�

V
2
e � I

�

; (2.2)

whereBe :¼ Fe$F
T
e is the left Cauchy-Green elastic strain tensor. The

ratios of specific volumes in various configurations are defined as

J ¼ det F , Jt ¼ det Ut , and Je ¼ det Fe with J ¼ JeJt . We define

ε ¼ V � I; εt ¼ Ut � I; and εe ¼ Ve � I; (2.3)

where V ¼
ffiffiffiffiffiffiffiffiffiffiffi

F$F
T

p

is the symmetric left total stretch tensor. The

compatibility condition for the deformation gradient F is (see, e.g.,

Chapter 2 of [72])

V0 � F ¼ 0; where ðV0 � FÞij ¼ εimn

vFjn
vr0m

(2.4)

denotes curl of F and εimn is the third order permutation tensor.

2.1.2. Constitutive relations and governing equations

We now collect the constitutive relations and the system of

equations to be solved.

(i) Mechanical equilibrium equation for neglected body forces

are:

V0$P ¼ 0 in U0; (2.5)

where P is the nonsymmetric first Piola-Kirchhoff stress tensor.

(ii) Helmholtz free energy density: Neglecting the interfacial

structural stresses sst we consider the Helmholtz free en-

ergy per unit mass as (see Ref. [50] for a more general

form)

jðFe; h; q;V0hÞ ¼
Jt
r0

jeðFe; h; qÞ þ Ah2ð1� hÞ2 þ 0:5b
�

�V0h
�

�

2
;

(2.6)

where je is the elastic free energy density per unit volume of Ut;

the second term is the double-well barrier energy; and the third

term is the gradient energy density, with A and b being corre-

sponding parameters. For simplicity, isotropic St. Venant-Kirchhoff

elastic material (see Chapter 5 of [72]) will be considered:

je ¼ 0:5lðtr beÞ2 þ mbe : be; (2.7)

where jeðbeÞ ¼ jeðFeÞ and l and m are the Lam�e constants, which

are the same for both martensitic variants. Since elastic stresses in

the problems below are quite small, linear stress-strain relation is

justified. All derivations can be repeated for a linear anisotropic

material; however, this will complicate equations without

changing the main results significantly. Also, not all elastic con-

stants for tetragonal martensite in NiAl alloy considered here are

known; those which are known, are far from being precise,

because they were found using molecular dynamics at zero tem-

perature [73].

(iii) Stress-strain relations: Using the standard relations for the

first Piola-Kirchhoff P and the Cauchy stress s for isotropic

materials, given by P ¼ Js$F�T and s ¼ J�1
e V

2
e$ðvje=vbeÞ [50],

we obtain

s ¼ J�1
e V

2
e$ðlðtr beÞI þ 2mbeÞ; and

P ¼ JtV
2
e$ðlðtr beÞI þ 2mbeÞ$F�T :

(2.8)

(iv) The stationary Ginzburg-Landau equation for the order

parameter h (see Ref. [50] for a detailed derivation)

_h

L
¼

�

P
T
$Fe � JtjeU

�1
t

�

:
dUt

dh
� 2r0Ah

�

1� 3hþ 2h2
�

þ b
v
2h

vr201

¼ 0;

(2.9)

where L>0 is the kinetic coefficient. We have assumed that h de-

pends on the single coordinate r01; see Section 3.

(v) Boundary condition: Assuming a phase-independent energy

of the external surface S0 of the body in U0 we obtain

V0h$n0 ¼ 0 on S0; (2.10)

where n0 is the outward unit normal to S0. All external surfaces are

traction-free.

2.2. Plane stress condition: stresses and strains

For our goal, it is sufficient to consider the plane stress condi-

tion, i.e. s13 ¼ s23 ¼ s33 ¼ 0. As a consequence, all out-of-plane

components of T are also vanishing, and in F , Fe, Ve, R, and Ut all

the off-diagonal out-of-plane (i.e. 13, 31, 23, and 32) components

are identically zero. Using a standard procedure, the in-plane

Cauchy stresses can be obtained as (see Chapter 7 of [74] for

similar derivation with small strains)

sij ¼ J�1
e V2

e ikT
0
kj; where T 0kj ¼ l0ðbellÞdkj þ 2mbe kj; (2.11)

l0 ¼ 2ml=ðlþ 2mÞ, dkj denotes the Kronecker delta, and the indices

i; j; k; l ¼ 1;2. Also, it can be shown that be33 ¼ �beiil=ðlþ 2mÞ. The
relation be33 ¼ 0:5ðF2e33 � 1Þ ¼ 0:5ðV2

e33 � 1Þ thus yields

Fe33 ¼ Ve33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l0beii=m
q

; and F33 ¼ Ve33Ut33: (2.12)

2.3. Constitutive relation for Ut

Recall that our austenite and martensitic phases have cubic

and tetragonal lattices, respectively. The Bain tensors for three

variants are diagonal matrices of the form diagðb; a; aÞ,
diagða; b; aÞ, and diagða; a; bÞ, where a and b are constant pa-

rameters (see Chapter 4 of [58]). Here we consider the trans-

formation between only two variants of martensite. Without loss

of generality we will choose the first two Bain tensors. For con-

venience of analysis, we assume that the Bain tensors are rotated

about e3 by p=4 (simply to get a twin boundary perpendicular to

e1-axis, see Fig. 1(a)):
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½Ut1� ¼

2

6

4

0:5ðaþ bÞ 0:5ða� bÞ 0

0:5ða� bÞ 0:5ðaþ bÞ 0

0 0 a

3

7

5
;

½Ut2� ¼

2

6

4

0:5ðaþ bÞ �0:5ða� bÞ 0

�0:5ða� bÞ 0:5ðaþ bÞ 0

0 0 a

3

7

5
:

(2.13)

Three different constitutive relations for the transformation

stretch tensor Ut will be discussed below.

KM-I: Uti based transformation rule. In this model, Ut is

expressed as a linear combination of Ut1 and Ut2 [30,33,67]:

Ut ¼ Ut2 þ ðUt1 � Ut2ÞfðhÞ; (2.14)

in terms of the interpolation function

f ¼ h2ð3� 2hÞ: (2.15)

Other higher degree polynomials formulated in Refs. [64,65,67],

satisfying the requirements fð0Þ ¼ 0, fð1Þ ¼ 1, and

f0ð0Þ ¼ f0ð1Þ ¼ 0, can also be used in the current paper without

complications. Obviously,Ut ¼ Ut1 andUt ¼ Ut2 for h ¼ 1 ðM1Þ and
h ¼ 0 ðM2Þ, respectively. Using Eq. (2.13) in Eq. (2.14) we get an

explicit form:

½Ut � ¼

2

4

0:5ðaþ bÞ 0:5ðb� aÞð1� 2fÞ 0
0:5ðb� aÞð1� 2fÞ 0:5ðaþ bÞ 0

0 0 a

3

5: (2.16)

The normal components of Ut given by Eq. (2.16) are constants,

but the shear component Ut12 is heterogeneous across the inter-

face. Obviously, det Ut ¼ 0:25a½ðbþ aÞ2 � ðb� aÞ2ð1� 2fÞ2� is also
heterogeneous across the interface, thereby indicating that the

volume will not remain conserved during variant-variant

transformation.

KM-II: ln Uti based transformation rule. Alternatively,

following [38,39], we assume Ut as exponential of linear combi-

nation of natural logarithm of the Bain tensors:

Ut ¼ exp½f ln Ut1 þ ð1� fÞln Ut2�: (2.17)

The definitions of logarithm and exponential of tensors can be

found, for example, in Chapter 1 of [72]. It is easy to verify from Eq.

(2.17) that in pure M1 and M2, Ut ¼ Ut1 and Ut ¼ Ut2, respectively.

Using the properties detðexpUtiÞ ¼ expðtr UtiÞ and

lnðdet UtiÞ ¼ trðlnUtiÞ (see Chapter 1 of [72]) one can show that

det Ut ¼ detðexp½f ln Ut1 þ ð1� fÞln Ut2 � Þ
¼ exp½f trðln Ut1Þ þ ð1� fÞ trðln Ut2Þ �
¼ exp½f lnðdet Ut1Þ þ ð1� fÞlnðdetUt2Þ � ¼ det Uti;

(2.18)

where we have used the fact that det Ut1 ¼ det Ut2. Obviously, Eq.

(2.18) proves that the transformation rule Eq. (2.17) conserves the

volume during M14M2 transformations. Using Eq. (2.13) in Eq.

(2.17) and simplifying we write

½Ut � ¼

2

6

6

4

0:5
�

afb1�f þ a1�fbf
�

0:5
�

afb1�f � a1�fbf
�

0

0:5
�

afb1�f � a1�fbf
�

0:5
�

afb1�f þ a1�fbf
�

0

0 0 a

3

7

7

5

:

(2.19)

From Eqs. (2.19) and Eq. (2.18) it is clear that

det Ut ¼ aðUt11Ut22 � U2
t12Þ ¼ a2b is a constant.

KM-III: simple shear. In Refs. [40,64,71] and several other pa-

pers devoted to twinning, a simple shear model Ft ¼ I þ gtðhÞm5n

was utilized, where Ft is obviously non-symmetric. For martensitic

variants, this corresponds to considering one of them as the

reference configuration. This description is volume preserving,

since detFt ¼ 1. Usingm ¼ e2 and n ¼ e1 for the sample considered

in this paper, we calculate the transformation stretch tensor

Ut ¼ ðFT
t $FtÞ1=2 as

½Ut � ¼

2

6

6

4

ðq2q4þq3q5Þ
.�

2
ffiffiffi

2
p

q1

�

ðq5�q4Þ
.�

ffiffiffi

2
p

q1

�

0

ðq5�q4Þ
.�

ffiffiffi

2
p

q1

�

ðq3q4þq2q5Þ
.�

2
ffiffiffi

2
p

q1

�

0

0 0 1

3

7

7

5

;

(2.20)

where q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g2t

q

, q2 ¼ q1 � gt , q3 ¼ q1 þ gt , q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� q2gt

p

,

and q5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ q3gt

p

. Note that Ut12 and Ut22 in Eq. (2.20) satisfy the

equality U2
t12 þ U2

t22 ¼ 1, which as we will see, is a crucial condition

for having a stress-free interface.

3. Analytical solution for an interface between martensitic

variants in an infinite sample

3.1. Kinematic models I and II

We consider an infinite stress-free austenite sample, as depicted

Fig. 1. Schematic diagram of an infinite body with lattice orientations: (a) stress-free reference configuration in the austenite phase; (b) deformed configuration with the twinned

martensite; h/1 in M1 , h/0 in M2; the interface has been indicated by the shaded region.
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in Fig. 1(a), as the reference body U0. Let us apply transformation

stretches Uij
t1 and Uij

t2 on the left and right sides of the reference

sample about e2-axis, so that we obtain a fully twinned body

consisting of variants M1 and M2. In a schematic of the deformed

configuration with stationary distribution of h shown in Fig. 1(b), h

varies between 0 and 1 within the interface and h/1 and 0 in M1

and M2, respectively. All deformations are symmetric about the

e2-axis, and for the zero external stresses the interface remains

stationary. Furthermore, we assume that all fields are functions of

r01 only (i.e., independent of r02) and, thereby, reducing down the

problem to one-dimensional (1D). This imposes the constraint

F12 ¼ 0 in the entire body: (3.1)

The solution of the Ginzburg-Landau equation (2.9) should

asymptotically match with the solution in the bulk, which is the

stress-free pure martensitic variants (see Ref. [75] for a similar

treatment); i.e., h should satisfy the following boundary conditions:

h/1 as r01/�∞; and h/0 as r01/∞: (3.2)

Consequently,

Utij/U
ij
t1 as r01/�∞; and Utij/U

ij
t2 as r01/∞: (3.3)

Also, all the stresses are vanishing far away from the interface:

P11; P12; P21; P22; s11; s12; s22/0 as r01/±∞: (3.4)

Obviously, the elastic stretch Veij/dij:

Ve11;Ve22/1 and Ve12/0 as r01/±∞: (3.5)

The stresses and strains are therefore now known in the bulk at

r01/±∞.

To obtain the solutions in the interfacewewill use the kinematic

decomposition Eq. (2.1) and the compatibility condition Eq. (2.4).

Also, we will consider that the entire sample is in mechanical

equilibrium; hence the total traction at each cross-section of the

sample parallel to e2-axis, and e1-axis are vanishing:

Z

∞

�∞

P$e1 dr02 ¼ 0 and

Z

∞

�∞

P$e2 dr01 ¼ 0; (3.6)

at the respective cross-sections. Since P11 and P21 do not vary along

e2 direction, theymust vanish in the entire sample so that Eq. (3.6)1
is respected:

P11 ¼ P21 ¼ 0: (3.7)

Using Eq. (3.1) and the relation P ¼ Js$F�T the components of

first Piola-Kirchhoff stress tensor are obtained in terms of the

Cauchy stresses as

P11 ¼ Js11
F11

; P12 ¼ J

F22

�

� s11F21
F11

þ s12

�

;

P21 ¼ Js12
F11

; P22 ¼ J

F22

�

� s12F21
F11

þ s22

�

:

(3.8)

It is obvious from Eq. (3.8) that

s11 ¼ s12 ¼ P12 ¼ 0: (3.9)

The solutions in Eq. (3.8) and Eq. (3.9) obviously satisfy the

equilibrium equation (2.5). Considering Eq. (3.9) in Eq. (3.6)2, we

simplify it to

Z

∞

�∞

P22 dr01 ¼ 0: (3.10)

Calculating s11 and s12 using Eq. (2.11)1 and then applying Eq.

(3.9) we solve Ve12 and Ve11 which are given by Eqs. (3.22)2 and

(3.22)3, respectively, in Box-I. It is to be mentioned that while

solving s12 ¼ 0, we obtained two other roots given by

Ve12 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0 þ mÞ=ðl0 þ 2mÞ � 0:5ðV2
e11 þ V2

e22Þ
q

. However,

assuming Ve11 and Ve22 are within 15% deviation from unity (even

with such an assumption the magnitude of maximum stresses still

can be several tens of GPa), one can easily verify that for NiAl,

ðl0 þ mÞ=ðl0 þ 2mÞ ¼ 0:63 (see Table 1 for material properties), and

hence these roots are imaginary, and are not considered here.

Since the lattice rotation takes place about e3-axis, expressing Rij
as

Rij ¼
�

cos w �sin w

sin w cos w

	

; (3.11)

and substituting Eq. (3.11) in Eq. (2.1) we obtain

Ve11ðUt11 cos w� Ut12 sin wÞ ¼ F11;

Ve11ðUt12 cos w� Ut22 sin wÞ ¼ F12 ¼ 0;

Ve22ðUt11 sin wþ Ut12 cos wÞ ¼ F21;

Ve22ðUt12 sin wþ Ut22 cos wÞ ¼ F22;

(3.12)

where we have used Eqs. (3.22)2 and (3.1). Since Ve11s0, Eq. (3.12)2
yields

tan w ¼ Ut12=Ut220sin w ¼ Ut12



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q

; and

cos w ¼ Ut22



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q

:

(3.13)

Substituting Eq. (3.13)2,3 in Eq. (3.12) we obtain the total

stretches:

F11 ¼
Ve11

�

Ut11Ut22 � U2
t12

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þU2

t22

q ; F21 ¼ Ve22Ut12ðUt11 þUt22Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q ; and

F22 ¼ Ve22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þU2

t22

q

:

(3.14)

Since F is independent of r02 and r03, and

F12 ¼ F13 ¼ F31 ¼ F23 ¼ F32 ¼ 0, the compatibility condition (2.4)

reduces to a single equation vF22=vr01 ¼ 0. Hence by Eq. (3.14)3 we

have

F22 ¼ Ve22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q

¼ k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5
�

a2 þ b2
�

r

; (3.15)

where k1 is the integration constant. It is obtained from the con-

dition that for h/1 and h/0, Eqs. (2.16) and (2.19) for KM-I and

KM-II yield U2
t12 þ U2

t22/0:5ða2 þ b2Þ and Ve22/1 in those regions.

Utilizing Eqs. (3.15), (2.16) and (2.19) in Eq. (3.12)4 we obtain Ve22

given by Eq. (3.22)5,6 in Box-I. Eqs. (3.22)5 and (3.22)6 are the

desired solutions for Ve22 vs. f½hðr01Þ� corresponding to KM-I and

KM-II, which obviously approach unity as r01/±∞. It is clear that

they (and all the other fields) depend on the single parameter b=a,

and for b ¼ a one has Ve22 ¼ 1 and that all strains and stresses are
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zero. Using Eqs. (3.22)5 and (3.22)6 in combination with the inter-

face profile hðr01Þ for the chosen interpolation function fðhÞ (see

Eq. (3.27)), we obtain the spatial distribution of Ve22. Given Ve22 by

Eq. (3.22)5 or (3.22)6, we can now calculate Ve11 using Eq. (3.22)3,

and Ve33 using Eq. (2.12)1. Finally, substituting Eq. (3.22)2,3 in Eq.

(2.11)1, we obtain the desired s22 as a function of Ve22:

s22 ¼
2m

�

l0 þ m
�

Ve22

�

V2
e22 � 1

�

2
�

l0 þ m
�

� l0V2
e22

: (3.16)

We can now substitute Eq. (3.22)5 or (3.22)6 and (3.22)3 back

into Eq. (3.14) to obtain the unknown components of the total

deformation gradient F11, F22, and F21. Since Ve22/1 in the bulk at

r01/±∞, we can easily verify from Eq. (3.16) that s22/0. Also, by

Eq. (3.14), Fij/RikU
kj
t1 as r01/�∞ and Fij/RikU

kj
t2 as r01/∞ in the

bulk. Components Fe33 and F33 can be obtained using Eq. (2.12).

Stationary solution for Ginzburg-Landau equation.

It seems impossible to solve Eq. (2.9) for h analytically. However,

we have estimated the order of magnitude of various terms in the

Ginzburg-Landau equations and have shown that the trans-

formation work related term can be neglected (see supplementary

material [76]). Then the traditional solution [33,77] of Eq. (2.9) with

the remaining terms is presented in Eq. (3.27)1, where r0c is the

location within the interface where h ¼ 0:5, d is the interfacial

width (defined as the distance between points where h ¼ 0:05 and

h ¼ 0:95), and g is the interfacial energy.

Finally, all the solutions for the infinite sample are summarized

in Box-I.

Interfacial force (tension) for KM-I

The resultant interfacial force, or interface tension is

f ¼
R

∞

�∞
P22dr01. Since P22 is highly nonlinear in h (compare with

Eqs. (3.8) and (3.16)), the integration is performed using an

approximate analytical expression for KM-I:

f ¼ 4m
�

l0 þ m
�

l0 þ 2m

Z

∞

�∞

gðfÞdr01; where (3.17)

gðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r

aþ b

"

1� 1

2

�

a� b

aþ b

�2

ð1� 2fÞ2

þ 3

8

�

a� b

aþ b

�4

ð1� 2fÞ4
#

� 1: (3.18)

We obtained the integrand gðfÞ in Eq. (3.17) by using Eq. (3.22)5
in Eq. (3.16) and expanding it in the series of

ð1� 2fÞ2ðb� aÞ2=ðbþ aÞ2, whose maximum value is

ðb� aÞ2=ðbþ aÞ2≪1 for NiAl (see Table 1). Using Eq. (3.27)1,2 we

calculate
R

∞

�∞
ð1� 2fÞ2dr01 ¼ 0:5823 d and

R

∞

�∞
ð1� 2fÞ4

dr01 ¼ 0:4530 d, and by substituting them in Eq. (3.17) we get the

resultant interfacial force f (see Eq. (3.28)1 in Box-I) which depends

on the material constants. An important consequence of Eq. (3.28)1
is that in the sharp interface limit, i.e. as d/0, the interfacial force

also vanishes.

3.2. Kinematic model III

The transformation stretches given by Eq. (2.20) satisfy

U2
t12 þ U2

t22 ¼ 1. Hence, according to Eq. (3.15)1,2, Ve22 ¼ const. Us-

ing Eq. (3.16) and the condition on s22 in Eq. (3.4) we conclude that

Ve22 ¼ 1 and s22 ¼ 0 in entire sample: (3.19)

Box-I

List of results for finite strain

1. Transformation stretches

Ut11 ¼ Ut22 ¼ 0:5ðaþ bÞ and Ut12 ¼ 0:5ðb� aÞð1� 2fÞ for KM� I;

Ut11 ¼ Ut22 ¼ 0:5
�

afb1�f þ a1�fbf
�

and Ut12 ¼ 0:5
�

afb1�f � a1�fbf
�

for KM� II;

Ut11 ¼ q2q4 þ q3q5

2
ffiffiffi

2
p

q1
; Ut22 ¼ q3q4 þ q2q5

2
ffiffiffi

2
p

q1
; and Ut12 ¼ q5 � q4

ffiffiffi

2
p

q1
for KM� III;

(3.20)

where q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g2t

q

; q2 ¼ q1 � gt ; q3 ¼ q1 þ gt ; q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� q2gt
p

; q5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ q3gt
p

: (3.21)

2. Lattice rotation and elastic stretches

tan w ¼ Ut12

Ut22
and Ve12 ¼ 0 for KM� I; II; III;

Ve11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
l0
�

V2
e22 � 1

�

l0 þ 2m

v

u

u

t

for KM� I; II; Ve11 ¼ 1 for KM� III;

Ve22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ bÞ2 þ ða� bÞ2ð1� 2fÞ2
q for KM� I;

Ve22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2fb2�2f þ a2�2fb2f
q for KM� II;

Ve22 ¼ 1 for KM� III;

(3.22)
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Since all stresses are zerowithin the sample, the resultant force f

defined in Eq. (3.17) is zero as well. Results are listed in Box-I for

finite deformation and in Box-II for small strains. Some other ar-

guments are given in Ref. [30].

Although, Ut given by Eq. (2.20) successfully describes a stress-

free twinning solution, there are several difficulties in using it for a

more general study: (i) For multivariant PTs, it is not trivial to

include simple shear transformations between all variants. In

particular, each pair of twin-related variants has two possible twin

parameters n andm; the number of order parameters hence will be

doubled. Also, a proper orientation of variants should be provided.

Also, relation (2.20) is for a plane interface, and it is not clear how to

treat curved interfaces. (ii) Not all martensitic variants in a material

are in twin relationship (e.g., for cubic to monoclinic trans-

formation); hence the transformation rule (2.20) cannot be applied

to all martensitic transformations.

3.3. Small strain approximation

Under small strain and rotation assumption,
�

�

εij

�

�≪1,
�

�

εtij

�

�≪1,
�

�

εeij

�

�≪1, jF21j≪1, and jwj≪1. Expanding all the equations in Box-I

into Taylor's series about strain-free state we obtain the results in

Box-II. For small strains, the transformation strains for KM-I and

KM-II coincide (see Eq. (3.30)). Lattice rotation is proportional to

εt1 � εt2 and the normal elastic strains and stresses are proportional

to ðεt1 � εt2Þ2, i.e., they are square of the difference in trans-

formation strains (see Eq. (3.31)), where εt1 ¼ a� 1 and εt2 ¼ b� 1.

Vmax
e22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r

aþ b
for KM� I; Vmax

e22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
q

ffiffiffiffiffiffiffiffiffi

2ab
p for KM� II: (3.23)

3. Total stretches

F11 ¼ Ve11
Ut11Ut22 � U2

t12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q ; F22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5
�

a2 þ b2
�

r

; F12 ¼ 0; and

F21 ¼ Ve22Ut12ðUt11 þ Ut22Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
t12 þ U2

t22

q for KM� I; II;

F11 ¼ F22 ¼ 1; F12 ¼ 0; and F21 ¼ gt for KM� III:

(3.24)

4. The expressions for V2
e22 � 1 and their maximum values:

V2
e22 � 1 ¼ 4ða� bÞ2fð1� fÞ

ðaþ bÞ2 þ ða� bÞ2ð1� 2fÞ2
; max

��

�

�V2
e22 � 1

�

�

�

�

¼ ða� bÞ2

ðaþ bÞ2
for KM� I;

V2
e22 � 1 ¼ a2 þ b2 � a2fb2�2f � a2�2fb2f

a2fb2�2f þ a2�2fb2f
; max

��

�

�V2
e22 � 1

�

�

�

�

¼ ða� bÞ2
2ab

for KM� II:

(3.25)

5. Cauchy stresses

s11 ¼ s12 ¼ 0 for KM� I; II; III;

s22 ¼
2m

�

l0 þ m
�

Ve22

�

V2
e22 � 1

�

2
�

l0 þ m
�

� l0V2
e22

for KM� I; II; and s22 ¼ 0 for KM� III:
(3.26)

6. Order parameter, interpolation function, interface width and energy

h ¼ 1=ð1þ exp½ � 6ðr01 � r0cÞ=d�Þ; f ¼ h2ð3� 2hÞ; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18b=A
q

; g ¼ b=d: (3.27)

7. Resultant interfacial force

f ¼ ~f d; for KM� I; and f ¼ 0 for KM� III; where (3.28)

~f ¼ 4m
�

l0 þ m
�

l0 þ 2m

2

6

6

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r

aþ b

(

1� 0:2912

�

a� b

aþ b

�2

þ 0:1699

�

a� b

aþ b

�4
)

� 1

3

7

7

5

: (3.29)

Table 1

List of parameters for NiAl.

Parameter Value reference

l 74.62 GPa [4]

m 72 GPa [4]

a 0.922 [4]

b 1.215 [4]

g 0.05 J/m2 typical (see e.g. Ref. [38])

d 0.75 nm

A 1.2 GPa using Eq. (3.27)3
b 3:75� 10�11 N using Eq. (3.27)4
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For small strains, the interface stress for KM-II is twice that which

corresponds to KM-I (see Eq. (3.33)). An estimation for the interface

force is given by Eq. (3.34). For KM-III, only εt12 is non-trivial, which

is listed in Eq. (3.30). All elastic strains are vanishing, and so are the

stresses and the interface force (see Eqs. (3.31), (3.33) and (3.34)).

Normal components of the total strain are zero, and the shear

component is same as εt12 (see Eq. (3.32)).

3.4. Discussion

It is thus clear from Eq. (3.15), which is obtained from the strain

compatibility relation, that the constitutive relations for Ut given

by Eqs. (2.16) and (2.19) are not compatible with unit elastic stretch

V22 (or equivalently, vanishing elastic strains) across the twin

boundary. Such incompatibility is accommodated by the large

elastic stress s22 in the twin boundary. Our analytical treatment in a

twinned sample has clearly shown the reason for elastic stresses in

a diffused twin boundary in phase field studies in Refs. [30,38,39]

and has quantified them.

We now present a detailed quantitative analysis showing the

non-trivial stresses and strains. We have plotted only the non-

trivial components of stress, lattice rotation, and other strains εij,

εtij, and εeij (see Eq. (2.3) for their definitions) along the line r02 ¼ 0

in U0. Results for NiAl have been presented. The material parame-

ters are listed in Table 1.

In Fig. 2(a) εe11 and εe22 are compared for Ut given by models

KM-I and KM-II. Normal elastic strains within the interface are

larger for KM-II compared to those for KM-I. Fig. 2(b) shows that

s22 for both models reaches several GPa; that is to say, it is quite

large. Themaximumvalue of the elastic strain and stress is attained

at the middle of the interface where h ¼ 0:5 (compare with Eqs.

(3.25)2,4, (3.23), (3.26)2, and (3.27)1 in Box-I). The ratio of Ve22 for

those two models at h ¼ 0:5 is V II
e22=V

I
e22 ¼ 0:5ðaþ bÞ=

ffiffiffiffiffiffi

ab
p

, which

is always greater than unity for all positive asb. Consequently, the

maximum stress (calculated at h ¼ 0:5) is also larger for KM-II. We

have shown the variation of maximum stress (non-dimensional-

ized by m) with the stretch ratio b=a for both the models in Fig. 2(c).

For all b=a, maxðsII22Þ � 2 maxðsI22Þ, and the maximum stress ratio

Box-II

List of results for small strain

1. Transformation strains

εt11 ¼ εt22 ¼ 0:5ðεt1 þ εt2Þ and εt12 ¼ 0:5ðεt2 � εt1Þð1� 2fÞ for KM� I; II;
εt11 ¼ εt22 ¼ 0 and εt12 ¼ 0:5gt for KM� III;

(3.30)

2. Lattice rotation and elastic strains

w ¼ 0:5ðεt2 � εt1Þð1� 2fÞ for KM� I; II; w ¼ 0:5gt for KM� III

εe12 ¼ 0; εe11 ¼ �l0fð1� fÞðεt1 � εt2Þ2

2
�

l0 þ 2m
� ; and εe22 ¼ 1

2
fð1� fÞðεt1 � εt2Þ2 for KM� I;

εe12 ¼ 0; εe11 ¼ �l0fð1� fÞðεt1 � εt2Þ2

l0 þ 2m
; and εe22 ¼ fð1� fÞðεt1 � εt2Þ2 for KM� II;

εe12 ¼ εe11 ¼ εe22 ¼ 0 for KM� III:

(3.31)

3. Total strains

ε11 ¼ εe11 þ 0:5ðεt1 þ εt2Þ; ε22 ¼ 0:5ðεt1 þ εt2Þ; and ε12 ¼ 0:5ðεt1 þ εt2Þð1� 2fÞ for KM� I; II;
ε11 ¼ ε22 ¼ 0 and ε12 ¼ 0:5gt for KM� III:

(3.32)

4. Cauchy stresses

s11 ¼ s12 ¼ 0 for KM� I; II; s22 ¼ 2m
�

l0 þ m
�

l0 þ 2m
fð1� fÞðεt1 � εt2Þ2 for KM� I;

s22 ¼ 4m
�

l0 þ m
�

l0 þ 2m
fð1� fÞðεt1 � εt2Þ2 for KM� II;

s11 ¼ s12 ¼ s22 ¼ 0 for KM� III:

(3.33)

5. Resultant interfacial force

f ¼ ~f d for KM� I; and f ¼ 0 for KM� III; where ~f ¼ 0:2088m
�

l0 þ m
�

l0 þ 2m
ðεt2 � εt1Þ2: (3.34)
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approaches 2 as b=a/1. It should be mentioned that the net elastic

energy stored within the interface per unit area of the cross-section

of the reference sample perpendicular to e1-axis, i.e.
R

∞

�∞
Jtjedr01

has been calculated to be 1:7� 10�3 J=m2 for KM-I and

6:8� 10�3 J=m2 for KM-II, where je is given by Eq. (2.7). This en-

ergy is obviously much smaller than the structural energy of the

interface g ¼ 0:05 J=m2: This means that the elastic stresses

defined in the paper and corresponding resultant force are not

described by the second term vg=vεi in the Shuttleworth equation

[20] but related to the heterogeneity of the transformation strain

within a finite-width interface. Since these stresses are indepen-

dent of the interface width, for a sharp interface the resultant force

f ¼ 0.

Variations of the components of εtij, εij, and tan w are shown in

Fig. 3. In some of the plots the components have been scaled up for

better readability. The component εt11 ¼ εt22 is constant every-

where for KM-I. However, for KM-II we see that it decreases within

the interface, which can be easily explained by looking at

det Ut ¼ ðU2
t11 � U2

t12Þa ¼ const:, as shown in Eq. (2.18), where we

have considered Ut11 ¼ Ut22 and Ut33 ¼ a. Since Ut12 is heteroge-

neous across the interface, Ut11 and Ut22 also must vary appropri-

ately to maintain the constancy of det Ut . Variations of the

components of εij are shown in Fig. 3(b). Since ε22 for both models

are identical constants (see Eq. (3.15)), just a single curve has been

shown. The other components 3ε11 and F21 vary heterogeneously

across the interface. Plots for tan w are shown in Fig. 3(c); for both

models they are almost coincident.

4. Analytical and FE solutions for an interface between

martensitic variants in a finite sample

We will now consider a finite sample, which is more realistic

configuration, to show the effect of external surfaces on stresses

and strains. A stress-free austenite sample is considered as the

reference body (see the shape in Fig. 4(a)). We denote the width

(along e1 direction) of the reference sample byw[d. The following

boundary conditions for the mechanics problem are assumed: all

external surfaces are traction-free; the bottom-left corner point is

fixed, and e1 component of displacement at left surface is zero. The

reference sample is deformed to obtain a twinned body in a way

similar to how it was obtained in the infinite sample. Here the

deformed sample is rectangular (see Fig. 4(b)). An approximate

analytical solution for KM-I has been derived and comparedwith FE

results. Numerical solution have been presented for KM-II and

compared with the results for KM-I.

4.1. Analytical treatment for KM-I

We utilize the St. Venant principle and restrict our analysis to

the region away from the upper and lower free surfaces.We assume

that in that region the solutions are independent of r02 and are

functions of r01 only. Hence the condition (3.1) F12 ¼ 0 is valid in

that region. Repeating the same steps as for an infinite sample, we

see that the expressions for elastic stretches Ve11 and Ve12, total

stretches F11, F21, and F22, lattice rotation w, stresses

P11 ¼ P12 ¼ P21 ¼ s11 ¼ s12 ¼ 0, and s22 for finite sample are

identical to those obtained for the infinite sample listed in Box-I.

The force equilibrium condition (see Eq. (3.6))

Z

w=2

�w=2

P22dr01 ¼ 0 (4.1)

must be satisfied at each cross-section along the width of the

sample. This conditionwill determine Ve22 for a finite sample. Once

Ve22 is known, all other solutions can be easily computed. For the

finite sample we consider that stationary h is given by Eq. (3.27)1.

Since w[d, the stresses and strains within the finite sample differ

slightly from that in the infinite sample, and do not affect h.

Fig. 2. Plots for infinite sample: (a) εe11 and εe22 , and (b) stress s22; (c) variation of max ðs22Þ=m at the mid point of the interface where h ¼ 0:5 for KM-I and KM-II. In the legends ‘I’

and ‘II’ indicate KM-I and KM-II, respectively.

Fig. 3. Plot for infinite sample: (a) 2εt11 ð¼ 2εt22Þ and εt12; (b) 3ε11 , F21 , and ε22; (c) tan w.
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Let us now determine s22 and Ve22. We have seen that for an

infinite sample, s22 within the interface is tensile (see Fig. 2(b)).

Hence we expect that for a finite sample, the force equilibrium at

the cross-section along the width of the sample would require that

the bulk to be under compression. Since we consider w[d, the

magnitude of s22 outside the interface will be much smaller than

smax
22 within the interface. We therefore assume that s22 in the bulk

is constant (denoted by S), and sw22 for the finite sample is equal to

s∞22 in infinite sample superposed by S, i.e.

s
w
22 ¼ s

∞

22 þ S: (4.2)

Both sw22 and s∞22 have the same expression given by Eq. (3.26)2,

but, Ve22 are different in these samples. In the infinite sample Ve22 is

given by Eq. (3.22)5,6 for KM-I and KM-II, respectively, and in the

finite sample it is yet to be determined. Since s∞22 ¼ 0 outside the

interface, using Eq. (4.2) we can rewrite the force equilibrium

condition Eq. (4.1) as

Z

d=2

�d=2

Js∞22dr01 þ
X

Z

w=2

�w=2

Jdr01 ¼ 0; (4.3)

where we have used Eq. (3.8)4 and F22 ¼ const. The integral in Eq.

(4.3) is not analytically tractablewhen s22 given by Eq. (3.26)2. If we

assume Jzconst, we note that the integral has already been eval-

uated in Eq. (3.29) (for KM-I), which can be used here to obtain

Sz� f =w. Hence we have

s
w
22 ¼ s

∞

22 � ðd=wÞ~f ; (4.4)

where s∞22 is evaluated using V∞

e22 given by Eq. (3.22)5 for the

infinite sample, and we have used Eq. (3.28). Then in principle,

using Eq. (3.26)3 in Eq. (4.4) for sw22 we can calculate Vw
e22 for the

finite sample. Alternatively, we obtain an approximate solution for

Vw
e22 as follows. We know that s∞22 ¼ 0 in the bulk and

�

�S
�

� ¼
�

�f =w
�

�≪smax
22 , we infer that Ve22 in the bulk deviates slightly

from unity. Then defining

Vw
e22 ¼ V∞

e22 þ c; where
�

�c
�

�≪1; (4.5)

we use it in Eq. (4.4) away from the interface (where V∞

e22 ¼ 1) and

linearize it about c ¼ 0 to obtain

c ¼ � f
�

l0 þ 2m
�

4wm
�

l0 þ m
� : (4.6)

Now, we compare the bulk stress with the maximum value of

the stress within the interface for KM-I. We approximately evaluate

the maximum stress in the finite sample by considering h ¼ 0:5 in

Eq. (4.4) as

max
�

s
I
22

�

¼ 4m
�

l0 þ m
�

l0 þ 2m

0

B

B

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r

aþ b
� 1

1

C

C

A

: (4.7)

Hence the ratio of bulk stress and the maximum stress in the

interface can be expressed as

In summary, Vw
e22 in finite sample can be obtained using Eqs.

(4.5) and (4.6); sw22 is calculated using Eq. (4.4), where s∞22 is given

by Eq. (3.26)2; all other stresses, rotation, and stretches are identical

to those listed in Box-I, where Ve22 therein is for the infinite sample.

Fig. 4. Finite sample geometry with distribution of h in FE computations: (a) initial stress-free reference configuration of A; (b) twinned sample (deformed configuration) with

stationary distribution of h.

S

max
�

sI22

� ¼ � d

w

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r 


ðaþ bÞ
�

n

1� 0:2912ða� bÞ2
.

ðaþ bÞ2 þ 0:1699ða� bÞ4
.

ðaþ bÞ4
o

� 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�

a2 þ b2
�

r 


ðaþ bÞ
�

� 1

: (4.8)
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4.2. Discussions on analytical and FE results

We will analyze the following results: for KM-I both analytical

(derived in Section 4.1) and FE results, and for KM-II FE results only

will be discussed. For FE simulations, a 12 nmwide and 24 nm long

(length along any cross-section in e2 direction) sample ðU0Þ, as
shown in Fig. 4(a), has been discretized uniformly with 2160 fourth

order quadrilateral elements. The total degrees of freedom is

104835. Displacement and traction boundary conditions, as out-

lined in the beginning of the subsection, have been applied. FE

computations have been carried out using an open source deal.II

library [78], where we have written a nonlinear FE code for solving

the coupled mechanics and phase field equations. Detailed

computational algorithm will be presented elsewhere. The

deformed body with the stationary h is shown in Fig. 4(b). The

interface profile obtained using FE computation matches with the

stress-independent analytical solution given by Eq. (3.27)1, and the

interface width is 0.75 nm. The results shown in Figs. 5 and 6 have

been plotted along r02 ¼ 0 line in U0, which obviously passes

through the middle of the sample. For better readability of the data,

all plots are shown for �1 nm � r01 � 1 nm. Analytical and nu-

merical results for elastic stretches and stress s22 are compared in

Fig. 5(a) and (b), respectively, for both KM-I and II. FE and analytical

solutions for KM-I are in a good agreement. The results within the

twin boundary are qualitatively similar to those obtained for

infinite sample. However, within bulk, elastic stretches are less

than unity, and the stress s22 is compressive, which balances the

tensile force generated within the twin boundary for accommo-

dating the incompatibility. Various components of εtij, εij, Fij, and

tan w, shown in Fig. 6(a), (b), and (c), are qualitatively similar to

those for an infinite sample.

5. Concluding remarks

In the sharp interface approach, the boundary between two

martensitic variants, which are in a twin relationship, is stress-free,

i.e., it does not generate elastic stresses because of the lack of lattice

incompatibility. However, in the phase field approach, a finite

width interface generates elastic stresses [4,33,38,39], but the

reason was unclear. There had been only limited attempts to find

out which parameters affect elastic interfacial stresses for solid-

solid interface and how they can be controlled. Here, the origin of

a large elastic stress within an interface between martensitic vari-

ants (twins) within a finite strain phase field approach has been

determined by obtaining an analytical finite-strain solution for an

infinite sample. Example with cubic austenite and tetragonal

martensite has been treated under plane stress condition. Three

different constitutive relations for the transformation stretch

tensor versus order parameters have been considered: (a) a linear

combination (KM-I) of the Bain tensors for the martensitic variants

[30,67]; (b) an exponential-logarithmic combination (KM-II) of the

Bain tensors [38,39], which preserves volume for any intermediate

state along the transformation path between martensitic variants;

and (c) simple shear (KM-III) in one variant with respect to another

[40,64,71]. Stresses are absent for KM-III, but it is unclear how to

generalize this model for a multivariant martensitic trans-

formation. The first two models generate elastic stresses within the

interface, which are along the interface, because of the variable

component of the transformation deformation gradient along the

interface normal. Stress distribution depends on the interpolation

function for the transformation deformation gradient fðhÞ and

r01=d, and resultant force per unit interface length f (surface ten-

sion) is proportional to the interface width d. Thus, for the sharp

Fig. 5. Plots for finite sample along r02 ¼ 0 for KM-I and II: (a) εe11 and εe22; (b) s22 . In legend, ‘A’ and ‘F’ stand for analytical and FE results, respectively.

Fig. 6. Plots for finite sample along r02 ¼ 0 for KM-I and II; (a) εt11 , and εt12; (b) ε11 , F21 , and ε22; (c) tan w. In legend, ‘A’ and ‘F’ mean analytical and FE results, respectively.
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interface surface tension is zero. However, for an alternating twin

structure with a traditional several nanometers spacing between

interfaces [70], comparable with the finite interface width, the ef-

fect of surface tension can be significant. The magnitude of the

interfacial stresses for NiAl alloy is several GPa, which is signifi-

cantly large. The maximum interfacial stress for KM-II is more than

twice that which corresponds to KM-I.

Note that for small transformation strains, expressions for the

transformation deformation gradient for KM-I and KM-II coincide,

and the lattice rotation and stress are proportional to ðεt1 � εt2Þ2,
meaning they are higher order terms. Even for small strains, the

interface stress for KM-II is double that which corresponds to KM-I.

An approximate analytical solution for a finite sample has also

been found. It contains small compressive stresses in bulk to

equilibrate tensile interface tension. The analytical solution is in

good correspondence with numerical results obtained using the FE

method.

The main question is whether elastic interfacial stresses are real

or just an artifact of the model. The magnitude of the interfacial

stresseswithin a twin interface should be determinedwith the help

of atomistic simulations, similar to [1,16,17] for other interfaces.

Then the difference between the atomistic results and the struc-

tural stresses sst will represent elastic stresses. Intuitively, stresses

obtained here are too high for both KM-I and KM-II. From this point

of view, KM-I is better that KM-II, and also simpler. The require-

ment of volume preservation during twinning is plausible but not

mandatory. There are data indicating that that dislocational slip is

also not isochoric process between two stable atomic configura-

tions [68]. Also, other defects such as stacking fault and twin

boundaries may induce volume change (Chapter 7 and 8 of [69] and

references therein).

On the other hand, based on the parameter values for NiAl, the

interfacial force f is estimated to be 0.6 N=m for KM-I, and 1.2 N=m

for KM-II. To the best of our knowledge, there is no experimental

data or atomistic simulations for the interfacial stresses for twin

interface. However, there are estimation for f for the external sur-

faces of nanowires [1], which was in the range of 1e3.5 N=m. The

variant-variant interfacial stresses are expected to be smaller than

the stresses within external surfaces. Hence our interfacial stress

values are reasonable and should be close to reality.

The obtained results also demonstrate that the requirements of

the phase field theories should be formulated not only for condi-

tions when one phase homogeneously transforms into another one,

but also for the case with coexistence of both phases divided by an

interface. That is why the obtained results are important for

developing phase field approaches for multivariant martensitic PTs

coupled to mechanics, especially at the nanoscale.
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