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1. Introduction

Interfacial stresses. Interfacial stresses play an important role in
the formation of the nanostructures, causing martensitic phase
transformations (PTs) in the nanowires [1,2], and influencing the
nucleation condition and evolution in the multivariant martensitic
microstructures [3,4]. Interfacial stresses can also reduce the acti-
vation energy for intermediate melt nucleation within solid-solid
interface by more than an order of magnitude [5]. Interfaces may
have a complex internal structure, including the intermediate
phases [6—9]. They may appear as an intermediate state during PTs,
e.g., solid-solid PT via intermediate melting [10—15]. Interfacial
stresses have been determined for external surfaces [1] and solid-
melt interfaces [ 16—18] using atomistic simulations.

It is well-known [19] that each material surface is subjected to
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biaxial interface stresses. For phases that do not support deviatoric
stresses at the equilibrium (liquids and gases), the interfacial force
per unit length @ in both directions is equal to the surface energy 7.
For interfaces in solids, or for solid-liquid and solid-gas interfaces,
the magnitude of the surface stresses is determined by the Shut-
tleworth equation [20] @ = vy + 8y/de; = Gst + Ty, Where ¢ is the
mean interface strain. Thus, interfacial stress consists of two parts:
the tensile structural stress, @s;, which is the same as for a liquid-gas
interface, and another, 3, which is caused by elastic deformation of
an interface and which may be tensile or compressive.

Within the sharp interface approach, the constitutive equations
and balance laws for elastic interfaces were derived in
Refs. [20—27]. The challenges are (a) in finding the material pa-
rameters and (b) in the concern for whether the resultant interfa-
cial stresses can be formalized through simple constitutive
equations due to strongly heterogeneous interfacial fields like
elastic moduli, transformation strains, and total strains across the
interface.

Phase field approach. The phase field approach, which for the
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conserved order parameters is also known as the Ginzburg-Landau
approach, is broadly applied for studying the microstructure evo-
lution during various first-order PTs. The most relevant to the
current paper are works on modeling austenite - multivariant
martensite and twinned microstructure evolution in crystalline
solids [4,28—41]. We also mention works on transformations in
liquids [42] and melting/solidification [43—45], in which interfacial
stresses have been included. In the phase field models, the interface
has a finite width, and its structure (i.e., distribution of all fields
within an interface) is resolved. Interfacial stresses o (here, force
per unit area at each point within the interface) with the resultant
force per unit length @ equal to the interface energy y have been
introduced in Refs. [42—44], but are not fully consistent; see the
discussion in Ref. [46]. The problem of introducing of the interfacial
stresses g5 was solved for melting [47,48] and the solid-solid
interface for small [3,46,49] and large [50,51] strains, including
cases with anisotropic interface energy [51]. The interfacial stresses
were also introduced and studied for a complex solid-melt-solid
interface [5,52], which appears during solid-solid PT via the inter-
mediate melt.

Elastic interfacial stresses o3 (with resultant force per unit

interface length Eg ) appear automatically (i.e., without extra terms
in the constitutive equations) as a result of solution of the coupled
Ginzburg-Landau and elasticity equations, due to heterogeneity of
the transformations strain and the elastic properties within inter-
face. They were found numerically for a solid-melt interface
[45,47,48], for the austenite-martensite [3] and martensite-
martensite [4,33] interfaces, as well as for a complex solid-melt-
solid interface [5,52,53]. In contrast, the theory in Ref. [54] in-
troduces the explicit dependence of the gradient energy on the
interfacial strain. This results in the additional interfacial stresses
that depend on the gradient of the order parameter. In the sharp
interface limit, this theory reduces to the theory in Ref. [23], in
which interfacial energy depends on the interfacial strain. The
theory in Ref. [54] does not include structural interfacial stresses
ast. Since the boundary-value problem for stresses was not solved
in Ref. [54], elastic stresses due to heterogeneity of material pa-
rameters within the interface were not discussed. At the same time,
itis argued in Ref. [50] that it is not evident that such an additional
dependence of the gradient energy on the interfacial strain is
necessary, because stresses due to heterogeneous distribution of
material parameters across an interface (neglected in Ref. [54]) may
be large, exceeding what one wants to introduce. This was shown
for the solid-melt interface in Refs. [47,48]. In this case, volumetric
transformation strain (more precisely, the biaxial part of the
transformation strain along the interface) determines the elastic
interfacial stresses [47,48]. They appeared to be too large and un-
realistic (they are significantly larger than stresses determined
using molecular dynamic simulations in Refs. [16,17]). These
stresses artificially suppress melting, and in order to restore con-
sistency with experimental data on the size-dependence of the
melting temperature for Al nanoparticles, various methods of their
relaxation (in particular, introducing an additional equation for
stress relaxation) have been proposed in Refs. [47,48]. This led to
the conclusion that for melting it is not necessary to introduce
additional elastic interface stresses. However, there have been only
limited attempts to understand which parameters affect elastic
interfacial stresses for a solid-solid interface and how they can be
controlled; see, e.g., [4,55,56].

In the current paper, we have found a complete analytical so-
lution for the simplest case of a solid-solid interface between two
martensitic variants, or a twin interface. Since transformation strain
for twinning is a simple shear, internal stresses do not appear
within the sharp interface between martensitic variants or twins. It

is intuitively expected that they should not appear within a phase
field approach also. However, we will see that this is not the case.

Multivariant martensitic PTs. Microstructure evolution during
martensitic PTs plays the central role in determining mechanical,
electrical, and other properties in a broad range of materials, e.g.
shape memory alloys, ferroelectric materials, and multiferroic
materials. The microstructures in such materials usually consist of
mixture of austenite, A, and N martensitic variants, M;, where
i=1,2,...,N; see, e.g., [57,58]. Some of the martensitic variants can
form twin boundaries that are coherent interfaces. Across a twin
boundary, one variant can be obtained by simple shear deformation
of the other. In experiments, one rarely sees interfaces between A
and a single martensitic variant, since the stress-free lattices of A
and M; in most of the materials are not geometrically compatible
(in the sense of Hadamard's compatibility) to form a coherent
stress-free interface. The system prefers to form microstructures
consisting of A separated from twinned martensite by a plane
interface, which minimizes the elastic energy of the system [57,58].

Various continuum theories [57—63] have been used to study
twinned microstructures within sharp interface approaches. On the
other hand, various aspects of the phase field approach to
martensitic PTs and twinning have been developed and used for
simulations in various papers; see e.g., [4,28—41]. The main concept
is related to the order parameters n that describe material in-
stabilities during PTs from A to M; in a continuous way.

The necessary conditions for the Landau (local) potential and
transformation strain, which are functions of the order parameters,
have been formulated and utilized in Refs. [30,33,64—66] for small
strains and in Refs. [30,67] for large strains. They, in particular,
introduce the conditions that the thermodynamically equilibrium
values of the order parameters are fixed (i.e., 0 or 1) for A and M; for
any stress and temperature and that the crystal lattice instability
conditions should be included in the theory. This results in a much
more complex expression for the thermodynamic potential and
transformation strain tensor as compared to those used in the other
theories [34—39]. Large strain formulation for multivariant
martensitic PTs were developed in Refs. [30—32,38,39,67]. Three
different kinematic assumptions are currently used in various
papers.

(a) Kinematic model-I (KM-1): Symmetric right transformational
stretch U; is considered as a linear combination of the Bain
stretch tensors Uy; of all the martensitic variants multiplied
with a corresponding nonlinear interpolation function of the
order parameters [30,67]. Such an expression satisfies all of
the conditions formulated in Refs. [30,67]. However, as it was
shown in Refs. [38,39], it does not conserve the determinant
of the transformation stretch (i.e., volumetric transformation
strain) within the transition region between the variants
where 0<7n<1. In particular, this means that while all
martensitic variants have the same specific volume, the
transformation process M;<M; is not isochoric. This
requirement is not a mandatory one, because, for disloca-
tional slip, for example, there is a volume change along the
shearing process between two stable atomic configurations
[68]. In fact, defect cores in dislocations and twin boundaries
may induce change in volume (see Chapter 7 and 8 of [69]
and the references therein). However, the requirement for
volume conservation sounds reasonable, at least, for the
simplest model; it is good to have such a model. If volume
change is observed during a transformation process between
two martensitic variants, in principle, it could be included as
a correction to the isochoric model.
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(b) Kinematic model-II (KM-II): Recently, an alternative expres-
sion for the transformation stretch was proposed, which is
given by exponential of a linear combination of the natural
logarithm of the Bain tensors [38,39]. In this case, the volume
remains always preserved along the entire path of the
M; < M; transformations. However, numerical simulations
demonstrated large elastic stresses within twin boundaries,
which were suppressed by some computational tricks
[38,39]. It is necessary to mention that the order parameters
in Refs. [38,39] are the volume fractions of various phases
and all interpolation functions are linear in order parameters,
in contrast to [30,67]. The requirements formulated in
Refs. [30,67] were not considered [38,39].

Note that even for small strains, while the difference between
two of the above models would be expected to be vanishing, large
elastic stresses within the M; — M; interfaces have been reported in
Refs. [4,33]. An unambiguous explanation for the reason of such
large elastic stresses within twin boundaries is still missing.
Needless to say, a proper understanding of the origin and nature of
such stresses in twin boundaries is very important in order to use
those models for further study and/or to develop a more suitable
theory. Interfacial stresses can cause martensitic and variant-
variant transformations [1,2]. Also, in a fine mixture of martens-
itic variants, their thickness is only a few nanometers and they
possess sharp tips [70]. Large stresses within nanometer wide in-
terfaces may cause significant stresses of the opposite sign in the
bulk twin phases, which should strongly affect nucleation and
evolution of a martensitic nanostructure [3,4].

(c) Kinematic model-Ill (KM-III): When single twinning was
studied, a simple shear assumption for the non-symmetric
transformation deformation gradient F; =1+ y,(n)m®n
was used [40,64,71]. Here, v,(n) = v,o¢(n) is a smooth
function of the order parameter 0 <7 <1 such that the
interpolation function ¢ satisfies the conditions ¢(0) =0,
¢(1) =1, and 8¢/01(0) = d¢/an(1) = 0 within the two vari-
ants, which were derived as the conditions for thermody-
namic equilibrium of phases. Hence clearly, F; =1 and
F; = I+ v, gm®n within two respective variants, where vy,
is the shear strain along the unit direction m in the plane
with the unit normal n (called the twinning plane), and ®
stands for the dyadic product between two vectors. This
model cannot be easily generalized for multiple martensitic
variants; see Ref. [30]. To the best of our knowledge, the
interfacial stresses for this model has not yet been studied.

Our goal is to investigate the origin of large elastic stresses
within a variant M, - variant M, interface for all three phase field
models, and to analyze the results in details. To accomplish this
goal, an analytical finite strain solution has been obtained for all the
fields within the plane M; — M, interface in an infinite sample
under plane stress condition. Cubic A and tetragonal M; have been
considered. While for KM-III stresses within the interface were
zero, significantly large stresses have been observed for KM-I and
KM-II due to the heterogeneity in the components of the trans-
formation deformation gradient tensor across the interface. In fact,
for KM-II, the maximum value of the interfacial stress is more than
twice of that for KM-I. Thus, if the goal is to develop a model with
stress-free interfaces, one has to find a way of generalizing KM-III
for multivariant transformations, and this is a challenging task. If
one can tolerate interfacial stresses, but wants to minimize them,
then the KM-I, which involves variation of the volumetric strain
during M; — M, transformation, is better than the KM-II, which

preserves volumetric strain. It also shows that the requirements to
the phase field theories should be formulated not only for condi-
tions when one phase homogeneously transforms into another one,
but also for the case of coexistent phases divided by an interface.
Furthermore, the effect of the finite size of a sample on the solu-
tions has been investigated. An approximate analytical solution has
been obtained for KM-I, and the finite element (FE) results for both
KM-I and II have been presented. Analytical and numerical solu-
tions for KM-I are in very good agreement.

The paper has been organized in the following manner. A system
of coupled mechanics and phase field equations, and various
constitutive relations have been listed in Section 2. We have pre-
sented our results for an infinite sample in Section 3 and for a finite
sample in Section 4. We conclude our paper with Section 5.

We denote multiplication and inner product between two sec-
ond order tensors as (A-B);j = AyBy; and A : B = A;;B;;, respectively,
where repeated indices denote summation as per Einstein's
convention; A; and Bj; are the components of the tensors in a right
handed orthonormal Cartesian basis {e;, e,, e5}; determinant and
trace of tensor A are denoted by det A and tr A, respectively;
subscript 0 means that the quantity is defined in the reference
configuration Qq; superscripts T and —1 denote tensor trans-
position and inversion; the gradient operators in reference Qg and
deformed Q configurations have been denoted by Vg and V,
respectively; I is the second order identity tensor; V% = Vo Vo

denotes the Laplacian operator in Qg; := stands for equality by
definition.

2. Coupled mechanics and phase field equations

We begin Section 2.1 by summarizing the standard kinematic
relations, constitutive relations, and the Ginzburg-Landau equation
for M; < M, transformations. Stress-free A will be chosen as the
reference configuration. A general theory for A and two martensitic
variants requires at least two order parameters. Let us consider that
one order parameter describes austenite < martensitic trans-
formation such that it is 0 in A and 1 in M, and the other describes
M; < M, transformations (see Ref. [30] for a similar description).
Hence if a system contains martensitic variants only and austenite
is completely absent, then the order parameter related to
austenite < martensitic transformation is equal to unity every-
where, and we just need a single order parameter for describing
M; < M, transformations. The system under study in the present
paper primarily evolves with two variants, where the residual
austenite is fully absent. We denote the later order parameter by 7,
where 7 = 1 in M; and 5 = 0 in M,. Obviously, there would be only
a single Ginzburg-Landau equation for the system under study.
Next, specialized kinematic and constitutive relations based on
plane stress assumption have been summarized in Section 2.2.
Finally, the constitutive relations for the transformation stretch
tensor U; for cubic to tetragonal transformations have been
collected in Section 2.3.

2.1. General theory and system of equations

2.1.1. Kinematics

The deformation of a transforming material is described by the
smooth function r = r(rg, t), where r and r( are the position vec-
tors of a particle in the deformed Q and the reference Qg configu-
rations, respectively, and t denotes time. The deformation gradient
F := Vyr is multiplicatively decomposed into elastic part Fe = V.-R
and the symmetric transformation stretch tensor U; (see Ref. [50]
for details):



A. Basak, V.I. Levitas / Acta Materialia 139 (2017) 174—187 177

F=F, U =V.-RU; =V.-F;; F;=R-Ug, (2.1)
where V, is the symmetric left elastic stretch tensor and R is
the lattice rotation. The deformation gradient F maps an
infinitesimal line element from Qy to Q; U; is the mapping
from Qp to an intermediate stress-free configuration Q;; Fe
maps ; to the deformed configuration Q. We define an
Eulerian elastic strain tensor

be = 0.5(B, —I) = 0.5(v§ - 1), (2.2)

where B, := F-F! is the left Cauchy-Green elastic strain tensor. The
ratios of specific volumes in various configurations are defined as
J=detF,]; = det U, and J, = det F, with | = J,J;. We define
e=V-I e=U—I and e =V.—-1I, (2.3)
where V = VF-FT is the symmetric left total stretch tensor. The
compatibility condition for the deformation gradient F is (see, e.g.,
Chapter 2 of [72])

oF;

Vo x F=0, where (VoxF);= Eimng - —
Om

(2.4)

denotes curl of F and &;,,,, is the third order permutation tensor.

2.1.2. Constitutive relations and governing equations
We now collect the constitutive relations and the system of
equations to be solved.

(i) Mechanical equilibrium equation for neglected body forces
are:
Vo-P=0

in Qo, (25)

where P is the nonsymmetric first Piola-Kirchhoff stress tensor.

(ii) Helmholtz free energy density: Neglecting the interfacial
structural stresses s we consider the Helmholtz free en-
ergy per unit mass as (see Ref. [50] for a more general
form)

Y(Fe., 0, V0m) = j—;m&,n,a) L AP(1— 1) +0.5b[n|’.
(2.6)

where y, is the elastic free energy density per unit volume of Q;;
the second term is the double-well barrier energy; and the third
term is the gradient energy density, with A and b being corre-
sponding parameters. For simplicity, isotropic St. Venant-Kirchhoff
elastic material (see Chapter 5 of [72]) will be considered:
Ve = 0.5A(tr be)? + ube : be, (2.7)
where ¥, (be) = ¥,(F) and A and u are the Lamé constants, which
are the same for both martensitic variants. Since elastic stresses in
the problems below are quite small, linear stress-strain relation is
justified. All derivations can be repeated for a linear anisotropic
material; however, this will complicate equations without
changing the main results significantly. Also, not all elastic con-
stants for tetragonal martensite in NiAl alloy considered here are
known; those which are known, are far from being precise,
because they were found using molecular dynamics at zero tem-
perature [73].

(iii) Stress-strain relations: Using the standard relations for the
first Piola-Kirchhoff P and the Cauchy stress & for isotropic
materials, given by P = Jo-F " and ¢ = J, 1V2-(8y,/0be) [50],
we obtain

o =J;'V2-(A(tr be)l +2ube), and o8
P = JV2-(A(tr be)l + 2ube)-FT. .

(iv) The stationary Ginzburg-Landau equation for the order
parameter 7 (see Ref. [50] for a detailed derivation)

N _ (pt.p _ruu-1). 90 ~ 2\, p %
I_(P Fe — Ji,U; ) o 2p0An<l 3n+2n)+bar%1
=0,

(2.9)

where L >0 is the kinetic coefficient. We have assumed that 7 de-
pends on the single coordinate ry;; see Section 3.

(v) Boundary condition: Assuming a phase-independent energy
of the external surface Sy of the body in € we obtain
Von:-ng =0 on Sy, (2.10)

where ng is the outward unit normal to Sy. All external surfaces are
traction-free.

2.2. Plane stress condition: stresses and strains

For our goal, it is sufficient to consider the plane stress condi-

tion, i.e. 013 = 033 = 033 = 0. As a consequence, all out-of-plane
components of T are also vanishing, and in F, F,, V,, R, and U; all
the off-diagonal out-of-plane (i.e. 13, 31, 23, and 32) components
are identically zero. Using a standard procedure, the in-plane
Cauchy stresses can be obtained as (see Chapter 7 of [74] for
similar derivation with small strains)
05 =Jo V2 Ty, where T =X (bey)dyj + 2ube i, (2.11)
N =2ud/(A+2u), 0y; denotes the Kronecker delta, and the indices
i,j,k,1=1,2.Also, it can be shown that be33 = —b,;iA/(A + 2u). The
relation be33 = 0.5(F%; — 1) = 0.5(V4; — 1) thus yields

e

Fez3 = Vezz = \/1 = Xbgii/u, and  Fs3 = Ve33Ups3.

(2.12)

2.3. Constitutive relation for U,

Recall that our austenite and martensitic phases have cubic
and tetragonal lattices, respectively. The Bain tensors for three
variants are diagonal matrices of the form diag(8, «, «),
diag(e, 6, @), and diag(a, a, §), where a and § are constant pa-
rameters (see Chapter 4 of [58]). Here we consider the trans-
formation between only two variants of martensite. Without loss
of generality we will choose the first two Bain tensors. For con-
venience of analysis, we assume that the Bain tensors are rotated
about e; by /4 (simply to get a twin boundary perpendicular to
eq-axis, see Fig. 1(a)):
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(a)

interface 1

(b)

Fig. 1. Schematic diagram of an infinite body with lattice orientations: (a) stress-free reference configuration in the austenite phase; (b) deformed configuration with the twinned
martensite; n—1 in My, n—0 in M;; the interface has been indicated by the shaded region.

[05(a+8) 05(a—p) 0
Ual= | 0.5(a—6) 05(a+6) 0,
(44

i 0 0
[ 0.5(a+6) -05(a-06) O (2.13)
[Upl=|-05(a—-pF) 05+ O
0 0 «

Three different constitutive relations for the transformation
stretch tensor U; will be discussed below.

KM-I: U, based transformation rule. In this model, U; is
expressed as a linear combination of Uy and Uy, [30,33,67]:

Ut =Up + Uy —U)o(n), (2.14)

in terms of the interpolation function

¢ =1°(3 —2n). (2.15)
Other higher degree polynomials formulated in Refs. [64,65,67],

satisfying the requirements ¢(0)=0, ¢(1)=1, and

¢'(0) = ¢/'(1) =0, can also be used in the current paper without
complications. Obviously, Uy = Uy and U; = Uy, forn =1 (M) and
1n =0 (M,), respectively. Using Eq. (2.13) in Eq. (2.14) we get an
explicit form:

0.5(a + f) 05(6—-—a)(1—-2¢) O
[Ue] = [ 0506 — a)(1 —2¢) 0.5(a + f) 0 (2.16)
0 0 o

The normal components of U; given by Eq. (2.16) are constants,
but the shear component Uy, is heterogeneous across the inter-
face. Obviously, det U; = 0.25a[(8 + @)* — (8 — @)*(1 — 2¢)?] is also
heterogeneous across the interface, thereby indicating that the
volume will not remain conserved during variant-variant
transformation.

KM-II: InU; based transformation rule. Alternatively,
following [38,39], we assume U; as exponential of linear combi-
nation of natural logarithm of the Bain tensors:

U; = exp[p In Uy + (1 - ¢)In Up). (217)

The definitions of logarithm and exponential of tensors can be
found, for example, in Chapter 1 of [72]. It is easy to verify from Eq.
(2.17) that in pure My and M,, U; = Uy and U, = Uy, respectively.
Using the properties det(expUy;) = exp(tr Uy) and
In(det Uy;) = tr(InUy;) (see Chapter 1 of [72]) one can show that

det Uy = det(exp[¢ In Uy + (1 — ¢)In Uy, ])
=exp[¢ tr(nUy) + (1 - ¢) tr(In Upp) |
= expl¢ In(det Uyy) + (1 — ¢)In(detUy,) ] = det Uy,

(2.18)

where we have used the fact that det U;; = det U,. Obviously, Eq.
(2.18) proves that the transformation rule Eq. (2.17) conserves the
volume during M; < M, transformations. Using Eq. (2.13) in Eq.
(2.17) and simplifying we write

0.5(a?8' " +al~#6?) 05(af? —a!98%) 0
U] = O.S(a‘pﬁ]*d’—a]"{’ﬁd’) 0.5<a¢ﬂlf¢+a1’¢ﬂ¢> 0
0 0 o

(2.19)

From Eqgs. (2.19) and Eq. (2.18) it is clear that

det Ut = a(Up1Uppz — U3,) = af is a constant.

KM-III: simple shear. In Refs. [40,64,71] and several other pa-
pers devoted to twinning, a simple shear model F; = I + y;(n)ym®n
was utilized, where F; is obviously non-symmetric. For martensitic
variants, this corresponds to considering one of them as the
reference configuration. This description is volume preserving,
since detF; = 1. Using m = e, and n = e; for the sample considered
in this paper, we calculate the transformation stretch tensor

U; = (FT-F)'? as

(4204 +0305) / (2v241)  (@s—49)/(V2Zar) O
(

W= (@s-a0)/(V2a1)  (@39a+a:05)/(2v2a1) O
0 0 1

(2.20)

where q; = \/4+ 7% Q2 =1 = Yo A3 =1 + Ve, G4 =2 - @7s,
and qs = /2 + q37;. Note that U;;, and Uy, in Eq. (2.20) satisfy the

equality U%, + U%, = 1, which as we will see, is a crucial condition
for having a stress free interface.

3. Analytical solution for an interface between martensitic
variants in an infinite sample

3.1. Kinematic models I and II

We consider an infinite stress-free austenite sample, as depicted
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in Fig. 1(a), as the reference body Q. Let us apply transformation
stretches U;J] and U;JZ on the left and right sides of the reference
sample about e,-axis, so that we obtain a fully twinned body
consisting of variants M; and M. In a schematic of the deformed
configuration with stationary distribution of 7 shown in Fig. 1(b), »
varies between 0 and 1 within the interface and 7—1 and 0 in M,
and M,, respectively. All deformations are symmetric about the
e,-axis, and for the zero external stresses the interface remains
stationary. Furthermore, we assume that all fields are functions of
ro1 only (i.e., independent of rq;) and, thereby, reducing down the
problem to one-dimensional (1D). This imposes the constraint

Fi» =0

in the entire body. (3.1)

The solution of the Ginzburg-Landau equation (2.9) should
asymptotically match with the solution in the bulk, which is the
stress-free pure martensitic variants (see Ref. [75] for a similar
treatment); i.e., n should satisfy the following boundary conditions:

n—1 as rg;— — o, and n—0 as rg; — co. (3.2)
Consequently,
Ut,»j—>U£j] as ro; — — oo, and Uy;— ;12 as rg; — oo. (3.3)

Also, all the stresses are vanishing far away from the interface:

Py1,P12,P31,P22,011,012,000—0 as rg; —+co. (3.4)
Obviously, the elastic stretch Ve;; — 0y

Ve11, Vezz—1 and V,15—0 as rg; — +oo. (3.5)
The stresses and strains are therefore now known in the bulk at

g1 — %oo.

To obtain the solutions in the interface we will use the kinematic
decomposition Eq. (2.1) and the compatibility condition Eq. (2.4).
Also, we will consider that the entire sample is in mechanical
equilibrium; hence the total traction at each cross-section of the
sample parallel to e,-axis, and eq-axis are vanishing:

/ P-eq dT02 =0 and / P-e, dTm =0, (36)

at the respective cross-sections. Since P11 and P,; do not vary along
e, direction, they must vanish in the entire sample so that Eq. (3.6);
is respected:

P11 =P3; =0. (3.7)

Using Eq. (3.1) and the relation P = Jo-F T the components of
first Piola-Kirchhoff stress tensor are obtained in terms of the
Cauchy stresses as

Jo11 J ( 011F21 )
Pi1=—— Pp="7—( —-——F=+012]),
=", P2=g; Fi, 12

(3.8)
Py =172 p, :L(,MHn)
Fiy’ F Fiy
It is obvious from Eq. (3.8) that
011 =012 =P12 =0. (3.9)

The solutions in Eq. (3.8) and Eq. (3.9) obviously satisfy the
equilibrium equation (2.5). Considering Eq. (3.9) in Eq. (3.6),, we
simplify it to

/ Pyy drm =0. (310)

Calculating 017 and g1, using Eq. (2.11); and then applying Eq.
(3.9) we solve V,q and V,q; which are given by Egs. (3.22), and
(3.22)3, respectively, in Box-I. It is to be mentioned that while
solving o1, =0, we obtained two other roots given by

Ver = /(2 + 1)/ (2 +20) — 0.5(VZy; + V). However,
assuming V.11 and V,,, are within 15% deviation from unity (even
with such an assumption the magnitude of maximum stresses still
can be several tens of GPa), one can easily verify that for NiAl,
(A +p)/(X +2u) = 0.63 (see Table 1 for material properties), and
hence these roots are imaginary, and are not considered here.
Since the lattice rotation takes place about e3-axis, expressing R;;

as
cos ¥ —sind

if—{sina cosf}}’ (3.11)
and substituting Eq. (3.11) in Eq. (2.1) we obtain
Ve11(Ue1q cos ¢ — Upp Sin 9) = Fpy,
Ve11(Un2 cos & — Uppp sin9) = Fj; =0, (3.12)
Ve22(Urt1 sin @ + Upyz €os 9) = Foy, )
Ve22(Up1z Sin & + Uppp €0s 9) = Fa,

where we have used Eqs. (3.22); and (3.1). Since V11 #0, Eq. (3.12);
yields

tan ¥ = Uppp /U =sin ¢ = Unz/\/ Ufi2 + Uy, and

cos ¥ = Utzz/ Uf, + Uy,
(3.13)

Substituting Eq. (3.13);3 in Eq. (3.12) we obtain the total
stretches:

2
Ven (UmUm 7 UﬂZ) _ Ve2aUt12(Un11 + Upz2)

Fi1= , For , and
\/ Uty + Uy Utz + Ut
Fyp = Vexo\/Ugiy + Uppy.
(3.14)

Since F is independent of rp, and rg3, and
Fi5 = F13 = F31 = F53 = F35 = 0, the compatibility condition (2.4)
reduces to a single equation dF,, /drg; = 0. Hence by Eq. (3.14); we
have

Foy = Vaap\JU%y + Uy = k1 = 4 /0.5<a2 + ﬁz>,

where k; is the integration constant. It is obtained from the con-
dition that for n—1 and n—0, Eqs. (2.16) and (2.19) for KM-I and
KM-Ilyield U2, + U%, —0.5(a? + %) and Ve, — 1 in those regions.
Utilizing Egs. (3.15), (2.16) and (2.19) in Eq. (3.12)4 we obtain V,;,
given by Eq. (3.22)s56 in Box-I. Eqs. (3.22)5 and (3.22)s are the
desired solutions for Vey, Vs. ¢[n(rgq)] corresponding to KM-I and
KM-II, which obviously approach unity as rg; — +oo. It is clear that
they (and all the other fields) depend on the single parameter (/«,
and for § = « one has V,y; = 1 and that all strains and stresses are

(3.15)
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zero. Using Eqgs. (3.22)s5 and (3.22)s in combination with the inter-
face profile n(rg1) for the chosen interpolation function ¢(n) (see
Eq. (3.27)), we obtain the spatial distribution of V5. Given V,5, by
Eq. (3.22)5 or (3.22)s, we can now calculate V,11 using Eq. (3.22)s,
and V33 using Eq. (2.12);. Finally, substituting Eq. (3.22),3 in Eq.
(2.11)4, we obtain the desired g5, as a function of V,y;:

2,LL(X + ,LL) Ve (VEZZ — 1)
2( +u) —AVE,

We can now substitute Eq. (3.22)5 or (3.22)s and (3.22)3 back
into Eq. (3.14) to obtain the unknown components of the total
deformation gradient Fyq, F5,, and F»;. Since V,5, — 1 in the bulk at
o1 — +o0, we can easily verify from Eq. (3.16) that g55 — 0. Also, by
Eq. (3.14), Fij—>R,~ka{' asrg; — — oo and F,j—>R,-kUg as ro; — oo in the
bulk. Components F,33 and F33 can be obtained using Eq. (2.12).

Stationary solution for Ginzburg-Landau equation.

It seems impossible to solve Eq. (2.9) for  analytically. However,
we have estimated the order of magnitude of various terms in the
Ginzburg-Landau equations and have shown that the trans-
formation work related term can be neglected (see supplementary
material [76]). Then the traditional solution [33,77] of Eq. (2.9) with
the remaining terms is presented in Eq. (3.27);, where ry. is the
location within the interface where n = 0.5, ¢ is the interfacial
width (defined as the distance between points where » = 0.05 and
1n = 0.95), and 7 is the interfacial energy.

Finally, all the solutions for the infinite sample are summarized
in Box-I.

Interfacial force (tension) for KM-I

022 =

(3.16)

approximate analytical expression for KM-I:

f= %;:) 7/ g(¢)drgy, where (3.17)
2 (az + 62> 2
. 1/a-0 2
&(9) B {1 7((”5) (1-2¢)
3 (a—p\* 4
+§(a+ﬁ) (1—2¢)}—1. (3.18)
We obtained the integrand g(¢) in Eq. (3.17) by using Eq. (3.22)s
in Eq. (3.16) and expanding it in the series of
(1-2¢%(B-a)?/(B+a)? whose maximum value is

- a)z/(ﬁ + a)2<<1 for NiAl (see Table 1). Using Eq. (3.27)12 we
calculate [ (1-2¢)%drg; =0.58236 and  [%_(1-2¢)*
drg; = 0.4530 ¢, and by substituting them in Eq. (3.17) we get the
resultant interfacial force f(see Eq. (3.28); in Box-I) which depends
on the material constants. An important consequence of Eq. (3.28);
is that in the sharp interface limit, i.e. as 6 — 0, the interfacial force
also vanishes.

3.2. Kinematic model Il

The transformation stretches given by Eq. (2.20) satisfy
U2, + U2, = 1. Hence, according to Eq. (3.15)12, Vepp = const. Us-
ing Eq. (3.16) and the condition on g4; in Eq. (3.4) we conclude that

The resultant interfacial force, or interface tension is
f = J%_ Pydrg. Since Py, is highly nonlinear in 5 (compare with Ve =1 and 69, = 0 in entire sample. (3.19)
Egs. (3.8) and (3.16)), the integration is performed using an
Box-I
List of results for finite strain
1. Transformation stretches
Ut]l = Ut22 = 05(0{ + ﬁ) and Uﬂz = 05(6 — C()(l — 2¢) for KM — I;
Uit = Upa = 0.5(a?8' +a'6%) and Upy = 05(a?8' ¢ — a!~98%) for KM - II; (3.20)
4244 + q34qs 4344 + 4295 q5 —da
U1 = 255222, Uppp = 2222 and Uy = 2= for KM —1II,
t11 2\/2(]] 2\/2(]] t12 \/qu
where q; = \/4+ 72, @2 =01 = Y6 B3 =01 + 7694 = V2 — Q27095 = V2 + @37 (3.21)
2. Lattice rotation and elastic stretches
tan 9 = 212 and Vep = 0 for KM — I, II, III;
Utz
(V% -1
Ver1 = 2\| 1 —M for KM -1, II; V11 =1 for KM —1II;
A+ 2u
2(a? + 62
3.22
V922 = < > for KM — ] ( )
Vi@t B2 + (@21 - 20
/ 2 2
s +
Vero = § for KM — II;
\/ Q20§22 | o220 420
Voo = 1 for KM — III;
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2 2
max — M for KM —I; V% — M for KM — IL. (3.23)
e22 o+ 6 ) e22 \/m
3. Total stretches
12
Fip = Vell%sz = 0.5(a2 +ﬁ2>,F12 =0, and
Uiz + Uiz
Fyy — Ve22Ut122(Um ‘;UtZZ) for KM 1, I (3.24)
VU2 + Upa
F11 = F22 = 1, FlZ = 07 and F21 ="t for KM — IIL
4. The expressions for Vez22 — 1 and their maximum values:
2 2
V2, —1= 4(2“ ) ¢(12* ) 5 max( V2, — 1’) = % for KM — I
(@+B)" + (= 06)"(1-2¢) (a+0) (3.25)
2 2 2¢ 0226 2-2¢ 02¢ 2 ’
2 4B et a0 > ) _(@=F) _
V3, —1= T Ty max( |V, —1|) = 2ag~ forKM-IL
5. Cauchy stresses
011 =012 =0 for KM -1, II, III;
2u(X 4+ W) Ve (VZ, — 1 (3.26)
0y — ( i Vean( s ) for KM —1, II; and a5, — O for KM — IIL.
20 + ) — AV,
6. Order parameter, interpolation function, interface width and energy
n=1/(1+exp[—6(roy —Toc)/0)); & =n*(3-21m); 6=1/18b/A; v =Db/. (3.27)
7. Resultant interfacial force
f :f 0, forKM—-1 and f=0 for KM - IIl, where (3.28)
2(aZ + ﬂz) 2 4
= Au(A +p) ( a—p a—0
= 1-0.2912 0.1699 -1 3.29
f o+ 2u a+f (Mﬁ) " (Mﬁ) 529

Since all stresses are zero within the sample, the resultant force f
defined in Eq. (3.17) is zero as well. Results are listed in Box-I for
finite deformation and in Box-II for small strains. Some other ar-
guments are given in Ref. [30].

Although, U; given by Eq. (2.20) successfully describes a stress-
free twinning solution, there are several difficulties in using it for a
more general study: (i) For multivariant PTs, it is not trivial to
include simple shear transformations between all variants. In

Table 1
List of parameters for NiAl.
Parameter Value reference
A 74.62 GPa [4]
w 72 GPa [4]
[ 0.922 [4]
6 1.215 [4]
v 0.05 J/m? typical (see e.g. Ref. [38])
) 0.75 nm
A 1.2 GPa using Eq. (3.27)3
b 3.75x 107" N using Eq. (3.27)4

particular, each pair of twin-related variants has two possible twin
parameters n and m; the number of order parameters hence will be
doubled. Also, a proper orientation of variants should be provided.
Also, relation (2.20) is for a plane interface, and it is not clear how to
treat curved interfaces. (ii) Not all martensitic variants in a material
are in twin relationship (e.g., for cubic to monoclinic trans-
formation); hence the transformation rule (2.20) cannot be applied
to all martensitic transformations.

3.3. Small strain approximation

Under small strain and rotation assumption, |sij|<<l,
|eeij| <1, |[F21]<1, and |¢|<1. Expanding all the equations in Box-I
into Taylor's series about strain-free state we obtain the results in
Box-II. For small strains, the transformation strains for KM-I and
KM-II coincide (see Eq. (3.30)). Lattice rotation is proportional to
er1 — &2 and the normal elastic strains and stresses are proportional

gtij‘<<1'

to (ey — etz)z, i.e.,, they are square of the difference in trans-
formation strains (see Eq. (3.31)), wheree;; =a—land ey =6 — 1.
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Box-ll
List of results for small strain

1. Transformation strains
€11 = €12 = 0.5(&}] + th) and E&r12 = 0.5(&2 — St])(l — 2¢) for KM — I, II; (3 30)
er11 = €2 =0 and e = 0.5y, for KM —1II; ’
2. Lattice rotation and elastic strains
9 =0.5(erp —&r1)(1 —2¢) for KM -1, II; ¢ =0.5y, for KM —III
V(1 — —e)? 1
ee12 =0, €11 = i qj/)(gﬂ c2) . and e =5¢(1 —d)(en —e)? for KM —1;
2(X +2p) 2
, (3.31)
Nop(1 =) — e
o2 =0, ey =~ PPN and g = g(1 — g)(err —e)® for KM~ I
+2u
Ee12 = Ep11 = €22 = 0 for KM —III.
3. Total strains
e11 = €e11 + 0.5(er1 +e2), €22 =0.5(e1 +£r2), and  e13 = 0.5(gp1 +£12)(1 —2¢) for KM -1, I (332)
£11 = €2 = 0 and €12 = O,S’Yt for KM — III. ’
4. Cauchy stresses
2u(V
011 =012 = 0 for KM — L II; 09 = M(ﬁ(] - ¢)(€t] - 6’[2)2 for KM — I;
A +2u

4Au (XN 3.33

520 = BB 41 ey — e for KM I 3:33)
A+ 2u
011 =012 =02 = 0 for KM —IIL
5. Resultant interfacial force
. = 02 !
f=fo forKM—-1 and f=0 for KM -IIl, where f = %W(m —en)t (3.34)
I

For small strains, the interface stress for KM-II is twice that which
corresponds to KM-I (see Eq. (3.33)). An estimation for the interface
force is given by Eq. (3.34). For KM-III, only &1, is non-trivial, which
is listed in Eq. (3.30). All elastic strains are vanishing, and so are the
stresses and the interface force (see Eqgs. (3.31), (3.33) and (3.34)).
Normal components of the total strain are zero, and the shear
component is same as &1, (see Eq. (3.32)).

3.4. Discussion

It is thus clear from Eq. (3.15), which is obtained from the strain
compatibility relation, that the constitutive relations for U; given
by Eqs. (2.16) and (2.19) are not compatible with unit elastic stretch
V5, (or equivalently, vanishing elastic strains) across the twin
boundary. Such incompatibility is accommodated by the large
elastic stress 55 in the twin boundary. Our analytical treatment in a
twinned sample has clearly shown the reason for elastic stresses in
a diffused twin boundary in phase field studies in Refs. [30,38,39]
and has quantified them.

We now present a detailed quantitative analysis showing the
non-trivial stresses and strains. We have plotted only the non-
trivial components of stress, lattice rotation, and other strains &;;,
egij» and e,;; (see Eq. (2.3) for their definitions) along the line rg; = 0
in Qg. Results for NiAl have been presented. The material parame-
ters are listed in Table 1.

In Fig. 2(a) €11 and &y, are compared for U; given by models
KM-I and KM-II. Normal elastic strains within the interface are
larger for KM-II compared to those for KM-I. Fig. 2(b) shows that
a, for both models reaches several GPa; that is to say, it is quite
large. The maximum value of the elastic strain and stress is attained
at the middle of the interface where 7 = 0.5 (compare with Egs.
(3.25)2,4, (3.23), (3.26),, and (3.27); in Box-I). The ratio of V,,, for
those two models at n = 0.5 is V1, /VL,, = 0.5(a + 8)/+/aB, which
is always greater than unity for all positive a= (. Consequently, the
maximum stress (calculated at n = 0.5) is also larger for KM-II. We
have shown the variation of maximum stress (non-dimensional-
ized by u) with the stretch ratio 8/« for both the models in Fig. 2(c).
For all 8/a, max(eY,) > 2 max(s},), and the maximum stress ratio
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Fig. 2. Plots for infinite sample: (a) 011 and 37, and (b) stress ¢5;; (c) variation of max (¢, )/u at the mid point of the interface where 1 = 0.5 for KM-I and KM-II. In the legends ‘T’

and ‘I indicate KM-I and KM-II, respectively.

approaches 2 as $/a— 1. It should be mentioned that the net elastic
energy stored within the interface per unit area of the cross-section
of the reference sample perpendicular to e;-axis, i.e. [, Ji.dro;
has been calculated to be 1.7 x1073J/m2 for KM-I and
6.8 x 103 J/m? for KM-II, where y, is given by Eq. (2.7). This en-
ergy is obviously much smaller than the structural energy of the
interface y = 0.05]/m2. This means that the elastic stresses
defined in the paper and corresponding resultant force are not
described by the second term dv/de; in the Shuttleworth equation
[20] but related to the heterogeneity of the transformation strain
within a finite-width interface. Since these stresses are indepen-
dent of the interface width, for a sharp interface the resultant force
f=0.

Variations of the components of &, &, and tan ¢ are shown in
Fig. 3. In some of the plots the components have been scaled up for
better readability. The component &1 = ¢, iS constant every-
where for KM-1. However, for KM-II we see that it decreases within
the interface, which can be easily explained by looking at
det Uy = (U4, — U%,)a = const., as shown in Eq. (2.18), where we
have considered U;j; = Uy and Ugsz = a. Since Uy is heteroge-
neous across the interface, Uy and Ugy, also must vary appropri-
ately to maintain the constancy of det U;. Variations of the
components of &; are shown in Fig. 3(b). Since &, for both models
are identical constants (see Eq. (3.15)), just a single curve has been
shown. The other components 3e;; and F,; vary heterogeneously
across the interface. Plots for tan ¢ are shown in Fig. 3(c); for both
models they are almost coincident.

4. Analytical and FE solutions for an interface between
martensitic variants in a finite sample

We will now consider a finite sample, which is more realistic
configuration, to show the effect of external surfaces on stresses
and strains. A stress-free austenite sample is considered as the

reference body (see the shape in Fig. 4(a)). We denote the width
(along e; direction) of the reference sample by w>>¢. The following
boundary conditions for the mechanics problem are assumed: all
external surfaces are traction-free; the bottom-left corner point is
fixed, and e; component of displacement at left surface is zero. The
reference sample is deformed to obtain a twinned body in a way
similar to how it was obtained in the infinite sample. Here the
deformed sample is rectangular (see Fig. 4(b)). An approximate
analytical solution for KM-I has been derived and compared with FE
results. Numerical solution have been presented for KM-II and
compared with the results for KM-I.

4.1. Analytical treatment for KM-I

We utilize the St. Venant principle and restrict our analysis to
the region away from the upper and lower free surfaces. We assume
that in that region the solutions are independent of rg, and are
functions of ry; only. Hence the condition (3.1) F;; = 0 is valid in
that region. Repeating the same steps as for an infinite sample, we
see that the expressions for elastic stretches V.11 and V,q, total
stretches Fj;, Fy;, and F,,, lattice rotation ¢, stresses
P11 = P13 =P31 =011 =012 =0, and o0y, for finite sample are
identical to those obtained for the infinite sample listed in Box-I.
The force equilibrium condition (see Eq. (3.6))

w/2

/ Pzzdrg-l =0
—w/2

(4.1)

must be satisfied at each cross-section along the width of the
sample. This condition will determine V,,, for a finite sample. Once
Ve2o is known, all other solutions can be easily computed. For the
finite sample we consider that stationary 7 is given by Eq. (3.27);.
Since w>> ¢, the stresses and strains within the finite sample differ
slightly from that in the infinite sample, and do not affect 7.

-
0.2 0.1 —(10)
By > of  JFenm) G: 0
& © —3eyy (I)|| &
Fy (I)
-0.2
~ o (1) -0.1
—=E929 (I.II)
0.4
-1 0 1 -1 0 1
ro1 (nm) ro1 (nm) ro1 (nm)

(a)

(b)

(c)

Fig. 3. Plot for infinite sample: (a) 2¢¢11 (= 2er22) and e413; (b) 3e11, Fa1, and ex;; () tan o
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Fig. 4. Finite sample geometry with distribution of 5 in FE computations: (a) initial stress-free reference configuration of A; (b) twinned sample (deformed configuration) with

stationary distribution of 7.

Let us now determine o5, and V,5,. We have seen that for an
infinite sample, o5, within the interface is tensile (see Fig. 2(b)).
Hence we expect that for a finite sample, the force equilibrium at
the cross-section along the width of the sample would require that
the bulk to be under compression. Since we consider w>> g, the
magnitude of g, outside the interface will be much smaller than

o55* within the interface. We therefore assume that 75, in the bulk
is constant (denoted by =), and ¢¥, for the finite sample is equal to
0% in infinite sample superposed by 3, i.e.

oYy =03 + 3. (4.2)

Both oY, and 0% have the same expression given by Eq. (3.26)z,
but, V,,, are different in these samples. In the infinite sample V,y; is
given by Eq. (3.22)56 for KM-I and KM-II, respectively, and in the
finite sample it is yet to be determined. Since ¢} = 0 outside the
interface, using Eq. (4.2) we can rewrite the force equilibrium
condition Eq. (4.1) as

6/2 w2
/ ]0’53(11‘01 + Z / ]drm =0, (4.3)
—6/2 —w/2

where we have used Eq. (3.8)4 and F,, = const. The integral in Eq.
(4.3) is not analytically tractable when g5, given by Eq. (3.26),. If we
assume J =const, we note that the integral has already been eval-
uated in Eq. (3.29) (for KM-I), which can be used here to obtain

where 0, is evaluated using V3, given by Eq. (3.22)s for the
infinite sample, and we have used Eq. (3.28). Then in principle,
using Eq. (3.26)3 in Eq. (4.4) for oY%, we can calculate V3, for the
finite sample. Alternatively, we obtain an approximate solution for
V¥, as follows. We know that ¢% =0 in the bulk and
[=| = [f/w|<adi¥*, we infer that V., in the bulk deviates slightly

from unity. Then defining

Vi, =V, +x, where |x|«l, (4.5)
we use it in Eq. (4.4) away from the interface (where Vg3, = 1) and

linearize it about y = 0 to obtain

f +2u)

—m . (4.6)

Now, we compare the bulk stress with the maximum value of
the stress within the interface for KM-I. We approximately evaluate
the maximum stress in the finite sample by considering » = 0.5 in
Eq. (44) as

2 (ozz + 62)

a1 (4.7)

4u (X + p)
I
max(ozz) T

Hence the ratio of bulk stress and the maximum stress in the
interface can be expressed as

. <\/T+ﬁ/(a+ﬁ)){l—02912(04—6)2/(01—1—6)2+0.1699(a—ﬁ)4/(a+ﬂ)4}—1‘ 48)

max(ah,)

=~ — f/w. Hence we have

0% = 0%y — (5/w)f, (4.4)

(W/a+5)—1

In summary, V. 22 in finite sample can be obtained using Egs.
(4.5) and (4.6); ¢%, is calculated using Eq. (4.4), where ¢} is given
by Eq. (3.26)3; all other stresses, rotation, and stretches are identical
to those listed in Box-I, where V,,, therein is for the infinite sample.
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Fig. 5. Plots for finite sample along ro; = 0 for KM-I and II: (a) ee11 and ego; (b) 055 In legend, ‘A’ and ‘F' stand for analytical and FE results, respectively.

4.2. Discussions on analytical and FE results

We will analyze the following results: for KM-I both analytical
(derived in Section 4.1) and FE results, and for KM-II FE results only
will be discussed. For FE simulations, a 12 nm wide and 24 nm long
(length along any cross-section in e, direction) sample (Qg), as
shown in Fig. 4(a), has been discretized uniformly with 2160 fourth
order quadrilateral elements. The total degrees of freedom is
104835. Displacement and traction boundary conditions, as out-
lined in the beginning of the subsection, have been applied. FE
computations have been carried out using an open source deal.ll
library [78], where we have written a nonlinear FE code for solving
the coupled mechanics and phase field equations. Detailed
computational algorithm will be presented elsewhere. The
deformed body with the stationary 7 is shown in Fig. 4(b). The
interface profile obtained using FE computation matches with the
stress-independent analytical solution given by Eq. (3.27), and the
interface width is 0.75 nm. The results shown in Figs. 5 and 6 have
been plotted along rg; = 0 line in Qg, which obviously passes
through the middle of the sample. For better readability of the data,
all plots are shown for —1 nm < rg; <1 nm. Analytical and nu-
merical results for elastic stretches and stress g, are compared in
Fig. 5(a) and (b), respectively, for both KM-I and II. FE and analytical
solutions for KM-I are in a good agreement. The results within the
twin boundary are qualitatively similar to those obtained for
infinite sample. However, within bulk, elastic stretches are less
than unity, and the stress g, is compressive, which balances the
tensile force generated within the twin boundary for accommo-
dating the incompatibility. Various components of e, ¢, Fj, and
tan ¥, shown in Fig. 6(a), (b), and (c), are qualitatively similar to
those for an infinite sample.

5. Concluding remarks

In the sharp interface approach, the boundary between two
martensitic variants, which are in a twin relationship, is stress-free,
i.e,, it does not generate elastic stresses because of the lack of lattice
incompatibility. However, in the phase field approach, a finite
width interface generates elastic stresses [4,33,38,39], but the
reason was unclear. There had been only limited attempts to find
out which parameters affect elastic interfacial stresses for solid-
solid interface and how they can be controlled. Here, the origin of
a large elastic stress within an interface between martensitic vari-
ants (twins) within a finite strain phase field approach has been
determined by obtaining an analytical finite-strain solution for an
infinite sample. Example with cubic austenite and tetragonal
martensite has been treated under plane stress condition. Three
different constitutive relations for the transformation stretch
tensor versus order parameters have been considered: (a) a linear
combination (KM-I) of the Bain tensors for the martensitic variants
[30,67]; (b) an exponential-logarithmic combination (KM-II) of the
Bain tensors [38,39], which preserves volume for any intermediate
state along the transformation path between martensitic variants;
and (c) simple shear (KM-III) in one variant with respect to another
[40,64,71]. Stresses are absent for KM-III, but it is unclear how to
generalize this model for a multivariant martensitic trans-
formation. The first two models generate elastic stresses within the
interface, which are along the interface, because of the variable
component of the transformation deformation gradient along the
interface normal. Stress distribution depends on the interpolation
function for the transformation deformation gradient ¢(n) and
91/0, and resultant force per unit interface length f (surface ten-
sion) is proportional to the interface width d. Thus, for the sharp
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Fig. 6. Plots for finite sample along rg; = 0 for KM-I and II; (a) &1, and &¢12; (b) €11, F21, and e55; (c) tan 9. In legend, ‘A’ and ‘F’ mean analytical and FE results, respectively.
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interface surface tension is zero. However, for an alternating twin
structure with a traditional several nanometers spacing between
interfaces [70], comparable with the finite interface width, the ef-
fect of surface tension can be significant. The magnitude of the
interfacial stresses for NiAl alloy is several GPa, which is signifi-
cantly large. The maximum interfacial stress for KM-II is more than
twice that which corresponds to KM-L

Note that for small transformation strains, expressions for the
transformation deformation gradient for KM-I and KM-II coincide,

and the lattice rotation and stress are proportional to (g, — £2),
meaning they are higher order terms. Even for small strains, the
interface stress for KM-II is double that which corresponds to KM-1.

An approximate analytical solution for a finite sample has also
been found. It contains small compressive stresses in bulk to
equilibrate tensile interface tension. The analytical solution is in
good correspondence with numerical results obtained using the FE
method.

The main question is whether elastic interfacial stresses are real
or just an artifact of the model. The magnitude of the interfacial
stresses within a twin interface should be determined with the help
of atomistic simulations, similar to [1,16,17] for other interfaces.
Then the difference between the atomistic results and the struc-
tural stresses o will represent elastic stresses. Intuitively, stresses
obtained here are too high for both KM-I and KM-II. From this point
of view, KM-I is better that KM-II, and also simpler. The require-
ment of volume preservation during twinning is plausible but not
mandatory. There are data indicating that that dislocational slip is
also not isochoric process between two stable atomic configura-
tions [68]. Also, other defects such as stacking fault and twin
boundaries may induce volume change (Chapter 7 and 8 of [69] and
references therein).

On the other hand, based on the parameter values for NiAl, the
interfacial force fis estimated to be 0.6 N/m for KM-I, and 1.2 N/m
for KM-II. To the best of our knowledge, there is no experimental
data or atomistic simulations for the interfacial stresses for twin
interface. However, there are estimation for f for the external sur-
faces of nanowires [1], which was in the range of 1-3.5 N/m. The
variant-variant interfacial stresses are expected to be smaller than
the stresses within external surfaces. Hence our interfacial stress
values are reasonable and should be close to reality.

The obtained results also demonstrate that the requirements of
the phase field theories should be formulated not only for condi-
tions when one phase homogeneously transforms into another one,
but also for the case with coexistence of both phases divided by an
interface. That is why the obtained results are important for
developing phase field approaches for multivariant martensitic PTs
coupled to mechanics, especially at the nanoscale.
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