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The heterogeneity-gap between different modalities brings a significant challenge to multimedia informa-
tion retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a
shared multi-modal embedding space to measure the cross-modality similarity. However, previous meth-
ods often establish the shared embedding space based on linear mapping functions which might not
be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current
studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously,
or a small number of rankings are selected randomly to train the embedding space at each iteration. Such
strategies, however, always suffer from outliers as well as reduced generalization capability due to their
lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced
learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal
embedding space based on non-linear mapping functions. This strategy enhances the model’s robustness
to outliers and achieves better generalization via training the model gradually from easy rankings by
diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the pro-
posed challenging problem with fast convergence in practice. Extensive experimental results on several
benchmark datasets indicate that the proposed method achieves significant improvements over the state-
of-the-arts in this literature.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In many real-world applications, data related to the same un-
derlying object (content) are often exhibited in diverse modalities
for better human cognition (Lux etal.,, 2004; Zhai etal., 2013). For
example, when we want to know what is a dinosaur, we prefer to
find the results across various modalities, such as searching images
(videos) to figure out what a dinosaur looks like, also searching
text description on its size and other biology information for best
comprehension. As a result, cross-modal retrieval attracts increas-
ing attention and plays an important role to describe the content
of an image with natural language and conversely retrieve image
given textual query (Amir etal.,, 2004; Chang etal.,, 2017b; Pereira
and Vasconcelos, 2014). However, since data in diverse modali-
ties are presented in heterogeneous feature spaces and usually

* Corresponding author.
E-mail addresses: minnluo@xjiweducn (M. Lue), xj273@gmailcom (X Chang),
zhihuilics@gmailcom (Z. Li), nieligiang@gmail.com (L Nie), alex@cs.cmu.edu (A.G.
Hauptmann}, ghzheng@xjtu.edu.cn (Q. Zheng).

http://dx.doi.org/10:1016/j.cviu.2017.07.001
1077-3142}© 2017 Elsevier Inc. All rights reserved.

have varying statistical properties, it is a significant challenge to
bridge the heterogeneity-gap between multi-modal data (Grangier
and Bengio, 2008; Ranjan etal., 2015).

In the past decades, a large number of efforts have been de-
voted to revealing the inter-modal correspondence via learning a
shared embedding space for cross-modal similarity measurement
(Chang etal., 2017a; Irie etal, 2015; Jin etal, 2015; Kang etal,
2015a; Menon etal.,, 2015; Wang etal,, 2015). For example, Canon-
ical Correlation Analysis (CCA) and its extensions to kernel version
(Hardoon etal., 2004; Hotelling, 1936) aim to learn a common rep-
resentation by mutually maximizing the correlation between their
projections onto the shared basis vectors; Latent Dirichlet Alloca-
tion (LDA) based methods (Barnard etal., 2003; Blei and Jordan,
2003; Jia etal., 2011; Wang et al,, 2009; Xiaojun Chang and Haupt-
mann, 2017) establish the shared latent semantic model through
the joint distribution of images and the corresponding annotations
as well as the conditional relationships between them. However,
these methods separate the shared space learning from the ulti-
mate ranking performance, and thus usually suffer from poor gen-
eralization capability (Lu etal, 2013). Motivated by the Ordered

(2017), hteps//dx.doi.org/10.1016/j.cviu. 2017.07.001

Please cite this article as: M. Luo et al.,, Simple to complex cross-modal learning to rank, Computer Vision and Image Understanding




JID: YCVIU

[m5G;July 10, 2017;15:26]

2 M. Luo et al./Computer Vision and Image Understanding 000 (2017) 1-11

Image Feature Space

Non-ki
Sentence Feature Space on P

o A fighter jet sits on display.  [Feaa} )| (1T [@es] I (1T

=== & Image query sentences =5
e Cyclist riding in front of car. [F@oa} 1] " g S ——— ‘!'_.iq_ryr- — e’ I e
® A blue jet stoppedonalawn. [Faos} = Bea] I Image i query text Image j query text Image k query text
o A blue bird stands in grass. :_ﬁﬂ-“l} Im-Aﬁghmjetsimmdsxplay. [0:08]e A blue bird stands in grass. Ilm-Anugleispemhedmm. |
® Abluebird stands on a lawn. [Eooa} Apping [@os| [0f4]eA blue jet stopped on a lawn.! ! [DiIle A blue bird stands on a lawn. I [0309) « Eagle perched on a thick ropel
© A bird stands on green grass. [Fuou} s8] m-cycljstridinginﬁmtofcar.l Im-Abi:dstandsongmgmss.l Im-Anugleispuchedonampe.l
® An cagle is perched on trees.  [Fooo} B8] e e s — — — O — — — — — i et et . o |
® Eagle perched on a thick rope. [Faaa} [Eee] . .
+ Ancaglelaperched onarope: [paws] ‘—‘% Multi-modal Embedding Space

SPL

A blue bird stands in grass.

‘_ 0ss Rank I
Easy - Comple

W'ﬁ‘i}”ﬂw Jo12

[o0s [P

SPLD

A blue bird stands in grass.

An cagle is perched o1
trees.

s S S
A fighter jet sits on Eagle perched on a thick A blue bird stnds ona A blue jet stopped on a
display. Tope. lawn. lawn.

Fig. 1. The framework of the proposed simple to complex cross-modal learning to rank.

Weighted Pairwise Classification (OWPC) loss (Usunier etal., 2009),
Weston etal. (2011) involved a dynamic importance for different
ranking and proposed a Weighted Approximate-Rank Pairwise loss
(WARP) for multi-label annotation problem. Gong etal. (2013) de-
veloped the deep extension of this method. However, WARP is pa-
rameterized by a set of decreasing weights which are predefined.
Instead, Cross-modal Learning to Rank (CMLR) learns the multi-
modal embedding space through minimizing a ranking-based loss
function (Deng etal., 2016; Grangier and Bengio, 2008; Kang etal.,
2015b; McFee and Lanckriet, 2010; You etal., 2016). Since CMLR is
designed orientating to the performance of cross-modal ranking di-
rectly, it has become an increasingly important research direction
in cross-modal information retrieval. Many approaches have been
proposed based on this strategy (Habibian etal., 2015; Jiang etal,,
2015; Li etal,, 2013; Wang etal., 2016a, 2014; Wu etal.,, 2015, 2013;
Zhu etal., 2013).

However, the task of CMLR remains a significant challenge
because it requires an understanding of the content of images,
sentences, and their inter-modal correspondence simultaneously
(Karpathy etal,, 2014). To the best of our knowledge, most meth-
ods employ linear mapping functions to translate the image and
text feature vectors into a shared embedding space respectively.
Although these linear mapping functions are easy to construct,
they might not be capable of faithfully reflecting more sophisti-
cated cross-modal correspondence (Jiang etal.,, 2015). Additionally,
given an image query, previous methods suppose that all of the
texts in the rank list are of equal importance, and thus either all
ranking texts are utilized simultaneously, or a small number of
ranking texts are selected randomly at each iteration to train the
embedding space. Indeed, the texts ranked higher are more accu-
rate, and thus, should be more important than those ranked lower
(Jiang etal., 2014a). As a result, it is significantly necessary to de-
velop more sophisticated mapping functions and discriminate the
contributions of each ranking in a theoretically sound manner.

To this end, we incorporate a self-paced learning with diversity
(SPLD) theory (Bengio etal, 2009) into CMLR to train an optimal
embedding space based on non-linear mapping functions. In such
a way, the model is learned gradually from easy rankings with re-
spect to diverse queries to more complex ones. For a better un-

derstanding, we take image-query-sentence as an example to il-
lustrate the proposed framework, as shown in Fig. 1. Through non-
linear mapping, we translate images and sentences lying in hetero-
geneous feature spaces into a shared embedding space to facilitate
the similarity measurement between image and sentence. Given
each image query, the retrieved sentences are ordered according
to their ranking loss, as specified by the numbers in Fig. 1. It is
reasonable to believe that the sentences ranked higher, i.e., with a
smaller loss, are usually more accurate and important. These rank-
ing sentences with the corresponding image query are referred to
as easiness in this paper. To learn an optimal embedding space,
we follow the self-paced learning (SPL) and select ranking sen-
tences together with the corresponding image queries from easy
to more complex (See the row of SPL in Fig.1 for example). How-
ever, SPL only considers about the easiness, not about the diversity
of the selected ranking sentences with respect to different image
queries. Indeed, studies have suggested that diversity is an impor-
tant aspect of learning because performance is enhanced signifi-
cantly through samples that are dissimilar from what has already
been learned (Jiang etal, 2014b; Zhao etal, 2015). Ignoring the
diversity may lead to over-fitting to a subset of easy rankings by
some specific queries. This is significant since the over-fitting be-
comes increasingly severe as the rankings by some specific queries
are kept adding into training while ignoring the easy rankings by
other queries. As shown in the row of SPL in Fig. 1, all the rankings
with respect to the ith image query fails to be selected with SPL.
For this issue, we further improve the SPL by considering both eas-
iness and diversity, such that the selected easy rankings are scat-
tered across all image queries as much as possible. As indicated
in the last row of Fig. 1, SPL with diversity (SPLD) helps to select
from easy ranking sentences with respect to diverse image queries
to more complex ones.

In summary, we describe the contributions of this paper as fol-
lows: (1) From a new perspective, we adaptively assign each rank-
ing with an importance weight and learn a more optimal multi-
modal embedding space gradually from easy to more complex
rankings with respect to diverse image queries. (2) We employ
non-linear mapping functions to learn the multi-modal embedding
space, such that more sophisticated cross-modal correspondence

Please cite this article as: M. Luo et al,, Simple to complex cross-modal learning to rank, Computer Vision and Image Understanding

(2017), http://dx.doi.org/10.1016/j.cviu.2017.07.001




ARTICLE IN PRESS

M. Luo et al /Computer Vision and Image Understanding 000 (2017) 1-11 9
85 T T 65 T T
:
,‘,\ == = SPL Fanking MAP == = SPL Ranking MAP
« S0 i .
~% PRl | s i 1
a 1 & r -y
E f " | E 4 L}
E . K £ ¢ \
E ST\ VI 'Ji’c‘ e} I "ll‘k 1
a I - Vo & i, 4‘}"
g |1 - % l\l‘ ) !
| ‘s h | L [}
g9} M S A 3 Ty
§ '[’ . § ’.':l’ 127 .h ‘.\TM v'hﬁ‘r 9“0,‘
£ 45 " g 45 f
v
[
40 : 40 . .
3] 50 100 150 0 50 100 150
lteration lteratlon
(a) Pascal’(7 Image-Query-Text (b) Pascal’ 07 Text-Query-Image
Fig. 6. Performance comparison over Pascal'07 dataset between SCCM wjt and wjo diversity w.r.t various iterations.
75 Y T 75 T i
'I == = SPLD Fianking MAP I == = 5PLD Ranking MAP
it % = = 8PL Raniing MAP 4 ‘\ = = gPL Ranking MAP
oW i 70k " \“‘u E
Em - i oy g E‘ Ir i
£ 1 il I E ] "l"‘ 1
5 / , 3\ 5 of W
k] i = 65 d r J
L s W, AEETR
Les- g+ or g = 1, “\
2 ! 3 g i wh v
E I ‘ ‘ h" 5 60| I 1 %
$ |0y S AR o,
g |7 i qﬁ' * g ;5
Fool! 1 R, l"\n»“, Aty B I
i’ i
4
55 | | 50 . |
o 50 100 150 L] 50 100 180
lteration Iteration
(a) NUS-WIDE Image-Query-Text (b) NUS-WIDE Text-Query-Image
Fig. 7. Performance comparison over NUS-WIDE dataset between SCCM w/t and w/o diversity w.r.t various iterations.
40 T 40 T
'l‘ == =§PL Ranking MAP = = GPL Rankirg MAP
'] a5 [ g
E'SE ” ] "\ 1 s I 1
a '4 4
E 4 A E » ¥y
g i Pyl e 0" 1 h" 1 j
gaor ¥ r o 7 k] Y i
E Iy ! |“V\ 225- "la"' “ir‘a |
o I _; Il i [ 1« avﬂ
ga L g n“ t,“ L] ; g 1 \,_. {¢. fay "
[
T iy \ RV }q’ﬂ ' T20f v VE ""‘F‘n
g8 |y l( r
E Iy £
= %, 1 1
15 : g 10
1] 50 100 150 0 50 100 150
Heration lteration
(a) Wiki Image-Query-Text (b) Wiki Text-Query-Image

Fig. 8. Performance comparison over Wiki dataset between SCCM w/t and w/o diversity w.r.t various iterations.




JID: YCvIU

[m5G:July 10, 2017;15:26]

8 M. Luo et ol /Computer Vision and Image Understanding 000 (2017) 1-11
E‘:E- 100 =GGA &E_ 100
C-CRF
T % [EEIPAMIR ] T %or
g =5‘=" k=)
2 80 CMRNN |- U ggl
: =i .
o MLR | o L
ok [Jscam < 70
£ 60 & gl
2 :
= 50 = 50
g 3
E 40 E 40
mAP@5 mAP®10 mAP &all MAP &5 mAP@10 mAP@all
(a) Pascal’07 Image-Query-Text (b) Pascal’07 Text-Query-Image
Fg. 3. The performance comparison in terms of mAP over Pascal'07 dataset
i 100 & 100
: - : f
= 90 ~= 90r M
I~ c
2 S
.§ 80 § 80
[ ) I CCA
% 70| mmccrr % 701 [ c-cAF
=] IR PAMIR =] [ PAMIR
£ go {Ilss 8 sof s
g [ CMRNN ] [ RN
L o [T IDeere z ol [ DeepFE
= COe®ar e ey ML ]
& |ITTseom 3 [lsccw
mAP@5 mAP@10 mAP@all mAP &5 mAP@10 mAP@all
(a) NUS-WIDE Image-Query-Text {b) NUS-WIDE Text-Query-Image

Fg. 4. The performance comparison in terms of mAP over NUS-WIDE dataset.

3

-
o

2

mean Average Precision (mAP)
2

g 8

mAP@5 mAP@10

(a) Wiki Image-Query-Text

mAP@all

o
o

B

(=]
=]

o
Q

mean Average Pracision {mAP)
]

[+
[=]

mAP@5 mAP@10

mAP@all

(b) Wiki Text-Query-Image

Fig. 5. The performance comparison in terms of mAP over Wiki dataset.

Table 1

Performance comparison of the proposed algorithm wjt and wjo diver-
sity. Mean average precision (mAP) is used as an evaluation metric. Re-
sults are shown in percentages. Larger mAP indicates better performance.

Dataset 1QT TQI
witdiv. wfodiv. wftdiv. w/o div.
Pascal'07 mAP@5 836 79.7 818 774
mAP@I0  82.3 789 809 76.2
mAP@all 641 59.6 62.6 575
NUSWIDE  mAP@5 94.2 90.8 935 89.2
mAP@10  93.6 80.9 926 884
mAP@all 741 69.7 753 705
Wiki mAP@5 671 623 68.2 63.6
mAP@10  66.2 61.6 671 62.8
mAP@all 471 44.7 479 43.6

modified framework without diversity. Regarding to the task of
Image-Query-Text (IQT) and Text-Query-Image (TQI), Table 1 shows
the performance comparison between with diversity (wjt div.) and
without diversity (wfo div.). The results clearly demonstrated that
the proposed method with diversity consistently outperforms the

framework without diversity in both retrieval directions over the
three datasets. For example, for the retrieval task of Image-Query-
Text, the framework with diversity outperforms the model without
diversity, which is 64.1 vs. 59.6 over the Pascal’07 dataset. We at-
tribute this significant improvement to adaptive distinguishing the
contributions of varying rankings to the shared space learning and
considering the diversity of rankings by different queries.

In addition, we plot performance comparison between SCCM
wit and w/o diversity w.r.t various iterations in terms of mAP®@all
on all three datasets in two retrieval directions in Figs.6-8. A com-
mon phenomenon is that the performance improves as the itera-
tion increases. After the performance arrives at its peak, the per-
formance will drop if more iterations are conducted. This is be-
cause that some complex image-sentence pairs with large loss val-
ues have negative effect on the performance. By comparing SCCM
wit and w/o diversity, we observe that il diversity is considered,
SCCM attains a better solution within fewer iterations. For exam-
ple, in Fig.6 a, SCCM wi/t diversity obtains the best performance
by 36 iterations while SCCM wjfo diversity arrives at its peak by 58
iterations. This result indicates that SCCM w/t diversity converges
much faster than SCCM w/o diversity.
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— PAMIR (Grangier and Bengio, 2008): PAMIR utilizes global
alignment to learn the latent representations of pairs of images
and text texts in a pairwise ranking manner. Image and texts
are embedded into a global common space using a linear pro-
jection.

— 881 (Bai etal.,, 2010): SSI discriminatively trains a class of non-
linear models to map from the word content in a query-
document or document-document to a ranking score in a pair-
wise ranking manner.

— CMRNN (Lu etal.,, 2014): CMRNN is built on top of neural net-
works and learning to rank techniques, which learns high-level
feature representation with discriminative power for cross-
modal ranking.

— DeepFE (Karpathy etal., 2014): DeepFE learns a multi-modal
embedding space for fragments of images and sentences and
reasons about their latent, inter-modal alignment. [t considers
the local alignment of images and sentences.

— C?MLR (Jiang etal., 2015): (>MLR considers learning a multi-
modal embedding from the perspective of optimizing a pair-
wise ranking problem while enhancing both local alignment
and global alignment. C°MLR learn a ranking manner using
the local common space and the global common space jointly,
where the local common space is computed by local alignment
of visual objects and textual words and the global common
space is from the global alignment of images and text.

5.4. Evaluation metric

Mean Average Precision (mAP) is used as an evaluation met-
ric, which is one of the most widespread performance evaluations
of information retrieval. Given the Average Precision (AP) of all
queries, mAP is the mean of all AP values. And the value AP of
a query is calculated according to the formula (30).

R
AP Y'Y — %ZPrec(j)Rel(j) (30)

Jj=1

where Y and ¥ denotes the true ranking list and the predicted
ranking list namely; R is the number of retrieved texts to be exam-
ined in the ranking list if R is 5, the mAP is represented mAP@5,
and when the value of R is the number of all texts, the mAP is rep-
resented mAP@all; Prec(.) is the percentage of the relevant texts in
the top j texts in the predicted ranking; Rel.) is the indicator func-
tion equaling to 1 if the document at rank j is relevant. mAP is a
more suitable measure than other mentioned metrics in this par-
ticular task. Note that mAP indeed considers both precision and
recall of the retrieved results, and thus it is a suitable measure for
specific task of cross-media learning to rank.

5.5. Performance comparison

We report the performance of cross-modal ranking in terms of
mAP on Pascal’07 dataset in Fig.3 a (Image-Query-Text) and Fig.3 b
(Text-Query-Image). Note that whenever possible we have quoted
the numbers directly from the references, while if not available we
used code from the respective authors to obtain the results our-
selves. From Figs.3 a and b, it can be seen that the proposed al-
gorithm outperforms the other alternatives by a large margin. We
have the following observations on Pascal’07:

— The performances of all the baseline algorithms are much bet-
ter than those reported in Jiang etal. (2015) and Lu etal. (2014).
We attribute this improvement to the adoption of ImageNet
Shuffle model for feature extraction. To the best of our knowl-
edge, this is the first work to use ImageNet Shuffle model for
learning to rank algorithm.

— CCA obtains very similar performance in both directions of
the retrieval. This is because CCA learns the joint repre-
sentation from paired multi-modal data in which the pair-
correspondence of images and text texts ensures an equal con-
tribution to the learned metric in both modalities.

— PAMIR performs much better than CCA and C-CRF in both di-
rections, which confirms that learning a good representation for
multi-modal data is crucial for cross-modal ranking.

— We observe that cross-modal with local alignment (i.e., DeepFE)
obtains a poor performance on this dataset. This is because
many annotated tags of images in Pascal’d7 dataset do not ex-
plicitly align with visual objects in images.

— The proposed SCCM outperforms all baseline methods, which
confirms the assumption that learning from simple to complex
and considering diversity for learning to rank is instrumental.

Fig.4a (Image-Query-Text) and Fig. 4b (Text-Query-lmage) show
the performance comparison of cross-modal ranking in terms of
mAP over NUS-WIDE dataset. We have the following observations
from the experimental results:

— The proposed SCCM outperforms the other alternatives on both
search directions by a large margin in terms of all the evalua-
tion metrics.

— 58I generally performs better than CCA. Compared to CCA, SSI
introduces a nonlinear projection to map the multi-modal data
into a common space. This observation verifies that a nonlin-
ear projection for multi-modal learning achieves better perfor-
mance than a linear projection.

— The ranking algorithms with local alignment or global align-
ment generally outperforms the other alternatives. For example,
DeepFE and (C2MLR achieves significant improvement over CCA,
C-CRF, PAMIR and CMRNN. However, these algorithms are built
on the assumption that there is an explicit alignment between
visual objects and textual words.

We report the experimental results over Wiki dataset in Fig.5a
(Image-Query-Text) and Fig. 5b (Text-Query-Image). By comparing
the performance of different alternatives on this dataset, we have
the following observations:

— By comparing the performance in the two directions {(image-
query-text and text-query-image), most of the performance ob-
tain unbalanced performance. In contrast, CCA gets very sim-
ilar performances in both directions of the retrieval. The rea-
son is that CCA takes strictly paired multi-modal data as the
training instances, which makes CCA tend to capture the pair-
correspondence between multi-modal data and is unable to
capture the discriminative information between multi-modal
data.

— PAMIR gets the best performance among the compared non-
deep methods. This phenomenon is because PAMIR maps the
images into the textual space while the high-level semantics
delivered by the textual space is reasonable enough to get good
performance on ranking text.

Based on the above observations, we conclude that (1) non-
linear mapping function contributes to the cross-modal learning
to rank algorithm because it is able to capture more sophisticated
cross-modal correspondence; (2) it is advantageous to learn an op-
timal multi-modal embedding space gradually from easy to com-
plex rankings by diverse image queries.

5.6. Does diversity help?
In this section, we first conduct an experiment to evaluate

whether diversity contribute much to the subsequent performance.
By setting » =0 in the optimization problem (10), we obtain a

(2017), http:/fdx.doi.org/10.1016/1.cviw. 2017.07.001
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Algorithm 1 Algorithm of optimizing importance weight v.

Input; Tetrads set T ={(X 2.2 Vi) e TE: j#£ ki k=
1,2,---,n}; Current embedding parameters W; two trade-
off parameters A and .

Output; The global optimum v* of optimization problem [21).

1:fork=12 .. ndo
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i T
. e ok ¥ Z
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Algorithm 2 Algorithm for optimization probelem (10).

Input; Tetrads set Te={(Xe 2.2 i) e TE j £k k=
1,2, ... ,n}; two trade-off parameters A and .

Output: parameters W.

1: repeat

2 Updating W according to (19) and (20)

3. Updating v using Algorithm 1.

4: until convergence

4
Lvmpnitor, pel

diningtable, le person. motorhike

(a) Pairs of image-text examples in Pascal’07 dataset

glacier, ocean cars, police, sunset

Mection, sky,
cityseape

(h) Pairs of image-textexamples in NUS-WIDE dataset

buildings and constructions, nature and scenic, plants and fungi buildings and constructions,
animals buildings and constructions people

(c) Pairs of image-text examples in Wiki dataset

Hg. 2. The pairs of image- text examples in Pascal'07, NUS-WIDE and Wiki datasets,
respectively.

5.1. Dataset description and experimantal setup

The details of the datasets are introduced as follows, together
with the feature representation of the texts for each dataset. Some
example pairs of image-text are shown in Fig. 2 for a better under-
standing.

- Pascal’'07; The Pascal’07 dataset is a widely used benchmark
dataset in category recognition and multi-modal classification.
[t consists of 10,000 images from 20 different categories. 804
corresponding tags are downloaded from Flickr for each image
in the dataset and are represented as an 804-dimensional fea-

ture vector, each of whose dimension indicates if a tag appears.
There are 9587 images in the dataset with the user tags avail-
able, which are the image-tag pairs we use in the experiment.

— NUS-WIDE: This dataset contains 269,648 images with 1000
associated tags from Flickr. Each image with the correspond-
ing tags has several of the 81 concepts as the ground-truth.
We represent the corresponding tags of each image as a 1000-
dimensional vector, each dimension of which is a binary indi-
cator to indicate whether a tag appears or not.

- Wiki image-text: The dataset contains 2886 articles with
the corresponding image in each of the articles. All of the
Wikipedia articles are categorized as one of the ten semantic
classes. We extract a feature vector from each article with the
bag of words model (BoW), resulting a 1000-dimensional rep-
resentation.

For a fair comparison, we use the same experimental setting
in Rasiwasia etal. (2010). Specifically, for Pscal’07 and NUS-WIDE
datasets, 2000 images and the associated tags are randomly se-
lected as the training set. 1000 images and the corresponding tags
are selected as a validation set used for parameter tuning. The rest
are used for testing. For the Wiki dataset, 1200 images and the
corresponding text documents are randomly selected as the train-
ing set. 500 images and the corresponding text documents are se-
lected as a validation set used for the parameter tuning. Note that
the text consisting of multiple tags is used as a query in the ex-
periments.

5.2. Feature extraction

Previous researches have demonstrated that pre-trained model
with ImageNet dataset can boost the performance of other im-
portant tasks. Different from the leading approaches, who all pre-
train CNN models from the 1000 classes defined in the ImageNet
Large Scale Visual Recognition Challenge, we leverage the com-
plete ImageNet hierarchy for pre-training deep networks following
(Mettes etal.,, 2016). The key insight in Mettes etal. (2016) is that
by utilizing the graph structure of ImageNet to combine and merge
classes into balanced and reorganized hierarchies, a significant im-
provement on the visual recognition task can be achieved. To deal
with the problems of over-specific classes and imbalanced classes,
we adopt a bottom-up and top-down approach for reorganization
of the ImageNet hierarchy. After the training data has been re-
organized, we pre-train a CNN model using the same architec-
ture as GooleNets (Szegedy etal., 2015). The Caffe toolkit (Jia etal.,
2014) is used in our experiment. After pre-training, we extract fea-
tures at the pool5 layer, with a 1,024-dimensional frame represen-
tation. We normalize the representation by £,-normalization.

5.3. Competitors

To evaluate the effectiveness of the proposed method SCCM,
we compare with the following alternatives. We choose the best
parameters using 5-fold cross-validation. All the parameters are
tuned in the range of {10-3,10-2,10-1, 109, 101, 102, 103}.

— CCA (Hardoon etal., 2004): CCA maps the pairs of images and
text texts into a latent space, and therefore, the latent repre-
sentations of the images and text texts are obtained. After the
latent representations are individually obtained, CCA performs
cross-modal retrieval by measuring the relevance of queries and
texts with the cosine similarity regarding their individually la-
tent representation.

- C-CRF (Qin etal, 2008): C-CRF first maps the pairs of images
and text texts into a latent space, followed by performing the
cross-modal retrieval with C-CRF in a list-wise ranking manner.

(2017), http:/fdx.doi.org/10.1016/j.cviu.2017.07.001
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In summary, we pioneer to associate each tetrad with an adap-
tive importance weight and employ self-pace regularization ¢(v,
A, v) to guide the learning in a theoretically sound manner. This
strategy enhances model's robustness to outliers and improve its
generalization capability.

4, Optimization procedure

In this section, we exploit an alternative optimization algorithm
to solve the proposed challenging problems via updating embed-
ding parameters W and importance vector v iteratively with the
other one fixed.

4.1. Optimize W

In this step, we seeks to estimate the embedding parameters,
i.e, Wy, by and W,, b,. With fixed importance weight vector v, the
optimization problem (10) degenerates to the following form:

1
min §HWH2 + 0D I, 2, 2, Y WL (15)
ko ik

For this optimization problem, we use the gradient descent
method to update embedding parameters W at each iteration. Let
the objective in optimization problem (15) be fW; v). The deriva-
tives of f{W; v) with respect to parameter Wy, denoted by V fiy,,
can be computed as

afWsv)
Vi ==
ol(Xy, Zy, Z:, Vi W
:W1+szkj (k l:':)w;1 ykj ) (15)
ko j#Ek

where according to the definition of loss function in (8), we calcu-
late its gradient with respect to parameter Wy as follows

3I(X:<;Z:<;Zj;JH¢j;W) _ . as(xk, 21) _ as(xkszj) (17)
W Y\ Taw W)

From the gradient above, we observe that the cost function value
is back propagated into the gradient of similarity measurement S(x,
Z) with respect to parameter Wy, i.e.

asxz)  8(hx)'g@)
aw, . oW
_(fWix 4 b1y gWoz 4 by))
- aw;
= (gWhz + by) o fWix + by))x" (18)

where @ represents the element-wise multiplication and f(.)
refers to the derivative of f{.) with respect to its input. Based on
the three equations above, we achieve the gradient of (W, v)
with respect to parameter Wy. According to similar derivations, we
can also obtain the gradient of f{W; v) with respect to parameter
W,, denoted by V fy, . In summary, the embedding parameters Wy
and W, can be updated as

W1 “— W1 —+ ﬂVle (19)

W2 < W2 + beWz (20)

where a and b are the step size which can be found by linear
search.

4.2. Optimize v

After updating the embedding parameters, we renew the
weights vy; (j#£k) to reflect the adaptive importance of tetrad (x,,
Z), Z;, yi;)- Following the algorithm proposed in Zhang etal. (2015),
when W is fixed, ¥ can be updated by solving optimization prob-
lem

min DO VI 2 2 i W) + GV AL Y) (21)
ko jEk

st vhel0,1] (v, j£k)

where ¢V, A, )= —AE,{E#,{U’; - /z#kv?. Let 1}‘ =I(x;,
z,t,zj,ytj; W). Since the objective function (21) is independent be-
tween different k, we can estimate the importance weight vk =

(%, - vy, vk - vf] individually via solving the following

optimization problems

min ¥ 0 = 2ok -2t -y 3o (22)
ik

ik
st vhel0,1] (j#k
for each k=1,2,... ,n. In terms of Lagrangian parameters
ot =[ak, o af ot g, an]T e R (23)

.Bk = [.B{C, ; ;2:_1316;,:+1s"' L BalT ERH713 (24)

the Lagrangian function of ¥ (v*) is formulated as

Livk o, B4 = (v = 3 akvd = 37 BE(1 - o). (25)
i £k

Consequently, we arrive at the corresponding KKT conditions (Boyd
and Vandenberghe, 2004) as:

%:l?-l-%—a}%ﬁ}‘:O (26)
i 2 2 ik

kvt =0 (27)

- =0 (28)

ak=0; BF=>0. (29)

Thanks to the convexity of objective function (- ), we get a global
optimum v* satisfying these KKT conditions (26)-(29). [n summary,
we describe the algorithm of optimizing v in Algorithm 1. The over-
all alternative optimization algorithm for the proposed self-paced
CMLR with diversity regularization is summarized in Algorithm 2.
The proposed algorithm is efficient due to the following analysis.
Let z be the average number of tetrads selected by the self-paced
function. In each iteration, the complexity mainly lies in Step 2
and 3 of Algorithm 2. In Step 2, the main computational overhead
comes from obtaining similarity score for the selected tetrads with
complexity O(z2). In Step 3, the main computational cost of updat-
ing v lies in the calculation of loss of each tetrad with complexity
0(n?).

5. Experiments

To illustrate the effectiveness and superiority of the pro-
posed Simple to Complex Cross-Model learning to rank framework
(SCCM), we perform extensive experiments over some benchmark
datasets and demonstrate the efficiency of the diversity regulariza-
tion used in self-paced learning.
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Through non-linear mapping h and g, the similarity measure-
ment (relevance score) §/x, 2) between image query x and the re-
trieved text z can be obtained via computing the cosine similarity
in the shared embedding space, i.e.,

S(x,z) = h(x)'g(2). (3)
In this case, the underlying correspondence between image and
text lies in the embedding parameters Wy, by and W,, b,. We add
one dimension values 1 in each input feature x ¢ X and z ¢ Z and
view the biases by and b as an extra column of the corresponding
transformation matrices Wy and W, respectively. Without loss of
generality, we still denote the feature vectors of image and text by
x and z for a better representation.

To verify the effectiveness of the learned similarity measure-
ment based on embedding parameters, we follow the intuitive
strategies used in Jiang etal. (2015) and assume the aligned text
2y, should ranks higher than the other text z; € Z (j # k) given an
image query x* < ¥, ie,

SO, z) = 5%, 2;) (Vj#k). (4)
In such a way, we associate each image query X, a tetrad set

Th = {220 1 =12,  k—1,k+1,.-- ,n}, where y; is
assigned on the basis of similarity measurement S by

_— 1, 5(%,Zy) 2 5(%. Z;);
K7 1-1, otherwise.

(5)

for any j+# k. As a result, the following inequality should be fulfilled
for each tetrad (xy,2y,2;,yx;) € 7,

Vi | S, 21) — S, 23| = 0. (®)

For each ranking text by the kth image query x,, we define the
incurred ranking loss function as

5(7;,:§W)=Z [(xk:zk’zj:ykj;w): (7)
J#k

where W = (W, b, W,,b,} collects the embedding parameters

used in functions (1) and (2); Xxy, Zy, Z;, yy;; W) is usually given

as a hinge loss by

FX, 2y, 25, Yy W = max(0, v [S(X, ;) — S, 2 )| + A) - (8)

with margin A =0. This objective 1oss encourages aligned image-
text pairs in D to have a higher score than misaligned pairs by a
margin.

3.2. Self-paced CMIR with diversity regularization

In this part, we incorporate the SPLD into CMLR framework to
enhance the embedding space learning. This idea tends to distin-
guish faithful tetrads (xy, 2y, Z; yy;) from easy (high-confidence)
ones, and then gradually transfer the learning knowledge to recog-
nize more complex ones. To this end, we collect the entire tetrads
over all image queries into set Ty,

To = {22, Vi) e Tk i j#kk=1,2,... .0} (9)

and assign each tetrad (Xy.Z).Z;,yy;) € Tx a weight ¥ to reflect
the importance of ranking text z; by image query x,. Specifically,
the importance weight vector v e R*"~1) over set 7» is defined
as

i 1) i1 P ) 2 71,0 bl
Vo= Uy, Vg, U UL U5, e e UL UG e ]

vigkr-1 vigkn-! vrekn-1

In particular, given image query X, the loss incurred by ranking
text z; has no effect on embedded space learning if vg? =0, ie,

the tetrad (X, 2y, Z; ¥y;) will not be evolved in the procedure of
training.

With the importance weight vector v, the idea of self-paced
CMLR with diversity regularization is formalized as solving the fol-
lowing optimization problem:

1
min §HWH2 F O I 2L 2 v W+ @Ay (10)
' gtk

Wk, j# k)

where the self-pace capability with diversity is achieved through
regularization function

g A,y ) =—Alvli - ylviiz. (11)

where A and j are the regularizer penalty parameters which are
imposed on the negative !i-norm term (easiness term) and the
I, 1-norm-like term H"”il (diversity term), respectively. Specifi-
cally, the easiness term is defined as

—Alwlli==-2>"3 vk (12)

ko jEk

st vhel0,1]

It favors selecting from easy tetrads in 7x to more complex ones.
Without considering the diversity term, i.e., = 0, the importance
weight vj.‘ €[0,1] is updated for each tetrad (x, Z, Z;, yy) with
fixed embedding parameters W, according to

) 1,

U} =15 [(xkszlozstkj; W) = A;

otherwise. (13)

As a result, the tetrad with smaller loss is taken as an easy one
and therefore should be learned preferentially by setting U’J‘.:]
and vice versa. According to this strategy, the parameter set W is
updated iteratively only on the selected preferable tetrads with im-
portance weight 1% = 1. As the increase of A, more tetrads with
larger loss will be gradually involved to learn a more “nature”
model (Jiang etal., 2014a). Thus, by incorporating the estimation
of importance weight vector v with negative I{-norm regulariza-
tion into the procedure of CMLR, we indeed achieve to learn the
embedding of cross-media data in a self-paced fashion.

However, the easiness regularization might lead to some impor-
tance weight vector, for instance v%0 with respect to the kpth tex-

tual query, becomes zero vector, i.e., v;fo =0for j=1,2,.- ko —

1,---,kg+1,---,m It leads that all of the tetrads in set 71&0 for
the kgth image query are never selected to update embedding pa-
rameter W in the next iteration. This is because the updating of
importance weight vector ¥ according to (13) does not consider the
diversity of the selected tetrads, where the diversity is an impor-
tant aspect of learning because performance is usually enhanced
significantly through samples that are dissimilar from what has al-
ready been learned (Jiang etal, 2014b; Zhao etal., 2015). For this
issue, it is necessary to impose the diversity regularization on the
importance weights vector, such that the selected tetrads are scat-
tered over different image queries. In this paper, we following the
strategy used in Zhang etal. (2015) and define the diversity regu-
larization as a I 1-norm-like term ||v||3’1,

Ivlisy =3 /2 % (14)

k J#k

Intuitively, the diversity regularization evolved into the objective
function (10) aims to prevent the non-zero importance weights
from concentrating in some image queries and ignoring others,
i.e, to select dissimilar tetrads from different image queries as
much as possible. Note that the diversity regularization defined in
(14) makes ||\.'||§$1 non-convex, while guaranteeing the convexity of
its negative. This strategy preserves the previous axiomatic defini-
tion for SPL regularization. Moreover, it makes the solution of the
optimization problem (10} more sufficient and simple.
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can be captured for cross-media retrieval. (3) An efficient alterna-
tive algorithm is exploited to solve the proposed challenging prob-
lem with a fast convergence in practice. Extensive experimental re-
sults over several benchmark datasets demonstrate the effective-
ness and superiority of the proposed algorithm.

The remainder of this paper is organized as follows. We give
a brief introduction to the related work on CMLR and SLP in
Section 2. In Section 3, we firstly introduce a non-linear mapping to
characterize the multi-modalities embedding space, and then we
associate each ranking by cross-modal query with an importance
weight to train the CMLR model in an SPL fashion with diversity.
We exploit an efficient alternating algorithm in Section4 to address
the proposed challenging optimization problem. In Section 5, we
conduct extensive experiments over several benchmark data sets to
illustrate the effectiveness and superiority of the proposed method.
Section 6 concludes this work.

2, Related work

In this section, we briefly review the related work on CMLR and
self-paced learning theory and applications.

2.1, Cross-media retrieval

Grangier etal. pioneered to formalize the cross-modal retrieval
tasks as a pair-wise ranking problem and maximize the final re-
trieval performance with a Passive-Aggressive algorithm, namely
Passive-Aggressive Model for Image Retrieval (PAMIR). However,
since this method verifies the pairwise ranking criterion with map-
ping from image query space to the document space, its perfor-
mance may be deteriorated by the skewed multi-modal data. Con-
sequently, some efforts are devoted to formalize cross-media re-
trieval as a list-wise ranking loss optimization problem. For exam-
ple, Xu et al. propose to optimize the list-wise ranking loss with a
low-rank embedding; Wu etal. (2015) learn the latent joint repre-
sentation of multi-modal data through a conditional random field.
Inspired by dictionary learning together with sparse coding tech-
niques, multi-modal dictionary learning is also studied by associ-
ating each modal data with a dictionary (Jia etal., 2010; Monaci
etal., 2007). Additionally, hashing technique is also employed to
solve the problem of CMLR due to its efficiency for large-scale
datasets (Cao etal., 2016; Wang etal., 2016b; Yu etal, 2014; Zhu
etal, 2013).

Note that the mentioned approaches above commonly use lin-
ear mapping functions to translate multi-modal data into the
shared space for its simplicity. However, linear mapping function
might not be sophisticated enough to reveal the explicit corre-
spondences between different modalities. For this reason, Feng
etal. (2014) leverage correspondence autoencoder with deep archi-
tectures to learn the mid-level presentation of multi-modal data;
Jiang etal. (2015) assume a deep compositional cross-modal se-
mantic representation is more attractive for CMLR and optimize
the pairwise ranking using non-linear mapping. These techniques
have shown their effectiveness to learn a more sophisticated em-
bedding space with large scale training collections. However, an
expensive computational cost is usually required by these meth-
ods due to a large number of parameters. Additionally, the rank-
ing performance is limited when there is not enough training data
available for some real world applications.

[t is noteworthy that all of the previous methods suppose the
rankings of multi-modal data are of equal importance, without dis-
tinguishing each ranking’s contribution to multi-modal embedding
space learning. In this paper, we pioneer to assign each ranking
an appropriate importance weight and use non-linear mapping to
learn an optimal multi-modal embedding space in a self-paced
maner.

2.2. SPL and SPLD

Enlightened by the learning principle underlying the cognitive
process of humans and animals, SPL theory is raised lately to learn
the model from easy samples to gradually more complex ones
(Kumar etal, 2010; Meng etal., 2017). This idea is indeed an im-
provement of the curriculum learning which specifies a sequence
of gradually added training samples (Bengio etal., 2009). Intu-
itively, since the samples are organized from easiness to hardness
instead of using all samples simultaneously or randomly sampling,
the SPL (curriculum) can effectively avoid poor local minimum and
achieve a better generalization (Bengio etal., 2009). SPL is inde-
pendent of particular model objectives and has been attracted in-
creasing attention in the field of machine learning and computer
vision tasks, such as object localization and tracking (Shi and Fer-
rari, 2016; Xiao and Lee, 2016}, reranking of multimedia search
(Jiang etal., 2014a; Liang etal, 2017), image classification (Gong
etal, 2016; Tang etal, 2012; Tudor lonescu etal., 2016), matrix fac-
torization (Zhao etal., 2015) and cotraining of multi-view tasks (Ma
etal., 2017). However, traditional SPL theory just considers the eas-
iness while ignoring the diversity of the selected samples. For this
issue, Jiang etal. (2014b) enhance SPL with non-convex diversity
regularization such that the selected easy samples dissimilar from
what has already been learned; Zhang etal. (2015) introduce a con-
vex diversity regularization and use SPLD for co-saliency detec-
tion. In this paper, we incorporate the SPLD into CMLR to training
the multi-modal embedding space gradually from easy rankings to
more complex ones by diverse queries.

3. Self-paced cross-media learning to rank

[n this section, we first introduce the framework of CMLR with
non-linear mapping functions from image and text feature spaces
to a shared embedding space. Then a self-paced CMLR model is
proposed with diversity regularization to learn a more optimal em-
bedding space in a theoretically sound manner.

3.1. Problem formulation

We associate each image with a natural language descrip-
tion such that the training dataset consists of n image-text pairs,
le. D={{x,2):i=1,2,---,n}, where x; € ¥  RP represents a
p-dimensional visual feature vector extracted from the ith im-
age and z;  Z C RY refers to a g-dimensional feature vector ex-
tracted from the ith text (sentence). For a better representation,
we collect all sentences and images in X = {X1,X3,--- ,Xy} and
Z={21,25, - ,2Zq}, Tespectively. Note that the order of compo-
nents in & and Z should correspond with each other such that
the ith image x; € X and the ith text z; € Z come from the same
pair in 7.

To explore the underlying correspondence between relevant
text and image, a shared multimodal embedding space £ < RY is
learned in CMLR to facilitate the similarity measurement between
different modalities. Given an image query x < X, we define a non-
linear mapping from image feature space into the shared multi-
modal embedding space via h: ¥ — £,

h(x) = o Wix +by), (1)

where the non-linear mapping ¢( - ) is specified as a Sigmoid func-
tion in this paper; W is a d x p transformation matrix and by < B4
is a bias vector. Similarly, we map each text feature into the shared
embedding space by non-linear mapping g: 2 — £,

g(z) = o (Woz + by}, (2)

where W, is a d x g transformation matrix and b, <R¥ is a bias
vector.
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6. Conclusion

In this paper, we employ non-linear mapping functions from
heterogeneous feature spaces into a shared embedding space and
incorporate the SPLD theory into the CMLR to train an optimal
multi-modal embedding space gradually from easy rankings by
diverse queries to more complex ones. This method adaptively
distinguishes the contributions of varying rankings to the shared
space learning and explicitly considers the diversity of rankings by
different queries at the same time. These strategies effectively en-
hance model’s robustness to outliers in a theoretically sound man-
ner and improve its generalization capability with more sophisti-
cated non-linear mapping. The comprehensive experimental results
on three benchmark datasets have demonstrated the effectiveness
and superiority of the proposed approach on both tasks of text
query image and image queried text. We also experimentally illus-
trate the significant necessary of diversity regularization imposed
on importance weight vector for cross-modal retrieval. A possible
direction for future work may lie in studying list-wise self-paced
CMRL problem based on weak-supervised learning and exploiting
the potentials of the proposed model in other applications, such
as attribute detection (Wang etal., 2016d), face aging (Wang etal.,
2016¢) and action recognition (Wang etal,, 2016e).
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