Algorithm for Searching and Tracking an Unknown and Varying
Number of Mobile Targets using a Limited FoV Sensor

Yoonchang Sung and Pratap Tokekar

Abstract— We study the problem of searching and tracking a
collection of moving targets using a robot with a limited Field-
of-View (FoV) sensor. The actual number of targets present in
the environment is not known a priori. We propose a search and
tracking framework based on the concept of Bayesian Random
Finite Sets (RFSs). Specifically, we generalize the Gaussian
Mixture Probability Hypothesis Density (GM-PHD) filter which
was previously applied for only tracking problems to allow for
simultaneous search and tracking. The proposed framework can
extract individual target tracks as well as estimate the number
and spatial density of the targets. We also show how to use
Gaussian Process (GP) regression to extract and predict non-
linear target trajectories in this framework. We demonstrate the
efficacy of our techniques through representative simulations
where we also compare the performance of two active control
strategies.

I. INTRODUCTION

We study the problem of searching for and tracking a
set of targets using a robot with a limited FoV sensor.
This problem is motivated by robotic search-and-rescue [1],
[2], surveillance [3], crowd/traffic monitoring [4], [5], and
wildlife habitat monitoring [6]-[8]. We specifically consider
scenarios where the number of targets being searched is not
known a priori. The targets may move during the search
process and the motion model of the targets is not known
exactly. As the targets are mobile, the robot is also tasked
with tracking the target trajectories.

The search and tracking problems can be loosely dis-
tinguished depending on whether or not a target is in the
FoV: tracking when targets are in the FoV, and search when
targets are out of the FoV. Once all targets are observed
by sensor platforms, the search task is accomplished. To
successfully conduct the tracking task, the states of targets
must be estimated at each time and trajectories of individual
targets must be maintained over time. A robust tracking
technique must be able to deal with clutter (false positive)
measurements which is especially challenging since the true
number of targets is not known.

Search techniques have been applied to a broad range of
problems (e.g., [9]-[14]). The recent survey by Chung et
al. [15] gives a good overview of the search problem.

For the multitarget tracking problem, Joint Probability
Data Association (JPDA) [16] and Multiple Hypothesis
Tracking [17] have become canonical algorithms. These
techniques have been applied to many problems including
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human following [18], object tracking [19] and human-
robot interaction [20]. However, JPDA requires solving the
data association problem which is especially costly when
the actual number of targets is not known exactly [21].
Conventional Bayes trackers use a vector representation in
which the order of the targets and its size is known and fixed.
This makes tracking with an unknown number of targets
intractable. However, the Probability Hypothesis Density
(PHD) filter [22] that we use in this paper avoids these
problems with the help of random set representations [23].

Several techniques have been proposed to unify the search
and tracking problems [1], [24]. These include the sequential
Monte Carlo filter [25], [26] as well as the PHD filter [4].
However, the existing works focus on estimating the number
of targets and their spatial densities but cannot estimate
trajectories of individual targets. On the other hand, there
are existing works on estimating individual target trajectories
but assuming unlimited FoV [21]. Our main contribution is to
generalize the tracking algorithms for unlimited FoV sensing
to the case of limited FoV. We also show how to extend
the tracking to non-linear motion models by leveraging GP
regression [27] based on the prior work in [4], [28].

The rest of the paper is organized as follows. We begin
by describing the problem setup in Section II. We present a
brief introduction to GM-PHD in Section III. Our proposed
algorithm is presented in Section IV. We present results from
representative simulations in Section V before concluding
with a discussion of future work in Section VI.

II. PROBLEM DESCRIPTION

Our input is an estimate of the number of targets and
a probability distribution over their initial spatial locations.
However, the actual number of targets may be different. We
assume that all targets move independently of each other.
The targets may move on non-linear trajectories. However,
we assume that the trajectories are smooth (in the sense, that
will become clearer in Section IV-B). If a target is present
in the FoV, then it is detected by the robot with probability
pp. If the target is detected, then the sensor returns a noisy
measurement of the position of the target. We assume that
the measurement noise is additive and Gaussian. In addition,
at any time step, the sensor may also generate clutter (false
positive) measurements following a Poisson RFS [29].

The proposed search and tracking framework is based on
the concept of RFSs. The proposed method can estimate the
states of targets and the number of targets at the same time,
initiate and terminate individual target tracks, and distinguish
between the search and tracking functions. In this paper,



we present illustrations and simulations assuming that the
environment is 2D and obstacle-free, and the robot has a
circular FoV. However, the proposed techniques easily extend
to more complex scenarios.

III. BACKGROUND ON BAYESIAN RFS

Recursive Bayesian Estimation (RBE) is a canonical tool
to estimate target states from noisy sensor observations. A
standard assumption is that the number of targets is known
exactly. Hence, we can treat the positions of all the targets at
any time as a random vector and use RBE for estimation. For
the setting considered in this paper, standard RBE techniques
cannot directly be used since there is uncertainty on the
length of the random vector itself. Mahler [22] developed the
PHD filter to tractably solve exactly this class of problems.
The PHD, also known as the intensity function, is the first-
order statistical moment of a RFS. When integrated over
any subset of the environment, it yields the expected number
of targets present in that subset. The advantage of PHD is
that it estimates both target states and the number of targets
simultaneously without the necessity of data association. We
briefly discuss the PHD filter next and refer the reader to
reference [29] for more details.

We denote the PHD by v and the multitarget posterior
density by py(X|Zr). X and Z are a multitarget state set
and observation set, respectively. The expected number of
targets within any region S is equal to the integral of intensity
of target state vectors over S. That is,

J X0 snx1Z06x = [ vix.

We define vp—1(X) 1= vgjp—1(X|Zk—1) and vy (x) :=
Uk (X|Zy) for notational ease. The prediction step of the
PHD recursion is given by,

Vplp—1(X) = /pS(w)fHk—l(X|W)Uk—1\k—1(w)dw+
2
/wk‘k_l(X|W)Uk_1|k_1(W)dW+ Bk(X).

ps()s fepe—1(|), wgk—1(:|-) and Bi(-) denote the probabil-
ity of survival of existing targets, the transition model, the
intensity of spawning new targets from existing ones, and
the intensity of birth targets. The update step is given by,

Ok k(x) =[1 — pp (%)]vrp—1(x)+

Z P (X)gk (2X) g1 (%) 3)
k(z) + [ pp(W)ge(z|w)vg p—1 (W)dw'
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pp (), gr(+|-) and k(-) denote the probability of detection,
the sensor likelihood model, and the intensity of clutters.

The PHD filter propagates the posterior intensity re-
cursively over time, as in Equations 2 and 3. The exact
derivation follows from reference [22].

Two approaches have gained substantial attention for the
realization of PHD: the particle PHD [30] and the GM-
PHD [21] filters. Particle PHD is suitable for dealing with
non-linear motion of targets, whereas GM-PHD assumes
that a target has a linear motion model. Nevertheless, we

Fig. 1. The GM-PHD filter with 7 Gaussian components

can use the Extended Kalman Filter or Unscented Kalman
Filter versions of GM-PHD as presented in [21] for non-
linear motion models. GM-PHD gives a closed-form solution
without needing large sample size or clustering techniques
to extract multitarget state estimates, unlike particle PHD. In
a GM-PHD the intensity function is represented as a Gaus-
sian mixture model of one or more Gaussian components
(Figure 1). Each Gaussian component is represented by its
mean, covariance, and weight. The weight of a component
gives the expected number of targets generated as a result of
that component. We refer the reader to reference [21] for a
detailed discussion of GM-PHD.

IV. PROPOSED GM-PHD SEARCH AND
TRACKING ALGORITHM

Figure 2 gives an overview of the proposed algorithm. We
start with an initial estimate of PHD. Multitarget Bayes filter,
i.e., the prediction and update steps, is applied recursively
to estimate both search and tracking targets. Since PHD is
employed, additional data association between targets and
measurements is not required. The pruning and merging
schemes reduce the number of Gaussian components with
low and similar weights, respectively. Then, multitarget state
estimates are extracted from GM-PHD and used for main-
taining trajectory states of targets. Estimates of the targets in
the search region are allowed to enter the tracking regions
and vice versa using boundary condition. Finally, an active
control strategy is used to get the trajectory for the robot.

We describe our new contributions in this section and
refer the reader to reference [31] for a description of the
other blocks in Figure 2. Specifically, we show how to
extend GM-PHD to allow for separate multitarget search and
tracking states (Section IV-A), how to use GP regression to
predict non-linear motion models of the targets (Section IV-
B), how to extract and manage tracks of individual targets
(Section IV-C), how to handle targets moving from search to
tracking states (Section IV-D), and present two naive strate-
gies for actively controlling the robot’s state (Section IV-E).

A. Multitarget State and Observation Spaces

Tracking and Search States: The true but unknown state
of a target is represented as X; = (21, ..., Z4,%) € X X Z>o,
where xy C R< is a d-dimensional environment and i € Z>
is a non-negative integer denoting the target ID. A multitarget
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Fig. 2. Flowchart for GM-PHD search and tracking algorithm.

state set X is defined as X = {x; | Vi € {1,...,n}}. We can
partition X into two disjoint subsets,

X =xTux", 4)

where X7 and X® denote the multitarget tracking and search
states, respectively. X7 and X° depend on the state of the
robot at a given time k. X,? represents the set of states of
targets that can be reliably detected in the FoV of the robot
at time k. X represents the set of states of all other targets.

Let y,, denote the state of the sensor at time k. We assume
that a target with true state X, ; is detected by the robot with
probability pp(Xg.i,¥;). We have,

XF ={xp; | Vie{l,...,nx}
and pp (Xk,i, Y1) = 7} C X»

where 7 is a desired threshold on the probability of detection.
v can depend on the FoV of the sensor. nj is the true but
unknown number of targets at time k. Likewise, a multitarget
search state is given by,

X7 ={xpi | Vie{l,....,n}
and pp (Xk,i,¥z) <7} C X

We denote the multitarget tracking and search state regions
by x7 and x°, respectively.
Measurement Model: At every time step, the robot gets
a noisy observation of the true multitarget tracking state X .
Let Y, be this random observation set which is a finite
subset of the observation space Z. |Xj| is not necessarily
equal to | X ,?| since some of the targets may not be detected
(false negative), whereas some clutter measurements may be
observed (false positive). Formally,

Sk = D(Xx) UC, )

(&)

(6)

nk
where D(X}) = | D(xx,;) selects measurements based on

the probability 01%_dletection at time k£ and C denotes RFS
of clutter. D models if a target in X is detected by the
sensor as well as the additive Gaussian noise in the state
measurement. C' is the clutter drawn from a Poission RFS
restricted to only tracking regions.

Bayesian RFS Estimation: Our goal is to predict and
estimate the true multitarget tracking and search states, X ,?
and X ,f , at every time step using the noisy observation
sets. As described previously, we use GM-PHD Bayesian
RFS techniques proposed in [21] for the estimation and

extend it to allow updates of the tracking and search states
individually. Analogous to the Kalman filter, the Bayesian
RFS recursion predicts a RFS =, _; and corrects the RFS
estimate =y;, at every time step.

The predicted RFS can be partitioned into two subsets,

= _=T =S
Sklk—1 = Sgp—1 Y Skjk-19 ®)

where E{l s and Ef‘ 1 are the predicted RFSs of multi-
target tracking and search states, respectively. The predicted
RFS of a multitarget tracking state has three terms:

Eakfl =ST(X; ) uwW(X ) uB, 9
T
where ST(XT ) = U/ ST(x,_1,4) models the mo-
tion model and survival of existing tracking targets, and
T
W(XE ) = Uik W(xg_1,) models spawning new tar-
gets from existing tracking targets, both given a multitarget
tracking state at time £ — 1 with the number of tracking
targets n}_,. B denotes RFS of the target birth.
Since search targets are not observable, the spawning and
birth models can be excluded from the predicted RFS:

Eher = 9%(Xi0) (10)

S
Npg—1

where S%(X7 ) = U4
number of search targets.

We adapt the prediction of PHD (Equation 2) and the
update of PHD (Equation 3) to include the concept of a
search region. The predicted PHD of Equation 2 with respect
to Equations 9 and 10 can be computed by,

Ss(xk,lvi) and an is the

Vk|k—1(X) =/ Ps(W) fijk—1(X[W)vg—1)—1 (W)dw+

XT
/ Wilk—1 (XIW)ve_1p—1(W)aw + Br(x|x € x)+ (1)
XT

/fk\kfl(X|W)Uk71|k71(w)dw-
XS

While tracking targets in x”? has birth and spawning
models, the PHD of search targets in x* is only propagated
by the transition density function. Note that the survival
model in x* does not have ps(-) term. The updated PHD of
Equation 3 with respect to Equation 7 is

e (%) = [1 = pp(x|x € XT)]vge—1(x|x € xT)+
Z pp(x|x € X7 )gr(z|x € XT)Uk\kfl(xb‘ ex’)
k(z) + fxu- PD (W) gk (2|W)vg|e—1 (W)dw

+ (12)
VASVAS

vklp—1 (x[x € X°).

Since no measurements can be made in y°, Equation 12
is the same as Equation 3 except for the last term. Even
though the covariance of search targets increases due to no
correction being applied, we intentionally do not change the
weight of the search targets.



B. Prediction using GP Regression

The PHD prediction (Equation 11) requires knowing the
motion model, fyx_1, for each of the targets. In previous
works, a simple linear motion model was applied [21]. In-
stead, we use GP regression [27] which is a non-parametric,
Bayesian, and non-linear regression technique which requires
specifying a kernel function. In our previous works, we
have shown how GP regression can be employed to learn
the spatial velocity vectors of targets for a real-world taxi
dataset [4]. Here, we employ GP regression to extrapolate
each target’s trajectory and predict its future positions.

The hyperparameters for the kernel are learned offline
using a training set consisting of noisy observations of the
target’s motion. Noisy measurements of the state of the
targets are fed as input to GP regression, which produces
a prediction of its future positions. In particular, we use GP
regression to estimate d functions, f;(t) where i =1,...,d,
that predicts the evolution of the state of the target along
each of its d dimensions, independently. Figure 3 shows an
example of the 2D case and the result of GP regression
applied to a trajectory sample. From a distribution obtained
from GP regression, future trajectory mean position with
covariance can be extrapolated.

In order to apply GP regression to predict the motion
of each Gaussian in GM-PHD, we must have a confirmed
track of individual targets. If a Gaussian is not assigned to
a confirmed track, then we can use a simple linear motion
model for the prediction. Once a track is confirmed (i.e.,
we have sufficient history of an individual target trajectory)
we employ GP regression to predict its motion. The next
subsection describes how to keep track of confirmed tracks.

C. Track Management

It is important to keep the track continuity of the
PHD filter so that the trajectories of individual targets
can be observed and maintained. N, tracks at time k
are denoted by T, = {t, | Vg € {1,..,Ny}}. The
g-th track at time k, tg, is represented as: t;, =
(T1,1, 81,2, ooy T1ods Cly - -y LU T12y ey Thdy €15 §) © R X
Z>0 x {0,1}!, where d is the dimension of the target
state, [ is the life length of track, ¢ is a non-negative
integer representing the track ID, and c; is a binary indicator
denoting whether a target is a search or tracking target. The
details of the track continuity of the particle PHD filter and
GM-PHD filter are explained in [32] and [31], respectively.

We define two types of tracks: confirmed tracks and
tentative tracks. When a target not assigned to any other
existing tracks is detected, it generates a new tentative track
with a new index g. After surviving for certain time period,
this track is converted into a confirmed track. In this way,
false positive tracks can be filtered out.

A confirmed track q, tgj, at time k can be generated
from a rentative track ¢, tq x—1 = {Xr,Xp41, ..., Xk—2,Xk—1},
created at some time r when the following conditions are
met: (1) A target ¢ at time k, X, j, is spawned from a target
r at time k — 1, X, 1, of track g, t; 1—1, where r is any
arbitrary target ID; (2) The weight of target ¢ at time k,

wj . satisfies w; , > wrpg, where wrg is a threshold that
determines the existence of a target from peaks of PHD; and
(3) The life length of track ¢ at time k — 1, [, x—1, satisfies
lgk—1 > lrg, where Iy is a threshold on the maximum
number of time steps to stay as a fentative track.

It is important to note that two different wrz must be
applied for extracting multitarget states in x° and x”. Also,
once any confirmed tracks fall in x°, they permanently
remain as confirmed tracks until detected again. There is no
tentative track defined in y%.

D. Construction of Search Boundary using GP Regression

We refer to the region outside the FoV of the robot that
is likely to contain targets as a search boundary. The terms
search target and search boundary are used interchangeably
because what is estimated for unobservable targets is an area
that potentially contains a target of interest. Since targets in
the search region are not observable, a naive initialization
of a search boundary may lead to the failure of searching
for targets. As soon as the sensor detects a new target, the
corresponding weight of the target is increased to initiate a
new tracking target in the tracking region. On the other hand,
more careful means must be taken into account for a tracking
target falling into the search region.

Figure 4 shows the process of constructing a search bound-
ary. Every target that leaves the FoV creates a new search
boundary. When a confirmed track q, t,j, is not observed at
time &, the most recent k, time steps of trajectory positions
are used as samples for GP regression. A search boundary
Xf is constructed at time % for track ¢ and predicted k,, time
steps ahead using GP regression. After initialization, only
the covariance of the search boundary is propagated based
on the position x} +k,» because the prediction model from
GP regression becomes less confident as time goes.

E. Active Sensor Control

All the building blocks of the search and tracking al-
gorithm (Figure 2) described so far focus on estimating
the state of the targets. In this section, we focus on the
complimentary problem of actively controlling the state of
the sensor so as to improve the search and tracking process.
A number of approaches has been proposed for active target
tracking [33], target search [6], as well as joint search
and tracking [24]. In this paper, we evaluate two simple
strategies that are particularly suited to the underlying GM-
PHD framework. Investigating better strategies with stronger
performance guarantees is part of our ongoing work.

In GM-PHD, the mean of the Gaussian is a local maxima
of the PHD (i.e., most likely location to find a target in
the local neighborhood), whereas the variance encodes the
spatial uncertainty of the location of the targets. We evaluate
two control strategies. (i) nearest—gaussian: drive to
the nearest mean of all Gaussians in the mixture; and (ii)
largest—-gaussian: drive to the mean of the Gaussian
with the largest covariance in the mixture. Once we reach
the mean, the robot performs an outward spiral motion to
search for the target in the corresponding search boundary.
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Intuitively, the nearest-gaussian strategy will track
one or more targets for as long as possible, giving good
tracking performance but poor search performance. On the
other hand, the largest-gaussian strategy will equi-
tably cover the search region giving good search performance
but possibly poor tracking performance. We evaluate these
two strategies through simulations. We hypothesize that a
third strategy that switches between these two behaviors can
be used to trade-off search and tracking objectives.

V. SIMULATION RESULTS

We implemented the proposed algorithm using an existing
implementation for GM-PHD [21]. We present the results
from two types of simulations. We first evaluate how well
the GP regression performs as compared to a naive linear
predictor for the motion model and predicts the search
boundary of the targets. Then, we use the complete system
to evaluate the two active sensor control strategies proposed.

A. Search Boundary Test

Figure 5 shows the effect of different values of hyper-
parameters on the search boundary for the x-coordinate
of the estimated trajectory as a function of time. We use
the squared-exponential kernel [27] which has three tunable
hyperparameters (length-scale [, the signal variance afc, and
the noise variance o2). All the boundaries were acquired

from the 95% confidence interval. The black solid line is
from the offline-trained values and other three lines show
the interval when one of three hyperparameters is changed.

Figure 6 compares the GP regression model with a naive
linear motion model of GM-PHD. To have a fair comparison,
a linear motion is used to generate the true trajectory.
We used the Hausdorff distance to compare the estimated
trajectory with true trajectory. The linear estimator uses only
one previous time step to make a prediction. We ran 30
tests and used the same test samples for both cases. Here
sampling time steps were k; = 20, and time steps of the
prediction were k, = 20, which start from time O in the
figure. The training data for obtaining GP regression was
different from the test samples. In all x and y-axis cases, both
mean and standard deviation of the GP regression model are
smaller than the linear model. This indicates that a search
boundary generated by the linear model must be larger than
the one from GP regression. It also turned out that the
predicted trajectory from the linear model is sensitive to the
last condition of a target before falling into the search region,
which might lead to having a search boundary that already
does not contain the true target.

B. Multitarget Search and Tracking

In this section, we report the results of applying our
algorithm for representative search and tracking scenarios.
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The environment consisted of five search targets initially. The
true number of targets is not known but an initial guess of
approximate target positions is given in the form of Gaussian
mixture distribution (Figure 7-left). The initial Gaussian mix-
ture consisted of four components with different covariances.
The robot has a circular FoV and can move with a constant
velocity. At each time step, fifteen clutter measurements are
generated, uniformly at random inside the FoV. We tested
the two control strategies of Section IV-E using this initial
setting and ran for 300 time steps each. When the sensor finds
a target, it still approaches the target for certain amount of
time steps to make sure that it becomes a confirmed track.
On the other hand, when a target is not observed even at
the mean of initial Gaussian distribution, the sensor takes a
spiral motion to sweep the search boundary until it detects a
target. If the sensor does not find a target within this region,
the search target can be considered as a false positive.
Figure 7 shows the results for the two control strategies.
The nearest—-gaussian strategy ended up searching for
the nearest target and then tracking it repeatedly. This is seen
from Figure 8-(a) where the distance between the robot and
target 1 always remains low, whereas the distance between
the robot and other targets increases over time. On the other
hand, the largest—-gaussian strategy essentially visits
all the means in the Gaussian mixture. Therefore, the number
of tracking targets remains at zero for most of the time

(Figure 8-(d)). As shown in Figure 8-(c,d), the true number
of targets is five but estimated as four almost everywhere
according to the wrong initial guess. However, the total
estimated numbers of search and tracking targets fluctuate
between three and five. This is the virtue of PHD as it
estimates both the number of targets and target states.

VI. DISCUSSION AND CONCLUSIONS

Our main contribution in this paper is to extend the GM-
PHD filter, initially proposed for the tracking problem [21],
to allow for search and tracking with a limited FoV robot.
Our second contribution was to incorporate non-linear target
prediction using GP regression. The immediate future work
is to incorporate better planning algorithms. In our previous
work on particle PHD filters [4], we defined information-
theoretic measures to control the position of the robots. Such
approaches can directly be applied to the GM-PHD case.
Another possible direction is to incorporate the ridge-walking
algorithm [34] which plans a tour of level sets in the spatial
distribution of the targets. However, this algorithm assumes
that the targets are stationary and would thus need to be
generalized to handle mobile target distributions.
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