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Abstract— We study the problem of searching and tracking a
collection of moving targets using a robot with a limited Field-
of-View (FoV) sensor. The actual number of targets present in
the environment is not known a priori. We propose a search and
tracking framework based on the concept of Bayesian Random
Finite Sets (RFSs). Specifically, we generalize the Gaussian
Mixture Probability Hypothesis Density (GM-PHD) filter which
was previously applied for only tracking problems to allow for
simultaneous search and tracking. The proposed framework can
extract individual target tracks as well as estimate the number
and spatial density of the targets. We also show how to use
Gaussian Process (GP) regression to extract and predict non-
linear target trajectories in this framework. We demonstrate the
efficacy of our techniques through representative simulations
where we also compare the performance of two active control
strategies.

I. INTRODUCTION

We study the problem of searching for and tracking a

set of targets using a robot with a limited FoV sensor.

This problem is motivated by robotic search-and-rescue [1],

[2], surveillance [3], crowd/traffic monitoring [4], [5], and

wildlife habitat monitoring [6]–[8]. We specifically consider

scenarios where the number of targets being searched is not

known a priori. The targets may move during the search

process and the motion model of the targets is not known

exactly. As the targets are mobile, the robot is also tasked

with tracking the target trajectories.

The search and tracking problems can be loosely dis-

tinguished depending on whether or not a target is in the

FoV: tracking when targets are in the FoV, and search when

targets are out of the FoV. Once all targets are observed

by sensor platforms, the search task is accomplished. To

successfully conduct the tracking task, the states of targets

must be estimated at each time and trajectories of individual

targets must be maintained over time. A robust tracking

technique must be able to deal with clutter (false positive)

measurements which is especially challenging since the true

number of targets is not known.

Search techniques have been applied to a broad range of

problems (e.g., [9]–[14]). The recent survey by Chung et

al. [15] gives a good overview of the search problem.

For the multitarget tracking problem, Joint Probability

Data Association (JPDA) [16] and Multiple Hypothesis

Tracking [17] have become canonical algorithms. These

techniques have been applied to many problems including
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human following [18], object tracking [19] and human-

robot interaction [20]. However, JPDA requires solving the

data association problem which is especially costly when

the actual number of targets is not known exactly [21].

Conventional Bayes trackers use a vector representation in

which the order of the targets and its size is known and fixed.

This makes tracking with an unknown number of targets

intractable. However, the Probability Hypothesis Density

(PHD) filter [22] that we use in this paper avoids these

problems with the help of random set representations [23].

Several techniques have been proposed to unify the search

and tracking problems [1], [24]. These include the sequential

Monte Carlo filter [25], [26] as well as the PHD filter [4].

However, the existing works focus on estimating the number

of targets and their spatial densities but cannot estimate

trajectories of individual targets. On the other hand, there

are existing works on estimating individual target trajectories

but assuming unlimited FoV [21]. Our main contribution is to

generalize the tracking algorithms for unlimited FoV sensing

to the case of limited FoV. We also show how to extend

the tracking to non-linear motion models by leveraging GP

regression [27] based on the prior work in [4], [28].

The rest of the paper is organized as follows. We begin

by describing the problem setup in Section II. We present a

brief introduction to GM-PHD in Section III. Our proposed

algorithm is presented in Section IV. We present results from

representative simulations in Section V before concluding

with a discussion of future work in Section VI.

II. PROBLEM DESCRIPTION

Our input is an estimate of the number of targets and

a probability distribution over their initial spatial locations.

However, the actual number of targets may be different. We

assume that all targets move independently of each other.

The targets may move on non-linear trajectories. However,

we assume that the trajectories are smooth (in the sense, that

will become clearer in Section IV-B). If a target is present

in the FoV, then it is detected by the robot with probability

pD. If the target is detected, then the sensor returns a noisy

measurement of the position of the target. We assume that

the measurement noise is additive and Gaussian. In addition,

at any time step, the sensor may also generate clutter (false

positive) measurements following a Poisson RFS [29].

The proposed search and tracking framework is based on

the concept of RFSs. The proposed method can estimate the

states of targets and the number of targets at the same time,

initiate and terminate individual target tracks, and distinguish

between the search and tracking functions. In this paper,



we present illustrations and simulations assuming that the

environment is 2D and obstacle-free, and the robot has a

circular FoV. However, the proposed techniques easily extend

to more complex scenarios.

III. BACKGROUND ON BAYESIAN RFS

Recursive Bayesian Estimation (RBE) is a canonical tool

to estimate target states from noisy sensor observations. A

standard assumption is that the number of targets is known

exactly. Hence, we can treat the positions of all the targets at

any time as a random vector and use RBE for estimation. For

the setting considered in this paper, standard RBE techniques

cannot directly be used since there is uncertainty on the

length of the random vector itself. Mahler [22] developed the

PHD filter to tractably solve exactly this class of problems.

The PHD, also known as the intensity function, is the first-

order statistical moment of a RFS. When integrated over

any subset of the environment, it yields the expected number

of targets present in that subset. The advantage of PHD is

that it estimates both target states and the number of targets

simultaneously without the necessity of data association. We

briefly discuss the PHD filter next and refer the reader to

reference [29] for more details.

We denote the PHD by v and the multitarget posterior

density by pk|k(X|Zk). X and Z are a multitarget state set

and observation set, respectively. The expected number of

targets within any region S is equal to the integral of intensity

of target state vectors over S. That is,∫
|X ∩ S|pk|k(X|Zk)δX =

∫
S

v(x)dx, (1)

We define vk|k−1(x) := vk|k−1(x|Zk−1) and vk|k(x) :=
vk|k(x|Zk) for notational ease. The prediction step of the

PHD recursion is given by,

vk|k−1(x) =

∫
pS(w)fk|k−1(x|w)vk−1|k−1(w)dw+

∫
ωk|k−1(x|w)vk−1|k−1(w)dw + βk(x).

(2)

pS(·), fk|k−1(·|·), ωk|k−1(·|·) and βk(·) denote the probabil-

ity of survival of existing targets, the transition model, the

intensity of spawning new targets from existing ones, and

the intensity of birth targets. The update step is given by,

vk|k(x) =[1− pD(x)]vk|k−1(x)+∑
z∈Zk

pD(x)gk(z|x)vk|k−1(x)

k(z) +
∫
pD(w)gk(z|w)vk|k−1(w)dw

.
(3)

pD(·), gk(·|·) and k(·) denote the probability of detection,

the sensor likelihood model, and the intensity of clutters.

The PHD filter propagates the posterior intensity re-

cursively over time, as in Equations 2 and 3. The exact

derivation follows from reference [22].

Two approaches have gained substantial attention for the

realization of PHD: the particle PHD [30] and the GM-

PHD [21] filters. Particle PHD is suitable for dealing with

non-linear motion of targets, whereas GM-PHD assumes

that a target has a linear motion model. Nevertheless, we

Fig. 1. The GM-PHD filter with 7 Gaussian components

can use the Extended Kalman Filter or Unscented Kalman

Filter versions of GM-PHD as presented in [21] for non-

linear motion models. GM-PHD gives a closed-form solution

without needing large sample size or clustering techniques

to extract multitarget state estimates, unlike particle PHD. In

a GM-PHD the intensity function is represented as a Gaus-

sian mixture model of one or more Gaussian components

(Figure 1). Each Gaussian component is represented by its

mean, covariance, and weight. The weight of a component

gives the expected number of targets generated as a result of

that component. We refer the reader to reference [21] for a

detailed discussion of GM-PHD.

IV. PROPOSED GM-PHD SEARCH AND

TRACKING ALGORITHM

Figure 2 gives an overview of the proposed algorithm. We

start with an initial estimate of PHD. Multitarget Bayes filter,

i.e., the prediction and update steps, is applied recursively

to estimate both search and tracking targets. Since PHD is

employed, additional data association between targets and

measurements is not required. The pruning and merging

schemes reduce the number of Gaussian components with

low and similar weights, respectively. Then, multitarget state

estimates are extracted from GM-PHD and used for main-

taining trajectory states of targets. Estimates of the targets in

the search region are allowed to enter the tracking regions

and vice versa using boundary condition. Finally, an active

control strategy is used to get the trajectory for the robot.

We describe our new contributions in this section and

refer the reader to reference [31] for a description of the

other blocks in Figure 2. Specifically, we show how to

extend GM-PHD to allow for separate multitarget search and

tracking states (Section IV-A), how to use GP regression to

predict non-linear motion models of the targets (Section IV-

B), how to extract and manage tracks of individual targets

(Section IV-C), how to handle targets moving from search to

tracking states (Section IV-D), and present two naive strate-

gies for actively controlling the robot’s state (Section IV-E).

A. Multitarget State and Observation Spaces

Tracking and Search States: The true but unknown state

of a target is represented as xi = (x1, ..., xd, i) ∈ χ × Z≥0,

where χ ⊆ R
d is a d-dimensional environment and i ∈ Z≥0

is a non-negative integer denoting the target ID. A multitarget





B. Prediction using GP Regression

The PHD prediction (Equation 11) requires knowing the

motion model, fk|k−1, for each of the targets. In previous

works, a simple linear motion model was applied [21]. In-

stead, we use GP regression [27] which is a non-parametric,

Bayesian, and non-linear regression technique which requires

specifying a kernel function. In our previous works, we

have shown how GP regression can be employed to learn

the spatial velocity vectors of targets for a real-world taxi

dataset [4]. Here, we employ GP regression to extrapolate

each target’s trajectory and predict its future positions.

The hyperparameters for the kernel are learned offline

using a training set consisting of noisy observations of the

target’s motion. Noisy measurements of the state of the

targets are fed as input to GP regression, which produces

a prediction of its future positions. In particular, we use GP

regression to estimate d functions, fi(t) where i = 1, . . . , d,

that predicts the evolution of the state of the target along

each of its d dimensions, independently. Figure 3 shows an

example of the 2D case and the result of GP regression

applied to a trajectory sample. From a distribution obtained

from GP regression, future trajectory mean position with

covariance can be extrapolated.

In order to apply GP regression to predict the motion

of each Gaussian in GM-PHD, we must have a confirmed

track of individual targets. If a Gaussian is not assigned to

a confirmed track, then we can use a simple linear motion

model for the prediction. Once a track is confirmed (i.e.,

we have sufficient history of an individual target trajectory)

we employ GP regression to predict its motion. The next

subsection describes how to keep track of confirmed tracks.

C. Track Management

It is important to keep the track continuity of the

PHD filter so that the trajectories of individual targets

can be observed and maintained. Nk tracks at time k

are denoted by Tk = {tq | ∀q ∈ {1, ..., Nk}}. The

q-th track at time k, tq,k, is represented as: tq,k =
(x1,1, x1,2, ..., x1,d, c1, . . . , xl,1, xl,2, ..., xl,d, cl, q) ⊆ R

d×l×
Z≥0 × {0, 1}l, where d is the dimension of the target

state, l is the life length of track, q is a non-negative

integer representing the track ID, and ci is a binary indicator

denoting whether a target is a search or tracking target. The

details of the track continuity of the particle PHD filter and

GM-PHD filter are explained in [32] and [31], respectively.

We define two types of tracks: confirmed tracks and

tentative tracks. When a target not assigned to any other

existing tracks is detected, it generates a new tentative track

with a new index q. After surviving for certain time period,

this track is converted into a confirmed track. In this way,

false positive tracks can be filtered out.

A confirmed track q, tq,k, at time k can be generated

from a tentative track q, tq,k−1 = {xr, xr+1, ..., xk−2, xk−1},

created at some time r when the following conditions are

met: (1) A target i at time k, xi,k, is spawned from a target

r at time k − 1, xr,k−1, of track q, tq,k−1, where r is any

arbitrary target ID; (2) The weight of target i at time k,

wi,k, satisfies wi,k > wTH , where wTH is a threshold that

determines the existence of a target from peaks of PHD; and

(3) The life length of track q at time k − 1, lq,k−1, satisfies

lq,k−1 > lTH , where lTH is a threshold on the maximum

number of time steps to stay as a tentative track.

It is important to note that two different wTH must be

applied for extracting multitarget states in χS and χT . Also,

once any confirmed tracks fall in χS , they permanently

remain as confirmed tracks until detected again. There is no

tentative track defined in χS .

D. Construction of Search Boundary using GP Regression

We refer to the region outside the FoV of the robot that

is likely to contain targets as a search boundary. The terms

search target and search boundary are used interchangeably

because what is estimated for unobservable targets is an area

that potentially contains a target of interest. Since targets in

the search region are not observable, a naive initialization

of a search boundary may lead to the failure of searching

for targets. As soon as the sensor detects a new target, the

corresponding weight of the target is increased to initiate a

new tracking target in the tracking region. On the other hand,

more careful means must be taken into account for a tracking

target falling into the search region.

Figure 4 shows the process of constructing a search bound-

ary. Every target that leaves the FoV creates a new search

boundary. When a confirmed track q, tq,k is not observed at

time k, the most recent kg time steps of trajectory positions

are used as samples for GP regression. A search boundary

xSk is constructed at time k for track q and predicted kp time

steps ahead using GP regression. After initialization, only

the covariance of the search boundary is propagated based

on the position xSk+kp
, because the prediction model from

GP regression becomes less confident as time goes.

E. Active Sensor Control

All the building blocks of the search and tracking al-

gorithm (Figure 2) described so far focus on estimating

the state of the targets. In this section, we focus on the

complimentary problem of actively controlling the state of

the sensor so as to improve the search and tracking process.

A number of approaches has been proposed for active target

tracking [33], target search [6], as well as joint search

and tracking [24]. In this paper, we evaluate two simple

strategies that are particularly suited to the underlying GM-

PHD framework. Investigating better strategies with stronger

performance guarantees is part of our ongoing work.

In GM-PHD, the mean of the Gaussian is a local maxima

of the PHD (i.e., most likely location to find a target in

the local neighborhood), whereas the variance encodes the

spatial uncertainty of the location of the targets. We evaluate

two control strategies. (i) nearest-gaussian: drive to

the nearest mean of all Gaussians in the mixture; and (ii)

largest-gaussian: drive to the mean of the Gaussian

with the largest covariance in the mixture. Once we reach

the mean, the robot performs an outward spiral motion to

search for the target in the corresponding search boundary.
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Fig. 3. Result of GP regression applied to a 2D trajectory sample.
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Intuitively, the nearest-gaussian strategy will track

one or more targets for as long as possible, giving good

tracking performance but poor search performance. On the

other hand, the largest-gaussian strategy will equi-

tably cover the search region giving good search performance

but possibly poor tracking performance. We evaluate these

two strategies through simulations. We hypothesize that a

third strategy that switches between these two behaviors can

be used to trade-off search and tracking objectives.

V. SIMULATION RESULTS

We implemented the proposed algorithm using an existing

implementation for GM-PHD [21]. We present the results

from two types of simulations. We first evaluate how well

the GP regression performs as compared to a naive linear

predictor for the motion model and predicts the search

boundary of the targets. Then, we use the complete system

to evaluate the two active sensor control strategies proposed.

A. Search Boundary Test

Figure 5 shows the effect of different values of hyper-

parameters on the search boundary for the x-coordinate

of the estimated trajectory as a function of time. We use

the squared-exponential kernel [27] which has three tunable

hyperparameters (length-scale l, the signal variance σ2
f , and

the noise variance σ2
n). All the boundaries were acquired

from the 95% confidence interval. The black solid line is

from the offline-trained values and other three lines show

the interval when one of three hyperparameters is changed.

Figure 6 compares the GP regression model with a naive

linear motion model of GM-PHD. To have a fair comparison,

a linear motion is used to generate the true trajectory.

We used the Hausdorff distance to compare the estimated

trajectory with true trajectory. The linear estimator uses only

one previous time step to make a prediction. We ran 30

tests and used the same test samples for both cases. Here

sampling time steps were kg = 20, and time steps of the

prediction were kp = 20, which start from time 0 in the

figure. The training data for obtaining GP regression was

different from the test samples. In all x and y-axis cases, both

mean and standard deviation of the GP regression model are

smaller than the linear model. This indicates that a search

boundary generated by the linear model must be larger than

the one from GP regression. It also turned out that the

predicted trajectory from the linear model is sensitive to the

last condition of a target before falling into the search region,

which might lead to having a search boundary that already

does not contain the true target.

B. Multitarget Search and Tracking

In this section, we report the results of applying our

algorithm for representative search and tracking scenarios.
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The environment consisted of five search targets initially. The

true number of targets is not known but an initial guess of

approximate target positions is given in the form of Gaussian

mixture distribution (Figure 7-left). The initial Gaussian mix-

ture consisted of four components with different covariances.

The robot has a circular FoV and can move with a constant

velocity. At each time step, fifteen clutter measurements are

generated, uniformly at random inside the FoV. We tested

the two control strategies of Section IV-E using this initial

setting and ran for 300 time steps each. When the sensor finds

a target, it still approaches the target for certain amount of

time steps to make sure that it becomes a confirmed track.

On the other hand, when a target is not observed even at

the mean of initial Gaussian distribution, the sensor takes a

spiral motion to sweep the search boundary until it detects a

target. If the sensor does not find a target within this region,

the search target can be considered as a false positive.

Figure 7 shows the results for the two control strategies.

The nearest-gaussian strategy ended up searching for

the nearest target and then tracking it repeatedly. This is seen

from Figure 8-(a) where the distance between the robot and

target 1 always remains low, whereas the distance between

the robot and other targets increases over time. On the other

hand, the largest-gaussian strategy essentially visits

all the means in the Gaussian mixture. Therefore, the number

of tracking targets remains at zero for most of the time

(Figure 8-(d)). As shown in Figure 8-(c,d), the true number

of targets is five but estimated as four almost everywhere

according to the wrong initial guess. However, the total

estimated numbers of search and tracking targets fluctuate

between three and five. This is the virtue of PHD as it

estimates both the number of targets and target states.

VI. DISCUSSION AND CONCLUSIONS

Our main contribution in this paper is to extend the GM-

PHD filter, initially proposed for the tracking problem [21],

to allow for search and tracking with a limited FoV robot.

Our second contribution was to incorporate non-linear target

prediction using GP regression. The immediate future work

is to incorporate better planning algorithms. In our previous

work on particle PHD filters [4], we defined information-

theoretic measures to control the position of the robots. Such

approaches can directly be applied to the GM-PHD case.

Another possible direction is to incorporate the ridge-walking

algorithm [34] which plans a tour of level sets in the spatial

distribution of the targets. However, this algorithm assumes

that the targets are stationary and would thus need to be

generalized to handle mobile target distributions.
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Fig. 7. (left) Initial configuration for the representative simulation. (middle) Final configuration for the nearest-gaussian strategy. (right) Final
configuration for the largest-gaussian strategy. Please see the multi-media submission for an animation.
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