
Active Target Tracking with Self-Triggered Communications

Lifeng Zhou and Pratap Tokekar

Abstract— We study the problem of reducing the amount
of communication in a distributed target tracking problem.
We focus on the scenario where a team of robots are allowed
to move on the boundary of the environment. Their goal
is to seek a formation so as to best track a target moving
in the interior of the environment. The robots are capable
of measuring distances to the target. Decentralized control
strategies have been proposed in the past that guarantee that
the robots asymptotically converge to the optimal formation.
However, existing methods require that the robots exchange
information with their neighbors at all time steps. Instead, we
focus on reducing the amount of communication among robots.

We propose a self-triggered communication strategy that
decides when a particular robot should seek up-to-date infor-
mation from its neighbors and when it is safe to operate with
possibly outdated information from the neighbor. We prove that
this strategy converges to an optimal formation. We compare
the two approaches (constant communication and self-triggered
communication) through simulations of tracking stationary and
mobile targets.

I. INTRODUCTION

The target tracking problem has been one of the most

well-studied problems in the robotics community [1] and

finds many applications such as surveillance [2]–[4], crowd

monitoring [5], [6], and wildlife monitoring [7], [8]. In this

paper, we study active target tracking with a team of robots

where the focus is on actively controlling the state of the

robot. Robots can exchange information with each other and

decide how to move, so as to best track the target. It is

typically assumed that exchanging information is beneficial.

It is typically assumed that robots will exchange information

at every timestep irrespective of whether that information is

worth exchanging. We investigate the problem of deciding

when is it worthwhile for the robots to exchange information

and when is it okay to use possibly outdated information.

The motivation for our work stems from the observation

that communication can be costly. For example, for smaller

robots radio communication can be a significant source of

power consumption. Robots can extend their lifetimes by

reducing the time spent communicating. Our objective is to

determine a strategy that communicates only when required

without significantly affecting the tracking performance.

We study this problem in a simple target tracking sce-

nario first introduced by Martinez and Bullo [9]. Here,

the robots are restricted to move on the boundary of a

convex environment. They can obtain distance measurements

towards a target moving in the interior. The goal of the

The authors are with the Department of Electrical and Computer Engi-
neering, Virginia Tech USA. {lfzhou, tokekar}@vt.edu.

This material is based upon work supported by the National Science
Foundation under Grant Nos. 1566247 and 1637915.

robots is to position themselves so as to maximize the

information gained. The authors proposed a decentralized

strategy where the robots communicate at all time steps with

their neighbors and showed that it converges to the optimal

(uniform) configuration. Instead, we apply a self-triggered

coordination algorithm (following recent works [10], [11])

where each robot decides when to trigger communications

with its neighbors. We apply this strategy to the aforemen-

tioned target tracking scenario and compare its performance

with the baseline algorithm.

Simulation results validate the theoretical analysis showing

that the self-triggered strategy converges to the optimal, uni-

form configuration. In some cases, the self-triggered strategy

converges faster than the constant communication strategy.

We investigate possible causes. In particular, we observe that

the robots travel a longer distance in the wrong direction in

the constant strategy as opposed to the self-triggered strategy

when there are many robots.

The rest of the paper is organized as follows. We start

by formalizing the problem in Section II. The self-triggered

tracking strategy is presented in Section III, assuming that

the target’s position is known and is fixed. We relax these

assumptions and present a practical extension in Section IV.

The simulation results are presented in Section V. We

conclude with a discussion of future work in Section VI.

II. PROBLEM FORMULATION

Consider a group of N robots moving on the boundary of

a convex polygon Q ⊂ R
2. Let ∂Q denote the boundary of

Q. The robots are tasked with tracking a target o located in

the interior of Q. Let p1, ..., pN denote the positions of the

robots. We can map any point on ∂Q to a unit circle T using

the transformation ϕo : ∂Q → T given by

ϕo(p) =
p− o

‖p− o‖
(1)

as shown in Figure 1. We identify every robot’s position

with the corresponding point on the unit circle. That is, pi ∈
∂Q ⊂ R

2 is identified with θi = ϕo(pi) ∈ T, indicating the

location on the circle T of robot i. Let θ = (θ1, ..., θN) ∈ T
N

denote the vector of locations of all robots.

We assume that all robots follow simple first-order

continuous-time motion model. Let ωmax denote the common

maximum angular speed1 for all robots on the unit circle. Our

results can be extended to the situation where each robot has

its own maximum angular speed. Each robot i knows its own

1Strictly speaking, each robot has a maximum speed with which it can
move on ∂Q. In the appendix, we show how the maximum speed on ∂Q
can be used to determine ωmax.

Fig. 1. The mapping from convex boundary ∂Q to unit circle T.

position exactly at all times. When two robots communicate

they can exchange their respective positions.

Martinez and Bullo [9] showed that the optimal configu-

ration for the robots that can obtain distance measurements

towards the target is a uniform one, where all robots are

equally spaced around the target. That is, θi+1 − θi =
2π/N, ∀i ∈ {1, ..., N}. Optimality is defined with respect to

maximizing the determinant of the Fisher Information Matrix

(FIM). FIM is a commonly used measure for active target

tracking (e.g., [12]). Martinez and Bullo [9] presented a de-

centralized control law that is guaranteed to (asymptotically)

converge to a uniform configuration when a robot is allowed

to communicate with two of its immediate neighbors. That

is, a robot i can communicate with only i − 1 and i + 1.

The analysis requires that all robots know the position of

the target o exactly and that the target remains stationary.

The control law in [9] assumes that neighboring robots

communicate at every time step. We call this as the constant

communication strategy. Our objective in this work is to

reduce the number of communications between the robots

while preserving the convergence properties. We present a

self-triggered strategy where the control law for each robot

not only decides how a robot should move, but also when

should it communicate with its neighbors and seek new in-

formation. We show that the proposed self-triggered strategy

is also guaranteed to converge to a uniform configuration,

under the assumptions described next.

III. SELF-TRIGGERED TRACKING ALGORITHM

In this section, we present the self-triggered tracking

algorithm for achieving a uniform distribution along the unit

circle. This requires knowing the center of the circle (i.e.,

the target’s position) and assuming that this center does not

change. These assumptions are required for the convergence

analysis to hold. We later relax these assumptions and present

a practical version in the following section.

Our algorithm builds on the self-triggered

centroid algorithm [10] which is a decentralized

control law that achieves optimal deployment (i.e., uniform

Voronoi partitions) in a convex environment. We suitably

modify this algorithm for the case where the robots are

restricted to move only on the boundary, ∂Q, and can

communicate with only two neighbors as described in the

previous section. We first present the control law and then

Fig. 2. Robot i goes towards the midpoint of its Voronoi segment via exact
information from its neighbors.

Fig. 3. Motion prediction set, Ri
j , that each robot i maintains for its

neighbors j. θij is the last known position of robot j and τ ij is the time

elapsed since this last known position.

an update policy to decide when a robot should seek new

information from its neighbors.

A. Control Law

The constant control law in reference [9] drives every

robot towards the midpoint of its Voronoi segment. Voronoi

segment of the robot i is the part of the unit circle extending

from
(θi−1+θi)

2 to
(θi+θi+1)

2 . The constant control law steers

robot i towards the midpoint of its Voronoi segment V i
mid by

using real-time, up-to-date information from its neighbors,

θi−1 and θi+1 (Figure 2). We refer to the book [13] for a

comprehensive treatment on Voronoi segments.

In a self-triggered strategy, exact positions of the neighbor

will not be always available in real-time. Consequently, the

algorithm must be able to operate on inexact information.

The information that each robot i holds about its neighbor

j is the last known position of j, denoted by θij , and the

time elapsed since the position of robot j was collected,

denoted by τ ij . Based on this, robot i can compute the furthest

distance that j could have moved in τ ij time as ±φi
j where,

φi
j = ωmaxτ

i
j . (2)

Thus, robot i can build a prediction motion set Ri
j(θ

i
j , φ

i
j)

that contains all the possible locations where robot j could

have moved to in τ ij time (Figure 3).

Since robot i only communicates with its neighbors i− 1
and i+ 1, the prediction motion range that robot i stores is

given as Ri := {Ri
i−1(θ

i
i−1, φ

i
i−1),R

i
i+1(θ

i
i+1, φ

i
i+1)}. The

Fig. 4. Robot i goes towards the midpoint of its Voronoi segment via
inexact motion prediction about its neighbors.

proposed self-triggered strategy uses these motion prediction

ranges Ri for defining the control law of robot i.
Since the robot has inexact information of its neighbors,

the midpoint of its Voronoi segment is a set instead of a

point (Figure 4). We define,

θii−1,min =
(

θii−1 − φi
i−1

)

θii−1,max =
(

θii−1 + φi
i−1

)

θii+1,min =
(

θii+1 − φi
i+1

)

θii+1,max =
(

θii+1 + φi
i+1

)

.

Thus, we have:

Ri
i−1(θ

i
i−1, φ

i
i−1) = {β ∈ T|θii−1,min ≤ β ≤ θii−1,max},

Ri
i+1(θ

i
i+1, φ

i
i+1) = {β ∈ T|θii+1,min ≤ β ≤ θii+1,max}.

The minimum and maximum midpoints of robot i’s Voronoi

segment can be computed as,

V i
mid,min =

(θii−1,min + θi)/2 + (θi + θii+1,min)/2

2
, (3)

V i
mid,max =

(θii−1,max + θi)/2 + (θi + θii+1,max)/2

2
. (4)

For the midpoint of its Voronoi segment V i
mid, we have:

V i
mid,min ≤ V i

mid ≤ V i
mid,max. (5)

Substitute Equations 3 and 4 into Equation 5 yields,

θii+1 + 2θi + θii−1 − 2ωmaxτ
i

4
≤ V i

mid

with τ i = τ ii−1 = τ ii+1 and

V i
mid ≤

θii+1 + 2θi + θii−1 + 2ωmaxτ
i

4
.

Therefore,

−
ωmaxτ

i

2
≤ V i

mid −
θii+1 + 2θi + θii−1

4
≤

ωmaxτ
i

2
,

which yields,
∣

∣

∣

∣

V i
mid −

θii+1 + 2θi + θii−1

4

∣

∣

∣

∣

≤
ωmaxτ

i

2
. (6)

Thus, the angular distance between V i
mid and

θi
i+1+2θi+θi

i−1

4

is bounded by ωmaxτ
i

2 .

In fact, the point
θi
i+1+2θi+θi

i−1

4 indicates the midpoint of

i’s guaranteed Voronoi segment gV si, defined as,

gV si =

{

β ∈ T

∣

∣

∣

∣

max
θi∈Ti

|β − θi| ≤ min
θj∈Tj

|β − θj | , ∀j 6= i

}

where T1, . . . , Tn ⊂ T are a set of connected segments in T.

We refer to the report [14] for more details on the guaranteed

Voronoi segment. Thus, the guaranteed Voronoi segment of

robot i can be computed as,

gV si =

{

β

∣

∣

∣

∣

∣

θi + θii+1,min

2
≤ β ≤

θii−1,max + θi

2

}

. (7)

Robot i does not know the exact midpoint of its Voronoi

segment V i
mid. Instead, it can move towards the midpoint of

its guaranteed Voronoi segment, gV i
mid, given by:

gV i
mid =

(θi + θii+1,min)/2 + (θii−1,max + θi)/2

2
,

=
θii+1 + 2θi + θii−1

4
. (8)

In general, moving towards gV i
mid does not guarantee

that the robot moves closer to the midpoint of its Voronoi

segment. However, the statement holds under the condition

described next.

Lemma 1: Suppose robot i moves from θi towards gV i
mid.

Let θ′i and V ′
mid be its position and the midpoint of its Voronoi

segment, respectively, after one time step. If |θ′i − gV i
mid| ≥

|V i
mid − gV i

mid|, then |θ′i − V ′
mid| ≤ |θi − V i

mid|.
The proof for this lemma follows directly from the proof

for Lemma 5.1 in reference [10]. Consequently, as long

as the robot can ensure that its new position θ′i satisfies

|θ′i − gV i
mid| ≥ |V i

mid − gV i
mid|, then it is assured to not

increase its distance from the actual (unknown) midpoint of

the Voronoi segment. However, the right hand side of this

condition also is not known exactly since robot i does not

know V i
mid. Instead, we can upper bound this term using

Equation 6. We denote this upper bound by ubdi :=
ωmaxτ

i

2 .

Corollary 1: Suppose robot i moves from θi towards

gV i
mid. Let θ′i be its position after one time step. If

|θ′i − gV i
mid| > ubdi, (9)

then |θ′i − V ′
mid| ≤ |θi − V i

mid|.
Next, we present a motion control law that steers the robots

towards a uniform configuration on the circle. Intuitively,

robot i computes its guaranteed Voronoi segment (7) using

the last known positions of its neighbors and the real-

time position of itself. It then computes the midpoint of its

guaranteed Voronoi segment (Equation 8) and moves towards

the midpoint until it is within distance ubdi of it.

The control, ui(tk), for robot i at time tk is given by:

ui(tk) = ωi unit(gV
i

mid − θi), (10)

where, unit(x) = x
|x| and

ωi =











ωmax,
∣

∣gV i
mid − θi

∣

∣ ≥ ubdi + ωmax∆t,

0,
∣

∣gV i
mid − θi

∣

∣ ≤ ubdi,
|gV i

mid−θi|−ubdi

∆t
, otherwise.

B. Triggering Policy

As time elapses, without new information the upper bound

ubdi grows larger until the condition in Equation 9 is not

met. This triggers the robot to collect the updated information

from its neighbors. There are two causes that may lead to

the condition in Equation 9 being violated. The upper bound

on the right hand side, ubdi, might grow large because of

the time elapsed since the last communication occurred. Or,

robot i might move close to gV i
mid which would require ubdi

to become small by acquiring new information. The second

scenario might lead to frequent triggering when the robots are

close to convergence. We introduce a user-defined tolerance

parameter, σ ≥ 0, to relax the triggering condition. Whenever

the following condition is violated, the robot is required to

trigger new communication:

ubdi < max{‖θ′ − gV i
mid‖, σ} (11)

The motion control law is designed under the assumption

that the robot i and its two neighbors are located in the

counterclockwise order (i.e., θi+1 > θi > θi−1). Since

the robots are identical, there is no advantage gained by

changing the order of robots along the boundary. In a self-

triggered strategy, we only have a motion prediction set of

the neighbors. If there is a possibility that this order may

be violated, the robots must communicate and avoid it. We

achieve this by requiring the robot to maintain the following:

θii+1 − ωmaxτ
i
i+1 > θi > θii−1 + ωmaxτ

i
i−1 (12)

This ensures that even in the worst case, the robots have

not swapped their positions. Whenever there is a possibility

of this condition being violated, the robot i triggers a new

communication.

The complete self-triggered algorithm is given below.

Algorithm 1: SELF-TRIGGERED MIDPOINT

1: while all robots have not converged:

2: for each robot i ∈ {1, ..., N} perform:

3: increment τ ii−1 and τ ii+1 by ∆t
4: compute Ri, gV si, gV

i
mid, and ubdi

5: if Equation 11 OR Equation 12 is violated:

6: trigger communication with i+ 1 and i− 1
7: reset τ ii+1 and τ ii−1 to zero

8: recompute Ri, gV si, gV
i

mid, and ubdi
9: end if

10: compute and apply ui as defined in Equation 10

11: end for

12: end while

C. Convergence Analysis

Algorithm 1 is guaranteed to converge asymptotically to a

uniform configuration along the circumference of the circle,

irrespective of the initial configuration, assuming that no two

robots are co-located initially. The proof for the algorithm

follows almost verbatim from the proof of Proposition 6.1

in [10] with suitable modifications. We sketch the modifica-

tions required here.

In [10] the robots are allowed to move anywhere in

the interior of Q ⊂ R
2 whereas in our case the robots

are restricted to move on ∂Q, equivalent to moving on

the unit circle T. Therefore, all the L2 distances in the

proof in [10] change to L1 distances. Instead of moving

to the midpoint of the guaranteed Voronoi segment, the

robots in [10] move to the centroid of a guaranteed Voronoi

region. Instead of communicating with the two clockwise and

counter-clockwise neighbors, the robots in [10] communicate

with all possible Voronoi neighbors. None of these changes

affect the correctness of the proof. We add an extra condition

that triggers communication to prevent robots from changing

their order along T. Since this condition only results in

extra triggers, it can only help convergence. Finally, since

there is a one-to-one and onto mapping between ∂Q and T,

convergence along T implies convergence along ∂Q.

IV. PRACTICAL EXTENSION: TRACKING OF MOVING

TARGET WITH NOISY MEASUREMENTS

If the true position of the target, o∗, is known, then we can

draw a unit circle centered at the target and use the strategy

in Algorithm 1 to converge to a uniform distribution along

the circle. According to the result in [9] this configuration

maximizes the determinant of the FIM. In practice, however,

we do not know the true position of the target. In fact, the

goal is to use the noisy measurements from the robots to

estimate the position of the target. Furthermore, the target

may be mobile. This implies that the (unknown) center of

the circle is also moving, further complicating the control

strategy for the robots.

We use an Extended Kalman Filter (EKF) that estimates

the position of the target (i.e., center) and predicts its motion

at every time step. The prediction and the estimate of the tar-

get from an EKF is a 2D Gaussian distribution parameterized

by its mean, ôk, and covariance. At each time step, we use

the mean of the latest estimate as the center of the circle to

compute the θi values using the transformation in Equation 1.

We evaluate two regimes for the EKF. (1) Centralized EKF:

A common fusion center obtains the measurements from all

the robots and computes a single target estimate, ôk, at every

time step; and (2) Decentralized EKF: Each robot runs its

own EKF estimator and has its own target estimate, ôik, based

on only its own measurements of the target. If at any time

step, a robot communicates with its neighbors, then it also

shares its current measurement with its neighbors. At these

triggered instances, the robot updates its own estimate using

its own measurement and measurements from its neighbors.

The rest of the process is similar to that in Algorithm 1.

The centralized EKF scheme is a baseline which we compare

against for the more realistic, decentralized strategy. The

results are presented in the simulation section that follows.

V. SIMULATION RESULTS

We evaluate the proposed algorithm by comparing the

time required to achieve a uniform configuration for the self-

triggered strategy and the constant communication strategy.

We also compare the two algorithms for tracking moving

targets with noisy measurements. Our implementation is

available online.2

A. Stationary Target Case

We first compare the performance of the self-triggered and

constant strategies in terms of their convergence speeds and

the number of communication messages to achieve a uniform

configuration on the boundary of a convex environment.

Here, we focus on the base case of known, stationary target

position. All results are for 30 trials with the initial positions

of robots drawn uniformly at random on the boundary.

Figure 5 shows snapshots of the active tracking process

under the proposed self-triggered strategy starting with the

initial configuration at time step k = 1 (Figure 5-(a))

and ending in a uniform configuration around the target at

k = 760 (Figure 5-(c)). The robots know the position of

the stationary target. The initial positions of the robots are

chosen uniformly at random on ∂Q. At each time step, we

use the map ϕo to find θi on the unit circle (Equation 1),

compute the control law as per Algorithm 1, and apply the

inverse map ϕ−1 to compute the new positions of the robots

on ∂Q. We set ∆t = 0.1 s and assume that each robot has

the same maximum angular velocity ωmax = π
180

rad
s

. In

general, one can use the procedure given in the appendix to

compute ωmax for a given environment.

We first compare the convergence time of the two strate-

gies (Figure 6-(a)). The convergence time, Ctime, is spec-

ified as the timestep k when the convergence error, Cerr,
drops below a threshold. We use 0.1N as the threshold,

where N is the number of robots. The convergence error

term, Cerr, is defined as:

Cerr =
N
∑

i=1

∣

∣θi − V i
mid

∣

∣ (13)

in the constant communication case, and

Cerr =

N
∑

i=1

∣

∣θi − gV i
mid

∣

∣ (14)

in the self-triggered case.

The average number of communication messages is:

Com =

∑N

i=1 com(i,Ctime)

N × Ctime

where com(i,Ctime) gives the total number of communica-

tions of a robot with its neighbors i at the end of Ctime.

Figure 6-(b) shows the Com in the self-triggered case.

The number of communication messages in the constant

communication case is a constant.

Figure 6-(a) shows that the self-triggered mechanism

has faster convergence than the constant strategy when the

number of robots is large. Intuitively, robots communicating

constantly with its neighbors should converge faster. In order

to investigate this counter-intuitive finding, we computed,

2https://github.com/raaslab/Self-triggered-mechanism

Wrd, which is the average motion in the “wrong” direction,

defined as

Wrd =

∑N

i=1 wrd(i,Ctime)

N × Ctime

Here, wrd(i,Ctime) gives the total amount of motion in the

“wrong” directions for each robot i until the convergence

time. For robot i, we use the sign of the difference between

its initial orientation and the orientation at the convergence

time, i.e., θ0i − θi(Ctime) to find which motion is in the

“wrong” direction.

When the number of robots increases, the average distance

traveled in the wrong direction becomes larger for the

constant communication strategy. Recall that both strategies

are guaranteed to converge only asymptotically. The rate

of convergence is not known. We conjecture that frequent

communication with more robots, especially initially, leads

to frequent switching in directions before the robots move

towards their final configuration. On the other hand, in a self-

triggered strategy the robots commit to a direction and move

until the next triggered instance, thereby possibly leading to

fewer switches in wrong direction.

B. Moving target with centralized and decentralized EKF

In this section, we present results from simulating the

self-triggered and constant strategies for the realistic case of

mobile, uncertain targets (Section IV). For both strategies,

we consider the centralized EKF and decentralized EKF

estimators. We use Cerr to measure the error between robots’

deployment and the uniform distribution (Figure 7).

The constant communication strategy with centralized

EKF performs the best (Figure 7). Between the two decen-

tralized settings, the constant communication strategy (Figure

8-(a)) has an advantage over the self-triggered one since

at each time step every robot obtains three measurements

(one from self, and one each from the neighbors) to form

a better estimate of the target’s position. If all robots have

similar (and consistent) estimates, then the strategy is likely

to perform better. For self-triggered strategies the robots

estimate the target with only their own measurements, except

at trigger instances when they get measurements from their

neighbors. Figure 8 shows one such instance of the self-

triggered mechanism with decentralized EKF where the es-

timates of robots are uncertain and inconsistent. Our current

work is focused on extending the self-triggered strategy

taking into account the tracking performance.

VI. DISCUSSION AND CONCLUSION

In this paper, we investigate the problem of active target

tracking where each robot controls not only its own positions

but also decides when to communicate and exchange infor-

mation with its neighbors. We focused on a simpler target

tracking scenario, first studied in reference [9]. We applied

a self-triggered coordination strategy that asymptotically

converges to a uniform configuration around the target while

reducing the amount of communication. We find that the self-

triggered strategy performs comparably with the constant

communication strategy and in some cases even outperforms

x

-0.5 0 0.5 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

Unit circle

x

0 2 4 6 8

y

8

10

12

14

16

18

20

22

24

26
Polygon

(a) k=1

x

-0.5 0 0.5 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

Unit circle

x

0 2 4 6 8

y

8

10

12

14

16

18

20

22

24

26
Polygon

(b) k=400

x

-0.5 0 0.5 1

y

-1.5

-1

-0.5

0

0.5

1

1.5

Unit circle

x

0 2 4 6 8

y

8

10

12

14

16

18

20

22

24

26
Polygon

(c) k=760

Fig. 5. Self-triggered tracking with six robots moving on the boundary of a convex polygon with a known, stationary target. The robots took 760 timesteps
to converge to the uniform configuration around the target.

0 5 10 15 20 25 30

Number of robots

40

60

80

100

120

140

160

180

C
t
im

e

constant

self-triggered

(a)

0 5 10 15 20 25 30

Number of robots

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

¯
C
o
m

constant

self-triggered

(b)

0 5 10 15 20 25 30

Number of robots

-5

0

5

10

15

20

25

30

35

W̄
r
d

constant

self-triggered

(c)

Fig. 6. Comparison of the convergence time (a) and the number of communication messages (b) and the average motion in the “wrong” direction (c) in
constant and self-triggered strategies with a stationary target at known position.

0 500 1000 1500 2000

k

0

20

40

60

80

100

120

140

C
e
r
r

constant centralized EKF

0 500 1000 1500 2000

k

0

20

40

60

80

100

120

140

C
e
r
r

constant decentralized EKF

0 500 1000 1500 2000

k

0

20

40

60

80

100

120

140

C
e
r
r

self-triggered centralized EKF

0 500 1000 1500 2000

k

0

100

200

300

400

500

600

C
e
r
r

self-triggered decentralized EKF

Fig. 7. Convergence error for mobile target tracking with centralized and decentralized EKF estimators steered by the constant strategy and self-triggered
strategy

the baseline strategy. We conjecture that frequent commu-

nication in the constant communication strategy makes the

robots subject to greedy and suboptimal actions than the less

informative self-triggered strategy. Further investigating and

proving this conjecture are part of our ongoing work. Future

work also includes extending the self-triggered strategy to

decide not only when to communicate information, but

also when to obtain measurements and which robots to

communicate with.

REFERENCES

[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-

cations to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2004.

[2] B. Rao, H. F. Durrant-Whyte, and J. Sheen, “A fully decentralized
multi-sensor system for tracking and surveillance,” The International

Journal of Robotics Research, vol. 12, no. 1, pp. 20–44, 1993.

[3] S. Dhillon and K. Chakrabarty, Sensor placement for effective coverage

and surveillance in distributed sensor networks. IEEE, 2003, vol. 3.

[4] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas, “Cooperative air
and ground surveillance,” Robotics & Automation Magazine, IEEE,
vol. 13, no. 3, pp. 16–25, 2006.

-5 0 5 10 15

x

8

10

12

14

16

18

20

22

24

26

y

(a)

-5 0 5 10 15

x

8

10

12

14

16

18

20

22

24

26

y

(b)

Fig. 8. (a) With a centralized EKF, all robots have the same estimate of
the target leading to good convergence. (b) With measurements from self
and immediate neighbors in decentralized EKF, the estimates of each robot
are highly error-prone and uncertain.

[5] P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with
aerial robots,” in Proceedings of IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE, 2014.

[6] P. Dames, P. Tokekar, and V. Kumar, “Detecting, localizing, and
tracking an unknown number of moving targets using a team of mobile
robots.” in International Symposium on Robotics Research (ISRR),
2015.

[7] M. Dunbabin and L. Marques, “Robots for environmental monitor-
ing: Significant advancements and applications,” IEEE Robotics and

Automation Magazine, vol. 19, no. 1, pp. 24 –39, Mar 2012.

[8] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler, “Tracking aquatic
invaders: Autonomous robots for invasive fish,” IEEE Robotics and

Automation Magazine, vol. 20, no. 3, pp. 33–41, 2013.

[9] S. Martı́Nez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661–
668, 2006.

[10] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic
networks for optimal deployment,” Automatica, vol. 48, no. 6, pp.
1077–1087, 2012.

[11] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in 2012 IEEE 51st IEEE

Conference on Decision and Control (CDC). IEEE, 2012, pp. 3270–
3285.

[12] S. E. Hammel, P. T. Liu, E. J. Hilliard, and K. F. Gong, “Optimal
observer motion for localization with bearing measurements,” Com-

puters and Mathematics with Applications, vol. 18, no. 1-3, pp. 171
– 180, 1989.

[13] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations:

concepts and applications of Voronoi diagrams. John Wiley & Sons,
2009, vol. 501.

[14] W. Evans and J. Sember, “Guaranteed voronoi diagrams of uncertain
sites,” 2008.

APPENDIX

CALCULATION OF ωmax

Assume robot has a maximum speed vmax with which it

can move on ∂Q. Thus, it can move as far as dmax = vmax∆t
in one time step ∆t. We assume that dmax is less than the

length of any edge of the polygon. Hence, a robot can cross at

most one vertex per time step. Then we split the calculation

of ωmax into three separate cases (Figure 9).

In all cases, let E i be the edge on which the robot is

located before moving a distance of dmax. Let lE i be the

line supporting the edge. In cases 1 and 2, we compute ωmax

when the robot remains on E i after traveling dmax, whereas

in case 3 the robot goes from E i to E i+1

Case 1. The orthogonal projection of the target on lE i lies

within E i.

Fig. 9. Computing ωmax.

ω1,Ei
max corresponds to the case where the robot covers a

maximum angular distance with respect to the target in one

time step. Thus, the robot should be as close as possible to

the target when it moves dmax on the edge. ω1,Ei
max can be

calculated as ω1,Ei
max = θ

1,Ei
max

∆t
giving ω1

max = minEi∈E{ω
1,Ei
max}.

Here θ1,Ei
max is the angle shown in Figure 9.

Case 2. The orthogonal projection of the target on lE i lies

outside E i.

Similar to case 1, the ωmax can be computed as ω2,Ei
max =

θ
2,Ei
max

∆t
where ω2

max = minEi∈E{ω
2,Ei
max}. Here, θ2,Ei

max is larger

of the two angles made by the pair of lines joining target and

either of the endpoint of Ei and joining target and a point

dmax away from the corresponding endpoint.

Case 3. Robot crosses a vertex Vi within one time step.

We assume that within one time step ∆t, robot moves dVi

1

on one edge and dVi

2 on another edge. Since robot must spend

some time at the vertex turning in-place, we have dVi

1 +dVi

2 <
dmax. Thus, the ω3,Vi

max can be calculated by the equation:

θ3,Vi
max

ω3,Vi
max

=
(d1 + d2)

vmax
+

θVi
ro

ωro
= ∆t

where θVi
ro and ωro denote the rotation angle at the vertex Vi

and rotational speed of the robot, respectively and θ3,Vi
max is

as shown in Figure 9. Then ω3
max can be specified as

ω3
max = min

(Vi,d1)
{ω3,Vi

max}.

Where Vi ∈ V and 0 ≤ d1 ≤ ∆t− θ
Vi
ro

ωro
.

Finally, ωmax can be computed as

ωmax = min{ω1
max, ω

2
max, ω

3
max}. (15)

If dmax is larger than the length of one edge or the sum

of lengths of several edges of the polygon, ωmax can also be

obtained using a similar procedure.

