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Abstract— We study the problem of reducing the amount
of communication in a distributed target tracking problem.
We focus on the scenario where a team of robots are allowed
to move on the boundary of the environment. Their goal
is to seek a formation so as to best track a target moving
in the interior of the environment. The robots are capable
of measuring distances to the target. Decentralized control
strategies have been proposed in the past that guarantee that
the robots asymptotically converge to the optimal formation.
However, existing methods require that the robots exchange
information with their neighbors at all time steps. Instead, we
focus on reducing the amount of communication among robots.

We propose a self-triggered communication strategy that
decides when a particular robot should seek up-to-date infor-
mation from its neighbors and when it is safe to operate with
possibly outdated information from the neighbor. We prove that
this strategy converges to an optimal formation. We compare
the two approaches (constant communication and self-triggered
communication) through simulations of tracking stationary and
mobile targets.

I. INTRODUCTION

The target tracking problem has been one of the most
well-studied problems in the robotics community [1] and
finds many applications such as surveillance [2]-[4], crowd
monitoring [5], [6], and wildlife monitoring [7], [8]. In this
paper, we study active target tracking with a team of robots
where the focus is on actively controlling the state of the
robot. Robots can exchange information with each other and
decide how to move, so as to best track the target. It is
typically assumed that exchanging information is beneficial.
It is typically assumed that robots will exchange information
at every timestep irrespective of whether that information is
worth exchanging. We investigate the problem of deciding
when is it worthwhile for the robots to exchange information
and when is it okay to use possibly outdated information.

The motivation for our work stems from the observation
that communication can be costly. For example, for smaller
robots radio communication can be a significant source of
power consumption. Robots can extend their lifetimes by
reducing the time spent communicating. Our objective is to
determine a strategy that communicates only when required
without significantly affecting the tracking performance.

We study this problem in a simple target tracking sce-
nario first introduced by Martinez and Bullo [9]. Here,
the robots are restricted to move on the boundary of a
convex environment. They can obtain distance measurements
towards a target moving in the interior. The goal of the
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robots is to position themselves so as to maximize the
information gained. The authors proposed a decentralized
strategy where the robots communicate at all time steps with
their neighbors and showed that it converges to the optimal
(uniform) configuration. Instead, we apply a self-triggered
coordination algorithm (following recent works [10], [11])
where each robot decides when to trigger communications
with its neighbors. We apply this strategy to the aforemen-
tioned target tracking scenario and compare its performance
with the baseline algorithm.

Simulation results validate the theoretical analysis showing
that the self-triggered strategy converges to the optimal, uni-
form configuration. In some cases, the self-triggered strategy
converges faster than the constant communication strategy.
We investigate possible causes. In particular, we observe that
the robots travel a longer distance in the wrong direction in
the constant strategy as opposed to the self-triggered strategy
when there are many robots.

The rest of the paper is organized as follows. We start
by formalizing the problem in Section II. The self-triggered
tracking strategy is presented in Section III, assuming that
the target’s position is known and is fixed. We relax these
assumptions and present a practical extension in Section IV.
The simulation results are presented in Section V. We
conclude with a discussion of future work in Section VI.

II. PROBLEM FORMULATION

Consider a group of N robots moving on the boundary of
a convex polygon Q C R?. Let Q denote the boundary of
Q. The robots are tasked with tracking a target o located in
the interior of Q. Let p1,...,pn denote the positions of the
robots. We can map any point on 9Q to a unit circle T using
the transformation ¢, : 0Q — T given by
N

lp = oll
as shown in Figure 1. We identify every robot’s position
with the corresponding point on the unit circle. That is, p; €
09 C R? is identified with 6; = ¢,(p;) € T, indicating the
location on the circle T of robot i. Let § = (61, ...,0x) € TV
denote the vector of locations of all robots.

We assume that all robots follow simple first-order
continuous-time motion model. Let wy,,, denote the common
maximum angular speed' for all robots on the unit circle. Our
results can be extended to the situation where each robot has
its own maximum angular speed. Each robot ¢ knows its own

®o(p) (1)

IStrictly speaking, each robot has a maximum speed with which it can
move on JQ. In the appendix, we show how the maximum speed on 0Q
can be used to determine wmax.



Fig. 1. The mapping from convex boundary 0Q to unit circle T.

position exactly at all times. When two robots communicate
they can exchange their respective positions.

Martinez and Bullo [9] showed that the optimal configu-
ration for the robots that can obtain distance measurements
towards the target is a uniform one, where all robots are
equally spaced around the target. That is, 6,11 — 6, =
2 /N,Vi € {1, ..., N}. Optimality is defined with respect to
maximizing the determinant of the Fisher Information Matrix
(FIM). FIM is a commonly used measure for active target
tracking (e.g., [12]). Martinez and Bullo [9] presented a de-
centralized control law that is guaranteed to (asymptotically)
converge to a uniform configuration when a robot is allowed
to communicate with two of its immediate neighbors. That
is, a robot ¢ can communicate with only ¢ — 1 and ¢ + 1.
The analysis requires that all robots know the position of
the target o exactly and that the target remains stationary.

The control law in [9] assumes that neighboring robots
communicate at every time step. We call this as the constant
communication strategy. Our objective in this work is to
reduce the number of communications between the robots
while preserving the convergence properties. We present a
self-triggered strategy where the control law for each robot
not only decides how a robot should move, but also when
should it communicate with its neighbors and seek new in-
formation. We show that the proposed self-triggered strategy
is also guaranteed to converge to a uniform configuration,
under the assumptions described next.

III. SELF-TRIGGERED TRACKING ALGORITHM

In this section, we present the self-triggered tracking
algorithm for achieving a uniform distribution along the unit
circle. This requires knowing the center of the circle (i.e.,
the target’s position) and assuming that this center does not
change. These assumptions are required for the convergence
analysis to hold. We later relax these assumptions and present
a practical version in the following section.

Our algorithm builds on the self-triggered
centroid algorithm [10] which is a decentralized
control law that achieves optimal deployment (i.e., uniform
Voronoi partitions) in a convex environment. We suitably
modify this algorithm for the case where the robots are
restricted to move only on the boundary, dQ, and can
communicate with only two neighbors as described in the
previous section. We first present the control law and then

Fig. 2. Robot ¢ goes towards the midpoint of its Voronoi segment via exact
information from its neighbors.
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Fig. 3.  Motion prediction set, R”;., that each robot ¢ maintains for its
neighbors j. #% is the last known position of robot j and 7’; is the time
elapsed since tflis last known position.

an update policy to decide when a robot should seek new
information from its neighbors.

A. Control Law

The constant control law in reference [9] drives every
robot towards the midpoint of its Voronoi segment. Voronoi
segment of the robot ¢ is the part of the unit circle extending
from (9“1;91') to (9i+297'+1). The constant control law steers
robot i towards the midpoint of its Voronoi segment V., by
using real-time, up-to-date information from its neighbors,
0;—1 and 60;; (Figure 2). We refer to the book [13] for a
comprehensive treatment on Voronoi segments.

In a self-triggered strategy, exact positions of the neighbor
will not be always available in real-time. Consequently, the
algorithm must be able to operate on inexact information.
The information that each robot ¢ holds about its neighbor
7 1is the last known position of j, denoted by 9%, and the
time elapsed since the position of robot ;7 was collected,
denoted by TJZ Based on this, robot ¢ can compute the furthest
distance that j could have moved in 7; time as +¢; where,

¢; = wmaxT;' )

Thus, robot i can build a prediction motion set R’ (6%, ¢%)
that contains all the possible locations where robot j could
have moved to in T; time (Figure 3).

Since robot ¢ only communicates with its neighbors ¢ — 1
and ¢ 4 1, the prediction motion range that robot ¢ stores is

given as R* := {R{_1(0;_1, {_1), Ri;1(0}11, 9i11)}- The
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Fig. 4. Robot ¢ goes towards the midpoint of its Voronoi segment via
inexact motion prediction about its neighbors.

proposed self-triggered strategy uses these motion prediction
ranges R’ for defining the control law of robot i

Since the robot has inexact information of its neighbors,
the midpoint of its Voronoi segment is a set instead of a
point (Figure 4). We define,

¢271) 92717max = (9271 + ¢§71)
(051 + i) -

% _ ( % _
i—1,min — i—1

i+1,min — 1+1 1+1 i+1,max —

Thus, we have:
;71(91 1?¢Z: ) - {B € T‘ez 1,min = 5 < 9 1,max}’
R;«Fl( 1+1» ¢z+1) - {6 € T‘eerl min < 5 S 0i+1,max}'

The minimum and maximum midpoints of robot i’s Voronoi
segment can be computed as,

i ( 1—1,min + 0; )/2 + (9 + 91+1 111111)/2
mid,min — 2 ’ (3)
i ( 2—1,max+9i>/2+ ( +91+1 max>/2

mid,max — 92 . (4)
For the midpoint of its Voronoi segment V%, we have:

<V1

mld min — < Vniid,max' (5)
Substitute Equations 3 and 4 into Equation 5 yields,
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4 — mid
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Therefore,
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which yields,

4 92:-&-1 + 291 + 02—1 wmaxTi

mid — 1 S (6)
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Thus, the angular distance between V,; and —*+———

WmaxT

is bounded by

s 0L 20,400 . . L
In fact, the point % indicates the midpoint of

1’s guaranteed Voronoi segment gV's;, defined as,

gVs; = {ﬂ € T|max |5 — 0] < 913161% 18— 0;1,V5 # l}
where T4, ...,T, C T are a set of connected segments in T.

We refer to the report [14] for more details on the guaranteed
Voronoi segment. Thus, the guaranteed Voronoi segment of
robot ¢ can be computed as,

9 + 91-{-1 min
2

Il’l'lX+9
SBS z 1,ma ) (7)

Vs; =
gV's B >

Robot 7 does not know the exact midpoint of its Voronoi
segment V... Instead, it can move towards the midpoint of
its guaranteed Voronoi segment, gV, given by:

(91 + 9§+1.min)/2 + (92 1,max + 91)/2

gVn,‘L.lid = - 9 — )

0;, +20; +0;_
= B0 (8)

In general, moving towards gV:, does not guarantee
that the robot moves closer to the midpoint of its Voronoi
segment. However, the statement holds under the condition
described next.

Lemma 1: Suppose robot i moves from 6; towards gV’
Let 0] and V., be its position and the midpoint of its Voronoi
segment, respectively, after one time step. If [0, — gV.%. | >
[Vinia 105 = Viial <10 — Vigial-

The proof for this lemma follows directly from the proof
for Lemma 5.1 in reference [10]. Consequently, as long
as the robot can ensure that its new position 0; satisfies
0 — gViial > |[Viiy — gVigl, then it is assured to not
increase its dlstance from the actual (unknown) midpoint of
the Voronoi segment. However, the right hand side of this
condition also is not known exactly since robot ¢ does not
know V. Instead, we can upper bound this term using
Equation 6. We denote this upper bound by ubd; := YmaxT'

Corollary 1: Suppose robot i moves from 6; towards
gVi.q Let 6. be its position after one time step. If

10; — gVikal > ubds, )

then |0; — Vil < 16 — Vigial-

Next, we present a motion control law that steers the robots
towards a uniform configuration on the circle. Intuitively,
robot 7 computes its guaranteed Voronoi segment (7) using
the last known positions of its neighbors and the real-
time position of itself. It then computes the midpoint of its
guaranteed Voronoi segment (Equation 8) and moves towards
the midpoint until it is within distance ubd; of it.

The control, u;(tx), for robot 4 at time ¢, is given by:

u;i(tr) = w; unit(gVihg — 0:), (10)
where, unit(x) = 77 and
Wmax }gvniid - 07| > ubdz + WmaXAt;
w; = O, }gannd 01| S ubdi,
0;|— i .
MAitubd, otherwise.



B. Triggering Policy

As time elapses, without new information the upper bound
ubd; grows larger until the condition in Equation 9 is not
met. This triggers the robot to collect the updated information
from its neighbors. There are two causes that may lead to
the condition in Equation 9 being violated. The upper bound
on the right hand side, ubd;, might grow large because of
the time elapsed since the last communication occurred. Or,
robot ¢ might move close to gV, which would require ubd;
to become small by acquiring new information. The second
scenario might lead to frequent triggering when the robots are
close to convergence. We introduce a user-defined tolerance
parameter, o > 0, to relax the triggering condition. Whenever
the following condition is violated, the robot is required to
trigger new communication:

ubd; < max{[|6" — gVl o} (11)

The motion control law is designed under the assumption
that the robot ¢ and its two neighbors are located in the
counterclockwise order (i.e., 0;y1 > 6; > 6;_1). Since
the robots are identical, there is no advantage gained by
changing the order of robots along the boundary. In a self-
triggered strategy, we only have a motion prediction set of
the neighbors. If there is a possibility that this order may
be violated, the robots must communicate and avoid it. We
achieve this by requiring the robot to maintain the following:

;.;,.1 - WmaxTil+1 > 02 > 912'_1 + wmax’ril_l (12)

This ensures that even in the worst case, the robots have
not swapped their positions. Whenever there is a possibility
of this condition being violated, the robot ¢ triggers a new
communication.

The complete self-triggered algorithm is given below.

Algorithm 1: SELF-TRIGGERED MIDPOINT

1: while all robots have not converged:

2:  for each robot ¢ € {1,..., N} perform:

3 increment 7/, and 7/, by At

4 compute R*, gV's;, gVii4, and ubd,

5: if Equation 11 OR Equation 12 is violated:

6 trigger communication with ¢ + 1 and ¢ — 1
7 reset 7/, and 7/_; to zero

8: recompute R*, gV's;, gV, 2iq, and ubd;

9: end if

10: compute and apply u; as defined in Equation 10
11:  end for

12: end while

C. Convergence Analysis

Algorithm 1 is guaranteed to converge asymptotically to a
uniform configuration along the circumference of the circle,
irrespective of the initial configuration, assuming that no two
robots are co-located initially. The proof for the algorithm
follows almost verbatim from the proof of Proposition 6.1

in [10] with suitable modifications. We sketch the modifica-
tions required here.

In [10] the robots are allowed to move anywhere in
the interior of Q C R? whereas in our case the robots
are restricted to move on J(¢), equivalent to moving on
the unit circle T. Therefore, all the L, distances in the
proof in [10] change to L distances. Instead of moving
to the midpoint of the guaranteed Voronoi segment, the
robots in [10] move to the centroid of a guaranteed Voronoi
region. Instead of communicating with the two clockwise and
counter-clockwise neighbors, the robots in [10] communicate
with all possible Voronoi neighbors. None of these changes
affect the correctness of the proof. We add an extra condition
that triggers communication to prevent robots from changing
their order along T. Since this condition only results in
extra triggers, it can only help convergence. Finally, since
there is a one-to-one and onto mapping between 0@ and T,
convergence along T implies convergence along 0Q).

IV. PRACTICAL EXTENSION: TRACKING OF MOVING
TARGET WITH NOISY MEASUREMENTS

If the true position of the target, o*, is known, then we can
draw a unit circle centered at the target and use the strategy
in Algorithm 1 to converge to a uniform distribution along
the circle. According to the result in [9] this configuration
maximizes the determinant of the FIM. In practice, however,
we do not know the true position of the target. In fact, the
goal is to use the noisy measurements from the robots to
estimate the position of the target. Furthermore, the target
may be mobile. This implies that the (unknown) center of
the circle is also moving, further complicating the control
strategy for the robots.

We use an Extended Kalman Filter (EKF) that estimates
the position of the target (i.e., center) and predicts its motion
at every time step. The prediction and the estimate of the tar-
get from an EKF is a 2D Gaussian distribution parameterized
by its mean, 0y, and covariance. At each time step, we use
the mean of the latest estimate as the center of the circle to
compute the §; values using the transformation in Equation 1.
We evaluate two regimes for the EKF. (1) Centralized EKF:
A common fusion center obtains the measurements from all
the robots and computes a single target estimate, Ok, at every
time step; and (2) Decentralized EKF: Each robot runs its
own EKF estimator and has its own target estimate, 6};, based
on only its own measurements of the target. If at any time
step, a robot communicates with its neighbors, then it also
shares its current measurement with its neighbors. At these
triggered instances, the robot updates its own estimate using
its own measurement and measurements from its neighbors.

The rest of the process is similar to that in Algorithm 1.
The centralized EKF scheme is a baseline which we compare
against for the more realistic, decentralized strategy. The
results are presented in the simulation section that follows.

V. SIMULATION RESULTS

We evaluate the proposed algorithm by comparing the
time required to achieve a uniform configuration for the self-



triggered strategy and the constant communication strategy.
We also compare the two algorithms for tracking moving
targets with noisy measurements. Our implementation is
available online.”

A. Stationary Target Case

We first compare the performance of the self-triggered and
constant strategies in terms of their convergence speeds and
the number of communication messages to achieve a uniform
configuration on the boundary of a convex environment.
Here, we focus on the base case of known, stationary target
position. All results are for 30 trials with the initial positions
of robots drawn uniformly at random on the boundary.

Figure 5 shows snapshots of the active tracking process
under the proposed self-triggered strategy starting with the
initial configuration at time step & = 1 (Figure 5-(a))
and ending in a uniform configuration around the target at
k = 760 (Figure 5-(c)). The robots know the position of
the stationary target. The initial positions of the robots are
chosen uniformly at random on JQ). At each time step, we
use the map ¢, to find 6; on the unit circle (Equation 1),
compute the control law as per Algorithm 1, and apply the
inverse map ¢! to compute the new positions of the robots
on JQ. We set At = 0.1 s and assume that each robot has
the same maximum angular velocity wmax = % “;—,d. In
general, one can use the procedure given in the appendix to
compute wy,x for a given environment.

We first compare the convergence time of the two strate-
gies (Figure 6-(a)). The convergence time, Ctime, is spec-
ified as the timestep k when the convergence error, Cerr,
drops below a threshold. We use 0.1N as the threshold,
where N is the number of robots. The convergence error
term, Cerr, is defined as:

N
Cerr = > " [0; — Vil (13)
i=1
in the constant communication case, and
N
Cerr = > |6 — gVikia (14)
i=1

in the self-triggered case.
The average number of communication messages is:

Zf\il com (%, Ctime)
N x Ctime

where com(i, Ctime) gives the total number of communica-
tions of a robot with its neighbors i at the end of Ctime.
Figure 6-(b) shows the Com in the self-triggered case.
The number of communication messages in the constant
communication case is a constant.

Figure 6-(a) shows that the self-triggered mechanism
has faster convergence than the constant strategy when the
number of robots is large. Intuitively, robots communicating
constantly with its neighbors should converge faster. In order
to investigate this counter-intuitive finding, we computed,

Com =

Wrd, which is the average motion in the “wrong” direction,
defined as N
>i—q1 wrd(, Ctime)

N x Ctime

Here, wrd(i, Ctime) gives the total amount of motion in the
“wrong” directions for each robot i until the convergence
time. For robot ¢, we use the sign of the difference between
its initial orientation and the orientation at the convergence
time, i.e., 7 — 6,(Ctime) to find which motion is in the
“wrong” direction.

When the number of robots increases, the average distance
traveled in the wrong direction becomes larger for the
constant communication strategy. Recall that both strategies
are guaranteed to converge only asymptotically. The rate
of convergence is not known. We conjecture that frequent
communication with more robots, especially initially, leads
to frequent switching in directions before the robots move
towards their final configuration. On the other hand, in a self-
triggered strategy the robots commit to a direction and move
until the next triggered instance, thereby possibly leading to
fewer switches in wrong direction.

Wrd =

B. Moving target with centralized and decentralized EKF

In this section, we present results from simulating the
self-triggered and constant strategies for the realistic case of
mobile, uncertain targets (Section IV). For both strategies,
we consider the centralized EKF and decentralized EKF
estimators. We use Cerr to measure the error between robots’
deployment and the uniform distribution (Figure 7).

The constant communication strategy with centralized
EKF performs the best (Figure 7). Between the two decen-
tralized settings, the constant communication strategy (Figure
8-(a)) has an advantage over the self-triggered one since
at each time step every robot obtains three measurements
(one from self, and one each from the neighbors) to form
a better estimate of the target’s position. If all robots have
similar (and consistent) estimates, then the strategy is likely
to perform better. For self-triggered strategies the robots
estimate the target with only their own measurements, except
at trigger instances when they get measurements from their
neighbors. Figure 8 shows one such instance of the self-
triggered mechanism with decentralized EKF where the es-
timates of robots are uncertain and inconsistent. Our current
work is focused on extending the self-triggered strategy
taking into account the tracking performance.

VI. DISCUSSION AND CONCLUSION

In this paper, we investigate the problem of active target
tracking where each robot controls not only its own positions
but also decides when to communicate and exchange infor-
mation with its neighbors. We focused on a simpler target
tracking scenario, first studied in reference [9]. We applied
a self-triggered coordination strategy that asymptotically
converges to a uniform configuration around the target while
reducing the amount of communication. We find that the self-
triggered strategy performs comparably with the constant

’https://github.com/raaslab/Self-triggered-mechanism communication strategy and in some cases even outperforms
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Fig. 5. Self-triggered tracking with six robots moving on the boundary of a convex polygon with a known, stationary target. The robots took 760 timesteps

to converge to the uniform configuration around the target.
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the baseline strategy. We conjecture that frequent commu-

nication in the constant communication strategy makes the
robots subject to greedy and suboptimal actions than the less

[1

—

informative self-triggered strategy. Further investigating and

proving this conjecture are part of our ongoing work. Future

[2]

work also includes extending the self-triggered strategy to

decide not only when to communicate information, but

[3]

also when to obtain measurements and which robots to
communicate with.

[4]
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APPENDIX
CALCULATION OF Wy ax

Assume robot has a maximum speed vpax With which it
can move on 9Q. Thus, it can move as far as diax = Umax At
in one time step At. We assume that dy,., is less than the
length of any edge of the polygon. Hence, a robot can cross at
most one vertex per time step. Then we split the calculation
of wmax into three separate cases (Figure 9).

In all cases, let £ be the edge on which the robot is
located before moving a distance of dpax. Let IE? be the
line supporting the edge. In cases 1 and 2, we compute wpax
when the robot remains on £° after traveling dp,.., Whereas
in case 3 the robot goes from £ to &1
Case 1. The orthogonal projection of the target on IE° lies
within £7.

1

d max o
2 Umax
d

max

Fig. 9. Computing wmax-

wt& corresponds to the case where the robot covers a

maximum angular distance with respect to the target in one
time step. Thus, the robot should be as close as possible to
the target when it moves d,,x on the edge. wX€i can be

max
calculated as wtfi = %8 giving wl . = ming,ee {wh}.
Here 6L:£i is the angle shown in Figure 9.

Case 2. The orthogonal projection of the target on IE° lies
outside &°.

2§imilar to case 1, the wpay can be computed as w2&: =
yax where w2, = ming,ce{wSi}. Here, 625 is larger
of the two angles made by the pair of lines joining target and
either of the endpoint of &; and joining target and a point
dmax away from the corresponding endpoint.
Case 3. Robot crosses a vertex V; within one time step.

We assume that within one time step At, robot moves d}ji

on one edge and d;} on another edge. Since robot must spend
some time at the vertex turning in-place, we have dY* 4-dy* <

dmax- Thus, the w3:Yi can be calculated by the equation:

O _ (d1 +do) n O _ py
wfr;;};i Umax Wro

where 9%@' and w,, denote the rotation angle at the vertex V;
and rotational speed of the robot, respectively and 62;Yi is

max
as shown in Figure 9. Then w3 can be specified as
3 _ ; 3,V;
max — 1IN {wmax .

(Vi,d1)

Vi
Where V; € V and 0 < dy SAt-ffToo'
Finally, wy,ax can be computed as
1 2 3

Wmax = mln{wmmu Wmaxs Ymax S -

5)

If dax is larger than the length of one edge or the sum
of lengths of several edges of the polygon, wp,.x can also be
obtained using a similar procedure.



