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Abstract

The large majority of inferences drawn in empirical political research follow from
model-based associations (e.g. regression). Here, we articulate the benefits of pre-
dictive modeling as a complement to this approach. Predictive models aim to specify
a probabilistic model that provides a good fit to testing data that were not used to
estimate the model’s parameters. Our goals are threefold. First, we review the central
benefits of this under-utilized approach from a perspective uncommon in the existing
literature: we focus on how predictive modeling can be used to complement and aug-
ment standard associational analyses. Second, we advance the state of the literature
by laying out a simple set of benchmark predictive criteria. Third, we illustrate our
approach through a detailed application to the prediction of interstate conflict.
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1 Introduction

Most empirical political science research relies on model-based associations (e.g., regression)
in observational data to test hypotheses and develop explanations of the phenomena under
study (Druckman et al., 2006). Much emphasis is typically placed on the theoretical spec-
ification of a statistical model, which we agree is important, while much less emphasis is
placed on evaluating the predictive performance of the model. We propose thinking about
the role of prediction in theory-building as a continuum, in which standard models are sub-
ject to increasingly strong predictive tests. Key distinctions occur where prediction-based
validation is shifted from in-sample (e.g. predicting the data used to fit the model) to out-
of-sample (e.g. predicting data not used to fit the model) and again when prediction is used
to learn about the process of interest independent of existing theory rather than to validate
a theoretically driven model. In the current article, we (1) make the case that predictive
models are under-used in political science, (2) elucidate what we see as their most attractive
features, and (3) demonstrate how prediction can augment association-based modeling and
even lead to new discoveries.

The chronic lack of emphasis on model validation in political science risks a situation in
which most inferences rely on models that might fit poorly and makes the contributions of
new research on established topics ambiguous at best. What is more, the field’s reticence to
use prediction often prevents us from refining our measures and models, and making objective
comparisons of the performance of competing theories. Science is meant to be a cumulative
enterprise, but the lack of clear, performance based, model evaluation makes it difficult,
if not impossible, to judge the relative contribution of new empirical work relative to the
existing literature. Furthermore, the lack of cumulative/benchmark predictive assessments
renders it similarly difficult to judge overall scientific progress on a specific outcome. All of
this together serves to limit on our ability to advance political inquiry.

We have three goals in this work. First, we catalogue the dangers associated with con-



ducting model based inference without assessing predictive performance, while also pointing
out some ways in which assessing predictive performance can bolster our inferences. Sec-
ond, we lay out the criteria for what we believe should constitute a benchmark predictive
model: one based either on the “state of the literature” model if one is available or on the
structure endogenous to the outcome variable if the researcher is establishing his or her own
baseline, both using out-of-sample predictive accuracy as the sole criterion for model quality.
Third, we illustrate our approach in application to the prediction of the initiation of serious
inter-state conflicts. This illustration yields several interesting, and perhaps unexpected,
results: models based only on the endogenous structure of the outcome variable generally
outperform models based on exogenous predictors, models combining endogenous and ex-
ogenous predictors generally predict worse than models based only on the outcome variable,
and many of the best established variables in the literature contribute little to the model’s
predictive accuracy. In summary, we aim to explicate and illustrate how the evaluation of
predictive performance can be better utilized with the end goal of strengthening the model

based inferences on which we so often rely to advance the state of knowledge in our field.

2 Prediction and Inference

The technical distinction between inferential modeling and predictive modeling is rather
straightforward, though practical distinction for the applied researcher is much less so. In
inferential modeling, the statistical model is constructed as an operationalization of a theo-
retical model. The specification is important because deviations from the theoretical model
in operationalization inhibit our ability to use the statistical model to test hypotheses. The
coefficients are the objects of interest, which is to say that the statistical model itself is the
object of interest. In inferential modeling, we use the data to learn about the statistical

model. Conversely, in pure predictive modeling, the objects of interest are the variables



rather than the parameters: we use the available data to produce the best possible predic-
tions of the outcome variable. It does not matter, for purely predictive exercises, whether
the statistical model used is a close operationalization of a causal theory, because the only
metric for the quality of a model here is its predictive performance (Shmueli, 2010). A sub-
tler difference is that inferential models aim to minimize bias in order to produce the most
accurate coefficient estimates, whereas predictive models minimize the combination of bias
and estimation variance in order to optimize empirical precision (Shmueli, 2010, p. 293).

When we say that the practical distinction between inference and prediction is less
straightforward, we mean that inference can be augmented by prediction. Possibly greatly.
Consider a continuum in which prediction is applied increasingly strongly. This continuum is
illustrated in Figure 1. On one end of the continuum, the researcher does not use predictive
methodology at all. Here, no validation of the model takes place, the researcher simply runs
the model, interprets the results, and concludes. The following section will make clear that
this approach suffers from a number of problems that could be ameliorated by predictive
modeling.

Moving right on the continuum, we consider in-sample approaches to prediction. “In-
sample” means that the same data used to fit the inferential model are used in the predictive
exercise. Examples of in-sample techniques that are frequently applied include the R? and
AIC statistics. Some other common techniques, such as plotting the receiver operating
characteristic (ROC) curve (Fawcett, 2006) or posterior predictive checks in a Bayesian
context (Gill, 2014), can be applied either in-sample or out-of-sample.

As we move further right on the continuum, we reach the first of two conceptually
important cutpoints: the point at which validation-driven prediction is made out-of-sample
as opposed to the in-sample prediction further left on the continuum. Here we must draw
a distinction between two samples (datasets) used in predictive modeling: the training set

and the test set. The training set is the set of data upon which the predictive model
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to Validate (i.e. AIC) Cross-Validation Training vs Test Sets Prediction to Learn

Figure 1: A conceptual continuum between no prediction and pure prediction. Political science research
tends to fall around the left side of this continuum whereas fields like computer science tend to fall to the
right of it.

No Prediction

is built. One generally tries to capture the process of interest in the training set, often
by making iterative adjustments to the statistical model. In out-of-sample prediction, the
model produced on the training set is then applied to the test set to estimate generalization
error. Generalization error is the prediction error of a model when applied to the general
population of interest (i.e., beyond the sample on which the model was trained) (Nadeau
and Bengio, 2003). In-sample-prediction, by contrast, functions similarly on the training
set, but then tests predictive accuracy on the training set as well (a test set is not used in
in-sample-prediction) (Attewell, Monaghan and Kwong, 2015).

Our search and review of the literature suggests that the majority of political science
analyses fall into the left two categories of this continuum, using in-sample validation or no
validation at all. To provide some evidence for this claim, we searched JSTOR (dated 5-16-
2016) for (“cross validation” OR “out of sample”) published in political science journals since
2005, and found 283 results. As a point of comparison, a search for (“logistic regression” OR
“logit”) with the same search parameters returned 3,151 results. Our aim for the remainder
of the article is to convince the reader that our field can profit from occupying spaces of the
continuum further right.

Cross-validation can take many specific forms, but generally involves randomly divid-
ing the data into several partitions, fitting the model of interest on all data not in a given

partition, and then testing the the model with the held-out partition. This process is then



repeated for all partitions and the mean error is reported (Stone, 1974, 1977). Depending
on the size of the dataset and the number of test partitions used, this technique may be
computationally expensive (Faraway, 2006). Cross-validation has been used in every sub-
field of political science. For example Beck, King and Zeng (2000) use it to evaluate the
performance of several conflict models they had fit.

A simple and powerful alternative to cross-validation is to hold the training and test
sets as completely distinct datasets. Typically, a test set of 30-50% of the primary data
is randomly sampled and set aside while the model is trained on the remainder (Attewell,
Monaghan and Kwong, 2015) This setup has the elegant feature that, because the test set
was randomly partitioned from the training set, the only thing the two have in common in
expectation is the data generating process. Thus, if a model fits the test set well, one can
expect that key elements of the data generating process are captured in the theoretically
informed model. For example, Goldstone et al. (2010) found that a relatively simple model
greatly increases predictive power and casts doubt on the role of established covariates in
the prediction of civil conflicts. More recently, applying this concept to longitudinal data
Cranmer, Menninga and Mucha (2015) find that inclusion of their “Kantian Fractionaliza-
tion” measure—a summary measure of degree of clustering and cluster cohesiveness across
international networks of trade, IGO, and joint democracy—adds more to the predictive
performance of a typical conflict model than all the standard control variables combined
and that joint democracy makes a negligible contribution to the prediction of conflict.

The rightmost extreme of the continuum uses the training/test set setup to learn, as
opposed to prediction to validate, in an approach often called machine learning. This is
the second conceptually important cutpoint on the continuum: in this extreme space of
the continuum, one is no longer seeking to validate a theoretically informed model, but
seeking to learn a model from the data by minimizing generalization error through predictive

experiments. A hallmark of machine learning is that the training set may be mined in



an unsupervised manner (e.g. with no specific model specified and no application-specific
rules as to how the mining should be conducted) with the goal of finding a specification
that predicts the test set as well as possible. In other words, machine learning algorithms
are designed to perform better with more data; they “learn” from the the data they have
experienced and they learn more from more experience. As Hua, Cuiqin and Lijuan (2009,
p. 978) note, concisely, “Machine learning is a subject that studies how to use computers to
simulate human learning activities.”

Machine learning can be useful for theory building because it can uncover patterns that
might not have been obvious or intuitive to the theory-building analyst, and, on the other
hand, can suggest features or sets thereof that should be excluded from the model alto-
gether. However, the machine learning approach is relatively uncommon in political science.
Consider the example of Desmarais and Cranmer (2011): considering a large set of measures
computed endogenously on the network of transnational terrorist attacks (an individual
from country i attacks a target in country j), Desmarais and Cranmer (2011) mine the set
of specifications to produce a model that predicts new attacks out of sample with more than
95% accuracy and with probabilities assigned to attacks that ultimately occur several orders
of magnitude higher than attacks that ultimately do not occur. More recently, Muchlinski
et al. (2016) found that a machine learning approach significantly increases the predictive

accuracy of civil-war models.

3 The Utility of Prediction

Understanding the statistical differences between prediction and explanation is necessary
to elucidate the distinctive utility of the two endeavors. More important however are the
contributions predictive modeling can make to our explanatory understanding. The contri-

butions are many, leading us to claim that an exclusive focus on explanatory modeling omits



a great deal of leverage predictive modeling can lend to the explanatory exercise.

3.1 Systematically Observing Nature

In theory, most political science research begins with a novel hypothesis, and follows the
model of hypothetico-deductivism in which empirical expectations are deduced from the
hypothesis, with empirical tests to follow (Clarke and Primo, 2007). This skips a crucial
step in the scientific process: exploratory observation of nature. To be clear, nature here
refers to the political processes of interest, and also the environments in which they occur.
Observation is critical to forming new hypotheses because it is the observation of associations
and the consideration of their potential causal relationships that forms the backbone of
theoretical development. Yet typically we rely on our reading of history and the existing
literature to constitute our observation of nature. The use of predictive models can uncover
unknown patterns and new causal mechanisms in complex data. The first thing predictive
modeling offers us is the opportunity to observe nature in a systematic way. By finding
new patters, inductively, we may form new hypotheses about why those patterns exist and,
through subsequent tests, improve the state of our science (Gurbaxani and Mendelson, 1990,
1994; Collopy, Adya and Armstrong, 1994; Shmueli, 2010).

Not systematically observing the phenomena of interest prior to hypothesis formation
involves the rather bold claim that we do not need such empirical tools because our powers
of observation are so keen that we are able to detect all meaningful patterns in the extremely
complex phenomena we study, so as to be able to completely and correctly specify not only
our theories, but our explanatory statistical models (where complete and correct specification
is a statistical necessity if one hopes to test a theory). Particularly as political science moves
into the era of “big data,” it seems increasingly unlikely that a researcher will be able to

detect all meaningful patterns without a predictive model.



3.2 Refining Measures and Models

Predictive models can play an important role in the refinement of both measures and ex-
planatory statistical models. In the following list we denote three related ways in which
predictive assessment can aid in improving explanatory models.

Refining Measures. Predictive modeling can help us refine our operationalizations of
important theoretical concepts. This can be accomplished in two ways: predictive exercises
may be conducted to discover new measures (Van Maanen, Sgrensen and Mitchell, 2007;
Shmueli, 2010) or to test the efficacy of competing operationalizations against one another
(Shmueli, 2010). Equally, if not more usefully, predictive accuracy is an impartial criterion
by which to evaluate competing operationalizations of the same concept.

Refining Models 1: Parsimony. Predictive models provide a means for impartially eval-
uating the parsimony of an explanatory model (Jensen and Cohen, 2000). There has been
some debate in the literature about how parsimonious an explanatory model should be,
with Achen (2002) arguing for few (3) variables, others arguing that more is better to avoid
omitted variable bias (Oneal and Russett, 2005), and many more moderate perspectives in
between. Yet prediction, especially out-of-sample prediction, is a useful way to tune the par-
simony of a model because predictive exercises allow one to judge how much impact is being
made by each element of the model in terms of its contribution to predictive performance
(Hastie, Tibshirani and Friedman, 2009; Kuhn and Johnson, 2013).

Refining Models 2: Diagnosing Misspecification without Querfitting. Out-of-sample pre-
dictive exercises can be used to identify model misspecification without running the risk of
over-fitting the data. Predictive models are natural tools for identifying model misspecifi-
cation because misspecified models are necessarily poor predictors. However, overfitting —
including excess parameters that exploit artifacts of the data without capturing the data
generating process — can often disguise misspecification by moving the model towards sat-

uration. When predicting out of sample, the latter disguise will not work and the prior



problem will be apparent.

3.3 Objective Comparison of Model Quality

and Competing Theories

Predictive models afford the researcher the ability to test the quality of an explanatory
model against more realistic null models or even against rival theoretical models.

Better Null Models. Truly null models, where there is absolutely no relationship between
a dependent variable and a set of independent variables, are quite rare in political science.
Why then do we test our theoretically informed models against null models that are so
unlikely to occur? Thinking about it this way, the claim that “my model fits the data
better than a spectacularly unlikely model” rather takes the zip out of claiming statistical
significance for an effect. As we will explain below, a baseline comparison model (even a
naive one) need not be so simple as a null model. Rather, one can set reasonable, if simple,
criteria for benchmark models and use predictive accuracy as a means by which to judge if
one’s model outperforms the baseline.

Testing Competing Theories. Predictive ability as an excellent way to compare competing
theories of the same outcome. Using predictive criteria, particularly out of sample predictive
criteria, is an exceedingly simple means to highlight the extent to which the theoretically
informed models anticipate reality, and which among those models does a better job of
it. Measures of in-sample fit (e.g. adjusted-R?, AIC, BIC), and even in-sample prediction,
are less-than-ideal because they run the risk of overfitting the data; accidentally exploiting
artifacts of the error term that are not part of the data generating process in nature. Perhaps
more importantly, certain elements of the competing theories may be mutually exclusive or
highly collinear, making comparative testing without relying on predictive criteria all but
impossible. While direct comparisons of model fit with non-nested sets of predictors is

possible in a Bayesian context, they are not in a frequentist context (Gill, 2014). Yet, using



out-of-sample predictive fit to judge one model against competing specifications (even if
they are very similar) is straightforward in either a Bayesian or frequentist approach and
the improvement of model one over the other can be measured precisely and objectively. For
example, in the study of environmental politics it is well established that both a county’s
population and GDP affect its COy emissions. But when including CO, emissions as a
predictor, should this measure be normalized by population or GDP? A predictive approach,
even one as simple as cross-validation, could do much to disentangle these closely related

but theoretically distinct predictors.

3.4 Measuring the State of Knowledge

Finally, predictive modeling can tell us how well an explanatory theory captures the phe-
nomena of interest and can provide an upper bound on what can be learned by further
explanatory modeling. Suppose we examine the dominant theory of a particular outcome,
say interstate war, and find that its predictive accuracy is quite low. This tells us that one of
two things, or both together, is happening: either the dominant causes of the outcome have
yet to be discovered and much important work remains to be done in the field, or the outcome
exhibits a high amount of “noise” and a comparatively small amount of natural “signal.”
In the first case, we may conclude that our theoretical understanding of the phenomena is
grossly incomplete and use this conclusion to fuel a push for improved theory and causal
testing. In the second case, we may have arrived at a largely complete explanatory model
of the phenomena, but high degrees of imprecision in our ability to measure the relevant
variables produce what appears to be high stochasticity and prevents accurate predictions.
As Shmueli (2010, p.4) notes, “Predictive modeling plays an important role in quantifying
the level of predictability of measurable phenomena by creating benchmarks of predictive
accuracy.”

Consider alternatively what the field would learn were the dominant theory to produce a
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high level of predictive accuracy. If the state of the art predicts well, that tells us that there
is comparatively little that may be gained from continued efforts at explanatory modeling.
If the addition of theory can, at most, produce a marginal increase in predictive accuracy,

then such theory is only capable of giving us marginally more traction on the problem.

4 Establishing a Predictive Baseline

Above, we considered the utility of having a simple but non-null benchmark model against
which to compare the predictive power of theoretically informed models. Such benchmark
models can take two forms: they can either reflect the most recent or best-accepted model
already established in what we will call a “state-of-the-literature” model, or they can reflect
the best model one can specify without relying on theory in what we call a “baseline”
model. In principal, using a state-of-the-literature model is straightforward. In practice
however, such models can be difficult because (a) most political science research does not
provide predictive results against which an analyst may easily compare new results and
(b) replicating the state-of-the-literature model to produce such a predictive benchmark is
often not as easy as it should be.! In situations where a state-of-the-literature model is not
available or not desired, establishing a reasonable baseline model will be important. Indeed,
one may wish to establish a baseline model even when a state-of-the-literature model is
available in order to judge the predictive gains offered by the state-of-the-literature model.

Here, we propose general criteria for baseline benchmark models. The proposed criterion,
we argue, is the best model one can specify without reflecting the proposed theory. As such,
the baseline model is similar to null model comparisons common in statistical mechanics,
but less naive. Such baseline models are useful in cases where the researcher is establishing

her own baseline model as opposed to comparing her model to one specified by previous

IThe latter of these problems is, hopefully, decreasing over time as it becomes more common for re-
searchers to publish their replication data/code and an increasing number of journals are requiring such
replication materials to be made public.
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researchers.

We propose three criteria for creating predictive benchmarks that can be applied to any
social science outcome observed longitudinally. In fact, it is important to point out that
a necessary condition for a strong benchmark model should be that it is transportable to
different outcomes and not tailored to one specific application. Such transportability can
afford the benchmark model and its interpretation in terms of how well our explanatory
models explain a given outcome a high degree of consistency across applications.

First, we propose that the only data to be used in benchmark predictive models should
be from the outcome variable. Not only does this increase the portability of the benchmark
model’s structure to other outcomes, but, more importantly, an outcome-only model rep-
resents the most substantively simple model that can be created. In terms of assembling
an explanatory model, an outcome-only model represents the most parsimonious option —
the outcome variable following a self-determining dynamic.? To create such a model, say of
international conflict, we need only to have substantive knowledge of international conflict.
Adding covariates complicates the substance of the problem greatly; if we regress conflict
on joint democracy, trade, and common IGO membership, we must have substantive knowl-
edge of each of those covariates, confidence in the measures, and understand the processes
by which they relate to conflict.

All of this is not to say that an outcome-only model is structurally simple, such models are
often quite complicated in their underlying mathematical forms. Aside from the rather ob-
vious effect of previous observations on current observations (e.g. autocorrelation), political
science is marked by powerful endogenous effects that manifest through networks of inter-

actions and associations, latent or observed, within the outcome variable. In other words,

2We want to note an important consideration in building an explanatory model while using a baseline
model that includes functions of the lagged dependent variable. The time lag should be specified to either
predate or be contemporaneous to any variables in which the researcher is interested in interpreting causally.
The identification of a causal relationship can be compromised by conditioning on a post-treatment control
variable (i.e., a variable determined after the determination of the causal variable of interest) (Keele, 2015).
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without including the complexity of exogenous covariates, there is often much structure that
can be included in an outcome-only model. For example, recent studies have shown that,
in networks, certain endogenous structures are transportable across outcomes (Hanneke, Fu
and Xing, 2010; Cranmer and Desmarais, 2011; Cranmer, Desmarais and Menninga, 2012;
Cranmer, Desmarais and Kirkland, 2012; Desmarais and Cranmer, 2010, 2011, 2012).

As a second criterion, we argue that all predictions must be made strictly out-of-sample.
The reasons for this are simple. First, in-sample prediction is not true prediction because it is
predicting observations that have already occurred within the training set. From a statistical
perspective, it matters little whether the observations being predicted out-of-sample have yet
occurred in nature, but more whether they have yet occurred in the training set. Second,
in-sample-prediction runs the risk of leaving a model that overfits the data undetected.
Overfitting occurs when the statistical model captures artifacts of the dataset (i.e. random
error) that are not part of the data generating process. An overfitted model will typically
produce good in-sample predictions, but poor out-of-sample predictions because the artifacts
of the training set it exploited do not carry over to the test set. As such, developing a
model that predicts well in-sample may reflect less of a thorough understanding of the data
generating process than a model that predicts well out-of-sample.

Designs for assessing out-of-sample model fit can take many forms, and may depend upon
the format of the data. For a dataset of completely exchangeable observations (e.g., survey
data), randomly splitting observations into training and test sets or partitioning the data
into k validation sets that are used sequentially both for estimation and testing (i.e., k-fold
cross-validation) is a common approach (Jensen and Cohen, 2000). Cross-validation is a
robust and adaptable methodology that has been shown to perform optimally in terms of
model selection for several classes of model selection problems (see, e.g., Hall, 1983; Nowak,
1997; Droge, 1999; van der Laan, Dudoit and Keles, 2004). When the data are organized

according to a common dependence structure such as longitudinal /panel data or clusters,
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whole groupings (e.g., time periods) can be omitted as the hold-out sample (Rakotomalala,
Chauchat and Pellegrino, 2006).

Evaluating a model on an independent test set is not a silver bullet for model selection
in a single finite study. It is still possible overfit the data using hold-out methods such as
cross-validation. As such, since the test set(s) in any one study have already been exploited
to test multiple models, it is important that future studies of the same process either grow
the test set(s) or use completely new and independent test set(s). Generalization error is
the prediction error of a model on data from the same population, but outside of the sam-
ple. Cawley and Talbot (2010) show that, even though cross-validation is a nearly unbiased
method of estimating generalization error and single-split-sample (i.e. training/test) estima-
tion is unbiased, the variability with which hold out methods estimate generalization error
can lead to overfitting in a finite sample. In other words, any one test set may lead to the
inclusion of more variables or model components than exist in the true model. Cawley and
Talbot’s (2010) results emphasize the importance of accumulatively growing the sample of
test data and replicating past studies in order to realize the long run benefits of testing on
held out data.

Our last criterion for a good benchmark predictive model is that the criterion for judg-
ing predictive accuracy must be appropriate for the distributional features of the predicted
variable. This is an important point, but one for which it is difficult to provide general ad-
vice. For example, the most relevant feature when it comes to a dichotomous variable is the
rarity of “positive” events. Standard metrics for judging predictive accuracy, the receiver
operating characteristic (ROC) curve in particular, can produce misleading results when
applied to rare events because this criteria weights the prediction of events and non-events
equally. Consider the case of predicting war: war is rare and a (useless) model predicting
never war will be overwhelmingly correct. In our application below, we consider this problem

specifically and introduce alternative criteria for judging predictive accuracy
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5 Illustrative Application:
Predicting International Conflict

We now endeavor to demonstrate as many of the advantages of predictive models discussed
above as possible within the confines of a single example. We attempt the prediction of
violent international conflict, something notoriously hard to predict, and consider what

predictive modeling can teach us about this processes.

5.1 The Paucity of Predictive Models of Inter-State Conflict

Empirical analysis in conflict processes research relies almost exclusively on explanatory
modeling, typically using regression. Predictive models, which do not necessarily aim to
operationalize a causal theory, are then often seen as the tools of applied scientists or policy
analysts rather than of the basic, explanatory science in which we typically engage (Schnei-
der, Gleditsch and Carey, 2010, 2011). It is perhaps not surprising then that there is little
predictive work in this field and what does exist is relatively recent.

Beck, King and Zeng (2000) touched off the contemporary debate on predictive models
for conflict with a study that uses a neural network approach, which predicts 17% of conflicts,
compared to 0% by a conventional logistic regression. This study led to much debate over
the utility of restricting samples to only dyads that had a reasonable chance of conflict in
the first place, and even sparked some interest in neural networks (which we discuss further
below), but failed to produce a substantial literature on predictive models for conflict. In
one of the few studies of conflict prediction that followed Beck, King and Zeng (2000),
Ward, Siverson and Cao (2007) use a Bayesian, Hierarchical, Bilinear, Mixed-Effects model
stratified by time to gain an improvement in out-of-sample prediction, again over a fairly
standard logistic regression; in this case, the one originally proposed by Oneal and Russett

(1999). The model offers a substantial improvement in predictive ability over logit, but does
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not compare the performance of its method directly to that used by Beck, King and Zeng
(2000).

One reason the predictive literature on international conflict is so sparse may be that
the structure of the conflict data is such that predictive modeling is difficult with existing
technology. For example, time-series approaches to prediction, well established in both eco-
nomics and political science, are difficult to apply to data that span every possible conflictual
relationship in the world over time. None-the-less, there has been a recent increase in pre-
dictive work on other conflict processes, including civil wars (Rost, Schneider and Kleibl,
2009; Ward, Greenhill and Bakke, 2010), transnational terrorism (Desmarais and Cranmer,
2011), and single-conflict time series analyses (Pevenhouse and Goldstein, 1999; Schrodt and

Gerner, 2000; Brandt, Freeman and Schrodt, 2011; Schneider, 2012).

5.2 Methods and Measures
5.2.1 Predictive Design

The process of building the predictive models follows that proposed by Desmarais and Cran-
mer (2011). First, a predictive network is constructed by aggregating conflict initiations over
an interval preceding ¢ — we consider one, five and ten year intervals. Second, for each di-
rected dyad ij, a vector of directed dyadic statistics, denoted 52;1 are computed on the
predictive network. These statistics could include and indicator of whether ¢ initiated a
conflict with j during the predictive time interval, a measure of the total conflict activity
of 7 and j during the predictive time interval, or the geodesic distance between ¢ and j in
the predictive network. Third, a forecasting model is used to forecast the edge from i to
7 at time ¢ (Nf]) A simple example could be to estimate the probability that Nitj =1
by 1/(1 + exp(—8'd};)) (i.e., logistic regression). Indeed, Desmarais and Cranmer (2011)
formulate their algorithm using a temporal exponential random graph model (TERGM).

However, since the predictive network features are all observed prior to the forecasted edges,
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their example is a special case of logistic regression (Hanneke, Fu and Xing, 2010).

5.2.2 Competing Predictive Algorithms

As we set about illustrating the abstract discussion above, and evaluating our proposed
benchmark model against the performance of the contemporary literature, we must be mind-
ful to ensure that our comparisons are fair. Specifically, we seek to avoid the “straw man”
comparison in which we apply state-of-the-art predictive methodology and compare our re-
sults to those from a well cited paper in the existing literature that did not have prediction
as its aim; such a comparison would be unsatisfying if not misleading. Instead, we illustrate
our point by considering three classes of models: those based only on structure endogenous
to the outcome measure (the benchmark criteria we proposed above), those based only on
exogenous covariates (capturing the large majority of explanatory models observed in the
literature), and those that combine both endogenous and exogenous effects.

We optimize each class of model for predictive performance using one of four classification
algorithms: logistic regression, elastic net regularization (i.e., lasso and ridge regression
combined) (Zou and Hastie, 2005), boosting, and neural networks. These three algorithms
are all widely used for classification tasks, and vary both in terms of how the variables are
used for classification. We briefly describe each algorithm below.® For all of the tuning
parameters described below, we set the range of parameter values we test such that none of
the optimal parameter values lie at the boundaries of the range.

Elastic net regularized regression (Zou and Hastie, 2005) is performed by adding two
terms to the regression coefficient criterion function (e.g., sum of squared errors, likelihood)
that constitute penalties in both the absolute magnitude (i.e. lasso) and squared value (i.e.,
ridge) of the regression coefficients. The two tuning parameters in elastic net regression are

the two weights associated with these penalties. The absolute lasso penalty serves to push a

3The R packages used to implement elastic net, boosting and neural networks are penalized (Goeman,
Meijer and Chaturvedi, 2016), caTools (Tuszynski, 2014) and nnet (Ripley and Venables, 2016), respectively.
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subset of variables that do not contribute enough to the fit of the model to exactly zero. The
ridge penalty shrinks regression coefficients towards zero, but does not push them to exactly
zero. The elastic net method combines the functions of selection and shrinkage exhibited by
the lasso and ridge regression methods of regularization, respectively. We seek to render the
algorithms we use comparable in terms of the number of tuning parameters estimated, and
therefore set the ridge penalty equal to twice the lasso penalty.®

We use feed-forward neural networks with a single hidden layer in the predictive exper-
iments. Neural networks are models that learn some number of functions of the input (i.e.
covariate) variables, which then feed forward to predict the outcome. By combining several
possibly nonlinear functions of the data, neural networks can approximate the true underly-
ing relationship between the covariates and dependent variable (Cybenko, 1989). There are
two tuning parameters we consider in the neural network application: the number of nodes
in the hidden layer of the neural network, and the regularization (i.e., decay) parameter used
to penalize the magnitude of the coefficients linking the variables to the nodes in the neural
network.

The boosting methodology we use involves learning one node decision trees based on the
covariates. Boosting involves re-weighting the data in iteratively learning weak classifiers.
At iteration ¢, a simple classifier is learned with greater weight placed on the data points
that are poorly fit in iterations prior to ¢. Combining the iteratively learned classifiers (i.e.,
decision trees), results in an effective classifier. The important tuning parameter is the
number of base/weak classifiers to be learned and aggregated. We follow the LogitBoost

methodology proposed by Dettling and Biihlmann (2003).

4We chose to fix the ratio of the ridge and lasso parameters due to issues with sensitivity of the lasso
penalty. If the ratio exceeded 2 by much, we found that the lasso became ineffective—never selecting down
the set of variables. If the ratio were much under 2, the lasso would result in a lack of convergence in the
estimation.
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5.2.3 Owutcome Variable

The outcome variable, on which we measure the performance of our predictive algorithms, is
the directed network of conflict initiations, N, aggregated over a one year interval. The edge
from state ¢ to j at time ¢ is one if ¢ initiated a conflict with j during year ¢ and zero otherwise.
We only generate conflict forecasts for directed dyads composed of states that were both in
the state system in the previous year because our model is not optimized to forecast the entry
of new states into the system (a process usually unrelated to the occurrence of international
conflict). We use the Correlates of War dataset (v3), which covers 1816-2001, and we focus

on outcome years 1979-2001.

5.2.4 Performance Criteria

We propose that the ROC curve is a fine criterion when analyzing data that display a good
balance between events and non-events (such as voter turnout), but that the area under the
precision recall (AUC-PR) curve is better suited to the analysis of rare events. Consider
the four types of predictions one can make for a binary variable, displayed in the left cell of
Table 1 based on Davis and Goadrich (2006): true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN). Many metrics can be computed from the quantities
in the contingency table, but three are of particular interest here: the precision, the true
positive rate or recall, and the false positive rate. These metrics and their computation
are displayed in the right cell of Table 1. The ROC curve, familiar to most subfields of
political science, plots the false positive rate on the z-axis and the true positive rate on the
y-axis. Conversely, the PR curve plots recall (the true positive rate) on the z-axis and the
precision on the y-axis, thus focusing on the predictions of those positive events that did
occur. Similar considerations are necessary when dealing with count, continuous, or other

types of variables.®

SReplication data are posted to the Political Analysis Dataverse (Cranmer and Desmarais, 2016a).
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Table 1: Common metrics for judging predictive accuracy. The left cell shows the contingency table and
the right cell shows the metrics of interest.

The challenge, when deciding between the ROC and PR curves, can involve either the
rarity of the subject under study or the importance of accurately predicting events vs non-
events. We argue here, and will show with application below, that the ROC curve is generally
inappropriate when examining rare events. The reason being that the ROC curve weights the
value of accurately predicting non-events (zeros) the same as accurately predicting events
(ones). This is often a desirable attribute of the ROC, but consider the effects of this
weighting when analyzing rare events. For example, out of the more than one million
bilateral wars that could have happened since 1816, less than 1,000 have. As such, a model
that never predicts war would do well by the ROC criterion because it is good at predicting
the modal category of no war. In terms of the measures presented in Table 1, AUC-ROC
values look high simply because the false positive rate is nearly always extremely low due
to T'N in the denominator including nearly every case in the data.

In contrast, AUC-PR does not involve T'N. Figure 2 provides a graphical example of how
AUC-PR better represents the predictive task than AUC-ROC for rare events. It depicts
the results from our best performing war prediction model found in the analysis below. In
both the PR and ROC curves, points move from left to right on the plot by lowering the
predicted probability threshold at which a positive is predicted. From the AUC curve, it can
be seen that the FPR is small for all but the smallest thresholds, and the vast majority of
the area under AUC resides under a curve extrapolated over fewer than ten cases. Because
the PR curve does not involve T'N, there is much less skew in where the points reside on

the curve. Additionally, because the height of the curve decreases with the z-axis, the
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Figure 2: Example data points from which AUCs are constructed. Each point represents a predicted
probability of war produced by at least one of the directed dyads in the most effective model we find in the
modeling exercise in Section 5.

majority of the area under the PR curve resides under the bulk of the points observed in the
data, lending greater confidence in the certainty about the value of AUC-PR.® Furthermore,
in a recent simulation-based comparison of AUC-ROC and AUC-PR, Ozenne, Subtil and
Maucort-Boulch (2015) show that AUC-PR performs more effectively than AUC-ROC in

selecting diagnostic biomarkers in rare diseases.

5.2.5 Measures

There are three classes of predictive measures in our analysis — those that rely solely on
past iterations of the conflict network to predict conflict at time ¢ (endogenous network
measures), and those that are built using additional data sources (exogenous covariates)
and three that are something of a hybrid between endogenous and exogenous, we call these
semi-endogenous. We present the components of these classes.

In keeping with our proposed benchmark criteria, in which the benchmark model is

created using only the outcome variable, we consider several measures endogenous to the

6We use the function auc.pr in the R package minet (Meyer, Lafitte and Bontempi, 2008) to calculate
AUC-PR and the performance function in the ROCR package (Sing et al., 2005) to calculate AUC-ROC.
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conflict network. All of these endogenous measures are designed capture the similarity of
any two nodes in a network in terms of certain specific network structures. Networks offer a
representation that permits the extension of endogenous effects beyond the individual dyad.
We draw upon the networks framework to formulate the best possible candidate model(s)
of endogenous effects. As such, the endogenous effects we include can be thought of as
proximity measures, in network space, between any two states in the system of interlocking
conflicts. We follow Desmarais and Cranmer (2011) in our selection of endogenous effects.

These effects include the following.

e Flow: The product of the number of conflict initiations sent by the prospective conflict
sender in a dyad, and the number of conflict initiations received by the prospective

recipient of conflict in a dyad.

e Common Community: An indicator of whether two states were in the same commu-
nity, as determined by an algorithm for community detection in networks. Community
detection algorithms partition the network into sets of actors that tie with each other
at a much higher rate than would be expected based on the number of ties to and from
each actor. We use the “walktrap” community detection algorithm (Pons and Latapy,

2005).

e Common Combatants: The number of third states with which both states in the

dyad went to war within the lagged interval.

e Adamic-Adar Similarity: Similar to common combatants, but each third state is
added to the count of common combatants with a weight that decreases logarithmically
with the number of other connections held by that third state (i.e., adjusting for
the intuition that sharing a partner that itself has many other ties may not indicate

proximity between two states) (Adamic and Adar, 2003).
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e Jaccard Similarity: Number of common combatants divided by the total number
of unique states to which at least one of the states in the dyad is connected. This
measure accounts for the tendencies for the two states in the dyad to form ties(Leicht,

Holme and Newman, 2006).

e MMSBM: Probability of a tie between two states using a mixed-membership stochas-
tic blockmodel fit to the network in the lagged interval. In a block model, each actor
is attributed with a latent class (or block). The blocks are defined by probabilities
of interaction with all other blocks. A block model is a simple latent class model for
predicting ties in networks. The mixed membership variant allows actors to be in each

class with varying probabilities (Airoldi et al., 2009).

e Latent Space Distance: The latent space model for networks is another latent vari-
able model for fitting the probability of a tie between two actors based on network
structure. Similar to ideal point analysis, each actor is attributed with a latent po-
sition in two-dimensional space. The probability of a tie between two actors is then
inversely related to the Euclidean distance between actors in this space Hoff, Raftery
and Handcock (2002). We fit latent space models to the lagged networks and include

distances between states in the lagged latent space to predict conflict.

We are not the first to propose that inter-temporal dependencies should play a major
role in models of interstate conflict. Beck, Katz and Tucker (1998) show that the likelihood
of conflict between two states at time ¢ depends upon the status of the dyad going back up
to 10-15 years, with recent conflict predicting a relatively high likelihood of current conflict,
and the likelihood of conflict decaying with the number of years of peace in the dyad. Dafoe
(2011), in a replication of Gartzke (2007), demonstrates that accurately modeling temporal
dependence is important to identifying relationships between conflict and state attributes,

such as the “democratic peace”. The endogenous effects we propose specifying above can
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be seen as an extension of this earlier work on within-dyad temporal dependence. That is,
we hypothesize that the status of the conflict relationship between states ¢ and j at time ¢
depends not only on the history of conflict between those two states, but also on features of
the historical positions of 7 and j in the broader conflict network.

Lastly, we include a series of exogenous covariates that are commonly used in the conflict
literature. While not an exhaustive list, these covariates operationalize many of the major
theories of interstate conflict and, at minimum, represent the set of usual controls for such
studies. These covariates are all measured at the commonly used dyadic level and include
joint democracy, trade dependence, joint IGO membership, CINC (power) ratio, and the
geographic distance between capitols, as well as indicators for whether the dyad includes at

least one major power, a defensive alliance, or physically contiguous states.”

5.3 Results

We seek to illustrate the several virtues of predictive modeling discussed theoretically above.
We do so by considering each predictive virtue in turn. But first, we consider the three
rival machine learning techniques so that we can focus subsequent discussion on the best
performer. In Figure 3 we report the average areas under the PR and ROC curves for all
of the estimation algorithms and model specifications. Averages are taken over years, with
each year constituting a single observation. We also computed nonparametric bootstrap
95% confidence intervals for each average by simple bootstrap resampling of means. Due to
the complex dependence among dyads within years (Cranmer and Desmarais, 2016b), there
is no straightforward way to resample dyads to construct bootstrap confidence intervals.
As such, the confidence intervals we construct, which are based on resampling from twenty

three years, are fairly conservative.

"Contiguity, IGO and CINC data come from the correlates of war project (Singer, Bremer and Stuckey,
1972; Pevehouse, Nordstrom and Warnke, 2004; Stinnett et al., 2002). Trade data come from Gleditsch
(2002). Distance data come from Gleditsch and Ward (2001). Joint democracy is derived from Polity TV
scores (Marshall and Jaggers, 2002).
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We see in Figure 3, that the elastic net performs better on the whole than the boost,
which in turn performs better on the whole than the neural network. While this result may
be surprising given that the elastic net is the simplest of the algorithms we applied, we
also find it intellectually appealing in its simplicity. One limitation of this result is that,
especially when it comes to the area under the PR curve, the bootstrap confidence intervals
do overlap from one algorithm to another, so it is not clear that the performance levels of
the algorithms are statistically distinguishable. One characteristic of our predictive models
that can be discerned given the averages and Cls in Figure 3 is that the areas under the
PR curve for our models significantly exceed that which would be expected based on a
random ordering of the dyads. If the predicted probability of a positive is drawn uniformly
at random, the expected area under the PR curve is simply the rate of positives in the test
data (which is well under 1% in all of the years in our data) (Lopes and Bontempi, 2014;
Esteban et al., 2015).

5.3.1 Quality of the Benchmark Model and the Current State of Knowledge

The most interesting result apparent in Figure 3 is that the somewhat naive benchmark
model is the single best predictor: the elastic net model with network statistics only and
a five year training window is the best model our analysis was able to produce. The facts
that the best model is outcome-only and that predictive performance is usually decreased
when exogenous covariates are added to the outcome-only benchmark model has troubling
implications. This result suggests that the vast majority of the literature on international
conflict, which has not accounted for endogenous network effects, has missed the dominant
predictive attributes of the conflict process entirely. Also, that predictive power decreases
when covariates are added to the network structure suggest that including both constitutes
overfitting the training data, a troubling implication of the use of covariates indeed.

A second major result reflected in Figure 3 is that the maximum predictive accuracy any
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of our models were able to achieve as slightly over 7% by the PR criterion. Substantively,
this means that our strongest model accurately predicts approximately 7% of those conflicts
that ultimately occur (recall that the PR curve focuses on the accurate prediction of events
and not the accurate prediction of non-events). This is rather less than one would have
hoped given the long history of the study of international conflict. This suggests one of two
things. First, it is possible that the level of noise-to-signal in the conflict data is quite high,
making accurate predictions difficult with current measures. In other words, there is so
much stochastic variation in the data that 7% is the best we can do under the benchmarking
rules we set for ourselves and with available measures, even though our theories accurately
capture the causal process underlying international conflict. That is to say, even though
we may know the data generating process, the process is chaotic and we lack the ability
to measure inputs and starting values with sufficient precision to predict (as was the case
considered above with coin flipping). The alternative interpretation is that the elephant is
in the room, but we have not seen it. In other words, there is, missing from our current
understanding of conflict processes, a (or the) major determinant of violent international
conflicts. Most likely, the truth lies somewhere in between, but we none-the-less see this

result as cause for deep reflection on the state of our science and how it may be improved.

5.3.2 Identification of New Relationships and Dynamics

Y

First, let us consider the “memory” of the process. One thing we notice in Figure 3 is that
the predictive performance of longer training periods (five and ten years) is nearly universally
superior to one year training periods (the sole exception being the neural network covariates
only model as judged by the problematic ROC), and usually by a wide margin. It is also
notable that, in many cases, the five year training window performs better than a ten year

training window, or at least similarly. These two results, taken together, suggest that much

is gained by having a memory in excess of one year, but comparatively little is gained by
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Figure 3: Comparison of alternative predictive models by different criteria. Both plots show each of the
predictive models, respectively using the dependent variable only, covariates only, and both together with
one, five, and ten year training intervals. The upper plot uses the area under the PR curve as the fit criteria,
the lower plot uses the area under the ROC curve.
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jumping from five to ten. This result, that conflict is a long-memory process, has some
troubling implications for applied work on international conflict. Often times, a one-year lag
of the outcome variable is included on the right hand side of a regression in order to control
for temporal dependencies. This result suggest that this practice is generally inadequate for
those purposes, and that lags of at least five years should be considered in order to achieve
the desired effect. For a detailed discussion of how to choose lag lengths, see Cranmer, Rice
and Siverson (2015).

We can understand the temporal dynamics in greater detail by examining the year-to-
year predictive performance of the elastic net models depicted in Figure 4, one sees that
either the outcome-only model (black line) or the combined outcome-and-covariates model
(light gray line) tend to have similar levels of predictive accuracy and both consistently
outperform the covariates only model. This provides further, and temporal, visualization
of the result reported above, that the covariates only model, more traditional in empirical
international relations, consistently performs the worst out of the three options. Regarding
the dynamics, we can see that there is considerable year-to-year volatility in the predictive
performance of each model. However, the models that include network dependence exhibit
a handful of years in which they perform particularly well at predicting conflict initiations.
The covariate-only models do not exhibit comparable up-swings in predictive performance.
This distinct dynamic can be considered in contrast to a consistent difference between the
covariate only and dependence term models.

Figure 4 also shows that the model, whether using a one, five, or ten year training period
seems to perform at its best around the mid 1980’s and late 1990’s/2000. This is interesting
because it seems to capture the dynamics of the Cold War, drop off a bit in the immediate
aftermath of the Cold War, and then, after some re-training on the differently pattered data,
to do well in the contemporary era.

We further show, for the purpose of illustration, that the more traditional ROC curve,
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Figure 4: Predictive performance for the elastic net over time. Performance is depicted, in terms of both
PR and ROC, for each of the three specification types, over 1979-2001.
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whose shortcomings when applied to rare events we discussed above, provides deceptively
promising results for these same analyses, suggesting that we predict something on the order
of 90% of the data. We also see an inversion, when considering the ROC curve, between the
predictive performance of the outcome-only network model and the covariates only model;

the latter consistently doing better than the prior over the range of data considered.

5.3.3 Judging the impact of one variable

Our predictive tests reveal much about the roles played by each variable. We are able to
consider how much a given variable contributes at different points in the time series under
consideration. The plots in Figures 5-7 give the abs(elastic net g)/abs(logit ). When
this quantity is high, and above 1 especially, the corresponding variable has been selected
and weighted highly as being important in predicting conflict. When is quantity is low,
the corresponding variable has either been penalized completely out of the model or has
been down weighted due to the variable’s low contribution to the predictive performance
of the model. Considering the ratio of the elastic net coefficient to the logistic regression
coefficient provides a view of the degree to which the variable is critical to contributing to
the prediction of conflict, given the simultaneous contributions of the rest of the variables.
We note here that these feature-level summaries are intended to shed light on each feature’s
relative predictive contribution to the model (i.e., how much the magnitude of the variable’s
effect is deflated or elevated once the algorithm is designed to push effects towards zero
when the variable does not contribute to predictive performance). This is different than
characterizing the sign or shape of the relationship between the features and the dependent
variable (i.e., marginal effects). For a flexible approach to characterizing marginal effects in
complex statistical models, we refer readers to the partial derivative methodology proposed
by Beck, King and Zeng (2000).

Considering now the variable effects presented in Figures 5-7, we see several important
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Figure 5: Variable effects as measured by abs(elastic net )/abs(logit 5). When this quantity is high,
elastic net has not penalized the coefficient down and the variable can be said to be a stronger contributor
to predictive performance. The ratios from the models based on a five-year lagged interval are in black, and
those based on a ten-year lagged interval are in gray. To smooth the lines, we depict rolling means over
a three-year period centered at the focal year. The points that are not shaded reflect years in which the
coefficient ratio fell below 0.01, indicating that the variable was effectively removed from the model through
regularization.
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Figure 6: Variable effects as measured by abs(elastic net )/abs(logit 5). When this quantity is high,
elastic net has not penalized the coefficient down and the variable can be said to be a stronger contributor
to predictive performance. The ratios from the models based on a five-year lagged interval are in black, and
those based on a ten-year lagged interval are in gray. To smooth the lines, we depict rolling means over
a three-year period centered at the focal year. The points that are not shaded reflect years in which the
coefficient ratio fell below 0.01, indicating that the variable was effectively removed from the model through
regularization.
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Figure 7: Variable effects as measured by abs(elastic net (3)/abs(logit 5). When this quantity is high,
elastic net has not penalized the coefficient down and the variable can be said to be a stronger contributor
to predictive performance. The ratios from the models based on a five-year lagged interval are in black, and
those based on a ten-year lagged interval are in gray. To smooth the lines, we depict rolling means over
a three-year period centered at the focal year. The points that are not shaded reflect years in which the
coefficient ratio fell below 0.01, indicating that the variable was effectively removed from the model through
regularization.
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broad themes when considered in the context of the established literature on international
conflict. We consider the variables that perform well to be those that are consistently selected
by the regularization procedure (i.e., are shaded points in the plots), and exhibit coefficient
ratios near or above one. The variables that perform well include Flow (i.e., the product
of sender initiations previously sent and recipient initiations previously received), memory,
common community membership, contiguity, and shared IGO membership. Notably, most
of the best performing predictive features are dependence effects, not exogenous covariates.
Additionally, many of the covariates common in the conflict literalure are either rarely or
never selected by the regularization method. Exogenous variables that are regularly kicked
out of the model include trade dependence, defensive alliances, major power dyad, CINC
ratio, and joint democracy.

These patterns raise important implications for understanding and predicting interna-
tional conflict. For nearly three decades, the quantitative study of conflict has been focused
almost exclusively on the problem of predicting conflict (or the let lack thereof) on the basis
of state and/or state-dyad attributes (i.e., exogenous covariates). Our results show that the
dynamics of the interweaving system of dyadic conflicts may be just as important, if not
more, in understanding the initiation of conflict. At the very least, our results serve as a
call to scholars of international conflict to develop a theoreticaly informed model of con-
flict system dynamics with which to compare and/or integrate conventional covariate-based

explanatory models.

6 Conclusion

We argue that predictive analysis, though it is statistically distinct from explanatory anal-
yses, is a valuable tool for building explanatory models. We have shown that predictive

analyses can be used to set benchmarks: to measure how much we know about an outcome,
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and to measure the improvement that a new analysis offers over its predecessors. We have
further shown how predictive analysis can lead to insights, such as the length of the memory
process involved in international conflict, that we can use it to understand the individual
contributions of variables of interest, and that statistical significance does not necessarily
imply that a variable is an important predictor.

Our predictive exercise yields several interesting and compelling results. Ultimately, these
results suggest that conflict is a long-memory process, that the simplest predictive algorithm,
elastic net, is the most effective, that models with exogenous covariates alone generally
perform worse than models based solely on the outcome variable, and that combined network-
covariate models often do not provide a substantial improvement in predictive ability over
the outcome-only benchmark model. Lastly, we see that several variables that are well
established in the conflict literature contribute little to the prediction of conflict.

We propose that predictive modeling is a promising means by which to enhance the
study of political processes, particularly, though not exclusively, those for which we are
unable to conduct controlled experiments or even use causal tools for observational data.
In international politics for instance, one cannot experiment on conflict processes and the
interconnectedness of states in the system precludes the use of matching techniques for
causal inference (which require strict independence assumptions to produce valid estimates).
But international relations does not stand alone with this problem, such situations occur
frequently in American and comparative politics as well. In such cases especially, predictive

modeling is a big and powerful tool that is too often left in the box.
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