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ABSTRACT

We investigate the functional organization of the Default Mode Network (DMN) – an important subnetwork within the brain

associated with a wide range of higher-order cognitive functions. While past work has shown the whole-brain network of

functional connectivity follows small-world organizational principles, subnetwork structure is less well understood. Current

statistical tools, however, are not suited to quantifying the operating characteristics of functional networks as they often require

threshold censoring of information and do not allow for inferential testing of the role that local processes play in determining

network structure. Here, we develop the correlation Generalized Exponential Random Graph Model (cGERGM) – a statistical

network model that uses local processes to capture the emergent structural properties of correlation networks without loss

of information. Examining the DMN with the cGERGM, we show that, rather than demonstrating small-world properties, the

DMN appears to be organized according to principles of a segregated highway – suggesting it is optimized for function-specific

coordination between brain regions as opposed to information integration across the DMN. We validate our findings through

assessing the power and accuracy of the cGERGM on a testbed of simulated networks representing various commonly

observed brain architectures.

Introduction

An important and powerful approach to modeling the brain originates from network science, which views the brain as a network

of interrelated regions. Network models of the brain have led to important findings about how the functional and structural

organization of the brain gives rise to cognition1–6. Recent research finds that the whole-brain network follows small-world

architecture – relatively few nodes serve as hubs that facilitate information transfer between tightly integrated communities

– which in turn facilitates the integration of information across disparate regions of the brain7–11. The network of the brain

is further organized into a series of subnetworks12–15 – collections of regions that are highly interrelated to contribute to a

specialized set of functions.

The operating principles of these subnetworks, however, are less well understood. We investigate the operating characteristics

of one such functional subnetwork active during rest as well as higher order cognitive tasks – the Default Mode Network

(DMN)16–19. A fundamental challenge in this analysis, however, is that current statistical techniques are not suited to quantifying

the operating characteristics of correlation networks (the most common way of quantifying functional connectivity between

regions of the brain). Contemporary methods often require threshold dichotomization of information about connectivity and do

not allow for inferential testing of the role that local processes (e.g., preferential attachment, clustering) play in determining

network structure.

To address these issues, we develop the correlation Generalized Exponential Random Graph Model (cGERGM) – a

statistical network model that uses local processes to capture the emergent structural (henceforth “topological”) properties of

co-activation correlation networks of the brain (henceforth “functional networks”) without any loss of information. We show

that the cGERGM both produces excellent fit to real brain data, and simulates realistic functional networks, making it an ideal

modeling tool for quantifying functional network structure. Importantly, the parameter estimates produced by the cGERGM can

be used to formally test the significance of the role of local features of the brain. Thus, the model provides a statistical method

to identify fundamental properties of the network of interest. Examination of the DMN with the cGERM reveals that, rather



than demonstrating small-world properties similar to the whole-brain network, the DMN appears to be organized according to

principles of a segregated highway – suggesting it is optimized for function-specific coordination between brain regions as

opposed to information integration across the DMN.

Network Neuroscience

A network model of the brain typically treats regions of the brain as a collection of nodes or vertices. Edges are placed between

pairs of interacting regions, and weights are placed on these edges to quantify the strength of the relationship between the

two regions6, 20. In the case of functional connectivity (the focus of the current paper), edge weights are most commonly the

correlation of the time-series activation data between regions21 while undergoing an fMRI scan22. Researchers can then use

statistical techniques for the analysis of networks to study the organization of the brain. The shift to studying the interrelational

aspect of brain activity has produced many advances in the understanding of neuroscience, including neural mechanisms of

cognitive processes such as learning and working memory23, 24, emotion25, cognitive control26, as well as neurological diseases

such as schizophrenia27–29.

Research also finds that the brain is organized hierarchically, with many subnetworks – often specialized to particular

functions – operating and interacting to give rise to cognition12–15. Integral to understanding the network architecture of the

brain is an understanding of how these subnetworks are organized to promote their specific functions. Subnetwork structure is

often assumed to follow the same organizational principles as the whole-brain (i.e., small-world structure), though comparatively

less work has been done investigating subnetwork structure (see18). One of the primary findings in the interdisciplinary field of

network science, however, is that different architectures support different functions30–33. Since the more specialized functions

of individual subnetworks may be distinct from whole-brain synthesis and integration of information, we may expect to

find different architecture for these subnetworks compared to the whole-brain. Indeed, there are many possible alternative

organizations these subnetworks could display (e.g., physical proximity, random, etc.). These different network structures

display different organizational properties, and in the present analysis we investigate the topological organization of one

important subnetwork – the Default Mode Network (DMN). The DMN is a highly interconnected subnetwork that, in addition

to being active at rest, is believed to underlie such higher-order processes as prospection34–36 and perspective taking37, leading

some to conclude it is responsible for internally generated cognition19, 38.

In this study, we hypothesize the existence of what we refer to as a “segregated highway” structure in the DMN. A

“segregated highway” structure is defined as a topology with fewer hubs and more triadic closure than would be expected

at random. The lack of hubs indicates the absence of preferential attachment and less of a focus on globally efficient

communication across all nodes in the network. The higher levels of triadic closure are indicative of clustering. Importantly, in

a segregated highway structure, there is no strong correspondence between connections generally (and triadic connections in

particular) and the 3-dimensional Euclidean distance between nodes. These three attributes taken together describe a network

with multiple functional specializations. The pathways through such a network are optimized by function, meaning that such a

topology is ideally suited for coordinating multiple tasks over potentially disparate regions. Bringing this definition back to the

highway analogy, we can imagine different highway systems optimized for task-specific information traffic. Such a system

will be less efficient overall, but highly optimized within task, and compartmentalized against failure in other task-related

sub-networks. Previous work on the analysis of highway structures in the brain have been recently explored in39–41.

A fundamental challenge, however, is appropriately modeling the complexities inherent in brain connectivity data in order

to draw conclusions about the topological organization of the network of interest. This is challenging both due to the large

number of continuous [−1,1] weighted connections for which we must simultaneously account (∼ n2 dependent observations),

as well as the mathematical constraints on correlation networks. These features necessitate the development of a flexible and

robust class of statistical models for correlation network data. We introduce the correlation Generalized Exponential Random

Graph Model (cGERGM) – a statistical framework for modeling correlation networks – which we then use to analyze the

DMN. We validate the power and accuracy of the cGERGM on a testbed of simulated networks representing various commonly

observed brain architectures.

The correlation Generalized Exponential Random Graph Model (cGERGM)

The cGERGM builds upon and extends the recently developed Generalized Exponential Random Graph Model (GERGM),

which models unconstrained (−∞,∞) weighted network data42, 43. This class of models, however, was not designed to account

for the mathematical constraints of correlation matrices. One major structural constraint is that correlation matrices must be

positive semidefinite – meaning that their eigenvalues are non-negative44. Models that do not account for this constraint are of

limited predictive utility as they cannot be used to simulate valid correlation matrices, and may lead to inferential false positives

due to artifacts in the data45. We use a set of mathematical techniques that allow us to harness the flexibility of the GERGM, but

apply it in the more restrictive and complex case of correlation network data. In so doing, we bridge neuroscience and network

science to develop a modeling tool that allows for the characterization of functional networks based on essential features.
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The cGERGM models two important aspects of an observed brain correlation network: (a) the topological structure of

the network – the local and global features that describe the correlations among brain region activations such as the total

edge weight of the network or the total number of triangles in the network; and (b) the influence of exogenous features on the

connectivity of the brain regions – the effect of other relationships between the nodes, such as hemisphere location, physical

distance, or any other node- or edge-level properties. The cGERGM thus allows theoretical testing of topological properties, as

well as how properties of nodes or edges influence correlations between those regions, controlling for dependencies reflected in

the topological structure.

Topological and exogenous features of the network are specified in the model by the user, and parameters for each of

the features represent the influence of the features on the likelihood of a given network under that model. While accounting

for these topological and exogenous features, the cGERGM furthermore maintains the positive semidefinite constraints of

correlation matrices. Therefore, the cGERGM can be used to model a wide range of network interdependencies in functional

correlation networks.

The cGERGM has four important advantages over existing models. First, the cGERGM takes all correlation information

into account, and respects the mathematical constraints of correlation matrices. Many contemporary methods in network

neuroscience require arbitrary thresholding of the correlation network to achieve a binary network (i.e., a connection either

exists or does not). By including this potentially critical information, the cGERGM is positioned to more accurately capture

network structure. Second, the cGERGM is flexible, allowing for user-specified topological and endogenous factors when

modeling the correlation network. Third, the cGERGM captures and reproduces core structures of the network and can be used

to simulate new networks given a set of parameters. In other words, it models the core topological processes that describe a

network, and can be used to produce the emergent complexity seen in real brain correlation network data. Finally, the cGERGM

produces both parameter estimates and standard errors for the unique influence of endogenous topological and exogenous

effects (controlling for one another) on network structure, allowing for statistical testing and inference about the properties of

the network.

The cGERGM thus offers two complementary advances for network neuroscience. First, it allows for quantification of

the network using a (relatively) small number of parameters that can recreate the structure of the network. Second, and

particularly important for understanding brain networks, the topological parameters recovered by the cGERGM can be used to

differentiate between different network architectures, allowing researchers to understand the principles by which functional

networks operate. For instance, small-world networks display heightened clustering (i.e., triadic closure) and hub usage (i.e.,

preferential attachment) relative to chance. Another such architecture is a “segregated highway” architecture, which displays

heightened clustering but lower hub usage, and is highly optimized for function-specific coordination between regions, even

across greater physical distances. An example of such a structure is a city transportation network. Trains, subways, bikes, cars,

and pedestrians each travel along separate paths optimized for the particular mode of transportation46. Importantly, we can

differentiate between these information processing architectures via assessing cGERGM parameters for different topological

properties. As such, we can understand the operating principles at work in the network.

We investigate these issues in the context of the DMN, using the cGERGM to quantify the topological features that give

rise to the network and allowing us to both recreate similar networks via simulation from a small number of parameters as well

as gain valuable insight into the organizational principles of the DMN.

Results

We model functional connectivity in the DMN using the cGERGM (for full mathematical specification of the cGERGM, see

the Methods). Brain regions are the nodes in this network, the correlations of the resting state functional connectivity data

between the brain regions are the edges. In the present demonstration, we apply the cGERGM to a 20-node parcellation of

the default mode network18, 47, 48. We take a dataset in which 154 participants underwent six minutes of resting state fMRI,

then calculated the correlation of the 20 regions across all participants to produce the network to be modeled (models run on

individuals, rather than the group, produced similar conclusions and are reported in the supplemental materials). Detailed

scanning parameters and network construction details are given in the Methods. When fitting a cGERGM, the user specifies

the topological and exogenous features of interest. For the present demonstration, we use five features and run 15 models –

every model contained an edges feature (which models the mean edge value), and each of the 15 possible combinations of the

remaining four features (see Methods and Figure 2). Our models include two topological features: two-stars (capturing the

degree of preferential attachment or hub use) and triads (capturing the degree of triadic closure or clustering). Our models

further include two exogenous features – which model the effect of a covariate on connection strength – corresponding to the

hemisphere of the brain in which the node resides, and the physical distance between nodes. We compare the fit of each of

these models, and find that models that include topological features fit the observed network structure substantially better than

those without.
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Model Specification and Estimation

The specification of the cGERGM requires two steps (see Figure 1 and the Methods). First, the edges of the observed correlation

network, which naturally take values on [−1,1], are transformed into normalized partial correlations that lie on [0,1]. This

transformation from correlation to partial correlation values is a key feature of the model because it allows the model to

perform estimation without the positive semidefiniteness constraint, while still preserving the topological features of the

network. Exogenous covariate effects are then modeled using a Beta regression of the mean of each partial correlation weight

on the exogenous regressors of interest (equation (4) in the Methods). Next, the topological structure of the normalized

partial correlation network is modeled using an exponential family of probability distributions that parameterize the effects of

topological features on the weight of the edges within the network (equation (2) in the Methods, and see42, 43).

Broadly, estimation of the parameters of the cGERGM, or any model in the (G)ERGM family proceeds as follows. First,

the estimation algorithm makes an initial “guess” for all model parameters. These parameters are then used to simulate a large

sample of networks from the model generative process. These networks are then used to approximate the log likelihood of the

model for the current set of model parameters. The estimation algorithm then updates these parameter estimates in an attempt

to simulate networks that better match the observed network, and thus yield a higher model log-likelihood. This process repeats

itself until the parameter estimates converge in the sense that the change in parameter estimates at the last iteration is less than

some small threshold. The final parameter estimates can then be used to perform hypothesis testing about the topological and

exogenous features specified in the model. Further, it is straightforward to simulate networks from the fitted cGERGM, which

are then used to assess model fit.

Figure 1. A flowchart describing the means of analyzing functional connectivity data. The left half depicts traditional

methods, in which matrices are dichotomized based on some threshold (here shown at a threshold retaining the top 10% of

connections), then analyzed by running descriptive statistics on the resulting thresholded network. The cGERGM approach is

shown on the right, in which the network is first transformed to the constrained partial correlation space, and then topological

features are assessed, in order to recover estimates of the parameters which characterize the generative process for the network

under that model. Finally, these parameter estimates can be used to simulate new networks for the purpose of comparison. The

images above each correlation matrix are the graphical representation for the thresholded (left) and continuous (right) networks.

Note that while the graphical software does not show every edge for the weighted network case, no edges are censored to 0 for

analysis purposes.

4/16



Figure 2. Visual depiction of each feature used in our cGERGM models. Spatial distance refers to the 3-dimensional

Euclidean distance between two nodes.

Evaluating Model Fit

Before interpreting the cGERGM outputs, we first confirm adequate fit to the data. Model fit evaluation can be divided into

two categories: (1) evaluating the performance of the cGERGM in making edge predictions, and (2) evaluating whether

the topological features of the observed network are typical of the distributions of topological features simulated from the

cGERGM.

Model Fit I: Edgewise Strength

We first predict observed edge values using the fitted cGERGM. For each edge in the network, we fix all other edges at their

observed value and then simulate a sample of 500 values for that edge from the fitted cGERGM. Each of these simulated edge

values is used as a prediction of the given observed edge. We use these individual predictions to calculate the mean squared

error (MSE) for the model predictions for each edge. When we visually compare the appearance of the observed network and

these conditional edgewise models (Figure 3), it is clear that our observed and the conditional edgewise predicted networks

have strong structural similarities.

To quantify model fit across all edges, we take the average MSE from the individual edge predictions and compare this

to the MSE from edges simulated using a null distribution. For this exercise, we use the maximum entropy null conditional

distribution, in which we sample edge weights based only on the constraint that they maintain the positive semidefiniteness of

the correlation matrix. The results of our edgewise prediction are presented in Table 1. While all models outperform the null

model, there was systematic variability in model performance. We find MSEs at or below .012 when models included both

topological features, compared to .024 when either topological feature is omitted. Together, this suggests both that our models

recover edgewise strength beyond what would be expected by chance, and that the model has improved predictive power when

topological features of the network are included.

Model Fit II: Topological Features

To assess the fit of topological features of a cGERGM, we first simulate 1000 networks from the fitted model49. Next,

topological features of the simulated networks (both those that were and were not considered in the model) are compared with

the features of the observed network. We assess how well our fitted cGERGMs capture five important topological features (two

of which were not included in our model specifications) in the DMN – transitive-triads, two-stars, density, degree distribution,

and the intensity of the network. The degree distribution is the empirical distribution of the edge weights associated with the

partial correlation network, and the intensity is the sum of the absolute deviations of each edge value from the mean edge value

of the network. The bottom half of Figure 3 illustrates the fit of two example estimated models (see Figures S4 through S8

for the results for each model fit). We see that model fit is poor when we include only exogenous features (hemisphere and

distance), and that fit improves markedly when we model all features simultaneously. To statistically test the fit of a model, we

calculate t-test statistics and Kolmogorov Smirnoff distances to determine whether the means of the simulated networks differ

significantly from the observed. As was clear with the box-plots, when topological features were omitted from the model, there

are pronounced differences between observed and simulated values for most statistics aside from the degree distribution (the

t-values between simulated and observed networks are listed in Table 2). The average network intensity presents an interesting

case—it is modeled indirectly via the scale parameter in the beta distribution, but based on Figure 3 it looks like it would need
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Figure 3. Plots illustrating both edgewise and structural fit. TOP: Observed network (middle) versus the conditional

edgewise network predicted from the model with only edges, hemisphere, and distance (left) or from all features (right). From

these, we can see that the conditional edgewise prediction is producing networks that closely map the observed networks.

Further, the model that accounts for the topological features (right) produces more similar structure than the model which does

not (left). BOTTOM: Goodness of fit for the model with only hemisphere and distance (left) versus all features (right).

Boxplots reflect values from simulation based on the fitted cGERGM, with the red bars representing the mean of the

simulations whereas the blue bars represent the values from the observed network. The curve to the right of each boxplot

represents simulated (red) and observed (blue) degree distributions. The left model is specified to include only the edges term

and the exogenous predictors of hemisphere and distance. The right model includes all topological and exogenous effects.

While the model without topological features fits quite poorly, when modeling topological features our models fit quite well.

to be included explicitly as a topological network statistic in order to be fit as well as the other features in the model. The

four best-fitting models are the ones that include both topological features: two-stars and triads, as well as any combination of

hemisphere and distance.

Interpreting cGERGM outputs

cGERGM results include both a parameter estimate and a standard error for each feature (parameter values produced by our

models are presented in Table 3). Because interpretation of parameter estimates is only valid when the model fits adequately,

we restrict interpretation to the models that include both topological features. Across all such models, we find a significantly

negative two-stars parameter, and a significantly positive triads parameter. These effects are relatively unchanged with the

addition of the exogenous features. Together, these results show that the DMN displays more triadic closure (i.e., clustering) and

less preferential attachment (i.e., the existence of hubs) than would be expected by chance. These results are particularly notable

because, contrary to hypotheses that the default mode network would display small-world structure, the observed configuration

of low preferential attachment and high clustering suggest a segregated highway structure rather than a small-world structure.

In other words, these results support a view of Default Mode connectivity that is organized around functional segregation as

opposed to information transfer across the network. If some areas of the DMN served as hubs within the network, we would

expect evidence of heightened preferential attachment. However, we see evidence of anti-preferential attachment, along with

strong clustering, which suggests that different groups of brain regions tend to co-activate based around shared functions.

When investigating the exogenous features, we find a significantly positive effect of hemisphere, indicating that nodes have

stronger connections within the same hemisphere compared to across hemispheres. Interestingly, and contrary to expectations,

it appears that the Euclidean distance between nodes, which is believed to be a major contributor to the organizational properties
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Model MSE

Null Model 0.128

Two-Stars 0.025

Triads 0.026

Hemisphere 0.025

Distance 0.026

Two-Stars + Hemisphere 0.025

Triads + Hemisphere 0.026

Two-Stars + Distance 0.025

Triads + Distance 0.026

Two-Stars + Triads 0.012

Hemisphere + Distance 0.024

Two-Stars + Hemisphere + Distance 0.024

Triads + Hemisphere + Distance 0.025

Two-Stars + Triads + Hemisphere 0.011

Two-Stars + Triads + Distance 0.011

Two-Stars + Triads + Hemisphere + Dis-

tance
0.011

Table 1. Mean squared errors for each model and the null model. Lower numbers indicate better correspondence between

observed and simulated edge values.

of neural networks50, 51, is not significantly related to edge strength in any of our models. However, given that the DMN is one

of the more spatially disparate networks, future research should investigate whether this holds generally for brain networks.

Further, it is possible that distance would be more likely to influence connectivity in regions that are not within the same

subnetwork, as subnetworks, by definition, tend to have regions that covary with one another. Finally, it is possible we fail to

find distance effects due to the scale at which we investigate connectivity (i.e., region level, which collapses across many local

connections) and that distance would be more likely to influence connection strengths on smaller scale.

Simulation Study

To further validate our results for the application to the Default Mode Network, we assess the efficacy of the cGERGM on a

testbed of simulated networks for which we know the true generative process. The aim of this simulation study is to assess the

accuracy of the cGERGM on simulated networks with known parameters. We simulate networks that represent three common

scenarios: (i) the simulated network displays no topological effects and therefore is a realization from a random graph (i.e.,

when θθθ = 000), (ii) the simulated network has non-zero topological effects matching our fitted model to the DMN, and (iii) the

simulated network displays significant hub structure locally. For each of these simulation studies, we simulate 1000 networks

of size 20 (matching the size of the DMN) from a cGERGM specification whose coefficients represent these desired scenarios

and then estimate the parameter estimates of each of the simulated networks. We report the median coefficient estimate, median

standard error, and rate at which the effect was statistically significant at a 0.05 level in Table 4. Our results reveal not only that

each of these common graph models can occur in a network of only 20 nodes, but also that the cGERGM accurately identifies

each of the models with high power. We discuss these simulations and results below.

In our first study, we set θTriads = θTwo−Stars = 0 and the intercept β0 = 0.5. We apply the cGERGM to each network with

the Edges (Intercept), Two-Stars, and Triads statistics specified. The coefficient estimates from this study are consistent with

the true parameter values for each simulated network. As one would hope, the two-stars and triads coefficient estimates were

identified as statistically significant (non-zero) at a rate of 0.047. This result is consistent with the anticipated false discovery

rate of 0.05 associated with the level 0.05 test for each coefficient. The edges and dispersion coefficients were both identified as

statistically significant at a 0.05 level in all of the simulated networks. Finally, the median estimate of the intercept was 0.5053,

which matches the true β0 of 0.5. This first study provides evidence of the power of the cGERGM and shows that the model

does not falsely identify significant coefficients when no topological effects are present.

In the next simulation study, we assess the ability of the cGERGM to estimate the coefficients of simulated networks with

non-zero topological effects. To do so, we simulate networks from an example fitted model from the DMN study provided

in Table 3. In particular, we simulate networks from the fitted Two-Stars + Triads model, applying θTwo−Stars = −0.75,

θTriads = 0.34 and the intercept β0 = 0.25. We fit the cGERGM to each of the simulated networks and report the findings in the
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Model Two.Stars Triads Edges Intensity Degree

Two-Stars -1.04 -5.68 6.5 23.5 0.18

Triads 26.68 1.06 30.86 37.91 0.32

Hemisphere 28.32 20.52 32.17 48.8 0.34

Distance 29.64 21.7 33.38 35.8 0.38

Two-Stars + Hemisphere -0.26 -3.34 6.24 28.8 0.16

Triads + Hemisphere 17.9 -1.87 20.95 39.6 0.30

Two-Stars + Distance -0.33 -4.44 5.95 17.44 0.19

Triads + Distance 24.75 -0.59 28.33 41.91 0.32

Two-Stars + Triads -1.25 -0.99 -0.98 -39.36 0.13

Hemisphere + Distance 23.27 17.27 25.97 35.36 0.37

Two-Stars + Hemisphere + Distance -0.01 -5.43 13.76 61.81 0.18

Triads + Hemisphere + Distance 39.56 0.06 44.68 78.24 0.33

Two-Stars + Triads + Hemisphere 0.47 0.53 1.25 -36.64 0.12

Two-Stars + Triads + Distance 1.15 1.21 1.61 -48.67 0.14

Two-Stars + Triads + Hemisphere + Distance -0.03 0.07 0.67 -54.17 0.11

Table 2. Summary of model fit for each of the fitted models. The two-star, triads, edges, and intensity t∗ statistic measures the

normalized difference between the average mean intensity of 1000 simulated networks and the mean intensity of the observed

network. The degree KS-distance is the Kolmogorov-Smirnoff distance between the empirical degree distribution of the

simulated networks and the degree distribution of the observed network. Statistically significant differences in statistic values

(at the α = 0.05 level) are displayed in bold.

center of Table 4. We find that the estimated coefficients are consistent with the true parameter values of the simulated networks.

Indeed, when considering the median estimate and standard error, we find that the true parameter values for θTwo−Stars, θTriads,

and β0 are all within one standard error of the median estimated value on average. Though not shown, we also calculated the

number of estimations for which the cGERGM produced significant estimates that had the opposite sign from which they were

generated. For both the two-stars and triads statistic, this occurred very rarely, with only one model (out of 1000) significantly

positive for two-stars, and only two models (also out of 1000) significantly negative for triads. This study gives us confidence

that the cGERGM is producing parameter estimates that capture the structure of the DMN.

In our last simulation, we generate networks with a strong tendency to form hubs (in other words, the presence of preferential

attachment). A large amount of research has demonstrated the importance and prevalence of hubs in the context of whole-brain

networks52, 53, and it is therefore important for our model to be able to detect such preferential attachment tendencies should

they exist at the subnetwork level. Notably, each of the fitted models to the DMN identified a significantly negative two-stars

coefficient, suggesting a lack of hub-like structure in this subnetwork. To test whether the cGERGM can accurately identify

hub structure (if it were present), we simulate networks with a significantly positive two-stars coefficient (θTwo−Stars = 0.50)

and negative edge coefficient (β0 =−2.00). The results, presented on the right of Table 4, show that the cGERGM accurately

identifies both the two-stars and edges coefficients as significant in all of the simulated networks. Furthermore, the median

coefficient estimates were within one standard error of the true value on average. Thus, the cGERGM can identify hub-structure

in a network of the same size as the DMN.

Discussion

We developed a novel statistical framework for quantifying brain correlation network structure – the correlation Generalized

Exponential Random Graph Model (cGERGM). The cGERGM allows for the statistical modeling of both topological and

exogenous predictors of correlation network structure, while simultaneously removing the need for thresholding. This allows

researchers to both (a) precisely quantify the core processes underlying brain network architecture, enabling researchers to

describe (and recreate) a given network using a small number of parameters, and (b) perform deductive inference on the

core processes that make up a network, enabling investigation of the type of network architecture occurring in different

networks. The cGERGM thus both powerfully enhances network neuroscience’s ability to quantify networks of functional

connectivity, allowing researchers to both gauge the influence of different endogenous topological or exogenous features, as

well as dramatically improve inference on fundamental network principles. We have shown that the cGERGM can effectively

characterize the topological features of the functional default mode network, producing good fit to the observed data at both

edgewise and structural levels. We further find evidence of clustering, anti-preferential attachment, hemispheric homophily, and

a lack of the importance of physical distance between regions (in a way that controls for network density, transitivity, and the
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Model Edges Dispersion Two-Stars Triads Hemisphere Distance

Two-Stars 0.27 (0.01) 48.05 (3.43) -0.04 (0.01)

Triads 0.25 (0.01) 47.43 (3.4) 0 (0.01)

Hemisphere 0.87 (0.08) 49.23 (3.54) 0.12 (0.03)

Distance 0.25 (0.02) 47.17 (3.39) 0.00 (0.02)

Two-Stars + Hemisphere 0.97 (0.08) 50.15 (3.58) -0.04 (0.01) 0.12 (0.03)

Triads + Hemisphere 0.89 (0.08) 49.46 (3.55) 0 (0.01) 0.12 (0.03)

Two-Stars + Distance 0.27 (0.01) 48.04 (3.43) -0.04 (0.02) 0.00 (0.02)

Triads + Distance 0.25 (0.01) 47.46 (3.4) 0 (0.01) 0.00 (0.02)

Two-Stars + Triads 0.25 (0.01) 38.28 (2.85) -0.75 (0.14) 0.34 (0.06)

Hemisphere + Distance 0.82 (0.08) 49.61 (3.56) 0.14 (0.03) 0.03 (0.02)

Two-Stars + Hemisphere + Distance 0.92 (0.08) 50.53 (3.61) -0.04 (0.02) 0.14 (0.03) 0.03 (0.02)

Triads + Hemisphere + Distance 0.84 (0.08) 49.86 (3.58) 0 (0.01) 0.14 (0.03) 0.03 (0.02)

Two-Stars + Triads + Hemisphere 0.86 (0.07) 38.95 (2.92) -0.85 (0.15) 0.4 (0.07) 0.13 (0.03)

Two-Stars + Triads + Distance 0.25 (0.01) 38.2 (2.85) -0.76 (0.12) 0.35 (0.06) 0.00 (0.01)

Two-Stars + Triads + Hemisphere + Distance 0.85 (0.07) 39.83 (2.98) -0.83 (0.13) 0.39 (0.06) 0.14 (0.03) 0.02 (0.01)

Table 3. cGERGM parameter estimates with standard errors in parentheses. Effects that are statistically significant at the

α = 0.05 level are displayed in bold.

Random Graph Model Two-Stars + Triads Model Two-Stars (Hub) Model

Statistic Est. S.E. Sign. Rate Est. S.E. Sign. Rate Est. S.E. Sign. Rate

Triads -0.0253 0.1241 0.047 0.2757 0.2511 0.245

Two-Stars 0.0317 0.1870 0.047 -0.6537 0.2543 0.684 0.478 0.033 1.00

Edges 0.5033 0.0187 1.00 0.1525 0.0945 0.429 -1.858 0.025 1.00

Dispersion -1.5941 0.0653 1.00 0.2787 0.0732 0.908 -1.309 0.079 1.00

Table 4. Summary of cGERGM parameter estimates in the Simulation Study. (Left) Networks were simulated with

θTwo−Stars = θTriads = 0 and β0 = 0.5. (Middle) Networks were simulated with θTwo−Stars =−0.75, θTriads = 0.34 and the

intercept β0 = 0.25 to reflect the Two-Stars + Triads model fitted to the DMN. (Right) Networks were simulated with

θTwo−Stars = 0.5 and the intercept β0 =−2.00 to reflect a model that demonstrates hub usage. Values are based on 1000

simulated networks and the significance rate represents the proportion of estimates that were statistically significant at a level of

0.05.

other parameters in the model).

We can use cGERGM outputs on topological features to infer fundamental organizational principles of the networks in

question. Our results suggest that the DMN is organized by segregated highway principles wherein different functional groups

of regions build their own direct channels for information sharing, rather than small-world principles where information

is shared via hubs. We note that this finding may appear to run counter to previous investigations of the DMN that found

evidence for hub regions in the brain18. This past work, however, concluded hub-behavior from significant correlations and

between-network centrality. While these are properties of hubs, their presence does not guarantee that a network is characterized

by preferential attachment (rich get richer) dynamics. A brain region may be highly central purely due to its position between a

number of other important regions. To conclude that the DMN is characterized by preferential attachment, we need to find

evidence of a rich-get-richer dynamic even when controlling for other factors such as physical proximity, as well as other

processes like triadic closure which could also account for strong connections incident to a few regions. We hasten to note,

however, that the present findings actually reinforce the central conclusion of this past research and others, since a segregated

highway architecture strongly points towards functional segregation of the default mode network18, 36, with different regions

specialized for distinct functions. Indeed, the segregated highway architecture is highly optimized for this sort of functional

segregation. The present results thus demonstrate how one can quantify network properties with the cGERGM to test theoretical

predictions about the structure of a given network, as well as lay the groundwork for understanding different properties of the

many networks and subnetworks within the human brain.

An important caveat within these data is that, though we do not find evidence for small-world architecture, our conclusions

on network activity are limited to the ways in which the regions of the DMN communicate with one another. The present results

do not inform the role of these regions within the broader whole-brain network, and therefore do not run counter to past work

that has found DMN regions to be hubs of the whole-brain52, 54, 55. We do note, however, that segregated highway structure
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appears to occur across all individuals – while there are individual differences in subject architecture, people overwhelmingly

show segregated highway structure as opposed to an alternative configuration of the network (see the supplemental materials).

Further work from our lab additionally finds evidence for this same architecture across different subnetworks of the brain56,

suggesting such an architecture may be more common within the brain than originally thought. We believe the cGERGM is

poised to dramatically increase the ability of network neuroscientists to systematically study the organizational properties of

networks of interest.

Future work should take advantage of the powerful network quantification offered by cGERGM. For instance, because

the cGERGM quantifies the unique role of each topological and endogenous feature in the network (in a way that does not

require thresholding of data), the parameters recovered from cGERGM may prove more powerful and sensitive than descriptive

statistics currently employed in investigations of individual or task-based differences of network architecture. Future research

should investigate these possibilities through a formal comparison. Furthermore, research should also extend the cGERGM to

account for longitudinal variation in correlation networks, allowing neuroscientists to harness the temporal dynamics at work in

fMRI to investigate networks over the time-series23, 24.

Future work should also continue the development and extension of the cGERGM. The present specification of the cGERGM

includes only 3 structural features – edges, two-stars, and triads. We stress that the features used in the models considered here

represent the beginning of possible model specifications, and future work should expand this suite of features, in particular

to quantify global efficiency and rich-club coefficient – parameters past work has documented as important in cognition and

disease.

Additionally, while we have focused on functional connectivity in the present paper, our approach can further be applied to

neural connectivity data that is not derived from a correlation matrix. For instance, many researchers quantify structure based

on white matter connectivity of the brain (e.g., via diffusion imaging) rather than correlations of activity between regions. The

present statistical framework can be extended to other types of brain network connectivity data, allowing for advanced network

quantification in many different contexts.

Finally, beyond neuroscience, the present method opens the topology of correlation networks to inferential study, with

applications in many other domains of science. Many complex systems are such that the interaction of actors, institutions, or

elements is best examined via correlation networks produced by these systems (e.g., stock prices in economics, correlations in

the human genome). The cGERGM is a statistical technique that can open up these many fields to rigorous statistical analysis

and quantification.

Overall, we develop and propose a new class of models for the quantification and simulation of brain correlation networks –

the cGERGM. Using this, we show that the default mode network can be modeled via cGERGM parameters in a way that

provides good fit. These output parameters in turn allow inferences about core principles of network structure in ways existing

techniques cannot. In particular, we show here that the DMN, contrary to existing investigation of brain network organizational

structure, is characterized by a segregated highway architecture, suggesting it is optimized for functionally segregated tasks.

Methods

Data and Network Construction

Use of Human Participants

All experimental protocols were approved by the Ohio State University Institutional Review Board, and all methods were

carried out in accordance with relevant guidelines and regulations. All participants provided informed consent at the beginning

of the study and were fully debriefed at the conclusion.

Participants

Two-hundred and fifty participants (147 female, ages 18-51) completed a six-minute resting state scan in which they were

instructed to close their eyes and let their mind wander (but stay awake). Because excessive motion can introduce artificial

correlations across regions in connectivity analyses, we opted for a strict movement cutoff whereby any participant who moved

greater than 2mm while undergoing resting state was excluded. Further, some participants had portions of their brain outside of

the full field of view, and as such were excluded. Together, this yielded 154 total analyzable participants (100 female, ages

18-31).

Scanning parameters

Acquisition was done using a 3-T Siemens Trio scanner equipped with a 12 channel head-coil. 144 functional T2*-weighted

blood-oxygen level-dependent (BOLD) echoplanar (EPI) images were acquired with TR of 2.5 s, TE of 28ms, slice thickness

of 2.5mm, field of view = 195 * 220 mm, matrix = 78 × 88, and flip angle of 75 degrees.
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Network construction

To construct the network, we used the functional parcellation of the DMN described by18, supplementing this using right

hemisphere coordinates47, 48. This yielded a 20-node atlas covering both hemispheres. We then applied this atlas to each

participant’s time-series data, such that each voxel within a region was averaged together, yielding 20 time-series’ for each

participant. From this time-series, we partial out 6 parameters of motion, four parameters corresponding to cerebrospinal fluid,

and four parameters corresponding to white matter57. To generate connectivity across participants, we concatenated together

each subjects’ partialed time series for each ROI , and then took the Pearson correlation across all 20 ROIs. This yielded a

single 20 × 20 symmetric matrix corresponding to the connection strength between each of the 20 regions. While an alternative

approach would be to construct a correlation matrix for each individual participant, and then average together these matrices,

we take the present strategy to conserve the properties of a correlation matrix - namely, positive semidefiniteness.

cGERGM: a Family of Exponential Random Graph models for Correlation Networks

Our model is motivated by the need to analyze the pairwise correlations among n brain regions. We model this data with an

undirected network represented by the weighted symmetric adjacency matrix ρ = (ρi j : i, j ∈ 1, . . . ,n). Here, we have that

ρi j ∈ [−1,1] and ρi j = ρ ji for all i and j. The difficulty of directly analyzing ρ lies in the fact that correlation matrices must

have ones along the diagonal and must be positive semidefinite, namely for any non-zero vector vvv of length n, the following

relation must hold

vvvT ρvvv ≥ 0. (1)

There are two reasons that models for correlation networks must account for the constraint of positive semidefiniteness.

First, unconstrained models offer limited predictive utility as they cannot be used to simulate valid correlation matrices. Second,

analyzing the structural properties of a brain correlation network without accounting for its positive semidefiniteness may lead

to inferential false positives due to artifacts in the data (e.g., because they satisfy a triangle inequality, all correlation matrices

exhibit non-zero transitivity relative to an unconstrained random graph45). For valid inference of ρ , we would like a model that

ensures that estimates, say ρ̂ , also satisfy (1).

Our goal then is to provide a family of models for a random matrix ρ ∈ [−1,1]n×n that (i) upholds the positive semidefinite

constraint of ρ , (ii) describes the relational (network) structure of ρ , and (iii) describes the relationship between the entries of ρ
and a collection of potentially useful regressors z1, . . . ,zq. There are some existing approaches to modeling covariance and

correlation matrices (see e.g.,45); however, to the best of our knowledge no contemporary model accounts for the joint network

features present in a correlation network.

In what follows, we view ρ as an undirected and weighted network whose edge weights (ρi j : i < j ∈ [n]) lie in [−1,1]m,

where m = n(n− 1)/2 is the total number of interactions among the n regions in the brain. Briefly, our model relies on 3

transformations from the observed correlation matrix ρ to an exponential model describing the weights on the edges (see Figure

1).

Our proposed model begins with describing the joint relational features of ρ through a constrained network x ∈ [0,1]m.

One first specifies a vector of features hhh(x) of length p < m that describe the structural patterns of the graph x. The choice

of these topological (network-structural) features is flexible, and in principle can be chosen to model any dyadic feature of

a weighted graph. For instance,43 investigated a suite of possible features for weighted graphs, and20 described a collection

of potentially useful descriptive features for brain networks. Once the features have been specified, the bounded network

x ∈ [0,1]m is modeled by the joint density function

fX (x | θθθ) =
exp

(
θθθ Thhh(x)

)
∫
[0,1]m exp(θθθ Thhh(z))dz

, (2)

where θθθ is a p - dimensional vector of parameters that quantify the effects of the network features hhh(x) on the likelihood of the

graph x.

In the next step, we generate a vector of unconstrained partial correlations φ = (φi j : i < j ∈ [n]) ∈ [−1,1]m by applying the

transformation xi j = Ti j ((φi j +1)/2 | µi j,α), where Ti j(· | µi j,α) is the cumulative distribution function of a Beta distribution

with mean µi j and scale parameter α . Let T : Rm → [0,1]m be defined as the m-dimensional vector T (φ | µµµ,α) = (Ti j(φi j |
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µi j,α), i < j ∈ [n]). Then φ is a random vector from the probability density function fΦ(φ | θθθ ,µµµ,α), given by

fΦ(φ | θθθ ,µµµ,α) = fX

(
T

(
φ +1

2

)
| θθθ

)
∏
i j

ti j

(
φ +1

2
| µi j,α

)

ti j(w | µi j,α) =
Γ(α)(1−wi j)

(1−µi j)α−1

Γ(µi jα)Γ((1−µi j)α)
w

µi jα−1

i j , (3)

where Γ(t) =
∫ ∞

0 xt−1e−xdx is the gamma function defined for t > 1 and wi j ∈ (−1,1). A notable property of (3) is that when

the partial correlation network φ does not contain any network structure, i.e. when θθθ = 000, then the m components of (φ +1)/2

are independent samples from a Beta(µi j,α) distribution, where µi j ∈ (0,1) is the expected value of (φi j +1)/2 and α is the

precision of the distribution.

Model (3) provides a flexible avenue to evaluate the effect of exogeneous variables z1, . . . ,zq on the partial correlation

matrix φ . Let z` be a vector of dyadic observations z` = (zi j(`) : i < j ∈ [n]) for ` = 1, . . . ,q. We model the effect of each

predictor using a generalized linear model for the mean µµµ of φ :

logit(µi j) = β0 +
q

∑
r=1

βrzi j(r) (4)

Since µi j ∈ (0,1), the logit(·) link in (4) is a natural choice, but any monotonically increasing and twice differentiable

function can be used here. The regression model in (4), together with the Beta density ti j(· | µi j,α) is well-studied and generally

referred to as Beta regression58.

The final step in defining the cGERGM relies on the relationship between the partial correlation matrix φ and its associated

correlation matrix ρ for the collection of n brain regions. Let φ j j+k denote the partial correlation between region j and j+ k

given regions j+ 1, . . . , j+ k− 1 for k ≥ 2. A well-known result in multivariate statistics is that there exists a one-to-one

mapping between ρ and φ 59. Given φ , one can calculate the correlation network ρ using the following recursion:

ρ j j+k =





1 k = 0

φ j j+k k = 1

ρρρT
1 ( j,k)D−1

jk ρρρT
2 ( j,k)+φ j j+kC jk 2 ≤ k ≤ n− j,

(5)

where

ρρρT
1 ( j,k) = (ρ j j+1, . . . ,ρ j j+k−1),

ρρρT
2 ( j,k) = (ρ j+k j+1, . . . ,ρ j+k j+k−1),

C2
jk =

[
1−ρρρT

1 ( j,k)D−1
jk ρρρT

1 ( j,k)
][

1−ρρρT
2 ( j,k)D−1

jk ρρρT
2 ( j,k)

]
,

and

D jk =




ρ j+1 j+1 ρ j+2 j+1 · · · ρ j+k−1 j+1

ρ j+1 j+2 ρ j+2 j+2 · · · ρ j+k−1 j+2

...
...

...
...

ρ j+1 j+k−1 ρ j+2 j+k−1 · · · ρ j+k−1 j+k−1




Represent the multivariate transformation from ρ to φ given by the recursion in 5 by ρ = g(φ). Then the Jacobian of this

transformation, as shown by60, is given by

|J(c)|=

[
n−1

∏
i=1

(1− c2
i i+1)

n−1
n−2

∏
k=2

n−k

∏
i=1

(1− c2
i i+k)

n−k−1

]−1/2

Applying the inverse probability transform to the density in (3), we can generate a positive semidefinite correlation network

ρ from the density:

fR(ρ | θθθ ,µµµ,α) = fΦ(g
−1(ρ) | θθθ ,µµµ,α) |J(g−1(ρ))|,
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In summary, for fixed parameters θθθ = (θ1, . . . ,θp), βββ = (β0, . . . ,βq), and α > 0 the cGERGM model for a correlation

network ρ on n brain regions is described by the following generative process

ρ ∼ fR(· | θθθ ,βββ ,α)

logit(µi j) = β0 +β1zi j(1)+ . . .+βqzi j(q).
(6)

Model Specification

To fit a cGERGM to an observed correlation network, we need to specify topological features to be included in hhh(x), and/or

exogenous predictors for the regression function T ( · | βββ ). The corresponding vectors of coefficients, θθθ and βββ , describe the

effects of the specified features on the generative process of the observed weighted graph. In our investigation, we fit a family

of cGERGMs to the DMN using a suite of topological and exogenous features that represent important processes in the brain.

A visualization of the features that we use are available in Figure 2. We discuss these features in more detail in the remainder of

this section.

Topological features We consider three topological features as predictors in our fitted models – two-stars, triads, and edges.

The two-stars statistic is a measure of preferential attachment in the brain61. This value will be higher for networks in which

there is a high variance in the popularity of vertices (i.e., those in which there exist highly connected hubs). The two-stars

statistic is highly relevant to network approaches to neuroscience, as it closely associates with the extent to which hubs are

present in a given network relative to pure chance. This statistic directly allows for inferential testing of the role of hubs in a

given network, which we expect to be significant given the importance for hubs in brain networks53.

The next term we include, the triads statistic, is a measure of clustering of the regions in the DMN. In an unweighted

network, this statistic counts the number of closed triangles in a network. In weighted networks, the triads statistic expresses

the overall strength of connection of triangles in the restricted network x. As with preferential attachment, a high degree

of clustering has been consistently shown to be a feature of brain networks7, 11, 20. Furthermore, reductions in clustering (in

addition to other metrics), have been shown to be closely associated with disease states, such as schizophrenia28.

The edges term, which we also include, parameterizes the mean edge value in the restricted network. The parameter estimate

for this value is analogous to an intercept term in a standard regression model, and is included as part of the transformation of

exogenous covariates onto the network (described in the next section). We note that including an edges term is important for

model fitting as this term normalizes the overall connectivity of the observed network so as to avoid erroneous inflation of the

parameter estimates for the remaining features.

Exogenous features Exogenous features are covariates that capture properties of the DMN at a node or dyad level. The

parameter estimate associated with an exogenous feature describes the influence of the specified feature on the overall strength

of an edge in the observed correlation network. Exogenous features can be either categorical or continuous variables.

In our study, we consider two relevant exogenous features that describe the spatial relationship of the regions in the

DMN—hemisphere location and distance between regions. The hemisphere feature is a dyad-level variable that indicates

whether or not a pair of nodes (regions) are located in the same hemisphere of the brain, either the left hemisphere, right

hemisphere, or the midline. Given that regions within a hemisphere are typically more connected within rather than across

hemisphere62, we expected this covariate to be significantly positive.

The second feature that we consider in our model specification is the physical distance between nodes. For each pair of

regions, this feature records the physical distance between the center of each ROI in the DMN. The distance feature accounts

for the functional similarity of regions that are physically close to one another in space. Past work in neural architecture has

identified distance as being an important driving factor for the development of connections, with closer regions having stronger

connections than further regions8, 51. While distance certainly plays a crucial role in the architecture of connections, it is unclear

whether this will be present in the default mode – a network spatially dispersed across many regions of the brain.

Our Fitted Network Models

Necessary inputs for estimating the cGERGM include the network data (i.e., the correlation matrix), exogenous covariate data,

and the list of topological features. For the present demonstration, we fit 15 different models to the DMN. All models include

an edges feature (which corresponds to an intercept), and the remaining features correspond to all 15 possible combinations of

our four topological and exogenous features. We set T ( · | β ) as a Beta distribution, and model the partial correlations as a

regression on the exogenous predictors using Beta regression58. To avoid model degeneracy – a common issue in exponential

random graph models63 – we applied a geometric down-weighting strategy to the structural predictors as described by43. This

resulted in geometric downweights of 0.8 for two-stars and 0.4 for triads.
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Data and Code Availability

For all analyses, we used the R package GERGM to fit the specified models. Upon acceptance for publication, all code necessary

for reproduction, as well as the network data and model output, will be posted at the Open Science Framework, osf.io/d5yk7.

Fitting the cGERGM

To fit a cGERGM (equation 4 in the main text) to an observed correlation network ρ , one needs to only define topological

(network-level) features hhh(x) = (h1(x), . . . ,hp(x)) and exogenous features z1, . . . ,zq. We then apply the Metropolis–Hastings

Markov Chain Monte Carlo methodology from43 to calculate the maximum likelihood estimators for the fixed unknown

parameters θθθ and βββ . The resulting parameter estimates θ̂θθ and β̂ββ describe the effects of the topological and exogenous features

on the likelihood of ρ , respectively. These parameter estimates can be used to further explore the nature of the data through

simulation and testing.
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