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ABSTRACT

Online learning has gained increased popularity in recent years.
However, with online learning, teacher observation and inter-
vention is lost, creating a need for technologically observable
characteristics that can compensate for this limitation. The
present study used a wide array of sensing mechanisms in-
cluding eye tracking, galvanic skin response (GSR) recording,
facial expression analysis, and summary note-taking to mon-
itor participants while they watched and recalled an online
video lecture. We explored the link between these human-
elicited responses and learning outcomes as measured by quiz
questions. Results revealed GSR to be the best indicator of the
challenge level of the lecture material. Yet, eye tracking and
GSR remain difficult to capture when monitoring online learn-
ing as the requirement to remain still impacts natural behavior
and leads to more stoic and unexpressive faces. Continued
work on methods ensuring naturalistic capture are critical for
broadening the use of sensor technology in online learning, as
are ways to fuse these data with other input, such as structured
and unstructured data from peer-to-peer or student-teacher
interactions.
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INTRODUCTION

Online learning enrollments in the United States continue to
increase annually and currently outpace the annual growth of
enrollment in traditional higher education courses [1]. Online
courses allow for a wider reach, including students who may
not otherwise have access to these classes such as students
from different geographic areas or individuals who cannot
travel to the university, and it also offers convenience for non-
traditional students with busy schedules. One limitation of
online learning is that teacher observation and intervention is
lost, creating a less individualized learning experience. This
creates a need for the exploration of technologically observable
characteristics that can compensate for this limitation.

Recent studies have shown that psychophysiological responses
of the user can be used to create flexible e-learning contexts,
and adaptive e-learning is the term used to describe the abil-
ity of such an environment to recognize and adjust to these
reactions [15]. This allows for a more customized learning
experience in which the system can tailor the instruction to
meet the needs of each individual. The notion of customized
curriculum has become more idealized in the education field
in which educators are moving away from the “one size fits all”
approach and are more cognizant of differing learning styles,
rates, and strengths/weaknesses. Adaptive e-learning allows
for real-time recognition and customization of curriculum, cre-
ating a learning context that can both anticipate and change to
meet the needs of the individual learner.

In this paper, we report on a study that attempts to identify
technologically observable characteristics that relate to learn-


http://dx.doi.org/10.1145/3038535.3038536

Smart and Pervasive Interfaces

ing outcomes during online lectures. Educational technology
can build upon such observable cues to identify problem areas
during the learning process towards differentiating learned
and unlearned material in real-time. There are multiple uses
for such cues gathered during the learning process. For in-
stance, they can help instructors improve their courses by
indicting pedagogically problematic material, or help reduce
self-assessment time spent by students to identify unlearned
material that has yet to be mastered.

With science, technology, engineering, and mathematics
(STEM) education as a national priority, it is important to
explore how online learning of STEM content can be im-
proved. Specifically, we used computer graphics as a use case
to investigate online learning of technical content. We chose
this area as several co-authors are university educators with
expertise in this domain.

BACKGROUND

Attention and engagement are vaguely defined constructs un-
derstood subjectively and widely variable operationally. It is
debated in the literature what method to use for monitoring
attention and engagement. Ramesh et al. (2014) proposed
that engagement can be explored in terms of the interaction
between behavior-based, language-based, and other character-
istics [13]. One study used electrocardiogram (ECG), heart
flux (HF), and electroencephalogram (EEG) data to categorize
attention and non-attention [3]. Another approach measured
engagement of TV viewers using video cameras to track head
and facial features [7]. Further, researchers have also used
webcams to monitor engagement levels by analyzing facial ex-
pressions [17]. In addition, there is evidence for a link between
gaze behavior and learning [16]. We conducted an experiment
to investigate feasible monitoring methods that link to learning
in a setting involving online video lecturing.

The present study uses eye tracking, galvanic skin response
(GSR), facial expression analysis, and summary note-taking
characteristics in an attempt to simulate a naturalistic environ-
ment more representative of a common online learning setting
using only non-invasive sensors. Although these sensors are
not currently widely accessible in online learning settings,
with the progression of technological accessibility, it is likely
that commercial laptops will include eye-tracking capabilities
in addition to a webcam and wearable fitness technology may
soon include GSR data as well.

Although GSR has been shown to provide a measure of cog-
nitive load, the application of this is often a challenge. Haa-
palainen et al. (2010) observed such challenges in attempting
to use psychophysiological metrics to gauge cognitive load [6].
They used a GSR armband which they noted may not have
been sufficiently sensitive to provide an accurate indication of
cognitive load.

Our data collection experiment attempted to simulate a natu-
ralistic environment more representative of a common online
learning scenario. While subjects watched a video lecture,
non-invasive sensors monitored the study subjects via eye
tracking, GSR, and facial expression capture. After viewing
the lecture, the subjects engaged in summary note-taking fol-
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Figure 1. Histogram showing participants’ level of experience with on-
line courses.

lowed by a quiz. The study is operating under the assumption
that answer correctness on the quiz suggests learning. As op-
posed to linking these measures to attention and engagement
and then attention and engagement to learning, the present
study attempts to link these measures directly to learning, to
investigate the link between these technologically observable
psychophysiological responses and learning outcomes.

The current study is operating under the assumption that an-
swer correctness suggests learning. We hypothesized that an-
swer correctness can be linked to observable human reactions
occurring during the sections of the video lecture correspond-
ing to the material covered by the quiz question. We further
hypothesized that human biofeedback response can point to
the challenge level of the educational content. The present
study attempts to investigate the link between these technolog-
ically observable psychophysiological responses and learning
outcomes.

METHOD

Participants

Participants consisted of 21 college students. They were paid
$20 for their involvement. All participants reported having nor-
mal or corrected-to-normal vision, as well as having no known
learning or attention disorders. Their age ranged from 18 to
65 with a mean age of 24.1. Gender was evenly distributed:
11 participants were men and 10 were women.

Participants self-reported the number of online courses they
had previously taken. As shown in Figure 1, many partici-
pants had taken none or few classes online, however, a few
participants did have significant experience with online learn-
ing. Data from two participants were excluded from further
analysis as they did not correctly follow instructions.

Stimuli and Apparatus

The experimental setup is illustrated in Figure 2. Stimuli were
presented using SMI Experiment Center 3.5.169 on a 22 inch
LCD monitor with a resolution of 1680 X 1050 pixels with
a refresh rate of 60 Hz. Participants were seated 60-80cm
from the screen. A Shimmer3 GSR sensor collecting data at a
rate of approximately 50 Hz was placed on the participant’s
non-dominant hand. Eye movements were monitored using
a SensoMotoric Instruments iView X Remote Eye Tracking
Device desktop-mounted eye tracker which operated at 60Hz,
with a manufacturer-reported gaze position accuracy < 0.5°.
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Eye tracker
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Figure 2. Experiment set up with webcam mounted above and eye
tracker mounted below the monitor. The GSR sensor is attached to the
hand of the participant.

A Logitech Webcam Pro 9000 was mounted on top of the
monitor to collect video of participants in order to analyze
facial expressions. The OpenFace software toolkit was used to
capture and quantify 68 different facial landmark locations [2].
Additional facial analysis was performed using Affectiva’s
Affdex SDK! which reports on the emotions conveyed and
also includes measures of attention and engagement.

Procedure

The GSR sensor was attached to the participant’s non-
dominant hand. Participants completed a demographic survey
including questions about academic major, previous experi-
ence with computer graphics, previous experience with online
learning etc., using an online survey on a desktop computer.
Calibration of the GSR sensor was performed during the de-
mographic survey.

After the survey, participants were seated in front of the eye
tracker with their non-dominant hand (with the GSR sensor)
flat on the table. They were instructed to refrain from moving
that hand during the lecture video. A nine point calibration
was used to calibrate the eye tracker, followed by a four point
validation using manufacturer-provided techniques. Next, par-
ticipants viewed a lecture video, lasting 16 minutes and 34
seconds. This video consisted of two panels presented side
by side. The video of the instructor was presented on the left
side of the screen and corresponding lecture slides containing
relevant content were presented on the right. When the lecture
video was complete, participants were given five minutes to
type a summary of important points presented in the video. A
countdown timer on the screen helped participants keep track
of the remaining time. Then, participants took a 15 question
quiz without a completion time limit. Participants also rated
their confidence in their answer for each question.

Lastly, participants completed a post-experiment survey about
their perceived experiences during the experiment including
questions such as how well they feel they paid attention, how

Lywww.affectiva.com
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Figure 3. Participants self-reported previous experience with computer
graphics on a 7-point Likert scale (1 = none, 7 = expert) and quiz scores
were not strongly correlated [r(17) = -0.143, p = 0.559], which indicates
that quiz score was not influenced by previous knowledge of lecture ma-
terial.
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Figure 4. Self-reported attention during the lecture was correlated with
self-reported engagement in the lecture material [r(17) = 0.615, p =
0.005]. Both used a 7-point scale.

engaged in the material they felt, how interesting they found
the material, how well the lecture prepared them for the quiz,
and how difficult they found the material.

RESULTS

Data from two participants were removed due to not following
instructions. Data from the remaining 19 participants showed
no strong correlation [r(17) = -0.143, p = 0.559] between
self-reported previous experience with computer graphics and
quiz score; see Figure 3. Therefore, all participants were
analyzed together regardless of previous experience. Results
also showed that the amount of time spent looking at the
instructor (or the slides) did not have a significant impact on
the number of correct and incorrect responses on the quiz.

As shown in Figure 4, participants’ self-reported level of at-
tention and self-reported level of engagement throughout the
lecture were correlated [r(17) = 0.615, p = 0.005].

Furthermore, self-reported interest in lecture material was
correlated with self-reported level of attention [r(17) = 0.739,
p <0.001] as well as with self-reported level of engagement
[r(17) = 0.876, p < 0.001]; see Figures 5 and 6.

Participant responses to the survey question asking how well
they felt the lecture prepared them for the quiz were correlated
with quiz score [r(17) = 0.550, p = 0.015]. This suggests that
participants had some intuition of their quiz performance and
how well they remembered lecture material.
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Figure 5. Self-reported interest in lecture material was correlated with
self-reported attention during the lecture [r(17) = 0.739, p < 0.001].
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Figure 6. Self-reported interest in lecture material was correlated with
self-reported engagement during the lecture [r(17) = 0.876, p < 0.001].

In order to remove noise from the GSR data, a median filter
was used. This data was then normalized for comparison
between participants and split into sections corresponding to
quiz questions. These sections consist of the time interval in
which the question material was covered in the lecture video.
Time intervals ranged from 5 to 69 seconds.

Given the clustering of quiz scores on the high end, as shown
in Figure 8, it was also useful to investigate challenge level
for individual questions at the extremes in terms of perfor-
mance level. We examined two questions that represented the
extremes in terms of quiz score accuracy. They were:

o (03: Complete the following sentence: The part of the can-
vas that is drawn on the display is called the...................
Answer: Clip window. Correctly answered by all partici-
pants.

e QI2: In what coordinate system are the vertices for graph-
ics primitives specified? Answer: World coordinates. Cor-
rectly answered by only 5 participants.

GSR measurements are reported in kOhms - a measure of
resistance. Lower resistance indicates higher skin conductance
(sweat level). Range was chosen as a GSR measurement
because it indicates changes across a specific period of time
and it can eliminate influences of individual differences in
resting levels or drift that may occur in sensor data. In order to
investigate whether the GSR range differed by challenge level,
a paired samples t-test was conducted. As shown in Figure
7, the range of the GSR data during the section of the video
that corresponded to the question that most people got correct
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Figure 7. GSR relationship with question difficulty. Question 3 was an-
swered correctly by all participants. Question 12 was answered correctly
by only 5 participants.

(easy material) was significantly higher [t(18) = 2.442, p =
0.025] than for the material that corresponded to the question
that most people got wrong (difficult material). This suggests
that cognitive load was higher during more difficult content
material.

DISCUSSION

General Discussion

Results revealed a significant difference in GSR range between
easy and difficult content material. This suggests that cogni-
tive load was higher during more difficult material. This is
consistent with a prior study that found GSR to be an accurate
measure of cognitive load level for different levels of task
difficulty [12]. Furthermore, another study used GSR and the
number of blinks to classify cognitive load [11]. Our exper-
iment found no significant relationship between number of
blinks and performance on the quiz; however, further research
should investigate whether number of blinks can provide addi-
tional information when combined with GSR data.

In addition to the implications for online education, these find-
ings can be applied to assistive technology for students with
learning disabilities. For instance, measures of attention can be
useful in aiding students with attention disorders. Due to the
prevalence of attention deficit hyperactivity disorder (ADHD)
as the second most common learning disability, the advantage
is important. Assistive technology has been shown to not only
improve learning outcomes, but also boost self-confidence and
reduce stress associated with learning difficulties [5, 10, 14, 8,
9].

Lessons Learned from Evolving Experimental Design
Facial analysis revealed very little variation of facial expres-
sions over the course of the lecture, which could have been
related to asking participants to keep still in order to obtain
accurate eye tracking and minimize GSR sensor noise. We
hypothesized that actively trying to remain still contributed to
the stoic and unexpressive faces that were observed. In order
to explore this, six additional participants were included with
two changes to the methodology. The experimental design
changes can be characterized as follows:

1. Twenty-one participants completed the experiment as de-
scribed in Procedure section above.
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2. Four new participants were not asked to keep still. Also, re-
searchers left the room during the lecture in order to further
imitate a natural online learning setting and eliminate the
influence of being watched. These measures may have con-
tributed to a more comfortable setting, encouraging more
natural facial expressions.

3. Two final participants further did not wear the GSR sensor
in addition to the instruction change.

First, the latter two groups of participants seemed to not only
move more but also seemed to be generally more expressive
in the face.

Second, the last group seemed to move the most; both their
entire body as well as their face.

Limitations

The GSR sensor is sensitive to hand movement, thus taking
notes during the lecture would interfere with the GSR data.
Therefore, the experimental design was modified to include
summary note-taking after the lecture rather than during. This
deviates from the natural habit of online learning. Upon initial
inspection, no significant relationships were uncovered be-
tween simple metrics (e.g., number of tokens) for summaries
and quiz score.

The extended sample size was of modest size. Future research
should continue to explore the impact of methodological dis-
tinctions in order to make definitive judgments.

Because performance on the quiz had no impact on partici-
pants, motivation to learn was not present as in typical online
learning in which students are graded on performance. Also,
the goal in education is for long-term retention of information
rather than a quiz directly after material is learned. Future
research should involve a longitudinal dimension to investigate
retention of information and learning patterns over time.

In addition to the quiz only being 15 questions which is atyp-
ical for most courses, the distribution of scores was skewed.
Most people did well on the quiz, as seen in Figure 8.

Another limitation of studying online learning in a laboratory
is the likelihood of participants acting differently because they
know they are being watched. This Hawthorne effect makes it

.
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Figure 8. Quiz scores were skewed such that most participants answered
more than 10 of the 15 questions correctly.
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difficult to generalize laboratory findings to online learning as
a whole [4].

Due to the fact that eye tracking data was applied only to
understand which side of the screen the viewer was attending
to, it was not beneficial to consider links between eye tracking
and GSR data.

CONCLUSION
We reported on a study that made the following contributions:

1. It presented a new methodology for studying online learn-
ing.

2. It identified issues in using sensor technology to study on-

line learning.

3. It proposed suggestions for experimental design modifica-

tions to improve the use of sensor technology in studying
online learning.

Eye tracking and GSR remain a challenge to capture when
monitoring online learning as the requirement to remain still
impacts natural behavior and can lead to unexpressiveness.

Continued work on methods ensuring naturalistic capture are
important and will help broaden the use of sensor technology
in online learning.

We also see a need for studying ways to fuse learner sensor
data with other input from online educational settings, such as
structured and unstructured data from peer-to-peer or student-
teacher interactions.
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