

¹ **High-frequency internal waves and thick bottom
2 mixed layers observed by gliders in the Gulf Stream**

Robert E. Todd¹

Corresponding author: R. E. Todd, Physical Oceanography Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd. MS #21, Woods Hole, MA 02543, USA.
(rtodd@whoi.edu)

¹Department of Physical Oceanography,
Woods Hole Oceanographic Institution,
Woods Hole, MA, USA.

Key Points.

- Spray gliders provide high-resolution surveys of the Gulf Stream along the U.S. East Coast.
- High-frequency internal lee waves are generated by Gulf Stream flow over Blake Plateau.
- Thick bottom mixed layers are common over Blake Plateau.

3 Autonomous underwater gliders are conduct-

4 ing high-resolutions surveys within the Gulf

5 Stream along the U.S. East Coast. Glider sur-

6 veys reveal two mechanisms by which energy

7 is extracted from the Gulf Stream as it flows

8 over the Blake Plateau, a portion of the outer

9 continental shelf between Florida and North

10 Carolina where bottom depths are less than

11 1000 m. Internal waves with vertical veloci-

12 ties exceeding 0.1 m s^{-1} and frequencies just

13 below the local buoyancy frequency are rou-

14 tinely found over the Blake Plateau, partic-

15 ularly near the Charleston Bump, a prominent

16 topographic feature. These waves are likely in-

17 ternal lee waves generated by the sub-inertial

₁₈ Gulf Stream flow over the irregular bathymetry

₁₉ of the outer continental shelf. Bottom mixed

₂₀ layers with $O(100)$ m thickness are also fre-

₂₁ quently encountered; these thick bottom mixed

₂₂ layers likely form in the lee of topography due

₂₃ to enhanced turbulence generated by $O(1)$ m

₂₄ s^{-1} near-bottom flows.

1. Introduction

As a subtropical western boundary current, the Gulf Stream is a major reservoir of oceanic kinetic energy [e.g., *Wyrtki et al.*, 1976], which is input globally by winds and tides at rates of approximately 1 TW [*Wunsch*, 1998] and 3.5 TW [*Munk and Wunsch*, 1998], respectively. Understanding mechanisms by which the ocean's kinetic energy is ultimately lost through friction or dissipated through mixing (i.e., converted to potential energy) to maintain the observed abyssal stratification is a central theme in physical oceanography.

Rather than mixing and dissipation being uniform over the world's oceans [e.g., *Munk*, 1966], a number of observational programs over the past decades have demonstrated that enhanced mixing occurs where strong flows encounter topographic features, generating internal waves that break locally or farther away and inducing turbulent mixing in the lee of topography. Thus far, these studies have focused primarily on tidal flows over ridges or sills [e.g., *Polzin et al.*, 1997; *Rudnick et al.*, 2003; *Klymak et al.*, 2006; *Martin and Rudnick*, 2007; *Cole et al.*, 2009; *Alford et al.*, 2011; *Rudnick et al.*, 2013], abyssal flows over topography [e.g., *Polzin et al.*, 1996; *Ferron et al.*, 1998], and the Antarctic Circumpolar Current as it encounters topography [e.g., *St. Laurent et al.*, 2012]; here we show that similar transfer of energy from the large-scale flow to internal waves and near-bottom mixing occurs as the Gulf Stream flows along the continental margin.

Before separating from the continental margin near Cape Hatteras, the Gulf Stream flows over the varied bathymetry of the Blake Plateau (Fig. 1a; *Pratt and Heezen* [1964]) where water depths are less than 1000 m and bottom velocities of approximately 0.25 m s⁻¹ were first measured by *Pratt* [1963]. Near 31.5°N, 79°W, a ridge and trough feature in

46 the continental slope, referred to as the Charleston Bump (Fig. 1b), is known to deflect
 47 the path of the Gulf Stream [e.g., *Brooks and Bane*, 1978]. Recent numerical simulations
 48 by *Gula et al.* [2015] have shown that the Charleston Bump steers the Gulf Stream through
 49 bottom pressure torque and plays a significant role in transfer of energy between eddies
 50 and the mean flow.

51 The response of flow to encountering topographic features depends on the size of the
 52 obstacle relative to the flow speed and stratification as characterized by the topographic
 53 Froude number, $F_{\text{topo}} \equiv U/NH$, where U is the near-bottom flow speed, N is the near-
 54 bottom stratification, and H is the height of the obstacle [*Bell*, 1975; *Gill*, 1982; *Klymak*
 55 *et al.*, 2010]. For topographic Froude numbers greater than unity, small-amplitude linear
 56 lee waves form [e.g., *Bell*, 1975]. As the topographic Froude number becomes smaller than
 57 unity, lee waves become nonlinear [e.g., *Miles and Huppert*, 1968, their Figs. A1–A4] and
 58 streamlines can become statically unstable in a stratified hydraulic jump downstream
 59 of the obstacle [*Klymak et al.*, 2010]. *Dossmann et al.* [2016] point out that significant
 60 radiation of lee waves only occurs when the lateral Froude number $F_L \equiv U/NL$ is less than
 61 $O(1)$ for a horizontal topographic scale L ; flow over the Blake Plateau and Charleston
 62 Bump generally satisfies this criterion. Both breaking of the internal waves and static
 63 instability lead to mixing and energy dissipation. *Dossmann et al.* [2016] examined the
 64 flow response over a range for topographic Froude numbers in laboratory experiments,
 65 finding that near-bottom mixing occurs for a wide range of topographic Froude numbers
 66 while resonance between the background flow and internal lee waves leads to radiation and
 67 remote mixing only for $F_{\text{topo}} \sim 1 - 2$. *Nikurashin and Ferrari* [2011] recently estimated

68 that about 20% of the wind power input to the global ocean can be accounted for by energy
69 conversion from geostrophic flows to internal lee waves in the deep ocean, but possible
70 energy conversion over the relatively shallow Blake Plateau and Charleston Bump were
71 not part of their analysis.

72 High-resolution surveys of the Gulf Stream from autonomous underwater gliders reveal
73 that large-amplitude, high-frequency internal lee waves and thick bottom mixed layers
74 commonly occur where the Gulf Stream flows over the outer continental shelf south-
75 west of Cape Hatteras. The remainder of this paper is organized as follows: section 2
76 describes glider observations in the Gulf Stream, section 3.1 characterizes observed lee
77 waves, section 3.2 discusses bottom mixed layers, and section 4 summarizes the results
78 and implications.

2. Glider Observations in the Gulf Stream

79 Spray underwater gliders [*Sherman et al., 2001*] first surveyed across the Gulf Stream
80 downstream of Cape Hatteras from 2004 to 2009; those glider missions are described by
81 *Todd et al. [2016]*. Since 2015, Spray gliders have been surveying the Gulf Stream between
82 Miami, Florida and New England. These missions typically begin with deployment from
83 a small boat a few miles offshore of Miami in the Florida Strait at approximately 25.75°N,
84 80.0°W, and recovery is intended to be over the continental shelf south of Woods Hole,
85 Massachusetts. The current sampling goal is to collect measurements along approximately
86 10 transects across the Gulf Stream during each glider mission. Since the 0.25 m s^{-1}
87 horizontal speed of a glider through the water is much less than the vertically averaged
88 speed of the Gulf Stream, which can exceed 1 m s^{-1} , gliders are advected downstream

89 as they cross the Gulf Stream, resulting in zigzag sampling patterns over the bottom
90 (Fig. 1c). Gliders are often navigated upstream relative to the Gulf Stream in more
91 quiescent waters on either side of the boundary current. In a coordinate system moving
92 with the water, the cross-Gulf Stream glider transects are approximately orthogonal to
93 the flow.

94 Here we use observations from ten Spray glider missions completed between 2004 and
95 early 2017. We refer to the missions using a shorthand that includes the year and month
96 of deployment and glider serial number as YYMSSS, where YY is the last two digits of the
97 year, M is the month in hexadecimal, and SSS is the glider's serial number. Observations in
98 this analysis are from missions 049007, 056007, 05C007, 08B021, 154010, 157055, 15A065,
99 15C066, 168066, and 16B056. Trajectories and summary statistics for these missions are
100 shown in Fig. 1c.

101 Each glider was equipped with a pumped Sea-Bird 41CP conductivity-temperature-
102 depth (CTD) instrument, and missions 157055, 15A065, 15C066, 168066, and 16B056
103 additionally carried Seapoint chlorophyll fluorometers plumbed in line with the CTDs
104 and 1-MHz Nortek AD2CP Doppler current profilers. The gliders sampled the upper
105 1000 meters of the water column or to within several meters of the bottom in shallower
106 water; to avoid hitting the seafloor, gliders with AD2CPs detected the bottom acoustically
107 and maximum dive depths for gliders without AD2CPs were chosen based on bathymet-
108 ric maps. Dives from the surface to 1000 m and back to the surface typically lasted
109 about 5.5 hours. Vertically averaged currents were estimated from the difference between
110 dead-reckoned and GPS-measured displacement during each dive as is typically done for

underwater gliders [e.g., *Todd et al.*, 2009]. Pressure, temperature, salinity, and chlorophyll fluorescence were measured every 8 s during ascent, resulting in vertical resolution of about 0.8 m. The AD2CPs collected relative velocity measurements in 15 2-m bins below the gliders from 8-ping ensembles every 30 s during ascent. Following *Todd et al.* [2017], AD2CP measurements were quality controlled and combined with vertically averaged current estimates to produce vertical profiles of absolute horizontal velocity using an inverse method.

Cross-Gulf Stream transects from mission 15A065 (Fig. 2) illustrate how the glider observations capture the along-stream evolution of the Gulf Stream from its origins in the Florida Strait to downstream of its separation from the continental slope at Cape Hatteras, North Carolina. Following *Todd et al.* [2016], observations from each transect are shown as functions of cross-stream distance, which is determined by constructing a local streamwise coordinate system at the location of each glider dive with the downstream direction defined by the measured vertically averaged current; the origin of the cross-stream coordinate is taken to be the location at which the 15 °C isotherm is found at a depth of 200 m [*Fuglister and Voorhis*, 1965]. Expected cross-frontal temperature and salinity gradients are well-resolved by the high cross-stream resolution; the subsurface salinity maximum on the seaward side of the Gulf Stream [*Toole et al.*, 2011; *Qu et al.*, 2013; *Todd et al.*, 2016] can be traced from the Florida Strait to well downstream of Cape Hatteras (Figs. 2e–h). Downstream velocity structure from the glider-based AD2CP is consistent with previous direct velocity observations [e.g., *Halkin and Rossby*, 1985; *Rossby and Zhang*, 2001; *Shoosmith et al.*, 2005] and geostrophic estimates [e.g., *Todd et al.*,

₁₃₃ 2016] with a tilted Gulf Stream core, increasing speed and volume transport downstream,
₁₃₄ near surface velocities exceeding 2 m s^{-1} downstream of Cape Hatteras (Figs. 2i–l),
₁₃₅ and oppositely directed (equatorward) flow beneath the Gulf Stream near Cape Hatteras
₁₃₆ (Fig. 2k) as the Deep Western Boundary Current crosses under the Gulf Stream [Pickart
₁₃₇ and Smethie, 1993].

₁₃₈ We combine observations from the ten glider missions by averaging observations from
₁₃₉ the 6246 distinct glider dives into $0.5^\circ \times 0.5^\circ$ boxes. Fig. 1d shows the number of dives
₁₄₀ in each box. Observations are reasonably dense along the path of the Gulf Stream from
₁₄₁ Miami to Cape Hatteras and between the New England continental shelf and Bermuda
₁₄₂ where trajectories from multiple missions overlapped (Fig. 1c), but are more sparse farther
₁₄₃ downstream (northeast) and in areas where only a single glider has sampled. Where we
₁₄₄ report average values of derived quantities in specific boxes in the text below, we report
₁₄₅ the standard deviation of the quantity of interest divided by the square root of the number
₁₄₆ of estimates as the standard error of the mean.

₁₄₇ Averages of potential temperature at 200 m and vertically averaged currents in $0.5^\circ \times 0.5^\circ$
₁₄₈ boxes show the expected $O(1) \text{ m s}^{-1}$ flow along the sharp temperature front of the Gulf
₁₄₉ Stream (Fig. 1e). Spatially and temporally sparse sampling results in transient Gulf
₁₅₀ Stream meanders and eddies appearing in these averages; for instance, a large, anticyclonic
₁₅₁ warm core ring discussed by Cenedese *et al.* [2013] appears near 38°N , 68°W , as does an
₁₅₂ anticyclone in the Sargasso Sea near 35°N , 72°W . However, in well sampled areas, details
₁₅₃ of the mean Gulf Stream structure, such as its eastward deflection at the Charleston Bump
₁₅₄ near 31.5°N [Brooks and Bane, 1978; Gula *et al.*, 2015], are apparent. We anticipate that

₁₅₅ inclusion of observations from ongoing Spray glider missions in the Gulf Stream will allow
₁₅₆ creation of a robust, high-resolution climatology of the Gulf Stream along the U.S. East
₁₅₇ Coast.

3. Results and Discussion

3.1. High-Frequency Internal Waves

₁₅₈ The vertical motion of gliders was often strongly influenced by water motion. As an
₁₅₉ example, consider the time series of measured depth and its time derivative from dive
₁₆₀ 137 of mission 15A065 (Figs. 3a–b, blue), which took place near 31.7°N, 77.9°W over the
₁₆₁ northern Blake Plateau (Fig. 4, black circle). Throughout the dive, the glider's normally
₁₆₂ steady descent and ascent [cf. *Rudnick and Cole*, 2011, their Fig. 3] was alternately
₁₆₃ slowed and hastened by vertical water motion. Preceding and following dives (Figs. 3a–
₁₆₄ b, grey) were similarly affected, and gliders occasionally aborted dives (e.g., the missing
₁₆₅ data at a cross-stream distance of 20 km in Fig. 2b,f,j) when they were unable to descend
₁₆₆ against the ambient flow. The dive highlighted in Fig. 3 was within the Gulf Stream
₁₆₇ where estimated horizontal velocities from the glider's AD2CP exceeded 0.75 m s⁻¹ from
₁₆₈ the surface to within a few meters of the acoustically estimated bottom depth of 639 m
₁₆₉ (Fig. 3d, red).

₁₇₀ Following *Rudnick et al.* [2013], we use a model of glider flight to determine each glider's
₁₇₁ vertical speed through the water. This model-based estimate is subtracted from the
₁₇₂ actual vertical speed of the glider estimated from the rate of change of the glider's depth
₁₇₃ (inferred from measured pressure; e.g., Fig. 3b) to estimate the vertical velocity of the
₁₇₄ water throughout each glider dive (e.g., Fig. 3c) with an estimated error of 0.005 m

₁₇₅ s^{-1} [Rudnick *et al.*, 2013]. For dive 137 of mission 15A065, inferred vertical velocity
₁₇₆ exhibits oscillations with peak-to-trough ranges as large as 0.2 m s^{-1} and periods of 10–
₁₇₇ 15 minutes; adjacent dives show similarly oscillating vertical velocities (Fig. 3c, grey).
₁₇₈ Vertical velocity oscillations at this period are consistent with internal waves at frequencies
₁₇₉ just below the local buoyancy frequency in the middle of the water column (i.e., away
₁₈₀ from weakly stratified surface and bottom layers; Fig. 3d, green). Assuming a simple
₁₈₁ sinusoidal dependence on time, the vertical velocity oscillations are consistent with waves
₁₈₂ having peak-to-trough vertical excursions of roughly 20–30 m. Large vertical velocities
₁₈₃ are found in the middle of the water column (e.g., Fig 3d), consistent with wave energy
₁₈₄ propagating upwards from generation sites at the seafloor upstream of the measurement
₁₈₅ site.

₁₈₆ We use the standard deviation of inferred vertical velocity (e.g., Fig. 3c) as a metric of
₁₈₇ internal wave strength during each glider dive, and we average those standard deviations
₁₈₈ in $0.5^\circ \times 0.5^\circ$ boxes (Fig. 4a) to map out high-frequency internal wave activity. With
₁₈₉ average standard deviations of vertical velocity of $0.037 \pm 0.003 \text{ m s}^{-1}$, the strongest
₁₉₀ internal waves, including the observations shown in Fig. 3, are found within the Gulf
₁₉₁ Stream near 31.75°N , 78.25°W as it passes over the rough topography associated with
₁₉₂ the Charleston Bump. Vertical velocities also tended to be large immediately before the
₁₉₃ point at which the Gulf Stream separates from the continental margin near Cape Hatteras
₁₉₄ where the upper slope is incised by many small canyons. The intensity of high-frequency
₁₉₅ internal waves falls off markedly away from the Blake Plateau.

196 We estimate the energy in observed internal waves using linear theory. For waves
 197 with vertical velocity w given by $w = w_0 \cos(kx + ly + mz - \omega t)$, with wave vector
 198 $\vec{K} = (k, l, m)$ and constant amplitude w_0 , the frequency ω is related to the buoyancy
 199 frequency N by $\omega = \pm N \cos \vartheta$, where ϑ is the angle between the wave vector \vec{K} and
 200 the horizontal plane [Munk, 1981; Pedlosky, 2003]. For $\omega \approx N$ as in our observations
 201 (e.g., Fig. 3), the wave vector is nearly horizontal and the vertical wavenumber m is
 202 approximately zero. It follows that the kinetic and potential energies averaged over a
 203 wave period are $\langle KE \rangle = \langle PE \rangle = \frac{1}{2} \rho_0 w_0^2$ and the total energy is simply $\langle E \rangle = \rho_0 w_0^2$, with
 204 ρ_0 a reference density [see Pedlosky, 2003, Lecture 8]. To estimate internal wave energy
 205 per unit horizontal area for each glider dive, we simply multiply the variance (i.e., the
 206 mean square deviations) of the vertical velocity time series (e.g., Fig. 3c) by the dive
 207 depth and $\rho_0 = 1026 \text{ kg m}^{-3}$.

208 For the dive highlighted in Fig. 3, which sampled among the most energetic internal
 209 waves encountered, total energy is estimated at 1630 J m^{-2} . Average energy estimates
 210 in $0.5^\circ \times 0.5^\circ$ boxes (Fig. 4b) range as high as $855 \pm 132 \text{ J m}^{-2}$. Highest internal wave
 211 energy is found near the Charleston Bump where internal wave amplitudes are largest
 212 (Fig. 4a) and modestly elevated internal wave energy is found farther downstream in the
 213 Gulf Stream; vertically integrated energy is lower along the upper continental slope due
 214 to the shallower depth. For comparison, estimates of full-depth-averaged energy density
 215 for the Hawaiian Ridge are $1\text{--}6 \text{ J m}^{-3}$ at the 3000-m isobath [Lee *et al.*, 2006, their Fig. 4]
 216 and energy is concentrated in the thermocline with energy densities of $20\text{--}40 \text{ J m}^{-3}$ at
 217 depths of 100–334 m [Martin *et al.*, 2006, their Fig. 5]; integrated vertically, these energy

²¹⁸ densities are equivalent to energy per unit horizontal area of approximately 3000–18000
²¹⁹ J m^{-2} . The high-frequency waves generated as the Gulf Stream flows over the Blake
²²⁰ Plateau and Charleston Bump may be 10–50% as energetic as those generated by the M_2
²²¹ tide flowing over the much more prominent Hawaiian Ridge.

²²² For a typical topographic height H of 100 m near the Charleston Bump (e.g., Fig. 1b
²²³ and bathymetry in second row of Fig. 2), near-bottom velocities U of 0.5–1 m s^{-1} (e.g.,
²²⁴ Figs. 2j and 3d), and near-bottom buoyancy frequencies N of $2\text{--}7 \times 10^{-3}$ rad s^{-1} (peri-
²²⁵ ods of approximately 15–60 minutes; e.g., Fig 3d), the topographic Froude number for
²²⁶ the Gulf Stream flowing over the Blake Plateau varies from 0.7–5. For this range of to-
²²⁷ pographic Froude numbers, it is likely that the large-amplitude, high-frequency internal
²²⁸ waves encountered by gliders are internal lee waves generated by sub-inertial flows with
²²⁹ $\mathcal{O}(1)$ m s^{-1} near-bottom velocities over the varied bathymetry of the Blake Plateau. The
²³⁰ frequency ω of such lee waves when following the flow is expected to be given by $\omega = \kappa U$,
²³¹ where κ is a characteristic wavenumber of the bathymetry. For the ranges of ω and U
²³² observed near the Charleston Bump, the corresponding topographic wavelength (and hor-
²³³ izontal wavelength of resulting lee waves) would be $\mathcal{O}(1)$ km, suggesting that the observed
²³⁴ lee waves result from flow over small scale bathymetric details. The estimated range of
²³⁵ F_{topo} for Gulf Stream flow over the Blake Plateau spans the parameter range in which
²³⁶ Dossmann *et al.* [2016] found breaking lee waves to contribute significantly to mixing as
²³⁷ steady flows encounter topography.

3.2. Bottom Mixed Layers

238 Profiles of temperature, salinity, and density that reached the bottom often showed
239 bottom mixed layers that were several tens of meters thick and occasionally exceeded 100
240 m in thickness over the Blake Plateau. Figs. 5a–d show an example from mission 157055 in
241 which the bottom mixed layer thickness, Δz_{ml} , was 134 m as defined by a potential density
242 difference of 0.01 kg m^{-3} from the deepest observation (which was measured 12 m above
243 the bottom for this dive). For this example, horizontal current speed within the bottom
244 mixed layer was approximately 0.7 m s^{-1} (Fig. 5d), indicating that the Gulf Stream
245 reached to the bottom at this location near the Charleston Bump. Averages of observed
246 bottom mixed layer thicknesses in $0.5^\circ \times 0.5^\circ$ boxes (Fig. 5e) suggest that enhanced mixing
247 is prevalent near the Charleston Bump, where averaged mixed layer thickness is as large
248 as $93 \pm 10 \text{ m}$, and over deeper portions of the Blake Plateau. Modestly elevated mixed
249 layer thicknesses are also found in the Florida Strait where *Seim et al.* [1999] and *Winkel*
250 *et al.* [2002] found distinct homogenous bottom layers up to 60 m thick.

251 Formation of bottom mixed layers from an initial state of stable stratification requires
252 kinetic energy from the local flow (i.e., the Gulf Stream) to be converted to potential
253 energy in the bottom mixed layers. The change in potential energy due to formation of
254 bottom mixed layers is $\Delta PE = \int_{-H}^0 \Delta\sigma_\theta g z dz$, where the $\Delta\sigma_\theta$ is the difference between
255 observed potential density profiles and corresponding ‘pre-mixed’ potential density pro-
256 files, g is gravity, and H is the bottom depth. We estimate a pre-mixed density gradient
257 near the seafloor by combining all observed profiles of potential density anomalies relative
258 to the densest measurements in each profile as a function of height above bottom. The
259 average of such profiles is remarkably linear within 400 m of the seafloor, so we use a least

260 squares fit to obtain a constant near-bottom density gradient of $\frac{\partial\sigma_\theta}{\partial z} = -0.002 \text{ kg m}^{-3}$
 261 m⁻¹. Complete mixing of an initially linear density profile results in a change in poten-
 262 tial energy of $\Delta PE = -\frac{g}{12} \frac{\partial\sigma_\theta}{\partial z} \Delta z_{\text{ml}}^3$, where Δz_{ml} is the thickness of the resulting mixed
 263 layer and mass (i.e., the average density in the layer) is conserved (see Supporting Infor-
 264 mation). Since this change in potential energy is proportional to the cube of the mixed
 265 layer thickness, our estimates of the potential energy change associated with converting a
 266 uniformly-stratified water column to the observed bottom mixed layer features vary over
 267 more than an order of magnitude (Fig. 5f). Estimates of ΔPE exceed 4000 J m⁻² for
 268 individual profiles (e.g., 4052 J m⁻² for the the profile highlighted in Fig. 5) and average
 269 2529 \pm 739 J m⁻² in the 0.5° \times 0.5° box near the Charleston Bump (Fig. 5f) that has the
 270 largest mean bottom mixed layer thickness (Fig. 5e). These estimates of energy required
 271 to form the observed mixed layers are conservative for two reasons: 1) inclusion of profiles
 272 with bottom mixed layers in our estimate of $\frac{\partial\sigma_\theta}{\partial z}$ lowers the estimate of the pre-mixed
 273 density gradient by approximately 20%; and 2) the estimate of ΔPE neglects the energy
 274 required for partial mixing above the bottom mixed layer, which must occur since sharp
 275 density gradients above the mixed layers (e.g., Fig. S1 in the Supporting Information)
 276 are generally not observed. For the example profile in Fig. 5c, a premixed density profile
 277 with $\frac{\partial\sigma_\theta}{\partial z} = -0.002 \text{ kg m}^{-3} \text{ m}^{-1}$ would have to extend 37 m above the bottom mixed layer
 278 to conserve mass and be statically stable (Fig. 5c, red profile); the change in potential
 279 energy over the full-depth profile increases to 4451 J m⁻², a 10% increase over the estimate
 280 based only on the observed mixed layer thickness.

281 Consistent with the laboratory experiments of *Dossmann et al.* [2016], we attribute the
282 formation of the thick bottom mixed layers reported here to turbulent mixing in the lee
283 of topographic features encountered by the Gulf Stream. *Nash and Moum* [2001] detailed
284 similar elevated mixing in the lee of a small bank on the Oregon continental shelf. We note
285 that our estimates of the potential energy change associated with converting a uniformly-
286 stratified water column to the observed bottom mixed layer features (Fig. 5c) are several
287 times larger than the total energy in the high-frequency internal waves (Fig. 4b), in line
288 with the conclusion of *Dossmann et al.* [2016] that mid-water column mixing due to lee
289 wave radiation is limited to intermediate topographic Froude numbers ($F_{\text{topo}} \sim 1 - 2$).
290 With topographic Froude numbers less than unity over portions of Blake Plateau, the
291 flow over the larger topography (e.g., the Charleston Bump) is likely to form stratified
292 hydraulic jumps and associated static instabilities downstream of topography as well as
293 shear instabilities. Both of these turbulent processes lead to energy dissipation and mixing
294 [*Klymak and Gregg*, 2004; *Inall et al.*, 2005] and are likely mechanisms contributing to
295 formations of the thickest bottom mixed layers observed by gliders over Blake Plateau.

4. Summary

296 Spray gliders provide high-resolution transects across the Gulf Stream along the
297 U.S. East Coast. Despite their slow speed, the gliders are able to navigate back and forth
298 across the Gulf Stream as they are advected downstream by it (e.g., Fig. 1c). Sustained
299 glider surveys in the Gulf Stream offer the opportunity fill a significant gap in subsurface
300 monitoring of the Gulf Stream between the Florida Strait [*Baringer and Larsen*, 2001;
301 *Shoosmith et al.*, 2005] and the M/V *Oleander* line that samples between New Jersey

302 and Bermuda [e.g., *Flagg et al.*, 2006] and serve as a model for autonomous sampling in
303 western boundary currents to complement the basin-scale coverage of the Argo program
304 [e.g., *Riser et al.*, 2016]. Addition of observations from ongoing Spray glider surveys will
305 eventually allow construction of a robust, high-resolution climatology of the Gulf Stream
306 along the U.S. East Coast.

307 Observations from ten Spray glider missions in the Gulf Stream highlight two mecha-
308 nisms by which energy is extracted from the gyre-scale flow. As the Gulf Stream flows over
309 the varied topography of the Blake Plateau, internal lee waves with frequencies near the
310 buoyancy frequency are generated (e.g., Fig. 3) and bottom mixed layers with thicknesses
311 exceeding 100 m are formed (e.g., Fig. 5a–d). The spatial coverage of the glider surveys
312 demonstrates that both mechanisms are most prevalent in the vicinity of the Charleston
313 Bump, a prominent topographic feature encountered by the Gulf Stream near 31.5°N
314 (Figs. 4 and 5e–f), and we are able to estimate the energy in both the high-frequency
315 waves and the bottom mixed layers. Much of the spatial variability in internal waves
316 (Figs. 4) and bottom mixed layers (Figs. 5e–f) may be attributed to temporal variability
317 in Gulf Stream strength, position, and orientation relative to the bathymetry [e.g., *Bane*
318 and *Dewar*, 1988]. The glider observations lack the vertical and temporal resolution to
319 directly measure turbulent mixing associated with these features, and the gliders are un-
320 able to hold station in the Gulf Stream to observe temporal evolution of the internal wave
321 field and bottom mixed layers; a process study focused on internal wave generation and
322 near-bottom mixing with appropriate instrumentation is warranted. These processes that
323 remove energy from the Gulf Stream, along with the elevated internal wave activity re-

³²⁴ ported by *Clément et al.* [2016] as eddies impinge upon the western boundary near 26.5°N,
³²⁵ highlight the importance of western boundaries as locations where the energy input to
³²⁶ the oceans at large scales is transferred to smaller scales and ultimately dissipated.

³²⁷ **Acknowledgments.** The author thanks Dan Rudnick and Breck Owens for encourag-
³²⁸ ing him to conduct new glider surveys in the Gulf Stream and for supporting the effort.
³²⁹ Discussions with John Toole significantly improved the analysis. Larry George, Patrick
³³⁰ Deane, and Ben Hodges at WHOI and Jeff Sherman, Kyle Grindley, Ben Reineman,
³³¹ and Evan Randall-Goodwin of the Instrument Development Group at the Scripps In-
³³² stitution of Oceanography were key to the success of the Spray glider operations. The
³³³ Physical Oceanography Division at NOAA's Atlantic Oceanographic and Meteorological
³³⁴ Laboratory (AOML) provided laboratory space for glider preparation, and North Car-
³³⁵ olina State University's Center for Marine Sciences and Technology (CMAST) provided
³³⁶ laboratory space following recovery of one of the gliders. Spray glider observations in
³³⁷ the Gulf Stream are available from <http://spraydata.ucsd.edu> and should be cited using
³³⁸ the following DOI: 10.21238/S8SPRAY2675. We gratefully acknowledge funding from the
³³⁹ National Science Foundation (OCE-0220769, OCE-1633911), the Office of Naval Research
³⁴⁰ (N000141713040), NOAA's Climate Observation Division (NA14OAR4320158), Eastman
³⁴¹ Chemical Company, WHOI's Oceans and Climate Change Institute, and the W. Van Alan
³⁴² Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).

References

343 Alford, M. H., J. A. MacKinnon, J. D. Nash, H. Simmons, A. Pickering, J. M. Klymak,
 344 R. Pinkel, O. Sun, L. Rainville, R. Musgrave, T. Beitzel, K.-H. Fu, and C.-W. Lu
 345 (2011), Energy flux and dissipation in Luzon Strait: Two tales of two ridges, *J. Phys.*
 346 *Oceanogr.*, *41*, 2211–2222, doi:10.1175/JPO-D-11-073.1.

347 Bane, J. M., Jr., and W. K. Dewar (1988), Gulf Stream bimodality and variabil-
 348 ity downstream of the Charleston Bump, *J. Geophys. Res.*, *93*(C6), 6695–6710, doi:
 349 10.1029/JC093iC06p06695.

350 Baringer, M. O., and J. C. Larsen (2001), Sixteen years of Florida Current transport at
 351 27°N, *Geophys. Res. Lett.*, *28*(16), 3179–3182, doi:10.1029/2001GL013246.

352 Bell, T., Jr. (1975), Topographically generated internal waves in the open ocean, *J. Geo-*
 353 *phys. Res.*, *80*(3), 320–327, doi:10.1029/JC080i003p00320.

354 Brooks, D. A., and J. M. Bane (1978), Gulf Stream deflection by a bot-
 355 tom feature off Charleston, South Carolina, *Science*, *201*(4362), 1225–1226, doi:
 356 10.1126/science.201.4362.1225.

357 Cenedese, C., R. E. Todd, G. G. Gawarkiewicz, W. B. Owens, and A. Y. Shcherbina
 358 (2013), Offshore transport of shelf waters through interaction of vortices with a shelf-
 359 break current, *J. Phys. Oceanogr.*, *43*(5), 905–919, doi:10.1175/JPO-D-12-0150.1.

360 Clément, L., E. Frajka-Williams, K. L. Sheen, J. A. Brearley, and A. C. Naveira Garabato
 361 (2016), Generation of internal waves by eddies impinging on the western boundary of
 362 the North Atlantic, *J. Phys. Oceanogr.*, *46*, 1067–1079, doi:10.1175/JPO-D-14-0241.1.

³⁶³ Cole, S. T., D. L. Rudnick, B. A. Hodges, and J. P. Martin (2009), Observations of Tidal
³⁶⁴ Internal Wave Beams at Kauai Channel, Hawaii, *J. Phys. Oceanogr.*, *39*, 421–436, doi:
³⁶⁵ 10.1175/2008JPO3937.1.

³⁶⁶ Dossman, Y., M. G. Rosevar, R. W. Griffiths, A. M. Hogg, G. O. Hughes, and
³⁶⁷ M. Copeland (2016), Experiments with mixing in stratified flow over a topographic
³⁶⁸ ridge, *J. Geophys. Res.*, *121*, 6961–6977, doi:10.1002/2016JC011990.

³⁶⁹ Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. L. Polzin (1998), Mixing in
³⁷⁰ the Romanche Fracture Zone, *J. Phys. Oceanogr.*, *28*, 1929–1945, doi:10.1175/1520-
³⁷¹ 0485(1998)028:1929:MITRFZ;2.0.CO;2.

³⁷² Flagg, C. N., M. Dunn, D.-P. Wang, H. T. Rossby, and R. L. Benway (2006), A
³⁷³ study of the currents of the outer shelf and upper slope from a decade of shipboard
³⁷⁴ ADCP observations in the Middle Atlantic Bight, *J. Geophys. Res.*, *111*, C06003, doi:
³⁷⁵ 10.1029/2005JC003116.

³⁷⁶ Fuglister, F. C., and A. D. Voorhis (1965), A new method of tracking the Gulf Stream,
³⁷⁷ *Limnol. Oceanogr.*, *10*(Supplement: Alfred C. Redfield 75th Anniversary Volume), 115–
³⁷⁸ 124, doi:10.4319/lo.1965.10.suppl2.r115.

³⁷⁹ Gill, A. E. (1982), *Atmosphere-Ocean Dynamics, International Geophysics Series*, vol. 30,
³⁸⁰ Academic Press, San Diego, Calif.

³⁸¹ Gula, J., M. J. Molemaker, and J. C. McWilliams (2015), Gulf Stream dynamics along
³⁸² the southeastern U.S. seaboard, *J. Phys. Oceanogr.*, *45*, 690–715, doi:10.1175/JPO-D-
³⁸³ 14-0154.1.

384 Halkin, D. T., and H. T. Rossby (1985), The structure and transport of the
385 Gulf Stream at 73°W, *J. Phys. Oceanogr.*, 15, 1439–1452, doi:10.1175/1520-
386 0485(1985)015j1439:TSATOTj2.0.CO;2.

387 Inall, M., T. Rippeth, C. Griffiths, and P. Wiles (2005), Evolution and distribution of
388 TKE production and dissipation within stratified flow over topography, *Geophys. Res.*
389 *Lett.*, 32, doi:10.1029/2004GL022289.

390 Klymak, J. M., and M. C. Gregg (2004), Tidally generated turbulence over
391 the Knight Inlet sill, *J. Phys. Oceanogr.*, 34, 1135–1151, doi:10.1175/1520-
392 0485(2004)034j1135:TGTOTKj2.0.CO;2.

393 Klymak, J. M., J. N. Moum, J. D. Nash, E. Kunze, J. B. Girton, G. S. Carter, C. M. Lee,
394 T. B. Sanford, and M. C. Gregg (2006), An estimate of tidal energy lost to turbulence
395 at the Hawaiian Ridge, *J. Phys. Oceanogr.*, 36, 1148–1164, doi:10.1175/JPO2885.1.

396 Klymak, J. M., S. M. Legg, and R. Pinkel (2010), High-mode stationary waves in stratified
397 flow over large obstacles, *J. Fluid Mech.*, 644, 321–336, doi:10.1017/S0022112009992503.

398 Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway
399 (2006), Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge,
400 *J. Phys. Oceanogr.*, 36, 1165–1183, doi:10.1175/JPO2886.1.

401 Martin, J. P., and D. L. Rudnick (2007), Inferences and observations of turbulent dissipa-
402 tion and mixing in the upper ocean at the Hawaiian Ridge, *J. Phys. Oceanogr.*, 37(3),
403 476–494.

404 Martin, J. P., D. L. Rudnick, and R. Pinkel (2006), Spatially Broad Observations of
405 Internal Waves in the Upper Ocean at the Hawaiian Ridge, *J. Phys. Oceanogr.*, 36,

406 1085–1103.

407 Miles, J. W., and H. E. Huppert (1968), Lee waves in stratified flow. Part 2. Semi-circular
408 obstacle, *J. Fluid Mech.*, 33(4), 803–814, doi:10.1017/S0022112068001680.

409 Munk, W. (1981), Internal Waves and Small-Scale Processes, in *Evolution of Physical*
410 *Oceanography—Scientific Surveys in Honor of Henry Stommel*, edited by B. Warren and
411 C. Wunsch, chap. 9, pp. 264–291, Mass. Inst. of Technol., Boston.

412 Munk, W., and C. Wunsch (1998), Abyssal recipes II: energetics of tidal and wind mixing,
413 *Deep-Sea Res. I*, 45, 1977–2010.

414 Munk, W. H. (1966), Abyssal recipes, *Deep-Sea Res.*, 13, 707–730.

415 Nash, J. D., and J. N. Moum (2001), Internal hydraulic flows on the continental shelf:
416 High drag states over a small bank, *J. Geophys. Res.*, 106(C3), 4593–4611.

417 Nikurashin, M., and R. Ferrari (2011), Global energy conversion rate from geostrophic
418 flows into internal lee waves in the deep ocean, *Geophys. Res. Lett.*, 38, L08,610, doi:
419 10.1029/2011GL046576.

420 Pedlosky, J. (2003), *Waves in the Ocean and Atmosphere*, Springer-Verlag, Berlin.

421 Pickart, R. S., and W. M. Smethie (1993), How does the Deep Western Boundary Current
422 cross the Gulf Stream?, *J. Phys. Oceanogr.*, 23, 2602–2616.

423 Polzin, K. L., K. G. Speer, J. M. Toole, and R. W. Schmitt (1996), Intense mixing of
424 Antarctic Bottom Water in the equatorial Atlantic Ocean, *Nature*, 380, 54–57, doi:
425 10.1038/380054a0.

426 Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt (1997), Spatial Vari-
427 ability of Turbulent Mixing in the Abyssal Ocean, *Science*, 276(5309), 93–96, doi:

428 10.1126/science.276.5309.93.

429 430 Pratt, R. M. (1963), Bottom currents on the Blake Plateau, *Deep-Sea Res.*, *10*, 245–249,
doi:10.1016/0011-7471(63)90360-7.

431 432 Pratt, R. M., and B. C. Heezen (1964), Topography of the Blake Plateau, *Deep-Sea Res.*,
11, 721–728, doi:10.1016/0011-7471(64)90945-3.

433 434 Qu, T., S. Gao, and I. Fukumori (2013), Formation of salinity maximum water and its
contribution to the overturning circulation in the North Atlantic as revealed by a global
435 general circulation model, *J. Geophys. Res.*, *118*, 1982–1994, doi:10.1002/jgrc.20152.

436 437 Riser, S. C., H. J. Freeland, D. Roemmich, S. Wijffels, A. Troisi, M. Belbéoch, D. Gilbert,
J. Xu, S. Pouliquen, A. Thresher, P.-Y. L. Traon, G. Maze, B. Klein, M. Ravichandran,

438 439 F. Grant, P.-M. Poulain, T. Suga, B. Lim, A. Sterl, P. Sutton, K.-A. Mork, P. J.
Vélez-Belchi, I. Ansorge, B. King, J. Turton, M. Baringer, and S. R. Jayne (2016),
440 Fifteen years of ocean observations with the global Argo array, *Nat. Climate Change*,
6, 145–153, doi:10.1038/NCLIMATE2872.

441 442 Rossby, T., and H.-M. Zhang (2001), The near-surface velocity and potential vorticity
443 structure of the Gulf Stream, *J. Mar. Res.*, *59*, 949–975.

444 445 Rudnick, D. L., and S. T. Cole (2011), On sampling the ocean using underwater gliders,
J. Geophys. Res., *116*, C08010, doi:10.1029/2010JC006849.

446 447 Rudnick, D. L., T. J. Boyd, R. E. Brainard, G. S. Carter, G. D. Egbert, M. C. Gregg,
P. E. Holloway, J. M. Klymak, E. Kunze, C. M. Lee, M. D. Levine, D. S. Luther, J. P.

448 449 Martin, M. A. Merrifield, J. N. Moum, J. D. Nash, R. Pinkel, L. Rainville, and T. B.
Sanford (2003), From tides to mixing along the Hawaiian ridge, *Science*, *301*(5631),

450 355–357, doi:10.1126/science.1085837.

451 Rudnick, D. L., T. M. S. Johnston, and J. T. Sherman (2013), High-frequency internal
452 waves near the Luzon Strait observed by underwater gliders, *J. Geophys. Res.*, 118,
453 1–11, doi:10.1002/jgrc.20083.

454 Seim, H. E., D. P. Winkel, G. G. Gawarkiewicz, and M. C. Gregg (1999), A
455 benthic front in the Straits of Florida and its relationship to the structure
456 of the Florida Current, *J. Phys. Oceanogr.*, 29, 3125–3132, doi:10.1175/1520-
457 0485(1999)029j3125:ABFITSj2.0.CO;2.

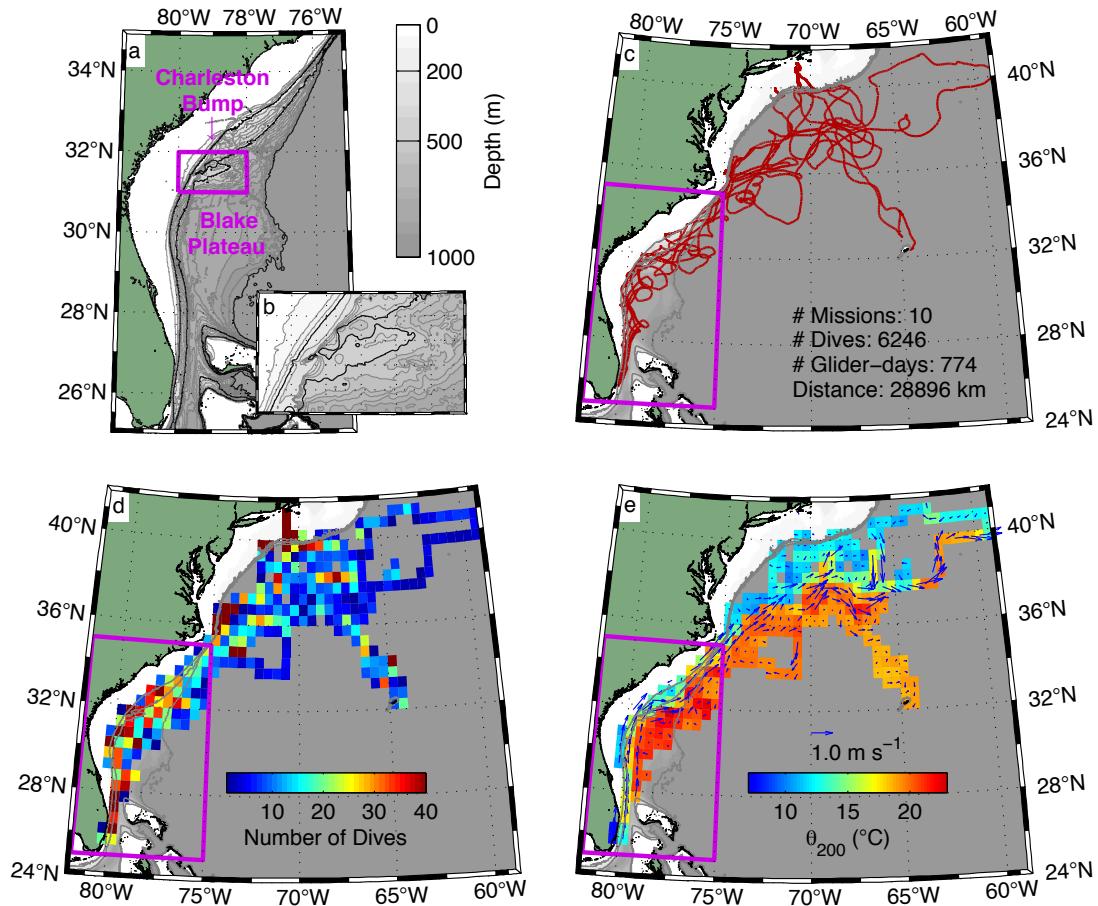
458 Sherman, J., R. E. Davis, W. B. Owens, and J. Valdes (2001), The autonomous underwater
459 glider “Spray”, *IEEE J. Oceanic Eng.*, 26(4), 437–446, doi:10.1109/48.972076.

460 Shoosmith, D. R., M. O. Baringer, and W. E. Johns (2005), A continuous record of
461 Florida Current temperature transport at 27°N, *Geophys. Res. Lett.*, 32, L23,603, doi:
462 10.1029/2005GL024075.

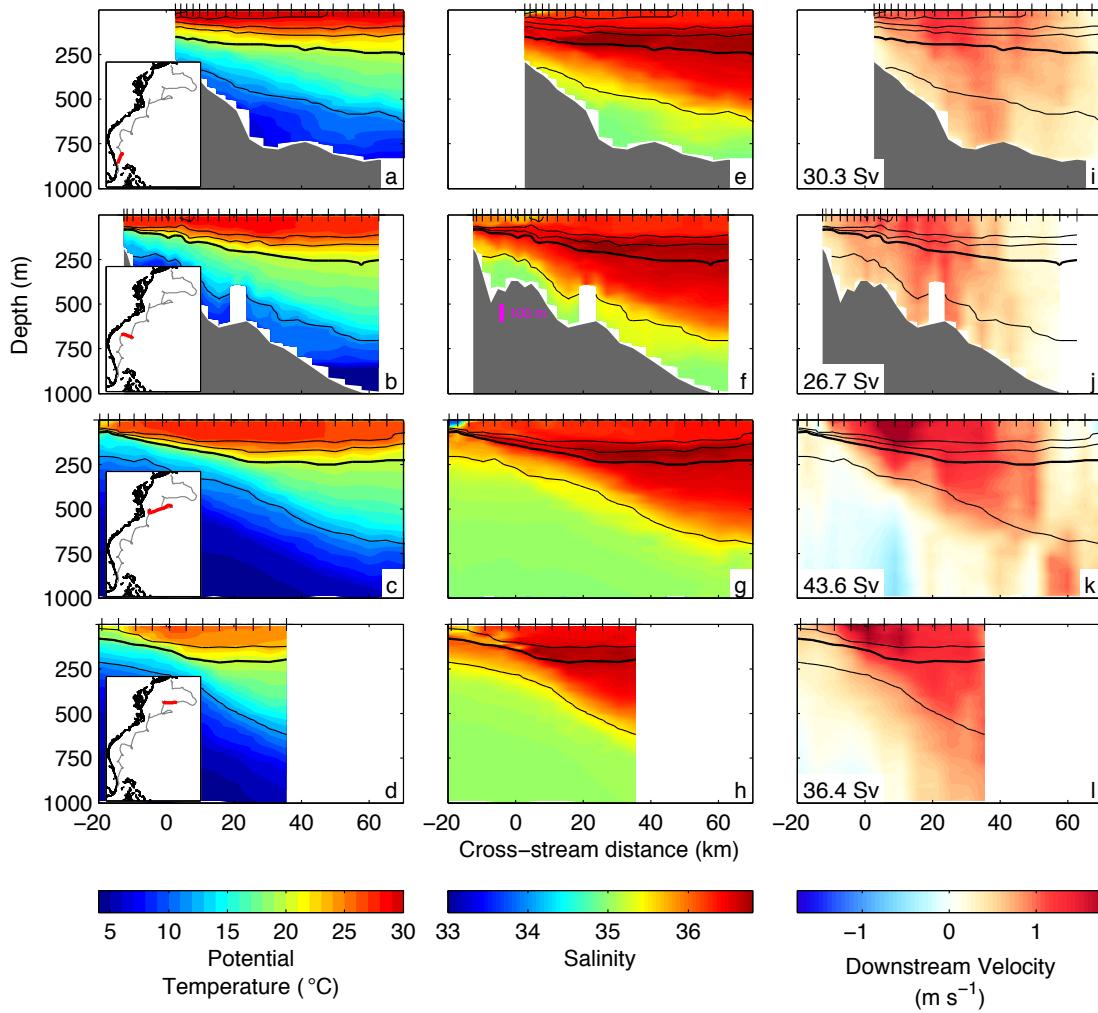
463 St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole,
464 and A. J. Watson (2012), Turbulence and diapycnal mixing in Drake Passage, *J. Phys.*
465 *Oceanogr.*, 42, 2143–2152, doi:10.1175/JPO-D-12-027.1.

466 Todd, R. E., D. L. Rudnick, and R. E. Davis (2009), Monitoring the greater San Pedro
467 Bay region using autonomous underwater gliders during fall of 2006, *J. Geophys. Res.*,
468 114, C06001, doi:10.1029/2008JC005086.

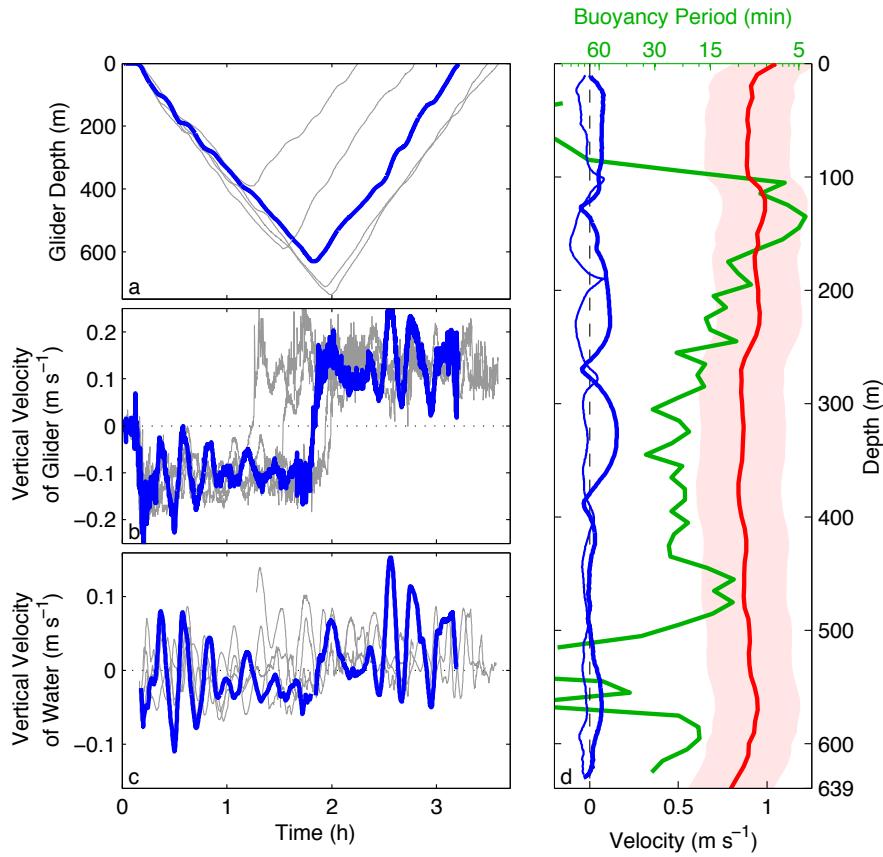
469 Todd, R. E., W. B. Owens, and D. L. Rudnick (2016), Potential vorticity structure in the
470 North Atlantic western boundary current from underwater glider observations, *J. Phys.*
471 *Oceanogr.*, 46(1), 327–348, doi:10.1175/JPO-D-15-0112.1.

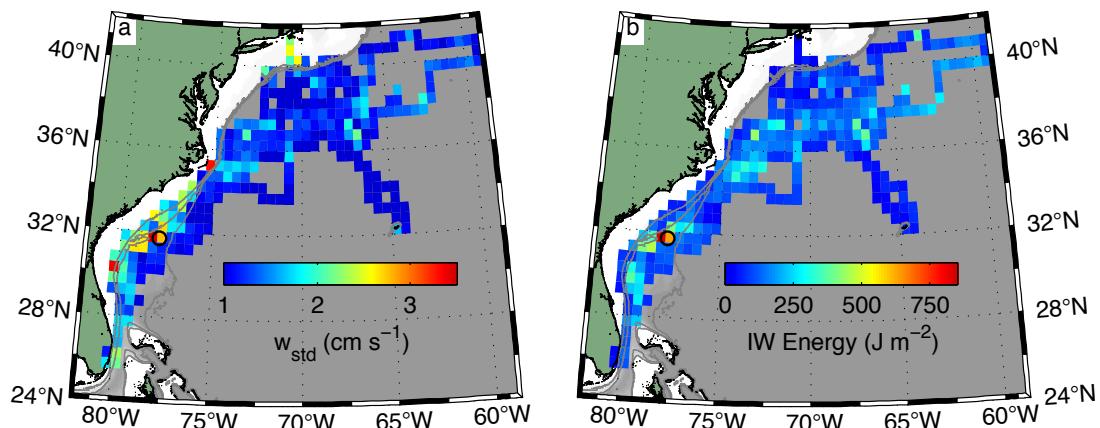

472 Todd, R. E., D. L. Rudnick, J. T. Sherman, W. B. Owens, and L. George (2017), Ab-
473 solute velocity estimates from autonomous underwater gliders equipped with Doppler
474 current profilers, *J. Atmos. Oceanic Technol.*, 34(2), 309–333, doi:10.1175/JTECH-D-
475 16-0156.1.

476 Toole, J. M., R. G. Curry, T. M. Joyce, M. McCartney, and B. Peña Molino (2011),
477 Transport of the North Atlantic Deep Western Boundary Current about 39°N, 70°W:
478 2004–2008, *Deep-Sea Res. II*, 58, 1768–1780, doi:10.1016/j.dsr2.2010.10.058.


479 Winkel, D. P., M. C. Gregg, and T. B. Sanford (2002), Patterns of shear and turbu-
480 lence across the Florida Current, *J. Phys. Oceanogr.*, 32, 3269–3285, doi:10.1175/1520-
481 0485(2002)032;3269:POSATA;2.0.CO;2.

482 Wunsch, C. (1998), The work done by the wind on the oceanic general circulation, *J. Phys.*
483 *Oceanogr.*, 28, 2332–2340, doi:10.1175/1520-0485(1998)028;2332:TWDBTW;2.0.CO;2.


484 Wyrtki, K., L. Magaarda, and J. Hager (1976), Eddy energy in the oceans, *J. Geophys.*
485 *Res.*, 81(15), 2641–2646, doi:10.1029/JC081i015p02641.


Figure 1. (a) Bathymetry of the outer continental shelf from the Florida Strait to near Cape Hatteras including the Blake Plateau and Charleston Bump (magenta box in c–e) with grey isobaths every 50 m and the 200-, 500-, and 1000-m isobaths drawn black. (b) Detail of the bathymetry of the Charleston Bump, corresponding to the magenta box in (a). The color scale for shaded bathymetry is common for all panels. (c) Trajectories of completed Spray glider missions in and near the Gulf Stream from 2004 through early 2017 with summary statistics. (d) Number of glider dives within $0.5^\circ \times 0.5^\circ$ boxes. (e) Grand averages of potential temperature at 200 m (θ_{200}) and vertically averaged currents in $0.5^\circ \times 0.5^\circ$ boxes. A scale vector is shown near 30°N , 70°W . In (c–e), the 200-, 500-, and 1000-m isobaths are drawn grey.

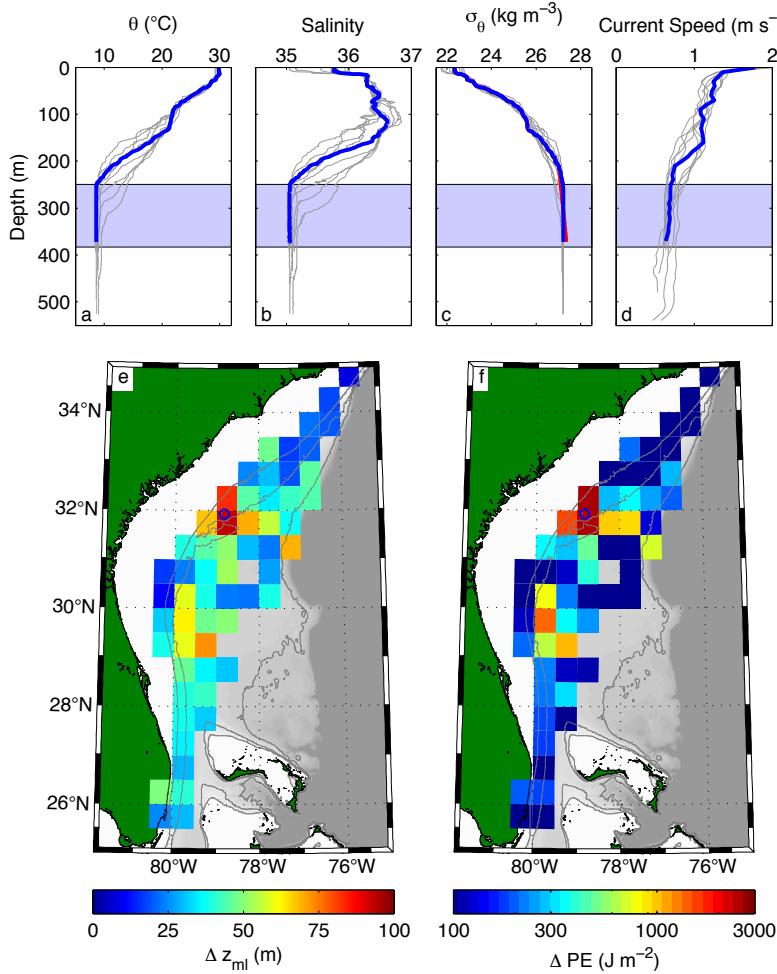

Figure 2. Example cross-Gulf Stream transects of (a–d) potential temperature, (e–h) salinity, and (i–l) downstream velocity from Spray glider mission 15A065. Transects are progressively farther downstream from top to bottom with inset maps in the left column showing the glider's track in grey with the corresponding transect highlighted in red. Black contours indicate isopycnals with a contour interval of 1.0 kg m^{-3} and the 26.0 kg m^{-3} isopycnal bold. Alongstream volume transports for each transect are given in (i–l), where the integration includes only positive (downstream) velocity estimates to isolate Gulf Stream flow. Grey shading indicates the location of the seafloor using the AD2CP's altimeter functionality and a 100-m vertical scale in included in (f). Tick marks on the upper axes of each panel indicate the locations of individual profiles.

Figure 3. Example observations of internal waves from mission 15A065. Timeseries of (a) glider depth, (b) raw vertical velocity of the glider ($\frac{dz}{dt}$), and (c) inferred vertical velocity of the water, respectively. Dive 137 is shown blue with the preceding and following two dives shown grey. (d) Vertical profiles from dive 137 of squared Brunt-Väisälä frequency (N^2) with oscillation period denoted (green), vertical velocity during the ascending (heavy blue) and descending (thin blue) portions of the dive (blue, from panel c), and horizontal current speed (red) with shading denoting the root-mean-square error in velocity at the bottom of profiles from *Todd et al. [2017]*. The location of dive 137 is shown in Fig. 4.

Figure 4. Amplitude and total energy of high-frequency internal waves. (a) Standard deviations of vertical velocities from individual glider dives averaged in $0.5^\circ \times 0.5^\circ$ boxes. (b) Vertically integrated internal wave energy averaged in the same boxes. Bathymetry is as in Fig. 1 with the 200-, 500-, and 1000-m isobaths drawn grey. The black circles are centered on the location of the dive focused on in Fig. 3.

Figure 5. Bottom mixed layers over the Blake Plateau and Charleston Bump. Example profiles of (a) potential temperature θ , (b) salinity, (c) potential density σ_θ , and (d) horizontal current speed from mission 157055 in the vicinity of 32°N , 79°W . Profiles from dive 182 are shown blue with the preceding and following four dives shown grey. Blue shading denotes the bottom mixed layer for dive 182. The red density profile in (c) is an estimated ‘pre-mixed’ profile for dive 182 with a density gradient of $\frac{d\sigma_\theta}{dz} = -0.002 \text{ kg m}^{-3} \text{ m}^{-1}$ below 217 m. (e) Observed bottom mixed layer thicknesses and (f) estimated changes in potential energy ΔPE required to form the mixed layers averaged in $0.5^\circ \times 0.5^\circ$ boxes. Only the region southwest of Cape Hatteras where gliders dove near the seafloor (inset region in Fig. 1) is shown. The blue circles in (e) and (f) show the location of the profiles in (a-d).