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Western boundary currents are important oceanic components of the Earth’s climate system. 9 

In the subtropics, the Gulf Stream, Kuroshio, East Australian Current, Agulhas Current, and 10 

Brazil Current contribute to poleward heat transport. Low latitude western boundary currents, 11 

such as the Somali Current, Mindanao Current, and New Guinea Coastal Undercurrent, are 12 

key connections between the subtropical gyres and Equatorial current systems. Western 13 

boundary currents are generally narrow (O(100) km wide) with strong currents (O(1) m s
-1

) 14 

and large property gradients, making them a challenge to both observe and simulate. 15 

Autonomous underwater gliders (Rudnick, 2016) that cross strong subsurface gradients 16 

(i.e., fronts) associated with western boundary currents provide high-resolution observations 17 

that strongly impact numerical simulations of those currents. Such simulations are not well 18 

constrained by other assimilated observations that either do not capture the subsurface 19 

structure of the fronts (e.g., satellite observations) or have coarser spatial resolution. Rudnick 20 

et al. (2015) and Schönau et al. (2015) previously provided evidence that assimilation of 21 

glider observations led to improved state estimates of the Loop Current and Mindanao 22 

Current, respectively. We demonstrate the impact of real-time glider observations on an 23 

operational forecast model’s representation of the Gulf Stream. 24 



  

Spray underwater gliders (Sherman et al., 2001; Rudnick et al., 2016) are currently 25 

surveying across the Gulf Stream between Florida and New England (Todd, 2017). Gliders 26 

are advected downstream as they cross the Gulf Stream and are navigated upstream in more 27 

quiescent waters on the flanks of the boundary current. Due to inherent Gulf Stream 28 

variability, gliders are generally unable to occupy repeat transects. Figure 1 illustrates how 29 

these glider observations fill a 1500-km-long gap between sustained measurements of the 30 

Gulf Stream’s subsurface structure in the Florida Strait (e.g., Baringer and Larsen, 2001) and 31 

those southeast of New York and New Jersey (e.g., Flagg et al., 2006; Molinari, 2011). With 32 

float density decreasing dramatically within the Gulf Stream and on its shoreward side, the 33 

Argo program cannot (and is not intended to) thoroughly sample the Gulf Stream along the 34 

continental margin; gliders can ably fill this role.  35 

Spray gliders in the Gulf Stream typically measure temperature, salinity, absolute velocity 36 

(Todd et al., 2017), chlorophyll a fluorescence, and acoustic backscatter. Resolution between 37 

profiles is a function of profiling depth with profiles to 1000 m separated by approximately 5 38 

km in cross-stream distance and 5.5 hours in time (see Todd, 2017, for example cross-Gulf 39 

Stream transects). Real-time observations are returned via the Iridium satellite network with 40 

temperature and salinity measurements distributed via the Integrated Ocean Observing 41 

System (IOOS) Glider Data Assembly Center (DAC) and Global Telecommunications 42 

System (GTS) and by email to the Naval Oceanographic Office (NAVOCEANO) for 43 

operational usage.  44 

NAVOCEANO produces daily 4-day forecasts for a US East Coast domain using the 45 

regional Navy Coastal Ocean Model (NCOM US East) that assimilate all available 46 

observations in the region, including Spray glider data, using the Navy Coupled Ocean Data 47 

Assimilation (NCODA) system. Assimilation of subsurface observations collected by gliders 48 

causes substantial shifts in the location of the Gulf Stream front between successive forecasts 49 



  

(e.g., Figure 2). In November 2015, inclusion of glider observations collected on 12 50 

November shifted the simulated location at which the Gulf Stream separates from the 51 

continental margin near Cape Hatteras, NC (as indicated by the 15 °C isotherm intersecting 52 

the 200-m isobath) southwestward by approximately 15 km (Figures 2a and 2c). Southwest of 53 

Cape Hatteras, inclusion of glider observations collected on 7 March 2017 shifted a meander 54 

crest (again indicated by the 15 °C isotherm) southwestward by roughly 70 km (Figures 2b 55 

and 2d). For both time periods, simulated temperature profiles better agree with observations 56 

following assimilation of additional observations (Figures 2e and 2f).   57 

Autonomous underwater glider surveys fill a critical gap in sustained subsurface 58 

monitoring of the Gulf Stream along the US East Coast. Spray glider observations have 59 

demonstrated impact on NAVOCEANO’s operational modelling of the Gulf Stream. 60 

Previous and ongoing surveys with gliders in western boundary currents globally (e.g., Davis 61 

et al., 2012; Rainville et al., 2013; Rudnick et al., 2013, 2015; Schaeffer and Roughan, 2015; 62 

Schönau et al., 2015; Todd et al., 2016; Krug et al., 2017; Schönau and Rudnick, 2017; Todd, 63 

2017) promise to provide key observational constraints for a variety of numerical modelling 64 

efforts.  65 
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Figure 1: Gulf Stream observations along the US East Coast. Tightly spaced mean sea surface 140 

height contours (grey) denote the mean position of the Gulf Stream. The percentage of 141 

nominal Argo coverage (one float per 3°´3° box) during 2008-2014 is shaded (courtesy of 142 

P.E. Robbins, WHOI). Green lines indicate the locations of sustained subsurface observations 143 

in the Florida Strait, along the AX10 XBT line, and along the M/V Oleander line. Blue lines 144 

indicate trajectories of ten Spray glider missions completed through January 2017. The 200-145 

m isobath (black) denotes the edge of the continental shelf. 146 
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Figure 2: Impacts of real-time Gulf Stream glider observations on NAVOCEANO’s 149 

operational simulations for (top) 13 November 2015 and (bottom) 8 March 2017. (a,b) 150 

Temperature at 200 m (color shading) from the forecast runs 24 hours before the indicated 151 

dates. (c,d) Nowcast temperature at 200 m (color shading) for the same dates. In (a-d), real-152 

time glider observations of temperature at 200 m that were available for assimilation are 153 

shown by the colored markers along the gliders’ magenta trajectories (earliest observations 154 

shown at the southern boundary are from 3 November 2015 and 2 March 2017, respectively); 155 

the 15 °C isotherm is black, and the 200-m isobath is grey. (e,f) Temperature profiles at the 156 

locations indicated by the magenta stars in (c,d); midpoints of glider profiles (black) were 157 

sampled at (e) 10:24 on 12 November 2015 and (f) 07:40 on 7 March 2017, pre- and post-158 

assimilation simulated profiles (blue and red) are from the same model runs shown in (a-d). 159 
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