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ABSTRACT. The main theorem states that if K is a finite CW-complex with
finite fundamental group G and universal cover homotopy equivalent to a prod-
uct of spheres X, then G acts smoothly and freely on X x S™ for any n greater
than or equal to the dimension of X. If the G-action on the universal cover of
K is homologically trivial, then so is the action on X x S™. Unlii and Yalgin
recently showed that any finite group acts freely, cellularly, and homologicially
trivially on a finite CW-complex which has the homotopy type of a product
of spheres. Thus every finite group acts smoothly, freely, and homologically
trivially on a product of spheres.

1. INTRODUCTION

We state our main theorem, give a short survey of free actions on a product of
spheres, give the title of this paper as a corollary, and finally give a proof of the
theorem below.

Theorem 1. Suppose K is a finite CW-complex with finite fundamental group G.
Suppose its universal cover K is homotopy equivalent to a product of spheres

X = 8™ x o x G

with allm; > 1. Then for anyn > dim X, G acts smoothly and freely on X x S™. If
G acts homologically trivially on K, then the G-action on X x S™ is homologically
trivial.

The study of free actions of finite groups on spheres was a motivation for early
developments in algebraic K-theory and a playground for surgery theory. The
quintessential result is due to Madsen-Thomas-Wall [MTW76]: a finite group acts
freely on some sphere if and only if for all primes p, all subgroups of order 2p and
p? are cyclic.

It is a natural generalization to investigate free actions of finite groups on a
product of spheres. We always assume our spheres are simply-connected, that is, a
sphere is S™ for n > 1. Let G be a finite group. The rank of G is the largest integer
k so that there exists a prime p and a subgroup of G isomorphic to (Z/p)*. The
free rank of G is the minimal k so that G acts freely on a k-fold product of spheres.
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The rank conjecture states that for finite groups whose rank is bigger than one, the
rank of G equals the free rank of G. A full solution to this conjecture seems elusive.

A secondary conjecture is that every finite group acts freely and homologically
trivially on a product of spheres. Here are four motivations for the conjecture
and in particular for preferring homologically trivial actions. First, homologically
trivial actions arise naturally in the study of free group actions on a sphere. The
Lefschetz fixed point theorem shows that every free action on an odd-dimensional
sphere is homologically trivial and that free actions on even-dimensional spheres
are rather dull — the only nontrivial group that arises is cyclic of order two. Second,
in most of the examples where the inequality rk G > frk G has been proved, the
group actions constructed have been homologically trivial. For example, a faithful,
finitely generated C[G]-module W has fizity f if f = max{dim W9 | g € G,g # e}.
It is easy to show that f+1>rkG. If f = 0, then G acts freely on S(W), while if
f is 1, respectively 2, it has been recently shown in [ADU04], respectively [UY10],
that G acts freely and homologically trivially and on a product of two, respectively
three, spheres. Also, the actions constructed in [Ham06] are homologically trivial.
Third, there is a homotopy theoretic reason for preferring homologically trivial
actions. If a finite group G of order ¢ acts freely on a simply-connected Zq)-local
CW-complex Z, then the action is homologically trivial if and only if the space Z
(with the original G-action) is equivariantly homotopy equivalent to the G-space
Z; x EG where Z; denotes the space Z with a trivial G-action. This observation
is key for the technique of propagation of group actions [DW96]. Finally, it is not
difficult to show that any finite group G acts freely on a product of S3’s. Indeed
G acts freely on [[,ci1S® where % is given a free (g)-action and #1.5% is the co-
induced G-space, 1S = map (G, S?). Alas, this action is far from homologically
trivial.

The question as to whether any finite group acts freely and homologically trivially
was mentioned as an open question in [UY10] and [('Y13b] and was mentioned by
the author as an open problem in the problem session of the 2005 BIRS conference
Homotopy and Group Actions. Motivated by this, Ozgiin Unlii and Ergiin Yalcin
proved the following theorem.

Theorem 2 ([UY13a]). Let G be a finite group. If G has a faithful complex repre-
sentation with fizity f, then G acts freely, cellularly, and homologically trivially on
a finite complex which has the homotopy type of an (f + 1)-fold product of spheres.

Although we only use the statement of Theorem 2, we discuss its proof in or-
der to contrast its algebraic topological techniques with the geometric topological
techniques needed for our own result. Let W be a faithful, finitely generated CG-
module with fixity f. Then G acts freely and homologically trivially on the Stiefel
manifold Vy41(W) which has both the homology and the rational homotopy type
of an (f + 1)-fold product of spheres. Unlii and Yalgin use this as inspiration and
inductively construct finite G-CW-complexes X1, Xo, ..., X1 with X; = V(W)
and so that X; has the homotopy type of an i-fold product of spheres and whose
isotropy is contained in the isotropy of V;(W). The basic idea (but oversimplified)
is that Stiefel manifolds are iterated sphere bundles, and any sphere bundle over a
finite complex becomes fiber homotopically trivial after a finite Whitney sum since
the stable homotopy groups of spheres are finite.
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Since every finite group admits a faithful representation complex representation
with finite fixity (take V' = C[G]), the following is a corollary of our main theorem
and the theorem of Unlii and Yalgn.

Corollary 3. A finite group acts smoothly, freely, and homologically trivially on a
product of spheres.

Our main theorem sheds some light on the rank conjecture, albeit at the cost of
an extraneous sphere. Define the homotopy free rank hfrk G to be the minimal k so
that G acts freely and cellularly on a finite CW-complex having the homotopy type
of a k-fold product of spheres. Progress has been made on the variant conjecture
that rk G = hfrk G for groups whose rank is greater than one. In particular, Adem
and Smith [ASO1] proved this for rank 2 p-groups and Klaus [Klall] proved it for
rank 3 p groups with p odd.

As a corollary of our main theorem, one has:

Corollary 4. frkG < 1+ hfrk G for any finite group G.

Given a free action of a finite group on a CW-complex Z having the homotopy
type of a k-fold product of spheres, one wonders why the surgery theoretic machine
does not apply to construct a free action on an honest k-fold product of spheres.
It is not difficult to show that the orbit space is a Poincaré complex, but there do
not seem to be effective techniques to determine if the Spivak bundle reduces to a
vector bundle.

2. PROOF OF THEOREM 1

We now embark on the proof of our main theorem. Suppose K is a finite CW-
complex with finite fundamental group G and universal cover homotopy equivalent
to a product of spheres X. The proof is really quite easy; one shows that the
universal cover of the boundary of a regular neighborhood of K is a product of
spheres. However there are some details which we divide into eight steps.

Step 1. We may assume that the dimension of K equals the dimension of X.
Note: This step may be omitted, if the reader is content with the stronger hy-
pothesis that n > max{dim K, dim X }.
Step 1 follows from the lemma below.

Lemma 5. Suppose L is a finite connected CW-complex with finite fundamental
group G. Suppose the universal cover L is homotopy equivalent to a finite CW-
complex Y whose dimension is 3 or greater. Then L is homotopy equivalent to a
finite CW-complex whose dimension equals that of Y.

Proof. Corollary 5.1 of Wall [Wal66] states that for a finite connected complex L
and an integer m > 3, L has the homotopy type of a finite complex of dimension
m if and only if H*(L;Zm L) = 0 for all i > m. Let 7, : ZG — Z be the Z-module
map 7 (Y ngg) = n.. For m L = G and L both finite, 7, induces an isomorphism
Homgzg (C. (L), ZG) — Homg(C.(L),Z), ¢ — 7 o @ and hence an isomorphism
H*(L;ZmL) =N H*(L). Since H*(L) = H*(Y), Wall’s condition is verified. O

Step 2. We may assume K is a finite simplicial complex whose dimension equals
the dimension of X.
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Any finite CW-complex is homotopy equivalent to a finite simplicial complex of
the same dimension. This is a consequence of the simplicial approximation theorem
and the homotopy extension property; see [Hat02, Theorem 2C.5]. We thus replace
the K in our theorem by the homotopy equivalent finite simplicial complex.

Step 3. Let N(K) be a regular neighborhood of a simplicial embedding of K in
ReFdimX+1 - Then N(K) is a compact PL-manifold with boundary and the em-
bedding K — N(K) is a homotopy equivalence.

This is all standard PL-topology [RS82, Chapter 3], but we will briefly review.
By general position a constant map K — R?+dim X+1 is homotopic to a simplicial
embedding K «— R*"+4imX+1 Take two barycentric subdivisions, and define N(K)
to be the union of all closed simplices of (R*T4mX+1)" which intersect K. Then
this is a regular neighborhood of K, a compact P L-manifold with boundary which
collapses onto K. In particular the inclusion K — N(K) is a homotopy equivalence
and N(K) — ON(K) is an open subset of RrFdimX+1,

Step 4. mON(K) = m N(K) provided dim N(K) — dim K > 2.

«

Factor the inclusion as ON(K) — (N(K) — K) LN N(K). We show that « is
a homotopy equivalence by a direct argument and that 5 induces an isomorphism
on m; by general position. An explicit reference for the fact that « is a homotopy
equivalence could not be found, but a proof is easily supplied. Any point = €
N(K) — K is contained in a closed simplex with vertices vy, ..., vq,w1,. .., wp with
the v; € K and the w; € N(K) — K and can be expressed as € = ) s;v; + ) t;w;
with 0 < s;,t; <1, Y s;+>.t; =1, and > t; > 0. Define a deformation retract
H: (NK)-K)xI— NK)- K from N(K)— K to O9N(K) by H(z,t) =

(1= )3 siv; + (1 it ﬁ) S tw;.

When dim N(K) — dim K > 2, transversality shows that 8, : m(N(K) — K) —
m1N(K) is an isomorphism. Indeed, any element of 1 N(K') can be represented by
a map S! — N(K) transverse to K, hence whose image is disjoint from K, and
likewise for maps (D?,S') — (N(K), N(K) — K).

Step 5. Give N(K) the structure of a smooth manifold with boundary so that the
smooth structure on its interior is diffeomorphic with that given by considering
N(K) — ON(K) as an open subset of R?+dimX+1,

Note: If the reader is content with actions that are PL instead of smooth, then

this step may be omitted.

Lemma 6. Let M be a PL-manifold with boundary and let 3; be a smooth structure
on M; = M —0M inducing the given PL-structure. Then there is a smooth structure
X on M so that (M;,3|n;,) is diffeomorphic to (M;, X;).

Proof. We use the Fundamental Theorem of Smoothing Theory! which asserts that
the smooth tangent bundle gives a bijection

O : S(M) — Lift(7ar)

where S(M) is the set of isotopy classes of smooth structures on a PL-manifold M,
where 7y : M — BPL is a classifying map for the PL-tangent bundle of M, and

IThe original source for the proof of the Fundamental Theorem is [HM74, Theorem I1.4.1],
at least for manifolds without boundary. For a discussion of how this applies to manifolds with
boundary, see [KS77, Essay IV, Section 2]. For an analogous statement about smoothing topo-
logical manifolds, see [KS77, Theorem IV.10.1].
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where Lift(7y/) is the set of vertical homotopy classes of lifts of Tp7. A lift is a map
7 making the diagram
BO
5 2
T 7
7
7 Tm
M —— BPL
commute and a vertical homotopy is a homotopy through lifts. Furthermore, we
assume the map 7 (induced by the forgetful map) is a fibration. Given a smooth
structure (M, X) there is a lift 7 which classifies the smooth tangent bundle and
any two lifts are vertically homotopic. Then one defines ®[M, 3] = [7].
To apply the Fundamental Theorem, consider the following diagram:

™

M- 2 5 BO

b
F
7 T e ke
Ve
- ™
M —— BPL

Here 4 is the inclusion, r is a homotopy inverse for i (this exists since OM has a
collar in M — see [RS82]), and 7; is a classifying map for the smooth tangent bundle
of M;. One may assume that mo7; = 77 04 by the homotopy lifting property. Then
since T oT; 01 = Ty 01071 =~ Tpr, the map 7; o r is homotopic to a lift 7 of 7.
Apply the Fundamental Theorem, first to M to give a smooth structure and then
to M; to show the diffeomorphism statement. O

Step 6. Perturb the composite homotopy equivalence X — K - N (K), =
(N(K) — ON(K)) to a smooth embedding X — N(K),. Let N(X) be a closed

—

tubular neighborhood of X in N(K),. Show dN(X) is diffeomorphic to X x S™.

There is a homotopy equivalence X — K by hypothesis. The homotopy equiv-

alence K — N (K), is the composite of the universal covers of the inclusion K —
N(K) and the homotopy equivalence r : N(K) — N(K); from Step 5. By gen-
eral position (see, e.g., [Hir94, Chapter 2, Theorem 2.13]) the composite homo-

topy equivalence X — K -5 N (K), is homotopic to a smooth embedding since

dim N(K), > 2dim X + 1.
We next will show that the normal bundle of the embedding is trivial and
conclude that ON(X) is diffeomorphic to X x S™. Let v be the normal bundle

—~

v(X — N(K),;). Note TR is trivial since N(K); is the universal cover of an

open subset of Euclidean space. Then

n+dim X+1

veTx = |X28

TN,
where € represents the rank [ trivial bundle. Note also that 7gn; @ e = ™1 since
the normal bundle of §™ C R™ %1 is trivial, hence

Tx @Ek — (TS"I @5) X oo X (TS"k @5) o~ Edimxﬁ*k.

Thus
v ®€d1m X+k ~ vETY B Ek o~ 8n+d1m X+k+1.

Thus, since rtkv > dim X, v is trivial (see, e.g., [Hus94, Theorem 9.1.5]).
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The manifold N(K); inherits a Riemannian metric since it covers an open subset
of Euclidean space. Then ON (X)) is diffeomorphic to the sphere bundle S(v), which
is in turn diffeomorphic to X x S™, since v is trivial.

Step 7. Apply the h-cobordism theorem to the triad

—~ e

(N(K) — N(X)i; ON(K),0ON (X)),
and conclude that there is a free action on X x S™.

Clearly ]V(\I?) — N(X); is a smooth compact manifold with disjoint boundary
components N (K) and ON(X). We next show that the manifold and each of the

boundary components are simply-connected. Step 4 shows that ON(K) is simply-
connected, and ON(X) = X x S™ is simply-connected. We claim the composite
N(K)—- N(X); < N(K)— X - N(K)

is an isomorphism on fundamental groups, hence the domain is simply-connected.
The first map is a homotopy equivalence since N(X) is a tubular neighborhood of
X and the second map induces an isomorphism on fundamental groups by general
position, as in Step 4.

To show that the simply-connected compact manifold triad is an
h-cobordism, it suffices to show that the relative integral homology of the man-
ifold relative to one of the boundary components vanishes. But

H.(N(K) — N(X)1, ON(X)) &5 HA(N(K), N(X)) < H(N(K), X) =0

where the first isomorphism is by excision, the second is by homotopy invariance,
and the third is by hypothesis.
Our simply-connected smooth h-cobordism is diffeomorphic to a product (see

[Mil65]). Thus, 8]7(\/[() is diffeomorphic to N (X) which, by Step 6, is diffeomor-
phic to X x S™. Thus there is a diffeomorphism f : IN(K) — X x S™. We thus
have a free G-action on X x S™ where g(z,y) := f(9(f~*(z,9))).

e

Step 8. Analyze the action on homology of IN(K).

We start by presenting a careful argument for the following: N(K); is an open

subset of Euclidean space, hence orientable, hence so are N(K) and N(K) and the
G-action on N(K) is orientation-preserving.

A real vector bundle over a space B determines an orientation double cover
B, — B. The bundle is orientable if B, — B has a section. A choice of section is
called an orientation. Given a map f : B’ — B covered by a map of vector bundles,
the orientation double cover of B’ is the pullback of the orientation double cover of
B along f. An orientation of a manifold (possibly with boundary) is an orientation
of its tangent bundle.

Let M be a manifold with boundary, M; = M —0M, and let C be an open collar
of the boundary. An orientation on M; determines an orientation on Cj, hence one
on C, since C ~ C;. The orientations on M; and C agree on their intersection Cj,
hence determine an orientation on M = M; U C. A regular G-cover M — M is
covered by a map of tangent bundles, hence an orientation of M determines one of
M, and the G-action preserves the orientation on M.
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Orient RY™X+n+1 " This orients N(K); and hence, by the above, N(K) and

—

N(K). Since N(K) is compact, there is a fundamental class [V (K)] and a Poincaré-
Lefschetz isomorphism

—~ —_—~

N[N (K)] : HEmX+n+1=1(N(K), N (K)) — H;(N(K))

for all 4. Since the G-action preserves the orientation by the above paragraph, G
leaves the fundamental class invariant.

If G acts on a pair of spaces (X,Y), give H;(X,Y), H'(X,Y) and
H;(X,Y)* := Homg(H;(X,Y), Z) the structure of left ZG-modules using, for g € G,
the maps a — g.a, (o — (g71)*a), and (p — (a — ¢((g71).a))) respectively. With
these conventions and with ¢ € Hy(X,Y) invariant under G, the following maps
are maps of left ZG-modules:

Nla] : H{(X,Y) — Hy_s(X),
UCT : HY(X,Y) — Hy(X,Y)* (@~ (a— (a,a))).

If the homology of H;(X,Y) is a finitely generated free abelian group for all j, then
the UCT map is an isomorphism.

Thus for all ¢ and for N = dim X + n + 1 = dim N(K), we have isomorphisms
of ZG-modules

— —_—~ —_—~

Hy(K) = Hi(N(K)) = HY7(N(K),ON(K)) = Hy_i(N(K),ON(K))",

Now if the G-action on K is homologically trivial, then we conclude that the G-

—~

action on Hy_;(N(K),ON(K))* is trivial, and since the relative homology group is
free abelian, the G-action on H,(N(K),dN(K)) is trivial. By looking at the exact

——

sequence of the pair (N(K),ON(K)), one concludes that for all ¢ there is a short
exact sequence of ZG modules

e~

where A; and B; have trivial G-actions. Apply — ® Q and use that all the QG-
modules are projective (Maschke’s Theorem) to conclude that H;(ON(K)) ® Q =

A; ® Q& B; @ Q has trivial G-action. Hence the submodule H,;(ON(K)) also has
trivial G-action. This completes the proof of our main theorem.

Remark 7. The G-action on H,(X x S™) could be completely analyzed even when
the action of G on H.,(K) is nontrivial.

In the statement of our main theorem, the product of spheres could be replaced
by any smooth, closed, stably parallelizable manifold. It is also true that if a finite
group G acts cellularly on a finite CW-complex Z with isotropy of rank at most
one, and if Z has the homotopy type of a closed, smooth, parallelizable manifold
X, then G acts freely and smoothly on X x S™ x S™ for some m,n > 0. This
follows from the first sentence of this paragraph and Theorem 1.4 of Adem and
Smith [AS01] which implies that G acts freely and cellularly on a finite complex
Y ~ Z x S™ for some m > 0.
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