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Abstract—We consider the decentralized control of radial
distribution systems with controllable photovoltaic inverters and
energy storage resources. For such systems, we investigate the
problem of designing fully decentralized controllers that mini-
mize the expected cost of balancing demand, while guaranteeing
the satisfaction of individual resource and distribution system
voltage constraints. Employing a linear approximation of the
branch flow model, we formulate this problem as the design of a
decentralized disturbance-feedback controller that minimizes the
expected value of a convex quadratic cost function, subject to ro-
bust convex quadratic constraints on the system state and input.
As such problems are, in general, computationally intractable,
we derive a tractable inner approximation to this decentralized
control problem, which enables the efficient computation of an
affine control policy via the solution of a finite-dimensional conic
program. As affine policies are, in general, suboptimal for the
family of systems considered, we provide an efficient method to
bound their suboptimality via the optimal solution of another
finite-dimensional conic program. A case study of a 12 kV
radial distribution system demonstrates that decentralized affine
controllers can perform close to optimal.

Index Terms—Distributed energy resources, energy storage,
solar power generation, decentralized control, volt/var control.

I. INTROUDCTION

The increasing penetration of distributed and renewable
energy resources introduces challenges to the operation of
distribution systems, including rapid fluctuations in bus voltage
magnitudes, reverse power flows at distribution substations,
and deteriorated power quality due to the intermittency of
supply from renewables. These challenges are exasperated by
the fact that traditional techniques for distribution system man-
agement, including the deployment of on-load tap changing
(OLTC) transformers and shunt capacitors, cannot effectively
deal with the rapid variation in the power supplied from
renewable resources [1]. In this paper, we aim to address such
challenges by developing a systematic approach to the design
of decentralized feedback controllers for distribution networks
with a high penetration of distributed solar and energy storage
resources, in order to minimize the expected cost of meeting
demand over a finite horizon, while respecting network and
resource constraints.

Related Work: Although current industry standards require
that photovoltaic (PV) inverters operate at a unity power factor
[2], the latent reactive power capacity of PV inverters can be
utilized to regulate voltage profiles [3]–[8], and reduce active
power losses [9]–[18] in distribution networks. A large swath
of the literature on the reactive power management of PV
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inverters prescribes the solution of an optimal power flow
(OPF) problem to determine the reactive power injections of
PV inverters in real time [3]–[15]. The resulting OPF problem
must be repeatedly solved over fast time scales (e.g., every
minute) to accommodate the rapid fluctuations in the active
power supplied from the PV resources. In the presence of a
large number of PV resources, the sheer size of the resulting
OPF problem that needs to be solved, and the communication
requirements it entails, gives rise to the need for distributed op-
timization methods [5]–[13]. In particular, there has emerged a
recent stream of literature developing distributed optimization
methods, which enable the real-time control of reactive power
injections of PV inverters using only local measurements of
bus voltage magnitudes [5]–[8]. Under the assumption that
the underlying OPF problem being solved is time-invariant,
such methods are guaranteed to asymptotically converge to
the globally optimal reactive power injection profile. There
is, however, no guarantee on the performance or constraint-
satisfaction of these methods in finite time. The aforemen-
tioned methods can be interpreted as being fully decentralized,
in that they do not require the explicit exchange of information
between local controllers. Instead, the local controllers can
be interpreted as communicating implicitly through the distri-
bution network, which couples them physically. There exists
another class of distributed optimization methods, which rely
on the explicit exchange of information between neighboring
controllers through a digital communication network [9]–[13].
Additionally, there exists a related stream of literature, which
aims to explicitly treat uncertainty in renewable supply and
demand by leveraging on methods grounded in stochastic
optimization [16]–[18].

In addition to the reactive power control of PV inverters, one
can imagine a future power system in which a broader class
of distributed energy resources with storage capability (e.g.,
electric vehicles, standalone battery packs) are actively con-
trolled to mitigate voltage fluctuations and distribution system
losses [1], [19]–[26]. As the set of feasible power injections
to and withdrawals from energy storage systems are naturally
coupled across time, the problem of managing their operation
amounts to a multi-period, constrained stochastic control prob-
lem [1], [21]–[26]. In the presence of network constraints and
uncertainty in demand and renewable supply, the calculation
of the optimal control policy is, in general, computationally
intractable. These computational difficulties in control design
are underscored by a recent report from the U.S. Department
of Energy pointing to an apparent lack of effective control
methods capable of “integrating [PV] inverter controls with
control of other DERs or the management of uncertainty
from intermittent generation” [27][p. 31]. The development
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of computational methods to enable the tractable calculation
of feasible control policies with computable bounds on their
suboptimality is therefore desired, and stands as the primary
subject of this paper.

Contribution: The setting we consider entails the decentral-
ized control of distributed energy resources spread throughout
a radial distribution network, subject to uncertainty in demand
and renewable supply. The power flow equations over the
radial network are described according to a linearized branch
flow model. Our objective is to minimize the expected amount
of active power supplied at the substation required to meet
demand, while guaranteeing the satisfaction of network and
individual resource constraints. For the setting considered,
this is technically equivalent to minimizing the expected
active power losses plus the terminal energy stored in the
distribution network. The determination of an optimal de-
centralized control policy for such problems is, in general,
computationally intractable, due to the presence of stochastic
disturbances and hard constraints on the system state and
and input. Our primary contributions are two-fold. First, we
develop a convex programming approach to the design of
decentralized, affine disturbance-feedback controllers. Second,
as such control policies are, in general, suboptimal, we provide
a technique to bound their suboptimality through the solution
of another convex program. We verify that the decentralized
affine policies we derive are close to optimal for the problem
instance considered in our case study.

Organization: The remainder of this paper is organized as
follows. Section II describes our models of the distribution
network and the distributed energy resources. Section III for-
mally states the decentralized control design problem. Section
IV describes an approach to the computation of decentralized
affine control policies via a finite-dimensional conic program.
Section V describes an approach to the tractable calculation
of guaranteed bounds on the suboptimality incurred by these
affine control policies via another finite-dimensional conic
program. Section VI demonstrates the proposed techniques
with a numerical study of a 12 kV radial distribution network.
Section VII concludes the paper.

Notation: Let R denote the set of real numbers. Let ei be
the ith real standard basis vector, of dimension appropriate to
the context in which it is used. Denote by x′ the transpose of
vector x ∈ Rn. For any pair of vectors x = (x1, . . . , xn) ∈
Rn and y = (y1, . . . , ym) ∈ Rm, we define their concate-
nation as (x, y) = (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. Given
a process {x(t)} indexed by t = 0, · · · , T − 1, we denote
by xt = (x(0), · · · , x(t)) its history up until and including
time t. We denote by In the n-by-n identity matrix, and by
0m×n the m-by-n zero matrix. Subscripts are omitted when
the underlying matrix dimension is clear from the context. We
denote the trace of a square matrix A by Tr (A). Finally, we
denote by K a proper cone (i.e., convex, closed, and pointed
with a nonempty interior). Let K∗ denote its dual cone. We
write x �K y to indicate that x − y ∈ K. For a matrix A
of appropriate dimension, A �K 0 denotes its columnwise
inclusion in K.

II. NETWORK AND RESOURCE MODELS

A. Branch Flow Model

Consider a radial distribution network whose topology is
described by a rooted tree G = (V, E), where V = {0, 1, .., n}
denotes its set of (nodes) buses, and E its set of (directed
edges) distribution lines. In particular, bus 0 is defined as the
root of the network, and represents the substation that connects
to the external power system. Each directed distribution line
admits the natural orientation, i.e., away from the root. For
each distribution line (i, j) ∈ E , we denote by rij + ixij
its impedance. In addition, define Iij as the complex current
flowing from bus i to j, and pij + iqij as the complex power
flowing from bus i to j. For each bus i ∈ V , let Vi denote
its complex voltage, and pi + iqi the complex power injection
at this bus. We assume that the complex voltage V0 at the
substation is fixed and known.

We employ the branch flow model proposed in [28], [29]
to describe the steady-state, single-phase AC power flow
equations associated with this radial distribution network. In
particular, for each bus j = 1, . . . , n, and its unique parent
i ∈ V , we have

−pj = pij − rij`ij −
∑

k:(j,k)∈E

pjk, (1)

−qj = qij − xij`ij −
∑

k:(j,k)∈E

qjk, (2)

v2
j = v2

i − 2(rijpij + xijqij) + (r2
ij + x2

ij)`ij , (3)

`ij = (p2
ij + q2

ij)/v
2
i , (4)

where `ij = |Iij |2 and vi = |Vi|. We note that the branch flow
model is well defined only for radial distribution networks, as
we require that each bus j (excluding the substation) have a
unique parent i ∈ V .

For the remainder of the paper, we consider a linear ap-
proximation of the branch flow model (1)-(4) based on the
Simplified Distflow method developed in [30]. The derivation
of this approximation relies on the assumption that `ij = 0
for all (i, j) ∈ E , as the active and reactive power losses on
distribution lines are considered small relative to the power
flows. According to [4], [31], such an approximation tends
to introduces a relative model error of 1-5% for practical
distribution networks. Under this assumption, Eq. (1)-(3) can
be simplified to

−pj = pij −
∑

k:(j,k)∈E

pjk, (5)

−qj = qij −
∑

k:(j,k)∈E

qjk, (6)

v2
j = v2

i − 2(rijpij + xijqij). (7)

The linearized branch flow Eq. (5)-(7) can be written more
compactly as

v2 = Rp+Xq + v2
01. (8)

Here, v2 = (v2
1 , .., v

2
n), p = (p1, .., pn), and q = (q1, .., qn)

denote the vectors of squared bus voltage magnitudes, real
power injections, and reactive power injections, respectively,
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and 1 = (1, .., 1) is a vector of all ones in Rn. The matrices
R,X ∈ Rn×n are defined according to

Rij = 2
∑

(h,k)∈Pi∩Pj

rhk,

Xij = 2
∑

(h,k)∈Pi∩Pj

xhk,

where Pi ⊂ E is defined as the set of edges on the unique
path from bus 0 to i.

In the sequel, we will consider the control of the distribution
system over discrete time periods indexed by t = 0, · · · , T−1.
Each discrete time period t is defined over a time interval of
length ∆. We require the vector of bus voltage magnitudes
v(t) = (v1(t), .., vn(t)) ∈ Rn at each time period t to satisfy

v ≤ v(t) ≤ v, (9)

where the allowable range of voltage magnitudes is defined
by v, v ∈ Rn.

B. Energy Storage Model

We consider a distribution system consisting of n perfectly
efficient energy storage devices, where each bus i (excluding
the substation) is assumed to have an energy storage capacity
of bi ∈ R. The dynamic evolution of each energy storage
device i is described according to the state equation

xi(t+ 1) = xi(t)−∆pSi (t), t = 0, . . . , T − 1, (10)

where the state xi(t) ∈ R denotes the amount of energy stored
in storage device i just preceding period t, and pSi (t) ∈ R
denotes the active power extracted from device i during period
t. For ease of exposition, we assume that the initial condition
xi(0) of each storage device is fixed and known.1 We impose
state and input constraints of the form

0 ≤ xi(t) ≤ bi, t = 0, . . . , T (11)

pS
i
≤ pSi (t) ≤ pSi , t = 0, . . . , T − 1. (12)

for i = 1, .., n. The interval [pS
i
, pSi ] ⊂ R defines the range

of allowable inputs for storage device i at each time period t.

C. Photovoltaic Inverter Model

We assume that, in addition to energy storage capacity,
each bus i (excluding the substation) has a photovoltaic
(PV) inverter whose reactive power injection can be actively
controlled. We denote by ξIi (t) ∈ R the active power injection,
and by qIi (t) ∈ R the reactive power injection from the PV
inverter at bus i and time t. Due to the intermittency of solar
irradiance, we will model ξIi (t) as a discrete-time stochastic
process, whose precise specification is presented in Section
II-E. Additionally, we require that the reactive power injections
respect capacity constraints of the form∣∣qIi (t)

∣∣ ≤√sIi
2 − ξIi (t)

2
, i = 1, . . . , n, (13)

1We emphasize that all results presented in this paper are easily generalized
to the setting in which the initial condition xi(0) is modeled as a random
variable with known distribution. In particular, one can treat the initial
condition as an additive disturbance to the state equation at time period t = 0.
We refer the readers to [32] for a detailed treatment of such systems.

for t = 0, . . . , T−1. Here, sIi ∈ R denotes the apparent power
capacity of PV inverter i. Clearly, it must hold that ξIi (t) ≤ sIi .

D. Load Model

Each bus in the distribution network is assumed to have a
constant power load, which we will treat as a discrete-time
stochastic process. Accordingly, we denote by ξpi (t) ∈ R and
ξqi (t) ∈ R the active and reactive power demand, respectively,
at bus i and time t. It follows that the nodal active and reactive
power balance equations can be expressed as

pi(t) = pSi (t) + ξIi (t)− ξpi (t), (14)

qi(t) = qIi (t)− ξqi (t), (15)

where pi(t) ∈ R and qi(t) ∈ R denote the net active and re-
active power injections, respectively, at each bus i = 1, . . . , n
and time period t = 0, . . . , T − 1.

E. Uncertainty Model

As indicated earlier, we model the active power demand,
reactive power demand, and PV active power supply as
discrete-time stochastic processes. Accordingly, we associate
with each bus i a disturbance process defined as ξi(t) =
(ξpi (t), ξqi (t), ξIi (t)) ∈ R3. We define the full disturbance
trajectory as

ξ = (1, ξ(0), . . . , ξ(T − 1)) ∈ RNξ , (16)

where Nξ = 1 + 3nT and ξ(t) = (ξ1(t), . . . , ξn(t)) ∈ R3n

for each time period t. Note that, in our specification of the
disturbance trajectory ξ, we have included a constant scalar as
its initial component. Such notational convention will prove
useful in simplifying the specification of affine control policies
in the sequel. 2

We assume that the disturbance trajectory ξ has support Ξ
that is a nonempty and compact subset of RNξ , representable
by

Ξ = {ξ ∈ RNξ | ξ1 = 1 and Wξ �K 0},

where the matrix W ∈ R`×Nξ is known. It follows from the
compactness of Ξ that the second-order moment matrix

M = E (ξξ′) ,

is finite-valued. We assume, without loss of generality, that M
is a positive definite matrix. We emphasize that our specifica-
tion of the disturbance trajectory ξ captures a large family of
disturbance processes, including those whose support can be
described as the intersection of polytopes and ellipsoids.

2The inclusion of a constant as the initial component of ξ is for notational
convenience, as it allows one to represent any affine function of ξ as a linear
function of ξ.
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III. DECENTRALIZED CONTROL DESIGN

A. State Space Description

In what follows, we build on the individual resource models
developed in Section II to develop a discrete-time state space
model describing the collective dynamics of the distribution
network. We partition the system into n subsystems, where
each subsystem i ∈ {1, . . . , n} encapsulates the dynamics of
resources connected to bus i. For each subsystem i, we let the
energy storage state xi(t) be its state at time t, and define its
input according to

ui(t) =

[
pSi (t)

qIi (t)

]
.

The corresponding state equation for each subsystem i is
therefore given by Eq. (10). We define the full system state
and input at time t by x(t) = (x1(t), .., xn(t)) ∈ Rn and
u(t) = (u1(t), .., un(t)) ∈ R2n, respectively. The full system
state equation admits the following representation

x(t+ 1) = x(t) +Bu(t).

Here, the matrix B is given by

B = In ⊗
[
−∆ 0

]
, (17)

where ⊗ denotes the Kronecker product operator. The initial
condition3 and system trajectories are related according to

x = Ax(0) + Bu, (18)

where x and u represent the state and input trajectories,
respectively. They are given by

x = (x(0), . . . , x(T )) ∈ RNx , Nx = n(T + 1),

u = (u(0), . . . , u(T − 1)) ∈ RNu , Nu = 2nT.

We refer the reader to Appendix A for a precise specification
of the matrices (A,B).

B. Decentralized Control Design

The controller information structure considered in this paper
is such that each subsystem is required to determine its local
control input using only its local measurements. We therefore
restrict ourselves to fully decentralized disturbance-feedback
control policies.4 That is to say, at each time t, the control
input to each subsystem i is restricted to be of the form

ui(t) = γi(ξ
t
i , t),

where γi(·, t) is a causal measurable function of the local
disturbance history. We define the local control policy for
subsystem i as γi = (γi(·, 0), .., γi(·, T − 1)); and refer to
the collection of local control policies γ = (γ1, .., γn) as the
decentralized control policy for the system. Finally, we define
Γ to be the set of all admissible decentralized control policies.

3Recall that the initial condition x(0) is assumed fixed and known.
4For simplicity of exposition, it is assumed in this paper that each subsystem

can perfectly observe its local disturbance process. We note, however, that all
of the results presented in this paper can be immediately generalized to the
setting in which each subsystem has only partial linear observations of its local
disturbance process. We refer the readers to [32] for a detailed treatment of
such systems.

In this paper, we consider the objective of minimizing the
expected amount of active power required to meet demand
over the distribution network. For the setting considered, this
is technically equivalent to minimizing the expected active
power losses plus the terminal energy stored in the distribution
network. In a similar spirit to [3], [30], we approximate the
active power loss on line (i, j) ∈ E at time period t as5

δpij(t) = rij

(
pij(t)

2 + qij(t)
2

v0(t)2

)
.

By a direct substitution of the linearized branch flow Eqs.
(5)-(6) into the above approximation, one can represent the
total active power losses as a convex quadratic function in the
input trajectory u and disturbance trajectory ξ. Namely, one
can construct matrices Lu ∈ R2nT×Nu , Lξ ∈ R2nT×Nξ , and
a positive definite diagonal matrix Σ ∈ R2nT×2nT , such that
the total active power losses can be written as

T−1∑
t=0

∑
(i,j)∈E

δpij(t) = (Luu+ Lξξ)
′Σ(Luu+ Lξξ). (19)

In addition, the sum of the terminal energy storage states
across the network can be written as a linear function of the
state trajectory x. Namely, it is straightforward to construct a
vector c ∈ RNx , such that

n∑
i=1

xi(T ) = c′x. (20)

We refer the reader to Appendix A for an exact specification
of c, Lu, Lξ, and Σ. Henceforth, we define the expected cost
associated with a decentralized control policy γ ∈ Γ according
to

J(γ) = Eγ [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)] . (21)

Here, expectation is taken with respect to the joint distribution
on (x, u, ξ) induced by the control policy γ.

We define the decentralized control design problem as

minimize J(γ)

subject to γ ∈ Γ

x ∈ X , u ∈ U(ξ)

x = Ax(0) + Bu
u = γ(ξ)

∀ξ ∈ Ξ,

(22)

where the decision variable is the decentralized control policy
γ ∈ Γ. The set of feasible states X is defined according to
inequality (11). The set of feasible control inputs U(ξ) is
defined according to inequalities (9), (12), and (13). We let
J∗ denote the optimal value of problem (22).

IV. DESIGN OF AFFINE CONTROLLERS

The decentralized control design problem (22) amounts to
an infinite-dimensional convex program, and is, in general,
computationally intractable. We therefore resort to approxi-
mation by restricting the space of admissible decentralized

5Implicit in this approximation is the assumption that the bus voltage
magnitudes are uniform across the network.
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control policies to be causal affine functions of the measured
disturbance process. In addition, we approximate the feasible
region of problem (22) from within by a polyhedral set. The
combination of these two approximations enables the compu-
tation of a decentralized control policy, which is guaranteed
to be feasible for problem (22), through solution of a finite-
dimensional conic program.

A. Polyhedral Inner Approximation of Constraints

The feasible state space X is clearly polyhedral. The feasi-
ble input space U(ξ) is not. It can, however, be approximated
from within by a polyhedral set by replacing the quadratic
constraint in (13) with the following pair of linear constraints:∣∣qIi (t)

∣∣ ≤ qIi (t). (23)

Here, the deterministic constant qIi (t) is defined according to

qIi (t) = inf

{√
sIi

2 − ξIi (t)
2
∣∣∣∣ ξ ∈ Ξ

}
.

Essentially, qIi (t) denotes the minimum reactive power capac-
ity that is guaranteed to be available at inverter i at time t.
We provide a graphical illustration of this polyhedral inner
approximation in Figure 1b.

Although an inner approximation of this form may appear
conservative at first glance, several recent studies [3], [18]
have observed such approximations to result in a small loss of
performance, as measured by the objective function considered
in this paper. We corroborate these claims in Section V by
developing a technique to bound the loss of optimality incurred
by this inner approximation. In particular, the suboptimality
incurred by such an approximation is shown to be small for
the case study considered in this paper.

Inequalities (9), (11), (12), and (23) define a collection of
m = 8nT linear constraints on the state, input, and disturbance
trajectories. We represent them more succinctly as

Fxx+ Fuu+ Fξξ ≤ 0, ∀ ξ ∈ Ξ,

where it is straightforward to construct the matrices Fx ∈
Rm×Nx , Fu ∈ Rm×Nu , and Fξ ∈ Rm×Nξ using the given
problem data. The following optimization problem is an inner
approximation to the original decentralized control design
problem (22):

minimize Eγ [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)]

subject to γ ∈ Γ

Fxx+ Fuu+ Fξξ ≤ 0

x = Ax(0) + Bu
u = γ(ξ)

∀ ξ ∈ Ξ, (24)

where the decision variable is given by γ. Although convex,
problem (24) is an infinite-dimensional program, and is there-
fore computationally intractable, in general. In what follows,
we refine this approximation by further restricting the space of
admissible controllers to be affine functions of the disturbance
trajectory.

ξIi (t)

qIi (t)

sIi

−sIi

(a)

ξIi (t)

qIi (t)

qIi (t)

−qIi (t)

(b)

ξIi (t)

qIi (t)
√

2sIi

−
√

2sIi

√
2sIi

(c)

Fig. 1: The above plots depict an inverter’s range of feasible
reactive power injections (in gray) at a particular time period
t as specified by (a) the original quadratic constraints (13),
(b) the inner linear constraints (23), and (c) the outer linear
constraints (28).

B. Affine Control Design via Conic Programming

We restrict our attention to decentralized affine control
policies of the form

ui(t) = ui(t) +
t∑

s=0

Qi(t, s)ξi(s) (25)

for each subsystem i = 1, . . . , n and time t = 0, . . . , T − 1.
Here, ui(t) ∈ R2 denotes the open loop component of the
local control, and (Qi(t, 0), . . . , Qi(t, t)) the collection of
feedback control gains at time t. One can write the decen-
tralized affine control policy in (25) more compactly as

u = Qξ.

We enforce the desired information structure in Q by requiring
that Q ∈ S, where S denotes the subspace of matrices that
respect the information structure associated with the set of
admissible decentralized control policies Γ. Specifically,

S =
{
Q ∈ RNu×Nξ

∣∣Q ∈ Γ
}
.

The restriction to decentralized affine control policies gives
rise to the following semi-infinite program,6 which stands
as a more conservative inner approximation to the original
decentralized control design problem (22).

minimize E [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)]

subject to Q ∈ S
Fxx+ Fuu+ Fξξ ≤ 0

x = Ax(0) + Bu
u = Qξ

∀ ξ ∈ Ξ, (26)

where the decision variable is given by Q. Given our as-
sumption that the uncertainty set Ξ has a conic representation,
one can directly apply a previous result from [32] to equiva-
lently reformulate the semi-infinite program (26) as a finite-

6A semi-infinite program is an optimization problem involving finitely many
decision variables, and an infinite number of constraints.
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dimensional conic program.7 In Proposition 1, we present
the finite-dimensional conic reformulation of the semi-infinite
program (26) implied by [32][Prop. 3].

Proposition 1. The semi-infinite program (26) admits an
equivalent reformulation as the following finite-dimensional
conic program

minimize Tr

((
Q′L′uΣLuQ+

(
2L′ξΣLu + e1c

′B
)
Q

+ L′ξΣLξ

)
M

)
+ c′Ax(0)

subject to Q ∈ S
Z ∈ Rm×Nξ , Π ∈ R`×m, ν ∈ Rm

+

(Fu + FxB)Q+ FxAx(0)e′1 + Fξ + Z = 0,

Z = νe′1 + Π′W,

Π �K∗ 0,
(27)

where the decision variables are given by Q, Z, Π, and ν.
Let J in denote the optimal value of the above program. It
stands as an upper bound on the optimal value of the original
decentralized control problem (22), i.e., J∗ ≤ J in.

Several comments are in order. First, the specification of the
conic program (27) relies on the probability distribution of the
disturbance ξ only through its support Ξ and second-order mo-
ment matrix M . Second, the conic program can be efficiently
solved for a variety of cones K, including polyhedral and
second-order cones. For such cones, problem (27) amounts to a
conic program with O(n2T 2) decision variables and O(n2T 2)
constraints. It can thus be solved in time that is polynomial in
the control horizon T and the number of subsystems n. Finally,
assuming that the decentralized affine controller Q∗ is com-
puted at a central location, the decentralized implementation
of the controller will require the communication of each local
control policy to its corresponding subsystem. This entails the
transmission of 3T 2 + 5T real numbers to each subsystem.

Remark 1 (Fast Time-Scale Implementation). In practice,
the active power generated by a photovoltaic resource may
fluctuate over time-scales (e.g., seconds to minutes) that are
substantially shorter than the time-scale being used for control
design (e.g., hourly). In Appendix B, we propose a method to
enable the implementation of controllers designed according
to Proposition 1 over more finely grained time-scales. Under a
mild assumption on the quasi-stationarity of the support of the
underlying disturbance trajectory, the proposed fast time-scale
implementation of the controller is shown to yield state, input,
and voltage magnitude trajectories, which are guaranteed to be
feasible on this more finely grained time-scale.

V. DESIGN OF PERFORMANCE BOUNDS

The restriction to affine policies computed according to
Proposition 1 may result in the loss of optimality with respect

7We note that a direct application of Proposition 3 from [32] also requires
that the information structure of the underlying decentralized control problem
be partially nested. This condition requiring partial nestedness of the informa-
tion structure is trivially satisfied for the decentralized control design problem
(22) under consideration in this paper.

to the original decentralized control design problem. In this
section, we develop a tractable method to bound this loss of
optimality via the solution of a conic programming relaxation
– the optimal value of which is guaranteed to stand as a
lower bound on the optimal value of the original decentralized
control design problem (22). With such a lower bound in hand,
one can estimate the suboptimality incurred by any feasible
decentralized control policy.

A. Polyhedral Outer Approximation of Constraints

As an initial step in the derivation of this relaxation, we
construct a polyhedral outer approximation of the feasible
region of problem (22). Specifically, the quadratic constraint in
(13) can be relaxed to the following pair of linear constraints:∣∣qIi (t)

∣∣ ≤ √2sIi − ξIi (t). (28)

We provide a graphical illustration of this polyhedral outer
approximation in Figure 1c.

Inequalities (9), (11), (12), and (28) define a collection
of m linear constraints on the state, input, and disturbance
trajectories. We represent them more succinctly as

Fxx+ Fuu+ Fξξ ≤ 0, ∀ ξ ∈ Ξ,

where it is straightforward to construct the matrices Fx ∈
Rm×Nx , Fu ∈ Rm×Nu , and Fξ ∈ Rm×Nξ using the given
problem data. The following optimization problem is an outer
approximation to the original decentralized control design
problem (22):

minimize Eγ [c′x+ (Luu+ Lξξ)
′Σ(Luu+ Lξξ)]

subject to γ ∈ Γ

Fxx+ Fuu+ Fξξ ≤ 0

x = Ax(0) + Bu
u = γ(ξ)

∀ ξ ∈ Ξ, (29)

where the decision variable is given by γ.

B. Lower Bounds via Conic Programming

Problem (29) is, in general, computationally intractable
due to the infinite-dimensionality of its decision space. It is
possible, however, to further relax problem (29) to a finite-
dimensional conic program, under an additional technical
assumption on the probability distribution of the disturbance
trajectory ξ.

Assumption 1 (Disturbance Process). There exist matrices
Ht
i ∈ R3n(t+1)×(1+3(t+1)) and Ht ∈ RNξ×(1+3n(t+1)) such

that

E
[
ξt
∣∣ξti ] = Ht

i

[
1

ξti

]
and E

[
ξ
∣∣ξt ] = Ht

[
1

ξt

]
almost surely, for all time periods t = 0, . . . , T − 1 and
subsystems i = 1, . . . , n.

Although Assumption 1 may appear restrictive, it was
shown in [33] to hold for a large family of distributions. In
particular, Assumption 1 holds for all disturbance processes,
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which possess elliptically contoured distributions. These in-
clude the multivariate Gaussian distribution, the multivariate t-
distribution, their truncated versions, and uniform distributions
over ellipsoids [34]. It is also straightforward to show that
Assumption 1 is satisfied by any disturbance process for which
the random vectors ξi(t) (i = 1, . . . , n, t = 0, . . . , T − 1) are
mutually independent.

With Assumption 1 in hand, a direct application of Propo-
sition 4 in [32] yields a conic programming relaxation8 of
problem (29). Its optimal value stands as a lower bound on
the optimal value of the original decentralized control design
problem (22).

Proposition 2. Consider the following finite-dimensional
conic program:

minimize Tr

((
Q′L′uΣLuQ+

(
2L′ξΣLu + e1c

′B
)
Q

+ L′ξΣLξ

)
M

)
+ c′Ax(0)

subject to Q ∈ S, Z ∈ Rm×Nξ

(Fu + FxB)Q+ FxAx(0)e′1 + Fξ + Z = 0,

WMZ ′ �K 0,

e′1MZ ′ ≥ 0,
(30)

where the decision variables are given by Q and Z. Let Jout

denote the optimal value of the above program. If Assumption
1 holds, then Jout ≤ J∗.

Given Assumption 1, the conic program (30) can be used
to evaluate the performance of any feasible control policy.
Namely, a policy γ ∈ Γ is close to optimal (for a given
problem instance) if J(γ) is close to Jout. Additionally,
Propositions 1 and 2 imply that the optimal value of the
original decentralized control problem (22) satisfies

Jout ≤ J∗ ≤ J in.

Therefore, a small gap between J in and Jout implies that
decentralized affine control policies are close to optimal for
the underlying problem instance. Finally, we note that the
conic program (30) can be efficiently solved for a variety of
cones K, including polyhedral and second-order cones. For
such cones, problem (30) amounts to a conic program with
O(nT 2) decision variables and O(nT ) constraints. It can thus
be solved in time that is polynomial in the control horizon T
and the number of subsystems n.

VI. CASE STUDY

We consider the control of distributed energy resources
in a 12 kV radial distribution feeder depicted in Fig. 2.
The distribution feeder considered in this paper is similar in
structure to the network considered in [8]. Apart from the
substation, the distribution feeder consists of n = 14 buses.
We operate the system over a finite time horizon of T = 24
hours, beginning at twelve o’clock (midnight).

8The conic programming relaxation (30) is constructed by approximating
the Lagrangian dual problem of (29). We refer the readers to [32], [33] for
the technical details of this derivation.

A. System Description

We assume that only buses 4 and 8 have storage devices
and PV inverters installed. All PV inverters are assumed to
have an identical active power capacity, which we denote by
by θ (MW). As for demand, we assume that only buses 3,
4, 5, 13, and 14 have loads; and these loads are assumed
to have identical distributions. We specify their mean active
and reactive power trajectories in Fig. 3. In order to ensure
that Assumption 1 is satisfied, we assume that the random
vectors ξi(t) (i = 1, . . . , n, t = 0, . . . , T − 1) are mutually
independent. In addition, we assume that the random variables
ξpi (t), ξqi (t), and ξIi (t) are mutually independent for each bus i
and time t. Recall that Assumption 1 is necessary only for the
calculation of the performance bound specified in Proposition
2.

Bus 0 1 2 n− 1 n

Fig. 2: Schematic diagram of a 12 kV radial distribution feeder
with n+ 1 buses.

In Table I, we present additional notation pertinent to this
section. In Table II, we specify the parameter values of the
distribution network, storage devices, PV inverters, and load.

TABLE I: Additional notation.

Notation Description

θ Active power capacity of each PV inverter.
µpi (t) Mean active power demand at bus i and time t .
µqi (t) Mean reactive power demand at bus i and time t.
µIi (t) Mean active power supply from PV inverter i at time t.
Uni [a, b] Uniform distribution on [a, b].

TABLE II: Specification of system data.

Distribution network

Base voltage magnitude 12 kV
Substation voltage magnitude v0 = 1 (per-unit)
Impedance on line (i, j) ∈ E rij = 0.466, xij = 0.733 (Ω)
Voltage magnitude constraints v = 0.95 · 1, v = 1.05 · 1 (per-unit)

Storage at bus i ∈ {4, 8}

Energy capacity bi = 0.5 (MWh)
Power capacity pS

i
= −0.2, pSi = 0.2 (MW)

Initial condition xi(0) = 0 (MWh)

PV inverter at bus i ∈ {4, 8}

Apparent power capacity sIi = 1.25θ (MVA)
Active power supply ξIi (t) ∼ Uni [0, 2µIi (t)] (MW)
Mean active power supply µIi (t) = θ ·max

{
0.5 sin

(
t�6
12
π
)
, 0

}
Load at bus i ∈ {3, 4, 5, 13, 14}

Active power demand ξpi (t) ∼ Uni [0.7µpi (t), 1.3µpi (t)] (MW)
Reactive power demand ξqi (t) ∼ Uni [0.7µqi (t), 1.3µqi (t)] (Mvar)
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0
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0.24
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Fig. 3: Buses i = 3, 4, 5, 13, and 14 are assumed to be identical
in terms of their mean load trajectories. The above figure
depicts the mean active power and reactive power demand
trajectories at these buses. Both trajectories are scaled versions
of the load profile DOM-S/M on 07/01/2016 from Southern
California Edison [35].

B. Discussion

We begin by examining the performance of the decen-
tralized controller proposed in this paper. In Fig. 4, we
plot both the upper and lower bounds on the optimal value
J∗ of the decentralized control design problem (22), as a
function of the PV inverter active power capacity θ. Recall
that J in measures the cost incurred by the decentralized affine
control policy computed according to Proposition 1. Notice
that, at low PV penetration levels (i.e., for low values of θ),
the upper and lower bounds nearly coincide. This indicates
that the decentralized affine control policy is nearly optimal
for the original decentralized control design problem. More
interestingly, at high PV penetration levels (i.e., for high values
of θ), the gap between the upper and lower bounds remains
small. This reveals that decentralized affine control policies
persist in being close to optimal for the system considered,
despite the presence of large and unpredictable fluctuations in
PV active power generation. Therefore, for the system under
consideration, there is little additional value to be had in the
design of more sophisticated (nonlinear) control policies.

0.2 1.1 2

 θ (MW)

0.1

0.2

0.3

0.4

Upper Bound J
in

Lower Bound J
out

Fig. 4: This figure depicts the upper and lower bounds, J in and
Jout, respectively, on the optimal value of the decentralized
control design problem J∗ (measured in MWh) as a function
of the PV inverter active power capacity θ.

In Fig. 5, we illustrate the behavior of input and state tra-
jectories generated by the decentralized affine controller com-
puted according to Proposition 1. We consider the case of high
PV penetration at a level of θ = 4 MW. In the first and third
columns of Fig. 5, we plot several independent realizations of
disturbance, input, and state trajectories associated with bus
4 and 8, respectively. In the second and fourth columns, we

plot the corresponding empirical confidence intervals.9 First,
notice that both the sequence of reactive power injections from
PV inverters and the sequence of active power extractions
from storage exhibit large fluctuations during daytime hours.
These fluctuations are due in large part to the underlying
variability in the active power supplied by the PV resources.
In particular, a large excess of active power supply from PV
can manifest in overvoltage in the distribution network. In
order to ensure that voltage magnitude constraints are not
violated, the proposed control policy induces reactive power
injections from PV inverters that are negatively correlated
with their own active power supply. Clearly, in the absence
of such a feedback control mechanism, certain realizations of
the disturbance trajectory would have resulted in the violation
of the voltage magnitude constraints at certain buses in the
distribution system.

In Fig. 6, we illustrate the effectiveness of the proposed
decentralized affine controller in maintaining bus voltage
magnitudes within their allowable range. In particular, we
compare the behavior of bus voltage magnitudes that occur
in the distribution system with and without control. In the
first and second columns of Fig. 6, we illustrate the behav-
ior of voltage magnitude trajectories that materialize in the
controlled distribution system operated under the proposed
decentralized affine controller. In the third and fourth columns
of Fig. 6, we illustrate the behavior of voltage magnitude
trajectories that materialize in the uncontrolled distribution
system, i.e., under the control policy γ = 0. Notice that, in
the absence of control, the distribution system may realize
bus voltage magnitudes that substantially deviate from their
allowable range. In particular, the distribution system appears
to suffer from overvoltage when there is an overabundance of
active power supply from PV, and undervoltage during hours
of peak demand. However, when operated under the decentral-
ized affine controller, the distribution system is guaranteed to
satisfy the bus voltage magnitude constraints for any possible
realization of the disturbance trajectory.

VII. CONCLUSION

There are several interesting directions for future work. For
example, one potential drawback of the approach considered
in this paper is the explicit reliance of the control policy on
the entire disturbance history. Such dependency may result in
the computational intractability of calculating control policies
for problems with a long horizons T . Accordingly, it will be
of interest to extend the techniques developed in this paper to
accommodate fixed-memory constraints on the control policy.

It is also worth noting that the class of controllers considered
in this paper are fully decentralized, in that explicit communi-
cation between subsystems is not permitted. It would be of the-
oretical and practical interest to investigate the extent to which
the introduction of additional communication links between
subsystems might improve system performance. In particular,
it would be of interest to explore the problem of designing
a communication topology between subsystems, in order to

9The empirical confidence intervals were estimated using 3×105 indepen-
dent realizations of the disturbance, input, and state trajectories.
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(a) System trajectories and their confidence intervals at bus 4.
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(b) System trajectories and their confidence intervals at bus 8.

Fig. 5: The figures in the first and third columns plot independent realizations of disturbance, input, and state trajectories
associated with bus 4 and 8, respectively. The dashed colored lines represent the trajectory realizations, while the solid black
lines denote the mean trajectories. The figures in the second and fourth columns depict the empirical confidence intervals
associated with these trajectories. They were estimated using 3× 105 independent realizations of the disturbance trajectories.
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(a) Bus voltages in a controlled distribution system.
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(b) Bus voltages in an uncontrolled distribution system.

Fig. 6: The above figures depict independent realizations of bus voltage magnitude trajectories and their empirical confidence
intervals for (a) a controlled distribution system operated under the decentralized affine controller, and (b) an uncontrolled
distribution system. The empirical confidence intervals were estimated using 3×105 independent realizations of the disturbance
trajectories. The dashed black lines indicate the range of allowable voltage magnitudes.
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minimize the optimal control cost, subject to a constraint
on the maximum number of allowable communication links.
While such problems are inherently combinatorial in nature, it
is conceivable that regularization techniques, similar to those
proposed in [36], [37], might yield good approximations.

Finally, all of our results rely on the assumption that the
distribution system is three-phase balanced. Such an assump-
tion will not always hold in practice. It would be of interest
to extend the techniques in this paper to accommodate the
possibility of imbalance in three-phase distribution systems.
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APPENDIX A
MATRIX DEFINITIONS

The block matrices (A,B) used in Eq. (18) are given by

A = 1(T+1)×1 ⊗ In, B =



0

B 0

B B 0
...

...
. . . . . .

...
...

. . . 0

B B · · · · · · B


,

where 1(T+1)×1 is a vector of all ones in RT+1. The vector
c used in Eq. (20) is given by

c =

[
0nT×1

1n×1

]
.

To define the matrices Lu, Lξ, and Σ used in Eq. (19), one
can first construct matrices L0

u, L
0
ξ ∈ R2n×3n, and a positive

definite diagonal matrix Σ0 ∈ R2n×2n, such that∑
(i,j)∈E

rij
(
pij(t)

2 + qij(t)
2
)

v2
0

=
(
L0
uu(t) + L0

ξξ(t)
)′

Σ0
(
L0
uu(t) + L0

ξξ(t)
)

for t = 0, . . . , T −1. Then one can define matrices Σ, Lu, and
Lξ according to

Σ = IT ⊗ Σ0, Lu = IT ⊗ L0
u, Lξ =

[
0 IT ⊗ L0

ξ

]
.

APPENDIX B
FAST TIME-SCALE CONTROLLER IMPLEMENTATION

We now describe a method to enable the implementation
of the decentralized control policy computed according to
Proposition 1 over a more finely grained (i.e., fast) time-scale.
The method we propose is simple. First, we compute an affine
control policy for the original (i.e., slow) time-scale according

to Proposition 1. Via a suitable rescaling of the resulting
feedback control gains, we construct an affine control policy
that can be implemented over a more finely grained time-
scale. An attractive feature of the proposed implementation
is that, under a mild assumption on the quasi-stationarity of
the support of the underlying disturbance trajectory, the affine
control policy we construct is guaranteed to yield state and
input trajectories that are feasible on this more finely grained
time-scale. In what follows, we provide a precise specification
of this fast time-scale controller, and discuss its theoretical
guarantees.

A. Fast Time-Scale Processes
We begin with a description of the state, input, and dis-

turbance processes on the more finely grained time-scale by
dividing each original time period t into K shorter time
periods. It will be convenient to index the original time periods
by t, and the more finely grained time periods by (k, t), for
k = 0, . . . ,K − 1, and t = 0, . . . , T . In particular, each time
period (k, t) is defined over a time interval of length ∆/K,
where recall that each original time period t is of length ∆.
For the remainder of this section, we will refer to the original
and the more finely grained time-scales as the slow and fast
time-scales, respectively.

We denote the fast time-scale state, input, and disturbance
processes by x(k, t), u(k, t), and ξ(k, t), respectively. We
emphasize that all the fast time-scale quantities have the same
units as their slow time-scale counterparts. It will prove useful
to define a slow time-scale average of the fast time-scale
disturbance process according to

ξ(t) =
1

K

(
K−1∑
k=0

ξ (k, t)

)
, (31)

for t = 0, . . . , T − 1. We refer the reader to Fig. 7, which
offers a graphical illustration comparing the fast time-scale
disturbance process ξ(k, t) against its slow time-scale average
ξ(t).

We describe the evolution of the fast time-scale state process
over each time period t according to the state equation:

x(k + 1, t) = x(k, t) +
1

K
Bu(k, t)

for k = 0, . . . ,K − 1. We link this process across the slow
time-scale periods by enforcing the boundary conditions

x(K, t) = x(0, t+ 1)

for t = 0, . . . , T − 1. We initialize the fast time-scale state
process according to x(0, 0) = x(0).

B. Fast Time-Scale Controller
In what follows, we construct a fast time-scale controller

based on the slow time-scale controller computed according
to Proposition 1. More specifically, let Q∗ denote the optimal
solution to problem (27). Since Q∗ ∈ S, it follows that Q∗ is
a block lower-triangular matrix of the form

Q∗ =

 u∗(0) Q∗(0, 0)
...

...
. . .

u∗(T − 1) Q∗(T − 1, 0) · · · Q∗(T − 1, T − 1)

 ,
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(0, t) (1, t) (2, t)

∆
K

∆

ξ(k, t) ξ(t)

Fig. 7: The above plots depicts (one component of) the fast
time-scale disturbance process ξ(k, t) and its slow time-scale
average ξ(t) for K = 3.

where each matrix Q∗(t, s) is block diagonal of the form

Q∗(t, s) =

Q∗1(t, s)
. . .

Q∗n(t, s)


for each t = 0, . . . , T − 1 and s = 0, . . . , t. Using these
feedback control gains embedded in the matrix Q∗, we define
the fast time-scale control input at period (k, t) as

u(k, t) = u∗(t) +Q∗(t, t)ξ (k, t) +

t−1∑
s=0

Q∗(t, s)ξ(s), (32)

for all t = 0, . . . , T − 1 and k = 0, . . . ,K − 1. Recall from
Eq. (31) that ξ(t) denotes the average of the fast time-scale
disturbance process over the period t.

C. Constraint Satisfaction Guarantees

The decentralized affine controller defined according to Eq.
(32) is said to be feasible if it induces voltage, input, and
state trajectories that are guaranteed to satisfy their respective
constraints at the fast time-scale for all possible realizations
of the fast time-scale disturbance process. That is to say, for
each subsystem i ∈ {1, . . . , n}, it must hold that

vi ≤ vi (k, t) ≤ vi, (33)

−
√
sIi

2 − ξIi (k, t)
2 ≤ qIi (k, t) ≤

√
sIi

2 − ξIi (k, t)
2
, (34)

pS
i
≤ pSi (k, t) ≤ pSi , (35)

for all time periods t = 0, . . . , T − 1, k = 0, . . . ,K − 1, and

0 ≤ xi (k, t) ≤ bi, (36)

for all time periods t = 0, . . . , T − 1, k = 0, . . . ,K; and all
possible realizations of the fast time-scale disturbance process.

We now make a mild assumption on the support of the
fast time-scale disturbance process, which ensures that the fast
time-scale controller defined according to Eq. (32) is feasible.

Assumption 2 (Quasi-Stationarity). We assume that

(1, ξ (k0, 0) , ξ (k1, 1) , . . . , ξ (kT−1, T − 1)) ∈ Ξ,

for all kt ∈ {0, . . . ,K − 1} and t = 0, . . . , T − 1.

Assumption 2 can be interpreted as an assumption on
the quasi-stationarity of the support of the fast time-scale
disturbance process ξ(k, t). Moreover, Assumption 2 is rea-
sonable, as it is always possible to construct a set Ξ such this
assumption is satisfied, given a characterization of the set of all
possible realizations taken by the fast time-scale disturbance
process.

Proposition 3 (Fast Time-Scale Feasibility). Let Assumption
2 hold. The fast time-scale controller specified according to
Equation (32) is feasible.

Proposition 3 reveals that the slow time-scale controller
computed according to Proposition 1 can be implemented as
a feasible fast time-scale controller. We present its proof in
Appendix C.

APPENDIX C
PROOF OF PROPOSITION 3

Let the system control input be specified according to Eq.
(32). The proof consists of two parts. In Part 1, we show that
for any realization of the fast time-scale disturbance process,
the input constraints specified in inequalities (33)-(35) are all
satisfied. In Part 2, we show that for any realization of the fast
time-scale disturbance process, the state constraint specified in
inequality (36) is satisfied.

Part 1: We will only show that for any realization of the
fast time-scale disturbance process, the voltage magnitude
constraint specified in inequality (33) is satisfied. The proof of
the satisfaction of the input constraints specified in inequalities
(34) and (35) is analogous. It is thus omitted for the sake of
brevity.

It will be convenient to work with the vector of squared
voltage magnitudes v (k, t)

2
= (v1(k, t)2, . . . , vn(k, t)2) for

the remainder of the proof. We will show that

v2 ≤ v (k, t)
2 ≤ v2,

where v2 = (v2
1, . . . , v

2
n), and v2 = (v2

1, . . . , v
2
n). It follows

from the linearized branch flow model (8) that for each time
period (k, t), the vector of squared voltage magnitudes is given
by

v (k, t)
2

= Vuu (k, t) + Vξξ (k, t) + v2
01,

where the matrices Vu and Vξ are defined according to

Vu = R⊗
[
1 0

]
+X ⊗

[
0 1

]
,

Vξ = R⊗
[
−1 0 1

]
−X ⊗

[
0 1 0

]
.

Given the specification of the fast time-scale control input
u (k, t) according to Eq. (32), we have that

v (k, t)
2

=Vu

(
u∗(t) +

t−1∑
s=0

Q∗(t, s)ξ(s)

)
+ (VuQ

∗(t, t) + Vξ) ξ (k, t) + v2
01.

(37)
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Given Assumption 2 and the convexity of the set Ξ, it holds
that (

1, ξ(0), .., ξ(t− 1), ξ(k, t), .., ξ(k, T − 1)
)
∈ Ξ. (38)

Condition (38), in combination with the guaranteed feasibility
of the control policy Q∗ for the original slow time-scale
decentralized control design problem (22), implies that

v2 ≤Vu

(
u∗(t) +

t−1∑
s=0

Q∗(t, s)ξ(s)

)
+ (VuQ

∗(t, t) + Vξ) ξ (k, t) + v2
01 ≤ v2.

It immediately follows from Eq. (37) that v2 ≤ v(k, t)2 ≤ v2.
This completes Part 1 of the proof.

Part 2: We show that for any realization of the fast time-scale
disturbance process, the system state satisfies 0 ≤ x(k, t) ≤ b
for t = 0, . . . , T − 1, k = 0, . . . ,K. Here, b = (b1, . . . , bn) is
the vector of energy storage capacities. We fix an arbitrary re-
alization of the fast time-scale disturbance process throughout
this part of the proof.

We first consider the case of k = 0, and show that 0 ≤
x(0, t) ≤ b for t = 0, . . . , T . It holds that

x (0, t) = x(0, 0) +
1

K
B

(
t−1∑
s=0

K−1∑
`=0

u (`, s)

)
(39)

=x(0) +B

(
t−1∑
s=0

(
u∗(s) +

s∑
r=0

Q∗(s, r)ξ(r)

))
, (40)

where Eq. (40) follows from the specification of the fast time-
scale system control input according to Eq. (32).

Condition (38), in combination with the guaranteed fea-
sibility of the control policy Q∗ for the slow time-scale
decentralized control design problem (22), implies that

0 ≤ x(0) +B

(
t−1∑
s=0

(
u∗(s) +

s∑
r=0

Q∗(s, r)ξ(r)

))
≤ b.

It follows from Eq. (40) that 0 ≤ x(0, t) ≤ b for t = 0, . . . , T .
The enforcement of the boundary condition of the fast time-
scale state equation requires that x(K, t) = x(0, t+1) for t =
0, . . . , T − 1. This, in combination with the above inequality,
implies that 0 ≤ x(k, t) ≤ b for t = 0, . . . , T − 1, and k = 0
and K.

Next, we show that 0 ≤ x(k, t) ≤ b for k = 1, . . . ,K − 1,
t = 0, . . . , T − 1. We first write x(k, t) as

x (k, t) = x(0, t) +
k

K
B

(
1

k

k−1∑
`′=0

u(`′, t)

)

=
K − k
K

x(0, t) +
k

K

(
x(0, t) +B

(
1

k

k−1∑
`′=0

u(`′, t)

))
,

where x(0, t) is specified according to Eq. (39). Recall that
we previously established that 0 ≤ x(0, t) ≤ b. Thus, to show
that 0 ≤ x(k, t) ≤ b, it suffices to show that

0 ≤ x(0, t) +B

(
1

k

k−1∑
`′=0

u(`′, t)

)
≤ b. (41)

First notice that under the fast time-scale control policy
specified by Eq. (32), we have that

1

k

k−1∑
`′=0

u(`′, t) = u∗(t) +Q∗(t, t)ξ̃(k, t) +
t−1∑
s′=0

Q∗(t, s′)ξ(s′),

(42)

where the vector ξ̃(k, t) is defined according to

ξ̃(k, t) =
1

k

k−1∑
`′=0

ξ (`′, t) .

Given Assumption 2 and the convexity of Ξ, it holds that(
1, ξ(0), .., ξ(t− 1), ξ̃(k, t), ξ (0, t+ 1) , .., ξ (0, T − 1)

)
∈ Ξ.

(43)

Condition (43), in combination with the guaranteed feasibility
of the control policy Q∗ for the slow time-scale decentralized
control design problem (22), implies that

0 ≤ x(0, t) +B

(
u∗(t) +Q∗(t, t)ξ̃(k, t) +

t−1∑
s′=0

Q∗(t, s′)ξ(s′)

)
≤ b,

where x(0, t) is specified according to Eq. (40). It follows
from Eq. (42) that inequality (41) is satisfied. This completes
Part 2 of the proof.
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