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Risk-Sensitive Learning and Pricing
for Demand Response
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Abstract—We consider the setting in which an electric power
utility seeks to curtail its peak electricity demand by offering
a fixed group of customers a uniform price for reductions in
consumption relative to their predetermined baselines. The un-
derlying demand curve, which describes the aggregate reduction
in consumption in response to the offered price, is assumed to be
affine and subject to unobservable random shocks. Assuming that
both the parameters of the demand curve and the distribution
of the random shocks are initially unknown to the utility, we
investigate the extent to which the utility might dynamically
adjust its offered prices to maximize its cumulative risk-sensitive
payoff over a finite number of T days. In order to do so
effectively, the utility must design its pricing policy to balance
the tradeoff between the need to learn the unknown demand
model (exploration) and maximize its payoff (exploitation) over
time. In this paper, we propose such a pricing policy, which is
shown to exhibit an expected payoff loss over T days that is
at most O(

√
T ), relative to an oracle pricing policy that knows

the underlying demand model. Moreover, the proposed pricing
policy is shown to yield a sequence of prices that converge to the
oracle optimal prices in the mean square sense.

Index Terms—Demand response, electricity markets, dynamic
pricing, online learning.

I. INTRODUCTION

The ability to implement residential demand response (DR)
programs at scale has the potential to substantially improve
the efficiency and reliability of electric power systems. In the
following paper, we consider a class of DR programs in which
an electric power utility seeks to elicit a reduction in the
aggregate electricity demand of a fixed group of customers,
during peak demand periods. The class of DR programs we
consider rely on non-discriminatory, price-based incentives for
demand reduction. That is to say, each participating customer
is remunerated for her reduction in electricity demand accord-
ing to a uniform price determined by the utility.

There are several challenges a utility faces in implementing
such programs, the most basic of which is the prediction of
how customers will adjust their aggregate demand in response
to different prices – the so-called aggregate demand curve. The
extent to which customers are willing to forego consumption,
in exchange for monetary compensation, is contingent on
variety of idiosyncratic and stochastic factors – the majority
of which are initially unknown or not directly measurable
by the utility. The utility must, therefore, endeavor to learn
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the behavior of customers over time through observation of
aggregate demand reductions in response to its offered prices
for DR. At the same time, the utility must set its prices for DR
in such a manner as to promote increased earnings over time.
As we will later establish, such tasks are inextricably linked,
and give rise to a trade-off between learning (exploration) and
earning (exploitation) in pricing demand response over time.

Contribution and Related Work: We consider the setting in
which the electric power utility is faced with a demand curve
that is affine in price, and subject to unobservable, additive
random shocks. Assuming that both the parameters of the
demand curve and the distribution of the random shocks are
initially unknown to the utility, we investigate the extent to
which the utility might dynamically adjust its offered prices for
demand curtailment to maximize its cumulative risk-sensitive
payoff over a finite number of days. We define the utility’s
payoff on any given day as the largest return the utility is
guaranteed to receive with probability no less than . Here,

encodes the utility’s sensitivity to risk. In this paper,
we propose a causal pricing policy, which resolves the trade-
off between the utility’s need to learn the underlying demand
model and maximize its cumulative risk-sensitive payoff over
time. More specifically, the proposed pricing policy is shown
to exhibit an expected payoff loss over days – relative to
an oracle that knows the underlying demand model – which
is at most . Moreover, the proposed pricing policy is
shown to yield a sequence of offered prices, which converges
to the sequence of oracle optimal prices in the mean square
sense.

There is a related stream of literature in operations re-
search and adaptive control [1]–[5], which considers a similar
setting in which a monopolist endeavors to sell a product
over multiple time periods – with the aim of maximizing its
cumulative expected revenue – when the underlying demand
curve (for that product) is unknown and subject to exogenous
shocks. What distinguishes our formulation from this prevail-
ing literature is the explicit treatment of risk-sensitivity in the
optimization criterion we consider, and the subsequent need
to design pricing policies that not only learn the underlying
demand curve, but also learn the shock distribution.

Focusing explicitly on demand response applications, there
are several related papers in the literature, which formulate the
problem of eliciting demand response under uncertainty within
the framework of multi-armed bandits [6]–[9]. In this setting,
each arm represents a customer or a class of customers. Taylor
and Mathieu [6] show that, in the absence of exogenous shocks
on load curtailment, the optimal policy is indexable. Kalathil
and Rajagopal [7] consider a similar multi-armed bandit
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setting in which a customer’s load curtailment is subject to an
exogenous shock, and attenuation due to fatigue resulting from
repeated requests for reduction in demand over time. They
propose a policy, which guarantees that the -period regret
is bounded from above by . There is a related
stream of literature, which treats the problem of pricing de-
mand response under uncertainty using techniques from online
learning [10]–[13]. Perhaps closest to the setting considered
in this paper, Jia et al. [11] consider the problem of pricing
demand response when the underlying demand function is
unknown, affine, and subject to normally distributed random
shocks. With the aim of maximizing the utility’s expected
surplus, they propose a stochastic approximation-based pricing
policy, and establish an upper bound on the -period regret
that is of the order . There is another stream of
literature, which considers an auction-based approach to the
procurement of demand response [14]–[20]. In such settings,
the primary instrument for analysis is game-theoretic in nature.

Organization: The rest of the paper is organized as follows.
In Section II, we develop the demand model and formulate the
utility’s pricing problem for demand response. In Section III,
we outline a scheme for demand model learning. In Section
IV, we propose a pricing policy and analyze its performance.
We investigate the behavior of the proposed pricing policy
with a numerical case study in Section VI. All mathematical
proofs are presented in the Appendix to the paper.

II. MODEL

A. Responsive Demand Model

We consider a class of demand response (DR) programs in
which an electric power utility seeks to elicit a reduction in
peak electricity demand from a fixed group of customers
over multiple time periods (e.g., days) indexed by .
The class of DR programs we consider rely on uniform price-
based incentives for demand reduction.1 Specifically, prior to
each time period , the utility broadcasts a single price
($/kWh), to which each participating customer responds with
a reduction in demand (kWh) – thus entitling customer
to receive a payment in the amount of .2

We model the response of each customer to the posted
price at time according to a linear demand function given
by

for

where and are model parameters unknown to
the utility, and is an unobservable demand shock, which we
model as a random variable with zero mean.3 Its distribution is

1This class of DR programs falls within the more general category of
programs that rely on peak time rebates (PTR) as incentives for demand
reduction [21].

2A customer’s reduction in demand is measured against a predetermined
baseline. The question as to how such baselines might be reliably inferred is
a challenging and active area of research [22]–[26]. Expanding our model to
make endogenous the calculation of customer baselines is left as a direction
for future research.

3We note that the assumption that be zero-mean is without loss of
generality.

also unknown to the utility. We define the aggregate response
of customers at time as

∑
, which satisfies

(1)

Here, the aggregate model parameters and shock are defined as∑
,

∑
, and

∑
. To simplify

notation in the sequel, we write the deterministic component
of aggregate demand as , where
denotes the aggregate demand function parameters.

We assume throughout the paper that and[ ]
, where the model parameter bounds are assumed

to be known and satisfy and .
Such assumptions are natural, as they ensure that the price
elasticity of aggregate demand is strictly positive and bounded,
and that reductions in aggregate demand are guaranteed to
be nonnegative in the absence of demand shocks. We also
assume that the sequence of shocks are independent and
identically distributed random variables, in addition to the
following technical assumption.

Assumption 1. The aggregate demand shock has a bounded
range , and a cumulative distribution function , which
is bi-Lipschitz over this range. Namely, there exists a real
constant , such that for all , it holds that

There is a large family of distributions respecting As-
sumption 1 including uniform and doubly truncated normal
distributions. Moreover, the assumption that the aggregate
demand shock takes bounded values is natural, given the
inherent physical limitation on the range of values that demand
can take. And, technically speaking, the requirement that
be bi-Lipschitz is stated to ensure Lipschitz continuity of its
inverse, which will prove critical to the derivation of our main
results. Finally, we note that the electric power utility need not
know the parameters specified in Assumption 1, beyond the
assumption of their boundedness.

Remark 1 (On the Linearity Assumption). While the as-
sumption of linearity in the underlying demand model might
appear restrictive at first glance, there are several sensible
arguments in support of its adoption. First, the assumption of
linearity is routinely employed in the revenue management and
pricing literature [3], [11], [27]–[30], as it serves to facilitate
theoretical analyses, thereby bringing to light key features of
the problem and its solution structure. More practically, if
the range of allowable prices is sufficiently limited, then it is
reasonable to assume that the underlying (possibly nonlinear)
demand function is well approximated by an affine function
over that range. And, in the specific context of pricing for DR
programs, it is reasonable to expect that the electric power
utility, being a regulated company, will face restrictions on the
range of prices that it can offer to customers. Finally, there are
recent results in the revenue management literature [1], which
demonstrate how the assumption of a linear demand model
might be dynamically adapted to price in environments where
the true demand function is nonlinear. The generalization of
such techniques to accommodate the risk-sensitive criteria
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considered in this paper (cf. Equation (2)) represents an
interesting direction for future research.

B. Utility Model and Pricing Policies
We consider a setting in which the utility seeks to reduce

its peak electricity demand over multiple days, indexed by .
Accordingly, we let ($/kWh) denote the wholesale price
of electricity during peak demand hours on day . And, we
let ($/kWh) denote the retail price of electricity, i.e., the
fixed price that customers are charged for their electricity
consumption. For the remainder of the paper, it will be
convenient to work with the difference between the wholesale
and retail prices of electricity on each day , which we denote
by . We assume throughout the paper that

for all days , where .4 In addition, we
assume that is known to the utility prior to its determination
of the DR price in each period . Upon broadcasting a price

to its customer base, and realizing an aggregate demand
reduction , the utility derives a net reduction in its peak
electricity cost in the amount of . Henceforth, we
will refer to the net savings as the revenue derived
by the utility in period .

The utility is assumed to be sensitive to risk, in that it would
like to set the price for DR in each period to maximize the
revenue it is guaranteed to receive with probability no less
than . Clearly, the parameter encodes the
degree to which the utility is sensitive to risk. Accordingly,
we define the risk-sensitive revenue derived by the utility in
period given a posted price as

(2)

The risk measure specified in (2) is closely related to the stan-
dard concept of value at risk commonly used in mathematical
finance. Conditioned on a fixed price , one can reformulate
the expression in (2) as

(3)

where denotes the -
quantile of the random variable . It is immediate to see from
the simplified expression in (3) that is strictly concave
in . Let denote the oracle optimal price, which maximizes
the risk-sensitive revenue in period . Namely,

The optimal price is readily derived from the corresponding
first order optimality condition, and is given by

We define the oracle risk-sensitive revenue accumulated over
time periods as ∑

4Implicit in this requirement is the assumption that for
all days . The lower bound on implies that the utility will only call for
a demand reduction on those days in which the wholesale market manifests
in prices that exceed the fixed retail price for electricity. The upper bound on

implies the enforcement of a price cap in the wholesale market.

The term oracle is used, as equals the maximum risk-
sensitive revenue achievable by the utility over periods if it
were to have perfect knowledge of the demand model.

In the setting considered in this paper, we assume that
both the demand model parameters and the shock
distribution are unknown to the utility at the outset. As
a result, the utility must attempt to learn them over time
by observing aggregate demand reductions in response to
offered prices. Namely, the utility must endeavor to learn the
demand model, while simultaneously trying to maximize its
risk-sensitive returns over time. As we will later see, such
task will naturally give rise to a trade-off between learning
(exploration) and earning (exploitation) in pricing demand
response over time. First, we describe the space of feasible
pricing policies.

We assume that, prior to its determination of the DR price
in period , the utility has access to the entire history of prices
and demand reductions until period . We, therefore, define
a feasible pricing policy as an infinite sequence of functions

, where each function in the sequence is
allowed to depend only on the past history. More precisely, we
require that the function be measurable according to the -
algebra generated by the history of past decisions and demand
observations for all , and
that be a deterministic constant. The expected risk-sensitive
revenue generated by a feasible pricing policy over time
periods is defined as [∑ ]
where expectation is taken with respect to the demand model
(1) under the pricing policy .

C. Performance Metric

We evaluate the performance of a feasible pricing policy
according to the -period regret, which we define as

Naturally, pricing policies yielding a small regret are preferred,
as the oracle risk-sensitive revenue stands as an upper
bound on the expected risk-sensitive revenue achiev-
able by any feasible pricing policy . Ultimately, we seek
a pricing policy whose -period regret is sublinear in the
horizon . Such a pricing policy is said to have no-regret.

Definition 1 (No Regret Pricing). A feasible pricing policy
is said to exhibit no-regret if .

Implicit in the goal of designing a no-regret policy is that
the sequence of prices that it generates should converge to the
oracle optimal price sequence.

III. DEMAND MODEL LEARNING

Clearly, the ability to price with no-regret will rely centrally
on the rate at which the unknown parameters, , and quantile
function, , can be learned from the market data. In
what follows, we describe a basic approach to learning the
demand model using the method of least squares estimation.
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A. Parameter Estimation

Given the history of past decisions and demand observations
through period , define the least

squares estimator (LSE) of as{∑ }
for time periods . The LSE at period admits an
explicit expression of the form(∑[ ][ ] ) (∑[ ] )

(4)

provided the indicated inverse exists. It will be convenient to
define the matrix

J
∑[ ][ ] [∑ ∑∑ ]

Utilizing the definition of the aggregate demand model (1),
in combination with the expression in (4), one can obtain the
following expression for the parameter estimation error:

J

(∑[ ] )
(5)

Remark 2 (The Role of Price Dispersion). The expression for
the parameter estimation error in (5) reveals how consistency
of the LSE is reliant upon the asymptotic spectrum of the
matrix J . Namely, the minimum eigenvalue of J , must
grow unbounded with time, in order that the parameter esti-
mation error converge to zero in probability. In [3, Lemma 2],
the authors establish a sufficient condition for such growth.
Specifically, they prove that the minimum eigenvalue of J
is bounded from below (up to a multiplicative constant) by the
sum of squared price deviations defined as

∑
where

∑
. The result is reliant on the

assumption that the underlying pricing policy yields a
bounded sequence of prices . An important consequence
of such a result is that it reveals the explicit role that price
dispersion (i.e., exploration) plays in facilitating consistent
parameter estimation.

Finally, given the underlying assumption that the unknown
model parameters belong to a compact set defined

, one can improve upon the LSE at time
by projecting it onto the set . Accordingly, we define the
truncated least squares estimator aŝ (6)

Clearly, we have that ̂ . In the following
section, we describe an approach to estimating the underlying
quantile function using the parameter estimator defined in (6).

B. Quantile Estimation

Building on the parameter estimator specified in Equa-
tion (6), we construct an estimator of the unknown quantile
function according to the empirical quantile function
associated with the demand estimation residuals. Namely, in
each period , define the sequence of residuals associated with
the estimator ̂ as ̂ ̂
for . Define their empirical distribution as

̂ ∑
1 ̂

and their corresponding empirical quantile function aŝ ̂ for all .
It will be useful in the sequel to express the empirical
quantile function in terms of the order statistics associated
with sequence of residuals. Essentially, the order statisticŝ ̂ are defined as a permutation of ̂ ̂
such that ̂ ̂ ̂ With this concept
in hand, the empirical quantile function can be equivalently
expressed as ̂ ̂ (7)

where the index is chosen such that . It is not
hard to see that . Using Equation (7), one can relate
the quantile estimation error to the parameter estimation error
according to the following inequalitŷ ( ) ̂ (8)

where is defined as the empirical quantile function
associated with the sequence of demand shocks .
Their empirical distribution is defined as∑

1

The inequality in (8) reveals that consistency of the quantile
estimator (7) is reliant upon consistency of the both the pa-
rameter estimator and the empirical quantile function defined
in terms of the sequence of demand shocks. Consistency of the
former is established in Lemma 1 under a suitable choice of a
pricing policy, which we specify in Equation (11). Consistency
of the latter is clearly independent of the choice of pricing
policy. In what follows, we present a bound on the rate of its
convergence in probability.

Proposition 1. Let . It holds that

(9)

for all and .

Proposition 1 is similar in nature to [31, Lemma 2], which
provides a bound on the rate at which the empirical distribution
function converges to the true cumulative distribution function
in probability. The combination of Assumption 1 with [31,
Lemma 2] enables the derivation of the upper bound in
Proposition 1.
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IV. DESIGN OF PRICING POLICIES

Building on the approach to demand model learning in
Section III, we construct a DR pricing policy, which is
guaranteed to exhibit no-regret.

A. Myopic Policy

We begin with a description of a natural approach to pricing,
which interleaves the model estimation scheme defined in
Section III with a myopic approach to pricing. That is to say,
at each stage , the utility estimates the demand model
parameters and quantile function according to (6) and (7),
respectively, and sets the price according to

̂ ̂ ̂̂
(10)

Under this pricing policy, the utility essentially treats its model
estimate in each period as if it were correct, and disregards
the subsequent impact of its choice of price on its ability to
accurately estimate the demand model in future time periods.
A danger inherent to a myopic approach to pricing such as
this is that the resulting price sequence may fail to elicit
information from demand at a rate, which is fast enough to
enable consistent model estimation. As a result, the model
estimates may converge to incorrect values. Such behavior is
well documented in the literature [2]–[4], and is commonly
referred to as incomplete learning. In Section VI, we provide
a numerical example, which demonstrates the occurrence of
incomplete learning under the myopic pricing policy (10).

B. Perturbed Myopic Policy

In order to prevent the possibility of incomplete learning, we
propose a pricing policy that is guaranteed to elicit information
from demand at a sufficient rate through carefully designed
perturbations to the myopic pricing policy (10). The pricing
policy we propose is defined as{̂ odd̂ even

(11)

where is a user specified positive constant, and

sgn

We refer to the policy (11) as the perturbed myopic policy.5

The perturbed myopic policy differs from the myopic policy
in two important ways. First, the model parameter estimate, ̂ ,
and quantile estimate, ̂ , are updated at every other time
step. Second, to enforce sufficient price exploration, an offset
is added to the myopic price at every other time step. Roughly
speaking, the sequence of myopic price offsets is chosen
to decay at a rate, which is slow enough to ensure consistent
model learning, but not so slow as to preclude a sub-linear
growth rate for regret. In Section V, we will show that the
combination of these features is enough to ensure consistent
parameter estimation and a sub-linear growth rate for the -
period regret, which is bounded from above by .

5In defining the sign function, we require that sgn .

Remark 3 (On the Perturbation Order). We briefly describe
the rationale behind the selection of the order of the perturba-
tion sequence as . First, notice from Equation
(12) that the regret incurred by any feasible pricing policy is
equal to the sum of the squared pricing errors generated by
the policy. Combining this expression with the upper bound
on the absolute pricing error induced by the perturbed myopic
policy in (14), it becomes clear to see the conflicting effects
that the perturbation sequence has on regret. On the one hand,
an increase in the order of the perturbation sequence will tend
to reduce the growth rate of regret by increasing the rate at
which the parameter estimation error ̂ converges
to zero. On the other hand, an increase in the order of the
perturbation sequence will tend to have the counterproductive
effect of increasing the growth rate of regret by increasing the
rate at which the deliberate pricing errors accumulate.
A tradeoff, therefore, emerges in selecting the order of the
perturbation sequence. In Appendix B, we show that among all
perturbation sequences that are polynomial in , perturbation
sequences of the order are optimal in the sense of
minimizing the asymptotic order of our upper bound on regret.

V. A BOUND ON REGRET

Given the demand model considered in this paper, one can
express the -period regret as

∑ [ ]
(12)

under any pricing policy . It becomes apparent, upon exam-
ination of Equation (12), that the rate at which regret grows
is directly proportional to the rate at which pricing errors
accumulate. We, therefore, proceed in deriving a bound on
the rate at which the absolute pricing error converges
to zero in probability, under the perturbed myopic policy.

First, it is not difficult to show that, under the perturbed
myopic policy (11), the absolute pricing error incurred in each
even time period is upper bounded by

(13)̂ ̂
where and .
The pricing error incurred during odd time periods is
similarly bounded, sans the explicit dependency on the myopic
price perturbation. The upper bound in (13) is intuitive as it
consists of three terms: the parameter estimation error, the
quantile estimation error, and the myopic price perturbation
– each of which represents a rudimentary source of pricing
error.

One can further refine the upper bound in (13), by lever-
aging on the fact that, under the perturbed myopic policy, the
generated sequence of prices is uniformly bounded. That is to
say, for all time periods , where{ }
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Combiningthisfactwiththepreviouslyderivedupperbound
onthequantileestimationerrorin(8),wehavethat

|pt+1−p
∗
t+1| (14)

≤κ3θt−θ1 + κ2|F
−1
t (α)−F

−1(α)|+ ρ|δt+1|,

foreventimeperiodst,whereκ3:=κ1+κ2(1+p).
Consistencyoftheperturbedmyopicpolicydependsonthe

asymptoticbehaviorofeachtermin(14).Amongthem,only
theparameterestimationerrordependsonthechoiceofpricing
policy.Thepriceperturbationconvergestozerobyconstruc-
tion,andconsistencyoftheempiricalquantilefunctionis
establishedinProposition1.ThefollowingLemmaestablishes
aboundontherateatwhichtheparameterestimatesconverge
tothetruemodelparametersinprobability.

Lemma1(ConsistentParameterEstimation).Thereexistfi-
nitepositiveconstantsµ2andµ3suchthat,undertheperturbed
myopicpolicy(11),

P{θt−θ1>γ}≤2exp(−µ2γ
2ρ2
√
t)+2exp(−µ3γ

2t),

forallγ>0andt≥2.

ThefollowingTheoremestablishesanO(
√
T)upperbound

ontheT-periodregret.

Theorem1(Sub-linearRegret).TheT-periodregretincurred
bytheperturbedmyopicpolicy(11)satisfies

∆π(T)≤C0+C1
√
T+C2

4
√
T+C3log(T), (15)

forallT≥2.Here,C0,C1,C2,andC3arefinitepositive
constants.6

Remark4(TuningtheParameter,ρ).Asonemightexpect,the
coefficientsC0,C1,C2,andC3dependontheuserspecified
parameterρ.Accordingly,itisnaturaltoaskastowhetheror
notitistractabletocalculateavalueforρ,whichminimizes
theupperboundonregretin(15),givenafixedhorizon
T.Theshortanswerisyes.Acursoryexaminationofthe
coefficientEquations(30)-(33)revealstheupperboundon
regretin(15)tobeastrictlyconvexanddifferentiablefunction
intheparameterρoverthepositiverealnumbers.Thisrenders
itsminimizationintheparameterρastraightforwardtask.That
istosay,givenafixedhorizonT,onecanreadilycalculate

ρ∗(T):=argmin{C0+C1
√
T+C2

4
√
T+C3log(T):ρ∈R},

(16)

usingoneofvarietyoffirst-order,second-order,orbisection-
basednumericalmethods.InSectionVI,weconductanumer-
icalstudytoassestheperformanceoftheperturbedmyopic
policywhenitstuningparameterisselectedaccordingto
Equation(16).Thenumericalresultssuggestthataselection
ofthetuningparameteraccordingtoρ=ρ∗(T)manifests
inacorrespondingT-periodregretthatiscomparabletothe
minimumachievableregretoverallpossibletuningparameters
ρ∈R+. WereferthereadertoFigure1foragraphical
illustrationofthiscomparison.

6WereferthereadertoEquations(30)-(33)fortheexactspecificationof
thecoefficientsC0,C1,C2,andC3.

IntheprocessofprovingTheorem1,wealsoshowthat
theperturbedmyopicpolicygeneratesasequenceofmarket
prices{pt}thatconvergestotheoracleoptimalpricesequence
{p∗t}inthemeansquaresense.Moreformally,wehavethe
followingcorollary.

Corollary1(PriceConsistency).Thesequenceofprices{pt}
generatedbytheperturbedmyopicpolicy(11)satisfies

lim
t→∞

E(pt−p
∗
t)
2 =0,

where{p∗t}denotestheoracleoptimalpricesequence.

Itisalsoworthnotingthatthesettingconsideredinthis
paperincludesasaspecialcasethesingleproductsetting
consideredin[3].Theorderoftheupperboundonregret
derivedinthispaper,O(

√
T),isaslightimprovementonthe

orderoftheboundderivedin[3,Theorem2],O(
√
TlogT),

asiteliminatesthemultiplicativefactoroflog(T).

A.TheExploratoryEffectofWholesalePriceVariation

Thusfarinthispaper,wehavemadenoassumptionon
thenatureofvariationinthesequenceofwholesaleelectricity
prices{wt}.Inparticular,allofthepreviouslystatedresults
holdforanysequenceoftime-varyingwholesaleelectricity
prices.Thisincludesthespecialcaseinwhichthewholesale
priceofelectricityisconstantacrosstime,i.e.,wt=wforall
timeperiodst.Itis,however,naturaltoinquireastohowthe
degreeofvariationinthesequenceofwholesalepricesmight
impacttheperformanceofthepricingpoliciesconsideredin
thispaper.
First,itisstraightforwardtoseefromEquation(10)that
variationinthesequenceofwholesalepricesinducesequiva-
lentvariationinthesequenceofmyopicprices.Suchvariation
inthemyopicpricesequenceismostnaturallyinterpretedas
aformofcostlessexploration.Inthefollowingresult,we
establishasufficientconditiononthevariationofwholesale
prices,whicheliminatestheneedforexternalperturbations
tothe myopicpricesequence(i.e.,settingρ=0),while
guaranteeinganupperboundontheresultingT-periodregret
thatisO(logT).

Theorem2(LogarithmicRegret).Assumethatthereexistsa
finitepositiveconstantσ>0suchthat

|wt−wt−1|≥σ, (17)

foralltimeperiodst.7ItfollowsthattheT-periodregret
incurredbytheperturbedmyopicpolicy(11),withρ=0,
satisfies

∆π(T)≤M0+
M1
σ2
+
M1
σ2
+M2 log(T), (18)

forallT ≥ 2.Here,M0,M1,andM2arefinitepositive
constants8,whichareindependentoftheparameterσ.

Severalcommentsareinorder.First,undertheadditional
assumptionofpersistentwholesalepricevariation(17),we

7NotethatAssumption(17)inTheorem2impliesthat|ct−ct 1|≥σ.
8WereferthereadertoEquations(36)-(38)fortheexactspecificationof

thecoefficientsM0,M1,andM2.
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establish in Theorem 2 an improvement upon the original
order of regret stated in Theorem 1 from to .
However, as one might expect, the magnitude of the upper
bound on regret in (18) scales in a manner that is inversely
proportional to . As a result, the upper bound on the -
period regret goes to infinity as goes to zero, and, therefore,
provides little useful information when is small.

VI. CASE STUDY

We conduct a numerical analysis to compare the perfor-
mance of the myopic policy (10) against the perturbed myopic
policy (11) over a time horizon of . Given this time
horizon, we set the tuning parameter according to Equation
(16) as . We consider the setting in
which there are customers participating in the
DR program. For each customer , we select uniformly at
random from the interval , and independently select

according an exponential distribution (with mean equal to
) truncated over interval . Parameters are drawn

independently across customers.9 For each customer , we take
the demand shock to be distributed according to a normal
distribution with zero-mean and standard deviation equal to

, truncated over the interval . We consider a
utility with risk sensitivity equal to . In other words,
the utility seeks to maximize the revenue it is guaranteed to
receive with probability no less than 0.9. Finally, we set the
retail price of electricity to ($/kWh), and set the
wholesale price of electricity to ($/kWh) for all
days . Such values are consistent with the average residential
retail and peak wholesale prices of electricity in the state of
New York in 2016 [34], [35].

A. Discussion

Because the wholesale price of electricity is fixed over
time, the parameter and quantile estimates represent the only
source of variation in the sequence of prices generated by
the myopic policy. Due to the combined structure of the
myopic policy and the least squares estimator, the value of
each new demand observation rapidly diminishes over time,
which, in turn, manifests in a rapid convergence of the
sequence of prices generated under the myopic policy. The
resulting lack of exploration in the sequence of myopic prices
results in incomplete learning, which is seen in Figure 3a.
Namely, the sequence of myopic prices converges to a value,
which substantially differs form the oracle optimal price. As a
consequence, the myopic policy incurs a -period regret that
grows linearly with the horizon , as is observed in Figure 3.

On the other hand, the sequence of perturbations
generate enough variation in the sequence of prices generated
by the perturbed myopic policy to ensure consistent model
estimation. This, in turn, results in convergence of the se-
quence of posted prices to the oracle optimal price. This,
combined with the fact that the price offset vanishes at

9It is worth noting that the range of parameter values
considered in this numerical study is consistent with the range of demand
price elasticities observed in several real-time pricing programs conducted in
the United States [32], [33].

;
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Fig. 1: For a fixed horizon , the figure above plots the
regret incurred under the perturbed myopic policy as
function of the tuning parameter . The bullet ( ) indicates the
regret incurred under the perturbed myopic policy
when the tuning parameter is selected according to Equation
(16), i.e., .

a sufficiently fast rate, ensures sublinearity in the growth rate
of the corresponding -period regret, as is observed in Figure
3.

For the chosen horizon of , we depict in Figure
1 the sensitivity of the regret incurred under the
perturbed myopic policy to the choice of tuning parameter .
The bullet point specifies the regret incurred when the policy’s
tuning parameter is selected according to Equation (16), i.e.,

. For the time horizon considered, the nu-
merical results indicate that a selection of the tuning parameter
according to Equation (16) results in a corresponding regret
that is comparable to the minimum achievable regret over all
possible tuning parameters .

VII. CONCLUSION

In this paper, we propose a data-driven approach to pricing
demand response with the aim of maximizing the risk-sensitive
revenue derived by the electric power utility. The perturbed
myopic pricing policy we propose has two key features.
First, the unknown demand model parameters are estimated
using a least squares estimator. Second, the proposed policy
implements a sequence of perturbations to the myopic price
sequence to ensure sufficient exploration in the sequence of
prices it generates. The price perturbation sequence is designed
to decay at a rate, which is slow enough to ensure complete
learning of the underlying demand model, but not so slow as
to preclude a sub-linear growth rate for regret. In particular,
the proposed pricing policy is proven to exhibit a -period
regret that is no greater than . As a direction for
future research, it would be interesting to investigate the
generalization of the pricing algorithms developed in this paper
to accommodate the treatment of nonlinear and possibly time-
varying demand functions.
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(a)Sequencesofdemandparameterat. (b)Sequencesofdemandparameterbt. (c)SequencesofquantilefunctionF 1
t (α).

Fig.2:(a)-(b)Samplepathsoftheparameterestimates,and(c)samplepathoftheshockquantileestimatesunderthemyopic
policy( ),theperturbedmyopicpolicy( ),andtheoraclepolicy( ).

(a)Sequencesofpostedprices. (b)Meansquaredpricingerror. (c)T-periodRegret.

Fig.3:(a)Samplepathofpostedprices,(b)meansquaredpricingerror,and(c)regretunderthemyopicpolicy( ),the
perturbedmyopicpolicy( ),andtheoraclepolicy( ).
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APPENDIX

In the following proofs, we consider a more general form
of the perturbation as sgn where is
allowed to be an arbitrary constant in the interval .
Ultimately, we will prove that a choice of minimizes
the asymptotic order of the upper bound on regret, which we
establish in (28).

APPENDIX A
PROOF OF LEMMA 1

It is straightforward to show that the parameter estimation
error is bounded from above bŷ (19)

where ∑
and

∑
(20)

Recall that
∑

. It follows that̂

We will upper bound each term separately to establish the
desired result. In doing so, we will rely on the following
Lemma – which we state without proof, as it follows from
a direct application of the Chernoff bound together with
Hoeffding’s Lemma.10

Lemma 2. Let be an infinite sequence of zero mean
independent random variables, satisfying

, almost surely, for all . Let be an infinite
sequence of real numbers, and define the sequence of random
variables (∑ )/(∑ )
For all and , it holds that( ∑ )

First term: By setting and , a direct
application of Lemma 2 yields ( )

(21)

Second term: By setting and , a
direct application of Lemma 2 yields

[ ( )]
(22)

The equality follows from the law of total probability, and
the inequality follows from monotonicity of the expectation
operator.

We now bound the random process from below by
a deterministic sequence. Fix . A direct substitution of the
perturbed myopic policy yields

∑ { ̂
(̂ ) }

The above inequality can be further relaxed to eliminate its
explicit dependency on the (random) price process. Namely,
it is straightforward to show that

∑ ∑
(23)

One can further relax inequality (23) by using the facts that∑ ∫
and ( )

10We refer the reader to [36, Lemma 4] for a proof of a similar result.
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It follows that ( ) ∑
(24)

where is defined as ∑ 
An application of the inequality in (24) to (22) yields[ ( )]

( )
(25)

Together, the upper bounds in (21) and (25) give{ ̂ } ( ) ( )
(26)

where and .
To complete the proof, we set . For this choice of ,
we have that

√
.

APPENDIX B
PROOF OF THEOREM 1

We introduce an additional assumption on the variation in
the sequence of wholesale electricity prices.11 Namely, let

be nonnegative constant such that for all
. Ultimately, we will establish the desired result for

, the setting considered in the statement of the Theorem.
We begin with the following upper bound on the -period

regret.

∑ [ ]
T+1

2∑ [ ̂ ̂ ]
T+1

2∑ ( [(̂ ) ])
where the constant is defined as

Recall that is assumed to be a deterministic constant. The
inequality is immediate, and the last equality follows from the
fact that for any pair of
scalars . We establish the following technical Lemma
to bound the expectation in the above inequality. Its proof is
postponed to Appendix C.

11Such assumption will prove useful in facilitating the proof of Theorem
2.

Lemma 3. Under the perturbed myopic policy (11), it holds
that [(̂ ) ]

( √)
where , and are nonnegative constants.

A direct application of Lemma 3 yields

T+1
2∑ { ( √

)}
∑{

}
(27)

∑{ √}
(28)

Inequality (27) follows from the facts that ,
, and . Inequality (28) follows from

the definition of and the assumption that
for all .

For , it is straightforward to show that a choice of
minimizes the asymptotic order of the upper bound

(28) with respect to the horizon . Setting yields

∑{ √
}

4( ( √ ))
(√ √ )

4 (29)
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Inequality (29) follows from the bounds

∑ ∫
∣∣∣

and ∑√ ∫ √
√ ∣∣∣

Taking the limit of the upper bound in (29) as goes to zero
yields

4

4

Finally, we define the nonnegative constants , , , and
as follows to conclude the proof.

4

(30)

(31)

4 (32)
(33)

APPENDIX C
PROOF OF LEMMA 3

First, we use the fact that for a continuous nonnegative
random variable , it holds that

∫
.[(̂ ) ]

∫ {∣∣∣∣̂ ∣∣∣∣ }
∫ {∣∣̂ ∣∣ }

(34)∫
ρ2δ22t

4

{∣∣̂ ∣∣ }
(35)

Inequality (34) follows from triangle inequality. The equality
in (35) follows from the fact that for all , it
holds that {∣∣̂ ∣∣ }

Now, recall that̂ ̂ ∣∣ ∣∣
The above inequality, together with the inequality in (26) and
Proposition 1, yield{∣∣̂ ∣∣ }

( ( ) )
( ( ) )
( ( ) )

Applying the above bound to (35), and explicitly calculating
the resulting integral yields[(̂ ) ]

√( ) ( )
Note that, in calculating the aforementioned integral, we used
the identity: ∫

2

2

Finally, we define nonnegative constants , , , and
as follows to conclude the proof.

( )
( )

APPENDIX D
PROOF OF THEOREM 2

Inequality (28) is a valid upper bound the -period regret
incurred by perturbed myopic policy, under the assumption
that . By setting , the upper bound simplifies to

We define the nonnegative constants , , and as
follows to conclude the proof.

(36)
(37)
(38)
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Note that the above constants are specified in such a manner
as to be independent of the parameter .
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