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Abstract—We present a technique for learning control Lya-
punov (potential) functions, which are used in turn to synthesize
controllers for nonlinear dynamical systems. The learning frame-
work uses a demonstrator that implements a black-box, untrusted
strategy presumed to solve the problem of interest, a learner
that poses finitely many queries to the demonstrator to infer a
candidate function and a verifier that checks whether the current
candidate is a valid control Lyapunov function. The overall
learning framework is iterative, eliminating a set of candidates
on each iteration using the counterexamples discovered by the
verifier and the demonstrations over these counterexamples. We
prove its convergence using ellipsoidal approximation techniques
from convex optimization. We also implement this scheme using
nonlinear MPC controllers to serve as demonstrators for a
set of state and trajectory stabilization problems for nonlinear
dynamical systems. Our approach is able to synthesize relatively
simple polynomial control Lyapunov functions, and in that
process replace the MPC using a guaranteed and computationally
less expensive controller.

I. INTRODUCTION

We propose a novel learning from demonstration scheme for

inferring control Lyapunov functions (potential functions) for

stabilizing nonlinear dynamical systems to reference states/

trajectories. Control Lyapunov functions (CLFs) have wide

applications to motion planning problems in robotics. They

extend the classic notion of Lyapunov functions to systems

involving control inputs [3]. Finding a CLF also leads us to an

associated feedback control law that can be used to solve the

stabilization problem. Additionally, they can be extended for

feedback motion planning using extensions to time-varying or

sequential CLFs [5, 53]. Likewise, they have been investigated

in the robotics community in many forms including artificial

potential functions to solve path planning problems involving

obstacles [30].

However, synthesizing CLFs for nonlinear systems remains

a challenge [41, 42]. Standard approaches to finding CLFs

include the use of dynamic programming, wherein the value

function satisfies the conditions of a CLF [4], or using non-

convex bilinear matrix inequalities (BMI) [13]. BMIs can be

solved using alternating minimization methods [8, 51, 31].

However, these approaches often get stuck in local minima

and exhibit poor convergence guarantees [12].

In this article, we investigate the problem of learning a

CLF using a black-box demonstrator that can be queried with

a given system state, and responds by demonstrating control

inputs to stabilize the system starting from that state. However,

our framework uses just the control input at the query state.

Such a demonstrator can be realized using an expensive

nonlinear model predictive controller (MPC) that uses a local

optimization scheme, or even a human operator under certain

assumptions 1. The framework has a LEARNER which selects

a candidate CLF and a VERIFIER that tests whether this CLF

is valid. If the CLF is invalid, the VERIFIER returns a state at

which the current candidate fails. The LEARNER queries the

demonstrator to obtain a control input corresponding to this

state. It subsequently eliminates the current candidate along

with a set of related functions from further consideration. The

framework continues to exhaust the space of candidate CLFs

until no CLFs remain or a valid CLF is found in this process.

We prove the process can converge in finitely many steps

provided the LEARNER chooses the candidate function ap-

propriately at each step. We also provide efficient SDP-based

approximations to the verification problem that can be used to

drive the framework. Finally, we test this approach on a variety

of examples, by solving stabilization problems for nonlinear

dynamical systems. We show that our approach can success-

fully find simple CLFs using finite horizon nonlinear MPC

schemes with appropriately chosen cost functions to serve as

demonstrators. In these instances, the CLFs yield control laws

that are computationally inexpensive, and guaranteed against

the original dynamical model.

A. Illustrative Example: TORA System

Figure 1(a) shows a mechanical system consisting of a cart

attached to a wall using a spring. The position of the cart

x is controlled by an arm with a weight that can be moved

back and forth by applying a force u, as shown. The goal is to

stabilize the cart to x = 0, with its velocity, angle, and angular

velocity
.
x = θ =

.
θ = 0. We refer the reader to the Jankovic

et al. [17] for a derivation of the dynamics shown below in

terms of state variables (x1, . . . , x4) and control input u1, after

a suitable change of basis transformation:

.
x1 = x2,

.
x2 = −x1 + ε sin(x3),

.
x3 = x4,

.
x4 = u1 . (1)

We approximate sin(x3) using a degree 3 approximation

which is quite accurate over the range x3 ∈ [−2, 2]. The

equilibrium x =
.
x = θ =

.
θ = 0 now corresponds to

x1 = x2 = x3 = x4 = 0. The state space is taken to be

S : [−1, 1] × [−1, 1] × [−2, 2] × [−1, 1], the control input

u1 ∈ [−1.5, 1.5].

1We do not handle noisy or erroneous demonstrations in this paper
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Fig. 1. Tora System. (a) A schematic diagram of the TORA system. (b) Execution traces of the system using MPC control (blue traces) and Lyapunov based
control (red traces) starting from same initial point.
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Fig. 2. Overview of the learning framework for learning a Lyapunov function.

MPC Scheme: A first approach to doing so uses a non-

linear model-predictive control (MPC) scheme using the time

horizon H = 30, time step τ = 1 and a simple cost function
∑

t=[0,τ,...,H]

(

||x(t)||22 + ||u(t)||22
)

+H ||x(H)||22 .

Given the model in (1), such a control is implemented using a

first order numerical gradient descent method to minimize the

cost function over a finite time horizon. The convergence was

informally confirmed by observing hundreds of such simula-

tions from different initial conditions for the system. However,

the MPC scheme is expensive, requiring repeated solutions

to (constrained) nonlinear optimization problems in real-time.

Furthermore, the closed loop lacks formal guarantees despite

the high confidence gained from numerous simulations.

Learning a Control Lyapunov Function: The approach

in this paper uses the MPC scheme as a “DEMONSTRATOR”,

and attempts to learn a simpler control law through a control

Lyapunov function. The key idea depicted in Fig. 2 is to

pose queries to the MPC at finitely many witness states W =
{x1, . . . ,xj} and use the corresponding instantaneous control

inputs u1, . . . ,uj , respectively. The LEARNER attempts to find

a candidate function V (x) that is positive definite and which

decreases at each witness state xj through the control input uj .

This function is fed to the VERIFIER, which checks whether

V (x) is indeed a CLF, or discover a state xj+1 at which the

condition fails. This new state is added to the witness set and

the process is iterated.

The procedure described in this paper synthesizes the con-

trol Lyapunov function after 60 iterations of the learning loop

and synthesizes the CLF V (x) below:
(

1.22 x
2
2 + 0.31 x2x3 + 0.44 x

2
3 − 0.28 x4x2 + 0.8 x4x3

+1.69 x
2
4 + 0.069 x1x2 − 0.68 x1x3 − 1.85 x4x1 + 1.60 x

2
1

)

This function yields a simple associated control law that

can be implemented and guarantees the stabilization of the

model (1). Figure 1(b) shows a closed loop trajectory of this

control law vs control law extracted by MPC. The advantage

of this law is that its calculation is much simpler, and fur-

thermore, the control is formally guaranteed, at least for the

model of the system.

Contributions: In this paper, we instantiate the learning

scheme sketched above, and show that under suitable assump-

tions terminates in finitely many iterations to either yield a

control Lyapunov function V (x) that is guaranteed to be valid,

or show that Lyapunov function of a specific form does not

exist. We demonstrate this scheme and its scalability on several

interesting vehicle dynamics taken from the literature to solve

stabilization to state and trajectory stabilization problems.

II. BACKGROUND

In this section, we briefly describe control Lyapunov (poten-

tial) functions. A state feedback control system Ψ(X,U,P, C)
consists of a plant P and a controller C over state space

X ⊆ R
n and input space U ⊆ R

m. The plant P has a state

x ∈ X and input u ∈ U . The vector field for the plant is

defined by a smooth function f : X × U → R
n. Throughout

the paper, we consider control affine systems that are possibly

nonlinear in x, but affine in u, of the form

.
x = f(x,u) = f0(x) +

m
∑

i=1

fi(x)ui , (2)

where fi : X → R
n. The controller C measures the state of the

plant (x ∈ X) and provides feedback u ∈ U . The controller

is defined by a continuous feedback function K : X → U .



ẋ = f(x,u)
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For a given feedback function K, the execution trace of the

system Ψ is defined as x(.) : R+ → X , which maps time to

state. Formally, given x(0) = x0, x(.) is defined according

to
.
x(t) = f0(x(t)) +

∑m
i=1 fi(x(t))(K(x(t)))i, where

.
x(.) is

the right derivative of x(.).
In this article, we study stabilization of nonlinear systems

using Lyapunov functions (or potential function) inside a

compact set S. More precisely, we consider a compact and

connected set S ⊂ X . Without loss of generality, the origin 0

is the state we seek to stabilize to. Furthermore, 0 ∈ int(S).
We restrict the set S to be a basic semi-algebraic set defined by

a conjunction of polynomial inequalities. Likewise, the control

inputs U are restricted to a polytope.

Our approach relies on control Lyapunov functions. A

control Lyapunov function (CLF) [3] V , is a continuous

function that respects the following conditions:

V (0) = 0
(∀x ∈ S \ {0}) V (x) > 0

(∀x ∈ S \ {0}) (∃u ∈ U) ∇V · f(x,u) < 0 .
(3)

The last condition ensures that the value of V can be decreased

everywhere by choosing a proper feedback u. Let

V onβ = {x|V (x) on β},where on∈ {=,≤, <,≥, >} .

Let β∗ be maximum β s.t. V ≤β ⊆ S. Once a CLF is obtained,

it guarantees that the system initialized to any state belonging

to V <β∗

, can be stabilized to the origin (Fig. 3). A control

Lyapunov function guarantees that there is a control strategy,

which stabilizes the system.

Theorem 1: Given a control affine system Ψ, where U :
R

m and a polynomial control Lyapunov function V satisfying

Eq. (3), there is a feedback function K for which if x0 ∈
V <β∗

, then:

1) (∀t ≥ 0) x(t) ∈ S

2) (∀ε > 0) (∃T ≥ 0) ‖x(T )− 0‖ < ε .

Given, a control Lyapunov function, it is possible to then

obtain a feedback law in a closed form that stabilizes the sys-

tem. Sontag [49] provides a method for extracting a continuous

feedback function K for control affine systems from a control

Lyapunov function. This can be extended to systems with

constraints on the control inputs [33]. Also, feedback synthesis

for periodic time/event triggered switching is possible [43, 7].

We have thus far considered the problem of stabilizing to a

fixed equilibrium state. However, given this primitive, we can

extend the CLF approach to related problems of (a) Reach-

while-stay: reaching a given target set of states T starting

from an initial set I , while staying inside a safe set S using

Lyapunov-barrier functions [39, 44]; (b) Trajectory stabiliza-

tion: stabilizing to a trajectory x(t) rather than to a fixed

state using time-varying Lyapunov functions; or similarly, (c)

Feedback motion planning which addresses the robustness of

S

Fig. 3. Local Control Lyapunov Function (CLF): Level-sets of a CLF V are
shown using the red lines. For each state (blue dot), the vector field f(x,u)
for u = K(x) is the blue arrow, and it points to a direction which decreases

V . The β∗-level set of V (V =β∗

) is shown as a solid red line.

a plan using funnels [5, 53] ; (d) Obstacles: problems that

involve reaching while avoiding an obstacle region in the state-

space using artificial potential functions [30]. We will focus

our exposition on the basic formulation for stability (Eq. (3))

while demonstrating extensions to some of other applications

mentioned above through numerical examples.

III. ALGORITHMIC LEARNING FRAMEWORK

Finding CLFs is known to be a hard problem, requiring the

solution to BMIs [51] or hard polynomial constraints[43]. A

standard approach to discovering such functions is to choose

a set of basis functions g1, . . . , gr and search of a function of

the form

Vc(x) =
r

∑

j=1

cjgj(x) , (4)

where c ∈ R
r is vector of unknowns. One possible choice

of basis functions involves monomials gj(x) : xαj wherein

|αj |1 ≤ DL for some degree bound DL for the learning

concept (CLF). Then, the problem is reduced to finding c s.t.

Vc satisfies Eq. (3).

We now present the algorithmic learning framework. Let

us fix a control affine system P over a state-space X , control

inputs U given by (2). Let x∗ = 0 be the equilibrium we wish

to stabilize the system to, while remaining inside S ⊂ X .

Next, we assume a DEMONSTRATOR as a function D :
S 7→ U that given a state x ∈ S, provides us an appropriate

feedback D(x) ∈ U for the state x, such that D is presumed

to be a valid function that stabilizes the system.

Remark 1: Our definition of a demonstrator is general

enough to allow offline MPC, sample based methods [27, 23],

human operator demonstrations [21], or even demonstrations

that rely on opaque models such as neural networks.

Also, we assume that the demonstrator is presumed correct.

However, the approach can work even if the demonstrator may

fail on some input states. Finally, a faulty demonstrator may,

at the worst, lead our technique to fail without finding a CLF.

In particular, such a demonstrator will not cause our technique

to synthesize an incorrect CLF.

Definition 1 (Problem Statement): The CLF learning prob-

lem has the following inputs:

1) A dynamical system P in the form (2),



L : findCandidate(Wj)

V : verify(Vj)

D : D(xj+1)

No Candidate

Correct

Vj

xj+1

uj+1

Wj+1 ← Wj [ {(xj+1,uj+1)}

Output: success

Output: fail

Fig. 4. Flowchart for the algorithmic learning framework. L: Learner, V:
Verifier and D: Demonstrator.

2) A safe set S,

3) A “black-box” demonstrator function D : S 7→ U that

presumably stabilizes the system, and

4) A candidate space for CLFs of the form
∑r

j=1 cjgj(x)
given by basis functions g(x) : 〈g1(x), . . . , gr(x)〉
and a compact set C 3 (c1, . . . , cr). We represent the

coefficients (c1, . . . , cr) collectively as c.

The output can be SUCCESS: a function Vc(x) : c
t · g(x)

that is a CLF; or FAILURE: no function could be discovered

by our procedure.

A. Algorithmic Learning Framework

The algorithmic learning framework is shown in Fig. 4, and

implements two modules (a) LEARNER and (b) VERIFIER that

interact with each other and the demonstrator. The framework

works iteratively until termination. At the jth iteration, the

learner maintains a (witness) set

Wj : {(x1,u1), . . . , (xj ,uj)} ⊆ S × U .

Wj is a finite set of pairs of states xi and corresponding

demonstrated feedback ui. Corresponding to Wj , Cj ⊆ C is

defined as set of candidate coefficients for functions Vc(x) :
ctg(x) with c ∈ Cj . Formally, Cj is a set of all candidates c

s.t. Vc satisfies the CLF condition (3) for every point in the

finite set Wj :

Cj :







c ∈ C

∣

∣

∣

∣

∣

∣

∧

(xi,ui)∈Wj

Vc(xi) > 0 ∧
∇Vc · f(xi,ui) < 0







. (5)

The flowchart for the overall procedure is shown in Fig. 4.

To begin with, W0 : ∅ and C0 : C. Each iteration works as

follows:

1) The learner samples a value cj ∈ Cj and outputs the

corresponding function Vj(x) : c
t
j · g(x). If Cj = ∅ then

no sample is found and the algorithm fails.

2) The verifier checks if Vj is a CLF by checking the

conditions in (3). If Vj satisfies the conditions, then the

algorithm stops to declare success. Otherwise the verifier

selects a (counterexample) state xj+1 ∈ S for which the

CLF condition fails. Assume without loss of generality

that xj+1 6= 0.

3) Failing verification, the demonstrator is called to choose

a suitable control uj+1 corresponding to xj+1.

4) The new set Wj+1 := Wj∪{(xj+1,uj+1)}. Furthermore,

Cj+1 : Cj ∩

{

c |
Vc(xj+1) > 0 ∧

∇Vc · f(xj+1,uj+1) < 0

}

. (6)

We now prove some core properties that guarantee the

correctness of the proposed scheme. We assume that the

learner and the verifier are implemented without any approx-

imations/relaxations (as will be subsequently presented).

Theorem 2: The algorithmic learning framework as de-

scribed above has the following property:

1) cj 6∈ Cj+1. I.e, the candidate found at the jth step is

eliminated from further consideration.

2) If the algorithm succeeds at iteration j, then the output

function Vj(x) is a valid CLF for stabilization.

3) The algorithm declares failure at iteration j if and only

if no linear combination of the basis functions is a CLF

compatible with the demonstrator.

Proofs are available in [45].

Inverse results [38] suggest polynomial basis for Lyapunov

functions are expressive enough for verification of exponen-

tially stable, smooth nonlinear systems. This, justifies using

polynomial basis for CLF.

Lemma 3.1: Assuming (i) the demonstrator function D is

smooth, (ii) the closed loop system with controller D is

exponentially stable, then there exists a polynomial CLF,

compatible with D.

Lemma 3.1 guarantees success of the learning procedure if

the set of basis functions is rich enough. We now present

implementations of each of the modules involved, starting with

the learner.

B. Learner: Finding a Candidate

The FINDCANDIDATE function simply samples a point from

the set Cj defined in Eq. (5). Note that Vc(xj) : c
t · g(xj) is

linear in c and therefore ∇Vc.f(xj ,uj) is linear in c as well.

The initial space of all candidates C is assumed to be a hyper-

rectangular open box. At each iteration, the candidate cj ∈ Cj

is chosen. Suppose the algorithm does not terminate at this

iteration. According to Eq. (6), the new set Cj+1 is obtained

as Cj+1 : Cj ∩ Hj , wherein Hj is defined by two linear

inequalities Hj1 ∧Hj2 (Hj1 : atj1c < bj1, Hj2 : atj2c < bj2).

Let Cj represent the topological closure of the set Cj .

Lemma 3.2: For each j ≥ 0, Cj is a convex polyhedron.

Thus the problem of implementing findCandidate is that of

checking emptiness of a polyhedron with some strict inequality

constraints. This is readily solved using a slight modification

of standard linear programming algorithms using infinitesimals

for strict inequalities.

Lemma 3.3: There exists a halfspace Hjk : atjkcj ≥ bjk
that passes through cj , and Cj+1 ⊆ Cj ∩Hjk.
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Fig. 5. Original candidate region Cj (green) at the start of the jth iteration,
the candidate cj , and the new region Cj+1 (hatched region with blue lines).
Also, aj2cj > bj2 (Hj2 passes through cj )

Choosing a Candidate cj: The choice of cj ∈ Cj

governs the overall convergence of the algorithm. Figure 5

demonstrates the importance of this choice by showing the

candidate cj , the hyperplane Hjk and the new region Cj+1.

We wish to choose cj s.t. VOL (Cj+1) ≤ αVOL (Cj), for a

fixed α, independent of Hjk.

Theorem 3 (Tarasov et al.[52]): Let cj be chosen as the

center of the maximum volume ellipsoid (MVE) of Cj . Then,

VOL (Cj+1) ≤

(

1−
1

r

)

VOL (Cj) .

This leads us to a scheme that guarantees termination of

the overall iterative scheme in finitely many steps under a

robustness assumption.

Definition 2 (Robust Candidate): A candidate c ∈ C is δ-

robust (δ > 0), iff for each ĉ ∈ Bδ(c), Vĉ : ĉt ·g(x) is a CLF,

where Bδ(c) is a ball of radius δ around c.

Let VOL(C) < γ∆r for γ > 0 the volume of the unit r-ball,

and ∆ > 0. Furthermore, the procedure terminates whenever

VOL(Cj) < γδr following the robustness assumption above.

Theorem 4: If at each step cj is chosen as the center of the

maximum volume ellipsoid in Cj , the learning loop terminates

in at most

r(log(∆)− log(δ))

− log
(

1− 1
r

) = O(r2) iterations .

The maximum volume ellipsoid itself can be computed by

solving a convex optimization problem[55].

C. Implementing the Verifier

The verifier given a candidate Vj(x) : c
t
j · g(x) checks the

CLF conditions in Eq. (3), split into two separate checks:

(A) Check if Vj(x) is a positive definite polynomial over x ∈
S. Assuming that g(0) = 0 for the basis, this reduces to:

(∃ x ∈ S \ {0}) Vj(x) ≤ 0 . (7)

(B) Check if the Lie derivative of Vj can be made negative

for each x ∈ S by a choice u ∈ U :

(∃x ∈ S \ {0}) (∀u ∈ U) (∇Vj) · f(x,u) ≥ 0 . (8)

This problem seems harder due to the presence of a quantifier

alternation. Let U be a polyhedral set defined by U : {u ∈
R

m | Au ≥ b}. Recall that f(x,u) is control affine function

f0(x) +
∑m

i=1 fi(x)ui.

Lemma 3.4: Eq. (8) holds for some x ∈ S iff

(∃ x ∈ S \ {0}, λ) λ ≥ 0, λtb ≥ −∇Vj .f0(x)
At

iλ = ∇Vj .fi(x)(i ∈ {1 . . .m}).
(9)

In other words, assuming that the dynamics and chosen

bases are polynomials, the verification problem reduces to

checking if a given semi-algebraic set defined by polynomial

inequalities has a solution.

Failing the polynomial assumption, the problem of verifi-

cation is in general undecidable. However, it can be approxi-

mated by techniques such as δ-decision procedures proposed

by Gao et al [10]. Solvers like dReal can thus be directly

used for the verification problem. While dReal does a good

job in adaptive space decomposition, in our experience, they

do not scale reliably. Nevertheless, these solvers allow us to

conveniently implement a verifier for small but hard problems

involving rational and trigonometric functions.

The verification problem for polynomial systems and poly-

nomial CLFs through a polynomial basis function g(x) is

NP-hard, in general. Exact approaches using semi-algebraic

geometry and the branch-and-bound solvers (including the

dReal approach cited above) can tackle this problem precisely.

However, scalability is still an issue.

We sketch a relaxation using SDP solvers [35]. Let us

fix a basis of monomial terms of degree up to DV , mt :
[1 x1 . . . xDV ], wherein DV is chosen as at least half of the

maximum degree in x among all monomials in gj(x) and ∇gj ·

f(x): DV ≥ 1
2 max

(

⋃

j ({deg(gj)} ∪ {deg(∇gj · f)})
)

. Let

Z(x) : mmt. Thus, each polynomial of degree up to

2DV may now be written as a trace inner product p(x) =
〈P,Z(x)〉 = trace(PZ(x)), wherein the matrix P is constant.

Let S be the semi-algebraic set defined as

S : {x ∈ R
n | r1(x) ≤ 0, . . . , rk(x) ≤ 0} ,

for polynomials r1, . . . , rk. The constraint in (7) is equivalent

to solving the following optimization problem over x

maxx 〈I, Z(x)〉
s.t. 〈Ri, Z(x)〉 ≤ 0, i ∈ {1, . . . , k}

〈Vj , Z(x)〉 ≤ 0 ,
(10)

where Vj(x) (ri(x)) is written as 〈Vj , Z(x)〉 (〈Ri, Z(x)〉). and

those in (9) are written as

maxx,λ 〈I, Z(x)〉
s.t. 〈Ri, Z(x)〉 ≤ 0, i ∈ {1, . . . , k}

〈Fji, Z(x)〉 = At
iλ, i ∈ {1, . . . ,m}

〈−Fj0, Z(x)〉 ≤ btλ, λ ≥ 0 ,

(11)

wherein the components ∇Vj · fi(x) defining the Lie deriva-

tives of Vj are now written in terms of Z(x) as 〈Fji, Z(x)〉.
The SDP relaxation is used to solve these problems and

provide an upper bound of the solution [14]. The result of the

relaxation treats Z(x) as a matrix variable Z that will satisfy

Z � 0. Notice that each optimization problem is feasible

simply by setting Z and λ to be zero. However, if the optimal

solution of both problems is Z = 0 in the SDP relaxation,

then we will conclude that the given candidate is a CLF.



Lemma 3.5: If the relaxed optimization problems in

Eqs. (10) and (11) yield a zero solution, then the given

candidate Vj(x) is in fact a CLF.

However, the converse is not true. It is possible for Z � 0
to be optimal for either relaxed condition, but no x ∈ R

n

corresponds to the solution. This happens because the relax-

ation drops two key constraints to convexify the conditions:

(1) Z has to be a rank one matrix written as Z : mmt and

(2) there is a x ∈ R
n such that m is the matrix of monomials

corresponding to x.

To deal with this, we adapt our learning framework to work

with witnesses Wj : {(Zi,ui)}
j
i=1 replacing states xi by

matrices Zi.

1) Each basis function gj(x) in g is now written instead as

〈Gj , Z〉. The candidates are therefore,
∑r

j=1 cj 〈Gj , Z〉.
Likewise, we write the components of its Lie derivative

∇gj · fi in terms of Z.

2) The learner maintains the set W as {(Zj ,uj)}, wherein

Zj is the feasible solution returned by the SDP solver

while solving Eqs. (11) and (10). In other words, the CLF

conditions are, in fact, taken to be the relaxed conditions.

3) We use a suitable projection operator π mapping each Z

to a state x : π(Z), such that the demonstrator receives

x. In practice, since the vector of monomials used to

define Z from x includes the terms 1, x1, . . . , xn, the

projection operator simply selects a few entries from Z

corresponding to the variables. Other more sophisticated

projections are also possible.

The relaxed framework thus lifts counterexamples to work

over matrices Zj . However, the candidate space begins with

C and is refined each step as before. I.e, the relaxed frame-

work continues to satisfy Lemmas 3.2, 3.3, Theorem 4 and

Theorem 2 with the definition of (control) Lyapunov function

changed to relaxed conditions.

IV. EXPERIMENTS

In this section, we describe numerical results on some

example benchmark systems. The algorithmic framework is

implemented using quadratic template forms for the CLFs

with the tool Globoptipoly used to implement the verifier [13].

The demonstrator is implemented using a nonlinear MPC

implemented using a gradient descent algorithm. For each

benchmark, we tuned the time horizon, discretization step and

the cost function until the control objectives were satisfied by

the MPC over hundreds of simulations starting from randomly

selected initial states.

Most of the benchmarks consider a reach-while-stay prob-

lem, wherein the goal is to reach target set T , starting initial

set I , while remaining in the safe set S. We also illustrate

an example involving a trajectory stabilization problem. All

the computations are performed on a Mac Book Pro with 2.9

GHz Intel Core i7 processor and 16GB of RAM. The reported

CLFs are rounded to 2 decimal points. The summary of results

is provided in Table. I.

Bicycle Model: This system is two-wheeled mobile robot

modeled with five states [x, y, v, θ, γ] and two control in-

TABLE I
RESULTS ON THE NUMERICAL EXAMPLES. n: # VARIABLES, m: #
CONTROL INPUTS, τ : MPC TIME STEP, H: MPC TIME HORIZON,
DV : SDP RELAXATION DEGREE BOUND FOR THE VERIFIER, #ITR:
# OF ITERATIONS, TIME: TOTAL COMPUTATION TIME (MINUTES).

System Name n m τ H DV # Itr Time

Tora 4 1 1 30 4 53 30
Bicycle 4 2 0.4 8 3 51 9
Bicycle × 2 8 4 0.4 8 3 536 303
Inverted Pendulum 4 1 0.04 2 5 85 31
Forward Flight 4 2 0.4 16 5 32 26
Hover Mode 6 2 0.4 16 4 213 163
Unicycle (Seg.1) 3+1* 2 0.1 2 4 41 15
Unicycle (Seg.2) 3+1* 2 0.1 3 4 31 7

* +1 refers to the time variable.

v
γ

y

θ

Fig. 6. A Schematic View of the Bicycle Model for Stabilizing to the Road.

puts [9]. The goal is to stabilize the car to a target velocity

v∗ = 5, as shown in Fig. 6. We drop the variable x (since it

is immaterial to our stabilization problem) and obtain a model

with four state variables:









.
y
.
v
.
θ
.
σ









=









v sin(θ)
u1

vσ

u2









,

U : [−10, 10]× [−10, 10]
S : [−2, 2]× [3, 7]× [−1, 1]2

I : B0.4(0)
T : B0.1(0) ,

where σ = tan(γ) (see Fig. 6). sin function is approximated

with a polynomial of degree 1. The method finds the following

CLF:

V =+ 0.42y2 + 0.59yθ + 2.57θ2 + 0.79yσ + 4.64σθ

+ 4.06σ2 − 0.38vy + 1.46vθ + 1.18vσ + 2.39v2 .

Inverted Pendulum on a Cart: This example has appli-

cations in balancing two-wheeled robots [6] (cf. [1] for list

of such robots). The system has four state variables [x,
.
x, θ,

.
θ]

and one input u. The dynamics, after partial linearization, have

the following form [24]:

[ ..
x
..
θ

]

=

[

4u+ 4(M+m)g tan(θ)−3mg sin(θ) cos(θ)
4(M+m)−3m cos2(θ)

−3u cos(θ)
l

]

,

where m = 0.21, M = 0.815, g = 9.8 and l = 0.305.

The trigonometric and rational functions are approximated

with polynomials of degree 3. The sets are S : [−1, 1]4, U :
[−20, 20], I : B0.2(x), T : B0.1(x). We obtain the following





bid to replace an existing controller. In doing so, we do not

attempt to prove that the original demonstrator is necessarily

correct but find a control Lyapunov function by assuming that

the demonstrator is able to stabilize the system for the initial

conditions we query on. Another important contribution lies in

our analysis of the convergence of the learning with a bound

on the maximum number of queries needed. In fact, these

results can also be applied to the Lyapunov function synthesis

approaches mentioned earlier.

Counter-Example Guided Inductive Synthesis (CEGIS):

Our approach of alternating between a learning module that

proposes a candidate and a verification module that checks

the proposed candidate is identical to the CEGIS framework

originally proposed by Solar-Lezama et al. [48, 47]. As such,

the CEGIS approach does not include a demonstrator that

can be queried. The extension of this approach Oracle-guided

inductive synthesis [18], generalizes CEGIS using an oracle

that serves a similar role as a demonstrator in this paper. Jha et

al. prove bounds on the number of queries for discrete concept

classes using results on exact concept learning in discrete

spaces [11].

The CEGIS procedure has been used for the synthesis

of CLFs recently by authors [43, 44], combining it with

SDP solvers for verifying CLFs and a robust version for

switched systems. The key difference here lies in the use of

the demonstrator module that simplifies the learning module.

In the absence of a demonstrator module, the problem of

finding a candidate reduces to solving linear constraints with

disjunctions, an NP-hard problem [44]. Likewise, the conver-

gence results are quite weak [43]. In the setting of this paper,

however, the use of a MPC scheme as a demonstrator allows us

to use faster LP solvers and provide convergence guarantees.

Learning from Demonstration: The idea of learning from

demonstration has had a long history in robotics [2]. The

overall framework uses a demonstrator that can in fact be

a human operator [21] or a complex MPC-based control

law [19, 57, 58, 34]. The approaches differ on the nature of

the interaction between the learner and the demonstrator; as

well as how the policy is inferred. Our approach stands out in

many ways: (a) We represent our policies by CLFs which are

polynomial. On one hand, these are much less powerful than

approaches that use neural networks [57, 19], for instance.

However, the advantage lies in our ability to solve verification

problems to ensure that the resulting policy learned through

the CLF is correct with respect to the underlying dynamical

model. (b) Our framework is adversarial. The choice of the

counterexample to query the demonstrator comes from a failed

attempt to validate the current candidate. (c) Finally, we use

simple yet powerful ideas from convex optimization to place

bounds on the number of queries, paralleling some results on

concept learning in discrete spaces [11].

Control Lyapunov functions were originally introduced by

Artstein and the construction of a feedback law given a CLF

was first given by Sontag [3, 49]. As such, the problem of

learning CLFs is well known to be hard, involving bilinear

matrix inequalities (BMIs) [51]. An equivalent approach in-

volves solving bilinear problems simultaneously for a control

law and a Lyapunov function certifying it [8, 31]. BMIs

are well known to be NP-hard, and hard to solve for a

feasible solution [13]. The common approach is to perform an

alternating minimization by fixing one set of bilinear variables

while minimizing in the other. Such an approach has poor

guarantees in practice, often “getting stuck” on a saddle point

that does not allow the technique to make progress in finding

a feasible solution. To combat this, Majumdar et al. (ibid)

use LQR controllers and their associated Lyapunov functions

for the linearization of the dynamics as good initial seed

solutions [31]. In contrast, our approach simply assumes a

demonstrator in the form of a MPC controller that can be used

to resolve the bilinearity. Furthermore, our approach does not

encounter the local saddle point problem.

The use of the learning framework with a demonstrator dis-

tinguishes the approach in this paper from recently developed

ideas based on formal synthesis [56, 29, 46, 36, 37, 22, 50,

43, 44, 15]. These techniques focus on a given dynamical

system and a specification of the correctness in temporal logic

to solve the problem of controller design to ensure that the

resulting trajectories of the closed loop satisfy the temporal

specifications. Majority of the approaches are based on dis-

cretization of the state-space into cells to compute a discrete

abstraction of the overall system [56, 29, 46, 36, 37, 22]. A

smaller set of approaches synthesize Lyapunov-like functions

by solving nonlinear constraints either through branch-and-

bound techniques or by sum-of-square (SOS) relaxation tech-

niques [50, 43, 44].

In this paper, we use the Lyapunov function approach to

synthesizing controllers. An alternative is to use occupation

measures [42, 40, 26, 32]. These methods formulate an infinite

dimensional problem to maximize the region of attraction

and obtain a corresponding control law. This is relaxed to

a sequence of finite dimensional SDPs [25]. Note however

that the approach computes an over approximation of the

finite time backward reachable set from the target and a

corresponding control. Our framework here instead seeks an

under approximation that yields a guaranteed controller.

VI. CONCLUSION AND FUTURE WORK

We have proposed an algorithmic learning framework for

synthesizing CLFs using a demonstrator and demonstrated our

approach on challenging numerical examples with 4-8 state

variables. As future work, we are considering many directions

including the extensions to noisy/erroneous demonstrations,

using output feedback (rather than full state feedback) synthe-

sis and allowing disturbances in our framework. We are also

working on integrating our control framework with RRT-based

path planning and implementing it on board robotic vehicles.
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